Acoustics in lined ducts with sheared mean flow, with applications for aircraft noise

Sjoerd Rienstra & Martien Oppeneer

with major contributions from Pieter Sijtsma, Bob Mattheij, Werner Lazeroms

TU/e, 31 March 2015

• Acoustic modes in flow ducts, with radial mean flow and temperature gradients.

- Acoustic modes in flow ducts, with radial mean flow and temperature gradients.
- Boundary condition (Helmholtz resonator-type) varies axially.

- Acoustic modes in flow ducts, with radial mean flow and temperature gradients.
- Boundary condition (Helmholtz resonator-type) varies axially.
- Mode matching works well for uniform flow, but here?

- Acoustic modes in flow ducts, with radial mean flow and temperature gradients.
- Boundary condition (Helmholtz resonator-type) varies axially.
- Mode matching works well for uniform flow, but here?
- Slowly-varying mode approximation works well if Z not passing resonance.

- Acoustic modes in flow ducts, with radial mean flow and temperature gradients.
- Boundary condition (Helmholtz resonator-type) varies axially.
- Mode matching works well for uniform flow, but here?
- Slowly-varying mode approximation works well if Z not passing resonance.
- Efficient and accurate **new Mode-Matching method** based on **exact** integrals of modes.

- Acoustic modes in flow ducts, with radial mean flow and temperature gradients.
- Boundary condition (Helmholtz resonator-type) varies axially.
- Mode matching works well for uniform flow, but here?
- Slowly-varying mode approximation works well if Z not passing resonance.
- Efficient and accurate **new Mode-Matching method** based on **exact** integrals of modes.

Published in: AIAA-2011-2871, AIAA-2013-2172.

- 2 Pridmore-Brown modes
- \bigcirc Options for varying Z
- 4 WKB for slowly varying Z
- 5 New mode-matching method

6 Conclusions

Outline

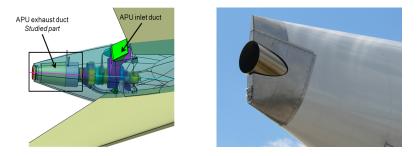
- Background & motivation
 - 2 Pridmore-Brown modes
 - Model & equations
 - Numerical method: COLNEW and path-following
- 3 Options for varying Z
- ④ WKB for slowly varying Z
- 5 New mode-matching method
 - Mode-matching basics
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Mode-matching based on closed form integrals of PB modes
 - Numerical results: comparing CMM and BLM

6 Conclusions

Epilogue

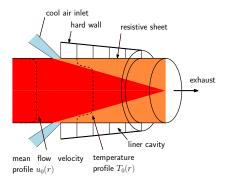
Background / motivation

- APU: Auxiliary Power Unit
 - produces power when main engines are switched off
 - to start main engines, AC, ...
 - major source of ramp noise



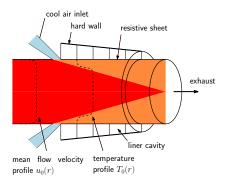
APU on an Airbus A380

Study sound propagation & attenuation in APU exhaust duct.



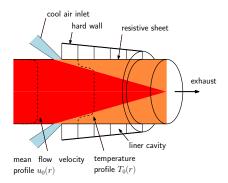
Modelling assumptions

• straight, circular, hollow exhaust duct



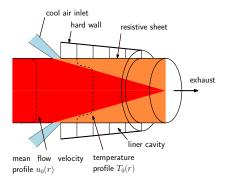
Modelling assumptions

- straight, circular, hollow exhaust duct
- non-uniform parallel mean flow (axially varying)



Modelling assumptions

- straight, circular, hollow exhaust duct
- non-uniform parallel mean flow (axially varying)
- strong temperature gradients (axially varying)



Modelling assumptions

- straight, circular, hollow exhaust duct
- non-uniform parallel mean flow (axially varying)
- strong temperature gradients (axially varying)
- segmented liner \Rightarrow slowly varying *o*r mode-matching
- Euler eqn. & perfect gas: $p = \rho \mathcal{R}T$, $c^2 = \gamma \mathcal{R}T$

Outline

Background & motivation

2 Pridmore-Brown modes

- Model & equations
- Numerical method: COLNEW and path-following
- 3 Options for varying Z
- ④ WKB for slowly varying Z
- 5 New mode-matching method
 - Mode-matching basics
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Mode-matching based on closed form integrals of PB modes
 - Numerical results: comparing CMM and BLM

6 Conclusions

Epilogue

Ordinary & Generalised Pridmore-Brown equation

For perturbations $p_1, \rho_1, \boldsymbol{v}_1$ of a parallel mean flow

 $v_0 = u_0(y, z) e_x, \quad \rho_0 = \rho_0(y, z), \quad c_0 = c_0(y, z), \quad p_0 = {\rm const}$

Ordinary & Generalised Pridmore-Brown equation

For perturbations $p_1, \rho_1, \boldsymbol{v}_1$ of a parallel mean flow

$$v_0 = u_0(y, z)e_x, \quad \rho_0 = \rho_0(y, z), \quad c_0 = c_0(y, z), \quad p_0 = \text{const}$$

the Linearised Euler equations can be reduced to:

Generalised Pridmore-Brown equation (arbitrary cross-section)

For modes of the form $p_1(x, y, z, t) = P(y, z) e^{ikx - i\omega t}$:

$$\nabla \cdot \left(\frac{c_0^2}{\Omega^2} \nabla P\right) + \left(1 - \frac{k^2 c_0^2}{\Omega^2}\right) P = 0, \quad \Omega = \omega - k u_0$$

Ordinary & Generalised Pridmore-Brown equation

For perturbations $p_1, \rho_1, \boldsymbol{v}_1$ of a parallel mean flow

$$v_0 = u_0(y, z)e_x, \quad \rho_0 = \rho_0(y, z), \quad c_0 = c_0(y, z), \quad p_0 = \text{const}$$

the Linearised Euler equations can be reduced to:

Generalised Pridmore-Brown equation (arbitrary cross-section)

For modes of the form $p_1(x, y, z, t) = P(y, z) e^{ikx - i\omega t}$:

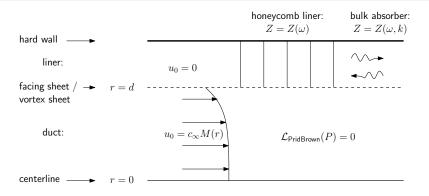
$$\nabla \cdot \left(\frac{c_0^2}{\Omega^2} \nabla P\right) + \left(1 - \frac{k^2 c_0^2}{\Omega^2}\right) P = 0, \quad \Omega = \omega - k u_0$$

Ordinary Pridmore-Brown equation (circular cross-section)

For $u_0(r), \rho_0(r), c_0(r)$ and $p_1(x, r, \theta, t) = P(r) e^{ikx - i\omega t + im\theta}$:

$$P'' + \left(\frac{1}{r} + 2\frac{c'_0}{c_0} + 2\frac{ku'_0}{\Omega}\right)P' + \left(\frac{\Omega^2}{c_0^2} - k^2 - \frac{m^2}{r^2}\right)P = 0$$

Boundary conditions



Ingard-Myers boundary condition for slipping flow:

$$-\mathrm{i}\omega(\boldsymbol{v}_{1}\boldsymbol{\cdot}\boldsymbol{n})Z = (-\mathrm{i}\omega + \boldsymbol{v}_{0}\boldsymbol{\cdot}\nabla)p_{1}$$

Boundary value problem

Pridmore-Brown equation

$$P'' + \left(\frac{1}{r} + 2\frac{c'_0}{c_0} + 2\frac{ku'_0}{\Omega}\right)P' + \left(\frac{\Omega^2}{c_0^2} - k^2 - \frac{m^2}{r^2}\right)P = 0$$

Boundary conditions

$$\mathrm{i}\omega ZP'=-\rho_0\Omega^2P \ \, \mathrm{at} \ r=d, \qquad P \ \, \mathrm{is \ regular \ at} \ r=0$$

 $P_{m\mu}(r)$

Eigenvalue Problem in k

Countable set of modal solutions: $P_{m\mu}(r) \, \mathrm{e}^{\mathrm{i} k_{m\mu} x - \mathrm{i} \omega t + \mathrm{i} m \theta}$

- eigenfunctions:
- eigenvalue (modal axial wavenumber): $k_{m\mu}$

Boundary value problem

Pridmore-Brown equation

$$P'' + \left(\frac{1}{r} + 2\frac{c'_0}{c_0} + 2\frac{ku'_0}{\Omega}\right)P' + \left(\frac{\Omega^2}{c_0^2} - k^2 - \frac{m^2}{r^2}\right)P = 0$$

Boundary conditions

$$\mathrm{i}\omega ZP'=-\rho_0\Omega^2P \ \, \mathrm{at} \ r=d, \qquad P \ \, \mathrm{is \ regular \ at} \ r=0$$

 $P_{m\mu}(r)$

Eigenvalue Problem in k

Countable set of modal solutions: $P_{m\mu}(r) e^{ik_{m\mu}x - i\omega t + im\theta}$

- eigenfunctions:
- eigenvalue (modal axial wavenumber): $k_{m\mu}$

Non-uniform parallel flow: modes are found numerically

Numerical solution: COLNEW

Write eigenvalue problem as boundary value problem:

• Add k to solution vector by adding equation k' = 0

• Fix
$$P(r)$$
 at $r = d$

Write eigenvalue problem as boundary value problem:

- Add k to solution vector by adding equation k' = 0
- Fix P(r) at r = d

COLNEW (NL-BVP software package available on netlib):

- Collocation at Gaussian points
- Runge-Kutta monomial basis representation
- Automatic meshing
- Damped Newton solver

Write eigenvalue problem as boundary value problem:

- Add k to solution vector by adding equation k' = 0
- Fix P(r) at r = d

COLNEW (NL-BVP software package available on netlib):

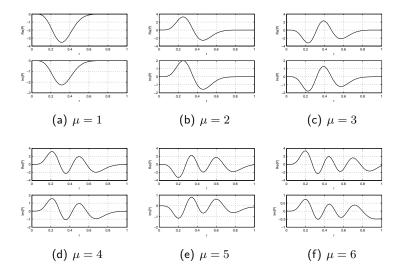
- Collocation at Gaussian points
- Runge-Kutta monomial basis representation
- Automatic meshing
- Damped Newton solver

Path-following/predictor-corrector/automatic step-size strategy from known solution to desired solution.

Numerical approach: example of path-following

Example of path-following in \boldsymbol{Z}

Numerical results: eigenfunctions & eigenvalues



Eigenfunctions for upstream-running modes, $\omega d/c_{\infty} = 25$, m = 5, $Z/\rho_{\infty}c_{\infty} = 2 - i$, $u_0/c_{\infty} = \frac{2}{3}(1 - \frac{1}{2}r^2)$, uniform temperature.

Numerical results: further tests

Test case borrowed from quantum-mech. potential well problem:

• Pridmore-Brown equation:

$$P'' + \beta(r,k)P' + \gamma(r,k)P = 0$$

• Quantisation condition based on high-freq. approximation

$$\int_{r_1}^{r_2} \sqrt{\gamma(r,k)} \, \mathrm{d}r = (n - \frac{1}{2})\pi, \quad n = 1, 2, \dots$$

μ	$k_{ m QC}$	k
1	-60.470038	-60.4392
2	-55.761464	-55.7281
3	-51.134207	-51.0980 - 0.0000i
4	-46.605323	-46.5659 - 0.0003i
5	-42.195790	-42.1422 - 0.0212i
6	-37.931052	-37.5622 - 0.3254i

k's for upstream-running modes.

• High-freq. approx. & numerical result: excellent agreement

Outline

- Background & motivation
- 2 Pridmore-Brown modes
 - Model & equations
 - Numerical method: COLNEW and path-following

3 Options for varying Z

- ④ WKB for slowly varying Z
- 5 New mode-matching method
 - Mode-matching basics
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Mode-matching based on closed form integrals of PB modes
 - Numerical results: comparing CMM and BLM

6 Conclusions

Epilogue

Options for varying Z

General solution by sum over modes

$$p_m(r,x) = \sum_{\mu=1}^{\mu^{\max}} \left[A_{m\mu}^+ P_{m\mu}^+(r) \, \mathrm{e}^{\mathrm{i} k_{m\mu}^+ x} + A_{m\mu}^- P_{m\mu}^-(r) \, \mathrm{e}^{\mathrm{i} k_{m\mu}^- x} \right]$$

Classic option for (piecewise) varying Z is Mode Matching.

Options for varying Z

General solution by sum over modes

$$p_m(r,x) = \sum_{\mu=1}^{\mu^{\max}} \left[A_{m\mu}^+ P_{m\mu}^+(r) \, \mathrm{e}^{\mathrm{i}k_{m\mu}^+ x} + A_{m\mu}^- P_{m\mu}^-(r) \, \mathrm{e}^{\mathrm{i}k_{m\mu}^- x} \right]$$

Classic option for (piecewise) varying Z is Mode Matching.

This is efficient and well-established (BAHAMAS <NLR) for no-flow and uniform flow conditions, mainly because

- exact solutions of PB equation ($P_{m\mu} = J_m$ Bessel functions),
- exact modal inner products (integrals) at interfaces.

Options for varying Z

General solution by sum over modes

$$p_m(r,x) = \sum_{\mu=1}^{\mu^{\max}} \left[A_{m\mu}^+ P_{m\mu}^+(r) \, \mathrm{e}^{\mathrm{i}k_{m\mu}^+ x} + A_{m\mu}^- P_{m\mu}^-(r) \, \mathrm{e}^{\mathrm{i}k_{m\mu}^- x} \right]$$

Classic option for (piecewise) varying Z is Mode Matching.

This is efficient and well-established (BAHAMAS <NLR) for no-flow and uniform flow conditions, mainly because

- exact solutions of PB equation ($P_{m\mu} = J_m$ Bessel functions),
- exact modal inner products (integrals) at interfaces.

Questions for non-uniform mean flow:

- What can we do with a *slowly* varying impedance?
- Can we improve the efficiency of the mode-matching?

Outline

- Background & motivation
- 2 Pridmore-Brown modes
 - Model & equations
 - Numerical method: COLNEW and path-following
- 3 Options for varying Z
- 5 New mode-matching method
 - Mode-matching basics
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Mode-matching based on closed form integrals of PB modes
 - Numerical results: comparing CMM and BLM

6 Conclusions

Epilogue

WKB for slowly varying Z

Slowly varying modes:

Assumptions

Ε

• Z(x) has an inherent length scale $L\gg d,$ no sudden changes. We rewrite

$$Z := Z(\varepsilon x) = Z(X), \quad \varepsilon = \frac{d}{L} \ll 1. \quad X = \varepsilon x.$$

- No modal interaction (reflection, cut-on/cut-off, etc)
- Mode, slowly varying in axial direction (WKB Ansatz)

$$\tilde{p}_m(r,X) = P(r,X) \exp\left(\frac{\mathrm{i}}{\varepsilon} \int_0^X \kappa(\eta) \mathrm{d}\eta\right)$$
igenfunction $P(r,X)$ and wave number $\kappa(X)$ to be found.

WKB for slowly varying Z

• Expand in ε

$$P(r,X) = P_0(r,X) + \varepsilon P_1(r,X) + O(\varepsilon^2)$$

 $\bullet\,$ To leading order, the slowly varying mode of order m,μ

$$P_0(r,X) = N(X)\psi_{m\mu}(r,X), \text{ with } \kappa = \kappa_{m\mu}(X)$$

where $\psi_{m\mu}(r,X)$ and $\kappa_{m\mu}(X)$ are modal solutions per X

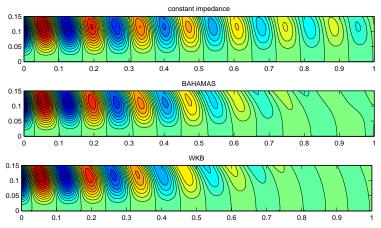
• N(X) is found from solvability condition for P_1 , eventually leading to

$$N(X)^{2} = N_{0}^{2} \exp\left(-\int_{0}^{X} \frac{f(\eta)}{g(\eta)} \mathrm{d}\eta\right)$$

where f(X), g(X) are complicated but explicit functions of X, ω , u_0 , ρ_0 , c_0 , Z(X), $\psi_{m\mu}$, and $\kappa_{m\mu}$.

Numerical results: linear Z(X)

Linear Z(X)

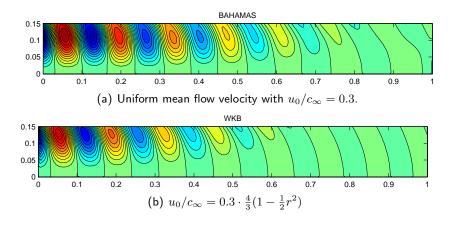


 $Z/\rho_{\infty}c_{\infty}$ varies linearly from 1.5-i to 1.5+i. BAHAMAS: 10 segments.

- $\Rightarrow x$ -dependency of Z is important
- \Rightarrow BAHAMAS and WKB agree well ($\varepsilon \approx 0.2$)

Numerical results: non-uniform flow velocity

Non-uniform velocity

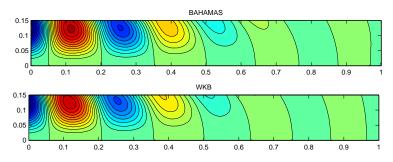


 $\omega d/c_\infty=10,\,m=2,\,\mu=1,\,Z/\rho_\infty c_\infty$ varies linearly from $1.5-{\rm i}$ to $1.5+{\rm i}$ so $\varepsilon\approx 0.2.$

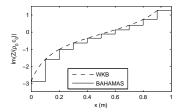
\Rightarrow Non-uniformity of mean flow velocity is important

Numerical results: Helmholtz resonator (no resonance)

Helmholtz resonator (no resonance)



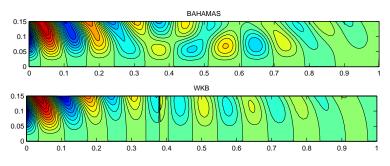
 $\omega d/c_{\infty}=6,~m=2,~\mu=1,$ uniform mean flow velocity $u_0/c_{\infty}=0.3$



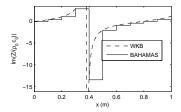
 \Rightarrow No resonance and $\varepsilon \approx 0.3$: BAHAMAS and WKB show good agreement

Numerical results: Helmholtz resonator (passing resonance)

Helmholtz resonator (passing resonance)



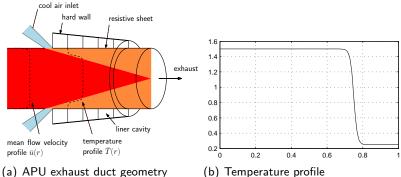
 $\omega d/c_{\infty}=10,~m=2,~\mu=1,$ uniform mean flow velocity $u_0/c_{\infty}=0.3.$



 \Rightarrow Resonance: WKB assumptions not valid (Z(x) not slowly varying, intermodal scattering)

Numerical results: strong temperature gradient

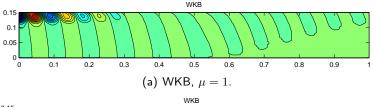
Realistic APU exhaust: strong temperature gradient

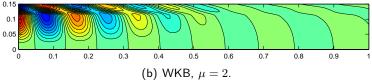


 $T/T_{\infty} = \frac{1}{4} + \frac{5}{8} \left(1 + \tanh\left(50(\frac{3}{4} - r) \right) \right).$

with cool air inlet.

Numerical results: strong temperature gradient





 $\omega d/c_{\infty} = 10, m = 2$, uniform velocity $u_0/c_{\infty} = 0.3$, $Z(x)/\rho_{\infty}c_{\infty}$ linear: 1.5 - i to 1.5 + i.

⇒ 2 different sound speeds: 2 concentric ducts Sound refracts from warm to cold Enhances effect of lining

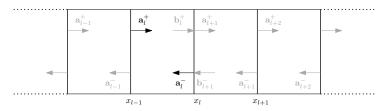
Outline

- Background & motivation
- 2 Pridmore-Brown modes
 - Model & equations
 - Numerical method: COLNEW and path-following
- \bigcirc Options for varying Z
- 4 WKB for slowly varying Z
- 5 New mode-matching method
 - Mode-matching basics
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Mode-matching based on closed form integrals of PB modes
 - Numerical results: comparing CMM and BLM

6 Conclusions

• Epilogue

Mode-Matching Basics

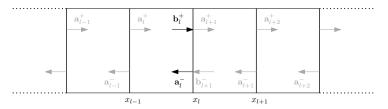


Total field in segment l: sum of left- and right-running waves

$$p_l(x,r) = \sum_{\mu=1}^{\infty} \left(a_{l,\mu}^+ P_{l,\mu}^+(r) e^{ik_{l,\mu}^+(x-x_{l-1})} + a_{l,\mu}^- P_{l,\mu}^-(r) e^{ik_{l,\mu}^-(x-x_l)} \right)$$

(same for velocity)

Mode-Matching Basics

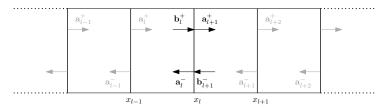


At the interface at $x = x_l$:

$$p_l(r) = \sum_{\mu=1}^{\mu^{\max}} \Bigl(b^+_{l,\mu} P^+_{l,\mu}(r) + a^-_{l,\mu} P^-_{l,\mu}(r) \Bigr).$$

(same for velocity)

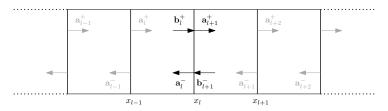
Mode-Matching Basics



Continuity of pressure at $x = x_l$ leads to

$$p_l(x_l, r) = p_{l+1}(x_l, r)$$

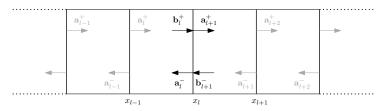
Mode-Matching Basics



Continuity of pressure at $x = x_l$ leads to

$$\begin{split} \sum_{\mu=1}^{\mu^{\max}} & \left(b_{l,\mu}^+ \ P_{l,\mu}^+ \ + a_{l,\mu}^- \ P_{l,\mu}^- \ \right) \\ & = \sum_{\mu=1}^{\mu^{\max}} \left(a_{l+1,\mu}^+ \ P_{l+1,\mu}^+ \ + b_{l+1,\mu}^- \ P_{l+1,\mu}^- \ \right) \end{split}$$

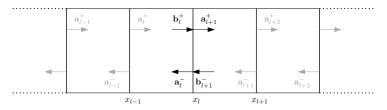
Mode-Matching Basics



inner products with suitable test functions $\Psi_{
u}$, e.g. = $J_m(lpha_
u r)$

$$\begin{split} \sum_{\mu=1}^{\mu^{\max}} & \left(b_{l,\mu}^+(P_{l,\mu}^+, \Psi_{\nu}) + a_{l,\mu}^-(P_{l,\mu}^-, \Psi_{\nu}) \right) \\ & = \sum_{\mu=1}^{\mu^{\max}} \left(a_{l+1,\mu}^+(P_{l+1,\mu}^+, \Psi_{\nu}) + b_{l+1,\mu}^-(P_{l+1,\mu}^-, \Psi_{\nu}) \right) \end{split}$$

Mode-Matching Basics

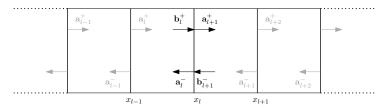


inner products with suitable test functions $\Psi_{
u}$, e.g. = $J_m(lpha_
u r)$

$$\begin{split} \sum_{\mu=1}^{\mu^{\max}} & \left(b_{l,\mu}^+(P_{l,\mu}^+, \Psi_{\nu}) + a_{l,\mu}^-(P_{l,\mu}^-, \Psi_{\nu}) \right) \\ & = \sum_{\mu=1}^{\mu^{\max}} \left(a_{l+1,\mu}^+(P_{l+1,\mu}^+, \Psi_{\nu}) + b_{l+1,\mu}^-(P_{l+1,\mu}^-, \Psi_{\nu}) \right) \end{split}$$

Similar for continuity of axial velocity.

Mode-Matching Basics



Results in linear system to be solved

$$\begin{bmatrix} \mathbf{A}^+ & \mathbf{A}^- \\ \mathbf{C}^+ & \mathbf{C}^- \end{bmatrix} \begin{bmatrix} \mathbf{b}_l^+ \\ \mathbf{a}_l^- \end{bmatrix} = \begin{bmatrix} \mathbf{B}^+ & \mathbf{B}^- \\ \mathbf{D}^+ & \mathbf{D}^- \end{bmatrix} \begin{bmatrix} \mathbf{a}_{l+1}^+ \\ \mathbf{b}_{l+1}^- \end{bmatrix}.$$

Matrix entries are inner products

$$A_{\nu\mu}^{\pm} = (P_{l,\mu}^{\pm}, \Psi_{\nu}) = \int_{0}^{d} P_{l,\mu}^{\pm}(r) \Psi_{\nu}(r) r \, \mathrm{d}r$$

Matrix entries are inner products

$$A_{\nu\mu}^{\pm} = (P_{l,\mu}^{\pm}, \Psi_{\nu}) = \int_{0}^{d} P_{l,\mu}^{\pm}(r) \Psi_{\nu}(r) r \, \mathrm{d}r$$

Note that for non-uniform flow:

- $P_{l,\mu}^{\pm}$ is determined numerically
- All inner-products have to be determined at all interfaces by quadrature
- $P_{l,\mu}^{\pm}$ and Ψ_{ν} are oscillatory \Rightarrow numerical problems

Matrix entries are inner products

$$A_{\nu\mu}^{\pm} = (P_{l,\mu}^{\pm}, \Psi_{\nu}) = \int_{0}^{d} P_{l,\mu}^{\pm}(r) \Psi_{\nu}(r) r \, \mathrm{d}r$$

Note that for non-uniform flow:

- $P_{l,\mu}^{\pm}$ is determined numerically
- All inner-products have to be determined at all interfaces by quadrature
- $P_{l,\mu}^{\pm}$ and Ψ_{ν} are oscillatory \Rightarrow numerical problems

Problem

Computing inner products numerically is expensive / less accurate

Matrix entries are inner products

$$A_{\nu\mu}^{\pm} = (P_{l,\mu}^{\pm}, \Psi_{\nu}) = \int_{0}^{d} P_{l,\mu}^{\pm}(r) \Psi_{\nu}(r) r \, \mathrm{d}r$$

Note that for non-uniform flow:

- $P_{l,\mu}^{\pm}$ is determined numerically
- All inner-products have to be determined at all interfaces by quadrature
- $P_{l,\mu}^{\pm}$ and Ψ_{ν} are oscillatory \Rightarrow numerical problems

Problem

Computing inner products numerically is expensive / less accurate

€ 1.000.000 question

Can we find closed-form expressions for the inner-product?

Matrix entries are inner products

$$A_{\nu\mu}^{\pm} = (P_{l,\mu}^{\pm}, \Psi_{\nu}) = \int_{0}^{d} P_{l,\mu}^{\pm}(r) \Psi_{\nu}(r) r \, \mathrm{d}r$$

Note that for non-uniform flow:

- $P_{l,\mu}^{\pm}$ is determined numerically
- All inner-products have to be determined at all interfaces by quadrature
- $P_{l,\mu}^{\pm}$ and Ψ_{ν} are oscillatory \Rightarrow numerical problems

Problem

Computing inner products numerically is expensive / less accurate

€ 1.000.000 question

Can we find closed-form expressions for the inner-product? No

Matrix entries are inner products

$$A_{\nu\mu}^{\pm} = (P_{l,\mu}^{\pm}, \Psi_{\nu}) = \int_{0}^{d} P_{l,\mu}^{\pm}(r) \Psi_{\nu}(r) r \, \mathrm{d}r$$

Note that for non-uniform flow:

- $P_{l,\mu}^{\pm}$ is determined numerically
- All inner-products have to be determined at all interfaces by quadrature
- $P_{l,\mu}^{\pm}$ and Ψ_{ν} are oscillatory \Rightarrow numerical problems

Problem

Computing inner products numerically is expensive / less accurate

€ 1.000.000 question

Can we find closed-form expressions for other 'inner-product'?

Matrix entries are inner products

$$A_{\nu\mu}^{\pm} = (P_{l,\mu}^{\pm}, \Psi_{\nu}) = \int_{0}^{d} P_{l,\mu}^{\pm}(r) \Psi_{\nu}(r) r \, \mathrm{d}r$$

Note that for non-uniform flow:

- $P_{l,\mu}^{\pm}$ is determined numerically
- All inner-products have to be determined at all interfaces by quadrature
- $P_{l,\mu}^{\pm}$ and Ψ_{ν} are oscillatory \Rightarrow numerical problems

Problem

Computing inner products numerically is expensive / less accurate

€1.000.000 question

Can we find closed-form expressions for other 'inner-product'? Yes!

Summary of new matching method

 $(P_{\mu}, \Psi_{\nu}) \longrightarrow \langle F_{\mu}, \Psi_{\nu} \rangle$

Summary of new matching method

Classical (CMM) \rightarrow new (BLM) mode-matching

$$(P_{\mu}, \Psi_{\nu}) \longrightarrow \langle F_{\mu}, \Psi_{\nu} \rangle$$

with
$$\Psi_{\nu} = J_m(\alpha_{\nu}r)$$
 with $\Psi_{\nu} = F_{\nu}$, $F = [P, U, V, W]$

Summary of new matching method

Classical (CMM) \rightarrow new (BLM) mode-matching

$$\begin{aligned} &(P_{\mu}, \Psi_{\nu}) & \to & \langle \boldsymbol{F}_{\mu}, \boldsymbol{\Psi}_{\nu} \rangle \\ &= \int_{0}^{d} P_{\mu} \Psi_{\nu} r \, \mathrm{d}r & \to & = \int_{0}^{d} \left[w_{1} P_{\mu} P_{\nu} + w_{2} U_{\mu} P_{\nu} \right. \\ & \left. + w_{3} (V_{\mu} V_{\nu} + W_{\mu} W_{\nu}) \right] r \, \mathrm{d}r \end{aligned}$$

with $\Psi_{\nu} = J_m(\alpha_{\nu}r)$ with $\Psi_{\nu} = F_{\nu}$, F = [P, U, V, W]

Summary of new matching method

Classical (CMM) \rightarrow new (BLM) mode-matching

 $\begin{array}{lll} (P_{\mu}, \Psi_{\nu}) & \rightarrow & \langle \boldsymbol{F}_{\mu}, \boldsymbol{\Psi}_{\nu} \rangle \\ = \int_{0}^{d} P_{\mu} \Psi_{\nu} r \, \mathrm{d}r & \rightarrow & = \int_{0}^{d} \left[w_{1} P_{\mu} P_{\nu} + w_{2} U_{\mu} P_{\nu} \\ & + w_{3} (V_{\mu} V_{\nu} + W_{\mu} W_{\nu}) \right] r \, \mathrm{d}r \\ \\ \mathrm{quadrature} & \rightarrow & = \frac{\mathrm{i}d}{k_{\mu} - k_{\nu}} \left[\frac{P_{\nu} V_{\mu} - V_{\nu} P_{\mu}}{\Omega_{\nu}} \right]_{r=d} \\ \\ \mathrm{with} \ \Psi_{\nu} = J_{m}(\alpha_{\nu} r) & \mathrm{with} \ \boldsymbol{\Psi}_{\nu} = \boldsymbol{F}_{\nu}, \quad \boldsymbol{F} = [P, U, V, W] \end{array}$

Summary of new matching method

Classical (CMM) \rightarrow new (BLM) mode-matching

 (P_{μ}, Ψ_{ν}) $\rightarrow \langle \boldsymbol{F}_{\mu}, \boldsymbol{\Psi}_{\nu} \rangle$ $= \int_0^d P_\mu \Psi_\nu r \,\mathrm{d}r \qquad \to \qquad = \int_0^d \left[w_1 P_\mu P_\nu + w_2 U_\mu P_\nu \right]$ $+w_3(V_{\mu}V_{\nu}+W_{\mu}W_{\nu})]r\,\mathrm{d}r$ $=\frac{1d}{k_{\mu}-k_{\nu}}\left|\frac{P_{\nu}V_{\mu}-V_{\nu}P_{\mu}}{\Omega_{\nu}}\right|$ \rightarrow quadrature with $\boldsymbol{\Psi}_{\nu} = \boldsymbol{F}_{\nu}, \quad \boldsymbol{F} = [P, U, V, W]$ with $\Psi_{\nu} = J_m(\alpha_{\nu}r)$ expensive cheap less accurate accurate

Prototype example of Generalised Prid-Brown : Helmholtz eqn

$$\nabla^2 \psi + \beta^2 \psi = 0$$

on arbitrarily shaped cross-section \mathcal{A}

Prototype example of Generalised Prid-Brown : Helmholtz eqn

$$\nabla^2 \psi + \beta^2 \psi = 0$$
$$\nabla^2 \phi + \alpha^2 \phi = 0$$

on arbitrarily shaped cross-section ${\cal A}$

Prototype example of Generalised Prid-Brown : Helmholtz eqn

$$\begin{split} \phi \left(\nabla^2 \psi + \beta^2 \psi \right) &= 0 \\ \psi \left(\nabla^2 \phi + \alpha^2 \phi \right) &= 0 \end{split}$$

on arbitrarily shaped cross-section ${\cal A}$

Prototype example of Generalised Prid-Brown : Helmholtz eqn

$$\begin{split} \phi \left(\nabla^2 \psi + \beta^2 \psi \right) &= 0 \\ \psi \left(\nabla^2 \phi + \alpha^2 \phi \right) &= 0 \end{split}$$

on arbitrarily shaped cross-section $\ensuremath{\mathcal{A}}$ Subtract

$$(\alpha^2 - \beta^2) \qquad \phi\psi \qquad = \qquad \phi\nabla^2\psi - \psi\nabla^2\phi$$

Prototype example of Generalised Prid-Brown : Helmholtz eqn

$$\begin{split} \phi \left(\nabla^2 \psi + \beta^2 \psi \right) &= 0 \\ \psi \left(\nabla^2 \phi + \alpha^2 \phi \right) &= 0 \end{split}$$

on arbitrarily shaped cross-section ${\cal A}$ Subtract and integrate over ${\cal A}$

$$(\alpha^2 - \beta^2) \iint_{\mathcal{A}} \phi \psi \, \mathrm{d}S = \iint_{\mathcal{A}} (\phi \nabla^2 \psi - \psi \nabla^2 \phi) \, \mathrm{d}S$$

Prototype example of Generalised Prid-Brown : Helmholtz eqn

$$\begin{split} \phi \left(\nabla^2 \psi + \beta^2 \psi \right) &= 0 \\ \psi \left(\nabla^2 \phi + \alpha^2 \phi \right) &= 0 \end{split}$$

on arbitrarily shaped cross-section ${\cal A}$ Subtract and integrate over ${\cal A}$

$$(\alpha^2 - \beta^2) \iint_{\mathcal{A}} \phi \psi \, \mathrm{d}S = \iint_{\mathcal{A}} \nabla \cdot (\phi \nabla \psi - \psi \nabla \phi) \, \mathrm{d}S$$

Prototype example of Generalised Prid-Brown : Helmholtz eqn

$$\begin{split} \phi \left(\nabla^2 \psi + \beta^2 \psi \right) &= 0 \\ \psi \left(\nabla^2 \phi + \alpha^2 \phi \right) &= 0 \end{split}$$

on arbitrarily shaped cross-section \mathcal{A} Subtract and integrate over \mathcal{A}

GAUSS

$$(\alpha^2 - \beta^2) \iint_{\mathcal{A}} \phi \psi \, \mathrm{d}S = \iint_{\mathcal{A}} \nabla \cdot (\phi \nabla \psi - \psi \nabla \phi) \, \mathrm{d}S$$

Prototype example of Generalised Prid-Brown : Helmholtz eqn

$$\begin{split} \phi \left(\nabla^2 \psi + \beta^2 \psi \right) &= 0 \\ \psi \left(\nabla^2 \phi + \alpha^2 \phi \right) &= 0 \end{split}$$

on arbitrarily shaped cross-section ${\cal A}$ Subtract and integrate over ${\cal A}$

GAUSS

$$(\alpha^2 - \beta^2) \iint_{\mathcal{A}} \phi \psi \, \mathrm{d}S = \int_{\Gamma} (\phi \nabla \psi \cdot \boldsymbol{n} - \psi \nabla \phi \cdot \boldsymbol{n}) \, \mathrm{d}\ell$$

Prototype example of Generalised Prid-Brown : Helmholtz eqn

$$\begin{split} \phi \left(\nabla^2 \psi + \beta^2 \psi \right) &= 0 \\ \psi \left(\nabla^2 \phi + \alpha^2 \phi \right) &= 0 \end{split}$$

on arbitrarily shaped cross-section ${\cal A}$ Subtract and integrate over ${\cal A}$

$$(\alpha^2 - \beta^2) \iint_{\mathcal{A}} \phi \psi \, \mathrm{d}S = \int_{\Gamma} (\phi \nabla \psi \cdot \boldsymbol{n} - \psi \nabla \phi \cdot \boldsymbol{n}) \, \mathrm{d}\ell$$

2D inner-product for Helmholtz eigenfunctions

$$\langle\!\langle \phi, \psi \rangle\!\rangle = \frac{1}{\alpha^2 - \beta^2} \int_{\Gamma} (\phi \nabla \psi \cdot \boldsymbol{n} - \psi \nabla \phi \cdot \boldsymbol{n}) \mathrm{d}\ell,$$

for arbitrary boundary conditions on ϕ and ψ

What if $\alpha = \beta$ and $\phi = \psi$? Something similar.

- \bullet Circular duct: Helmholtz equation \rightarrow Bessel equation
- Substitute into 2D inner-product:

$$\phi = J_m(\alpha r) e^{im\theta}, \ \psi = J_m(\beta r) e^{-im\theta}$$

- \bullet Circular duct: Helmholtz equation \rightarrow Bessel equation
- Substitute into 2D inner-product:

$$\phi = J_m(\alpha r) e^{im\theta}, \ \psi = J_m(\beta r) e^{-im\theta}$$

1D inner-product of Bessel functions

$$\langle J_m(\alpha r), J_m(\beta r) \rangle = \int_0^1 J_m(\alpha r) J_m(\beta r) r dr$$

= $\frac{1}{\alpha^2 - \beta^2} \left[\beta J_m(\alpha) J'_m(\beta) - \alpha J'_m(\alpha) J_m(\beta) \right]$

- \bullet Circular duct: Helmholtz equation \rightarrow Bessel equation
- Substitute into 2D inner-product:

$$\phi = J_m(\alpha r) e^{im\theta}, \ \psi = J_m(\beta r) e^{-im\theta}$$

1D inner-product of Bessel functions

$$\langle J_m(\alpha r), J_m(\beta r) \rangle = \int_0^1 J_m(\alpha r) J_m(\beta r) r dr$$

= $\frac{1}{\alpha^2 - \beta^2} \left[\beta J_m(\alpha) J'_m(\beta) - \alpha J'_m(\alpha) J_m(\beta) \right]$

If $\alpha = \beta$: something similar.

By analogous manipulations ...

By analogous manipulations ...

- Define vector of shape functions $\boldsymbol{F}(y,z) = \begin{bmatrix} P,U,V,W \end{bmatrix}$
- P solution of Generalised PB equation, U, V, W follow from P

By analogous manipulations ...

- Define vector of shape functions $\boldsymbol{F}(y,z) = \begin{bmatrix} P,U,V,W \end{bmatrix}$
- P solution of Generalised PB equation, U, V, W follow from P

Similarly to 2D Helmholtz example, it can be found:

Closed form integral of parallel flow modes

$$\begin{split} \langle\!\langle \boldsymbol{F}, \widetilde{\boldsymbol{F}} \rangle\!\rangle &= \\ \iint_{\mathcal{A}} \frac{1}{\widetilde{\Omega}} \left[\left(\frac{u_0}{\rho_0 c_0^2} + \frac{\widetilde{k}}{\rho_0 \widetilde{\Omega}} \right) \widetilde{P} P + \frac{\omega}{\widetilde{\Omega}} \widetilde{P} U - \rho_0 u_0 (\widetilde{V} V + \widetilde{W} W) \right] \, \mathrm{d}S \\ &= \frac{\mathrm{i}}{k - \widetilde{k}} \int_{\Gamma} \frac{\widetilde{P} (V n_y + W n_z) - (\widetilde{V} n_y + \widetilde{W} n_z) P}{\widetilde{\Omega}} \, \mathrm{d}\ell, \end{split}$$

By analogous manipulations ...

- Define vector of shape functions $\boldsymbol{F}(y,z) = \begin{bmatrix} P,U,V,W \end{bmatrix}$
- P solution of Generalised PB equation, U, V, W follow from P

Similarly to 2D Helmholtz example, it can be found:

Closed form integral of parallel flow modes

$$\begin{split} \langle\!\langle \boldsymbol{F}, \widetilde{\boldsymbol{F}} \rangle\!\rangle &= \\ \iint_{\mathcal{A}} \frac{1}{\widetilde{\Omega}} \left[\left(\frac{u_0}{\rho_0 c_0^2} + \frac{\widetilde{k}}{\rho_0 \widetilde{\Omega}} \right) \widetilde{P} P + \frac{\omega}{\widetilde{\Omega}} \widetilde{P} U - \rho_0 u_0 (\widetilde{V} V + \widetilde{W} W) \right] \, \mathrm{d}S \\ &= \frac{\mathrm{i}}{k - \widetilde{k}} \int_{\Gamma} \frac{\widetilde{P} (V n_y + W n_z) - (\widetilde{V} n_y + \widetilde{W} n_z) P}{\widetilde{\Omega}} \, \mathrm{d}\ell, \end{split}$$

Something similar for $k = \tilde{k}$.

Substitute for circular symmetric geometry...

Substitute for circular symmetric geometry...

modes of the form $oldsymbol{F}(r)\,\mathrm{e}^{\pm\mathrm{i}m heta}$

$$\boldsymbol{F}(r) = \left[P(r), U(r), V(r), W(r)\right]$$

Substitute for circular symmetric geometry... modes of the form $F(r) e^{\pm im\theta}$

$$\boldsymbol{F}(r) = [P(r), U(r), V(r), W(r)]$$

- P solution of the radial Pridmore-Brown equation
- U, V, W follow from P

Substitute for circular symmetric geometry... modes of the form $F(r) e^{\pm im\theta}$

$$\boldsymbol{F}(r) = \left[P(r), U(r), V(r), W(r)\right]$$

- P solution of the radial Pridmore-Brown equation
- U, V, W follow from P

Exact integrals of radial Pridmore-Brown modes

$$\begin{split} \langle \boldsymbol{F}, \widetilde{\boldsymbol{F}} \rangle &= \\ \int_0^d \frac{1}{\widetilde{\Omega}} \left[\left(\frac{u_0}{\rho_0 c_0^2} + \frac{\widetilde{k}}{\rho_0 \widetilde{\Omega}} \right) P \widetilde{P} + \frac{\omega}{\widetilde{\Omega}} U \widetilde{P} - \rho_0 u_0 (V \widetilde{V} + W \widetilde{W}) \right] r \, \mathrm{d}r \\ &= \frac{\mathrm{i}d}{k - \widetilde{k}} \left[\frac{\widetilde{P} V - \widetilde{V} P}{\widetilde{\Omega}} \right]_{r=d} \end{split}$$

Weighted products of Pridmore-Brown eigenfunctions. Something similar for $k = \tilde{k}$.

With Ingard-Myers condition (slipping flow)

$$\langle \boldsymbol{F}, \widetilde{\boldsymbol{F}} \rangle = \left[\frac{\mathrm{i}d\widetilde{P}P}{(k-\widetilde{k})\widetilde{\Omega}\omega} \left(\frac{\Omega}{Z} - \frac{\widetilde{\Omega}}{\widetilde{Z}} \right) \right]_{r=d}$$

With Ingard-Myers condition (slipping flow)

$$\langle \boldsymbol{F}, \widetilde{\boldsymbol{F}} \rangle = \left[\frac{\mathrm{i}d\widetilde{P}P}{(k-\widetilde{k})\widetilde{\Omega}\omega} \left(\frac{\Omega}{Z} - \frac{\widetilde{\Omega}}{\widetilde{Z}} \right) \right]_{r=d}$$

For hard walls:

"orthogonal":
$$\begin{cases} \langle \boldsymbol{F}, \widetilde{\boldsymbol{F}} \rangle = 0 \\ \langle \boldsymbol{F}, \boldsymbol{F} \rangle \neq 0 \end{cases}$$

With Ingard-Myers condition (slipping flow)

$$\langle \boldsymbol{F}, \widetilde{\boldsymbol{F}} \rangle = \left[\frac{\mathrm{i}d\widetilde{P}P}{(k-\widetilde{k})\widetilde{\Omega}\omega} \left(\frac{\Omega}{Z} - \frac{\widetilde{\Omega}}{\widetilde{Z}} \right) \right]_{r=d}$$

For hard walls:

"orthogonal":
$$\begin{cases} \langle \boldsymbol{F}, \widetilde{\boldsymbol{F}} \rangle = 0 \\ \langle \boldsymbol{F}, \boldsymbol{F} \rangle \neq 0 \end{cases}$$

In case of no-slip flow, $u_0(d) = 0$:

$$\langle \boldsymbol{F}, \widetilde{\boldsymbol{F}} \rangle = \left[\frac{\mathrm{i}d\widetilde{P}P}{(k-\widetilde{k})\omega} \left(\frac{1}{Z} - \frac{1}{\widetilde{Z}} \right) \right]_{r=d}$$

With Ingard-Myers condition (slipping flow)

$$\langle \boldsymbol{F}, \widetilde{\boldsymbol{F}} \rangle = \left[\frac{\mathrm{i}d\widetilde{P}P}{(k-\widetilde{k})\widetilde{\Omega}\omega} \left(\frac{\Omega}{Z} - \frac{\widetilde{\Omega}}{\widetilde{Z}} \right) \right]_{r=d}$$

For hard walls:

"orthogonal":
$$\begin{cases} \langle \boldsymbol{F}, \widetilde{\boldsymbol{F}} \rangle = 0 \\ \langle \boldsymbol{F}, \boldsymbol{F} \rangle \neq 0 \end{cases}$$

In case of no-slip flow, $u_0(d) = 0$:

$$\langle \boldsymbol{F}, \widetilde{\boldsymbol{F}} \rangle = \left[\frac{\mathrm{i}d\widetilde{P}P}{(k-\widetilde{k})\omega} \left(\frac{1}{Z} - \frac{1}{\widetilde{Z}} \right) \right]_{r=d}$$

For hard walls, or same impedance $Z = \widetilde{Z}$:

"orthogonal":
$$\begin{cases} \langle \boldsymbol{F}, \widetilde{\boldsymbol{F}} \rangle = 0 \\ \langle \boldsymbol{F}, \boldsymbol{F} \rangle \neq 0 \end{cases}$$

Classic mode-matching (CMM)

$$\sum_{\mu=1}^{\mu_{l}} b_{l,\mu}^{+}(P_{l,\mu}^{+}, \Psi_{\nu}) + a_{l,\mu}^{-}(P_{l,\mu}^{-}, \Psi_{\nu})$$
$$= \sum_{\mu=1}^{\mu_{l+1}} a_{l+1,\mu}^{+}(P_{l+1,\mu}^{+}, \Psi_{\nu}) + b_{l+1,\mu}^{-}(P_{l+1,\mu}^{-}, \Psi_{\nu})$$

(same for velocity) with test functions (for example)

$$\Psi_{\nu} = J_m(\alpha_{\nu}r)$$

Classic mode-matching (CMM)

$$\sum_{\mu=1}^{\mu_l} b_{l,\mu}^+(P_{l,\mu}^+, \Psi_{\nu}) + a_{l,\mu}^-(P_{l,\mu}^-, \Psi_{\nu})$$
$$= \sum_{\mu=1}^{\mu_{l+1}} a_{l+1,\mu}^+(P_{l+1,\mu}^+, \Psi_{\nu}) + b_{l+1,\mu}^-(P_{l+1,\mu}^-, \Psi_{\nu})$$

(same for velocity) with test functions (for example)

$$\Psi_{\nu} = J_m(\alpha_{\nu}r)$$

Quadrature required for (P_{μ}, Ψ_{ν}) terms (non-uniform flow)

Bilinear map-based (BLM) mode-matching

$$\begin{split} \sum_{\mu=1}^{\mu_{l}} b_{l,\mu}^{+} \langle \boldsymbol{F}_{l,\mu}^{+}, \boldsymbol{\Psi}_{\nu} \rangle + a_{l,\mu}^{-} \langle \boldsymbol{F}_{l,\mu}^{-}, \boldsymbol{\Psi}_{\nu} \rangle \\ &= \sum_{\mu=1}^{\mu_{l+1}} a_{l+1,\mu}^{+} \langle \boldsymbol{F}_{l+1,\mu}^{+}, \boldsymbol{\Psi}_{\nu} \rangle + b_{l+1,\mu}^{-} \langle \boldsymbol{F}_{l+1,\mu}^{-}, \boldsymbol{\Psi}_{\nu} \rangle \end{split}$$

but now as test functions the same modes:

$$\boldsymbol{\Psi}_{
u} = \boldsymbol{F}_{l,
u}$$

Bilinear map-based* (BLM) mode-matching

$$\begin{split} \sum_{\mu=1}^{\mu_{l}} b_{l,\mu}^{+} \langle \boldsymbol{F}_{l,\mu}^{+}, \boldsymbol{\Psi}_{\nu} \rangle + a_{l,\mu}^{-} \langle \boldsymbol{F}_{l,\mu}^{-}, \boldsymbol{\Psi}_{\nu} \rangle \\ &= \sum_{\mu=1}^{\mu_{l+1}} a_{l+1,\mu}^{+} \langle \boldsymbol{F}_{l+1,\mu}^{+}, \boldsymbol{\Psi}_{\nu} \rangle + b_{l+1,\mu}^{-} \langle \boldsymbol{F}_{l+1,\mu}^{-}, \boldsymbol{\Psi}_{\nu} \rangle \end{split}$$

but now as test functions the same modes:

$$\boldsymbol{\Psi}_{\nu} = \boldsymbol{F}_{l,\nu}$$

*Technically not an inner-product, except for no flow or uniform flow.

Bilinear map-based* (BLM) mode-matching

$$\begin{split} \sum_{\mu=1}^{\mu_{l}} b_{l,\mu}^{+} \langle \boldsymbol{F}_{l,\mu}^{+}, \boldsymbol{\Psi}_{\nu} \rangle + a_{l,\mu}^{-} \langle \boldsymbol{F}_{l,\mu}^{-}, \boldsymbol{\Psi}_{\nu} \rangle \\ &= \sum_{\mu=1}^{\mu_{l+1}} a_{l+1,\mu}^{+} \langle \boldsymbol{F}_{l+1,\mu}^{+}, \boldsymbol{\Psi}_{\nu} \rangle + b_{l+1,\mu}^{-} \langle \boldsymbol{F}_{l+1,\mu}^{-}, \boldsymbol{\Psi}_{\nu} \rangle \end{split}$$

but now as test functions the same modes:

$$oldsymbol{\varPsi}_{
u}=oldsymbol{F}_{l,
u}$$

No extra calculations and $\langle {m F}_{\mu}, {m \Psi}_{
u}
angle$ in closed form

^{*}Technically not an inner-product, except for no flow or uniform flow.

Comparing CMM and BLM

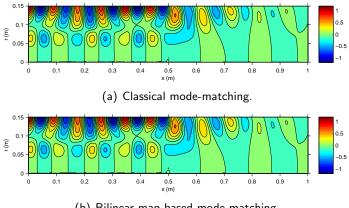
Test configurations

- Length: 1m
- Radius: 15cm
- hard wall soft wall, interface at x = 0.5 m
- $\mu^{\max} = 50$ modes in both directions

Configuration	I	II	III
Helmholtz & m	$\omega d/c_{\infty}=13.86,\ m=5$	$\omega d/c_{\infty}=8.86,\ m=5$	$\omega d/c_{\infty} = 15, m = 5$
Temperature	$T_0/T_\infty = 1$	$T_0/T_\infty = 1$	$T_0/T_\infty = 2\log(2)(1-\frac{r^2}{2})$
Mean flow	$u_0/c_{\infty} = 0.5 \cdot (1 - r^2)$	$u_0/c_\infty = 0.3 \cdot \frac{4}{3} \left(1 - \frac{r^2}{2}\right)$	$u_0/c_{\infty} = 0.3 \cdot \tanh(10(1-r))$
Impedance	$Z/\rho_{\infty}c_{\infty} = 1 - \mathrm{i}$	$Z/\rho_{\infty}c_{\infty} = 1 + \mathrm{i}$	$Z/\rho_{\infty}c_{\infty} = 1 - \mathrm{i}$
Incident mode	$\mu = 1$	$\mu = 1$	$\mu = 2$

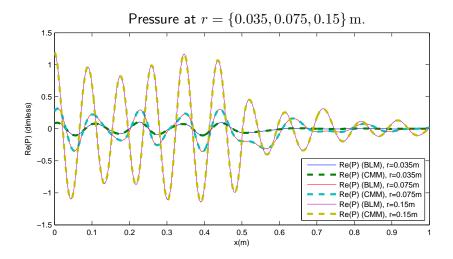
Numerical results --- Conf I: no-slip flow, uniform temp

Real part of pressure

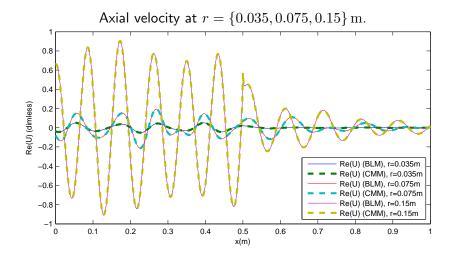


(b) Bilinear map-based mode-matching.

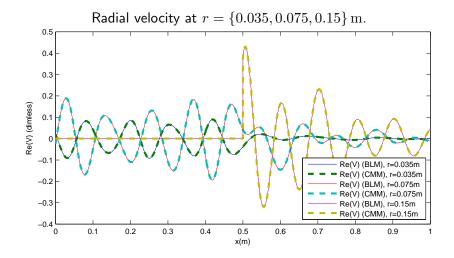
Numerical results — Conf I: no-slip flow, uniform temp



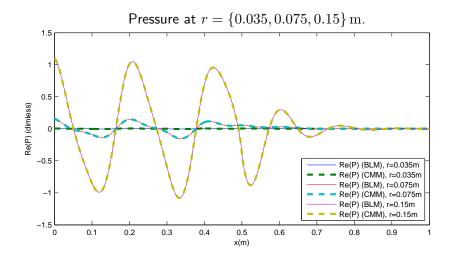
Numerical results — Conf I: no-slip flow, uniform temp



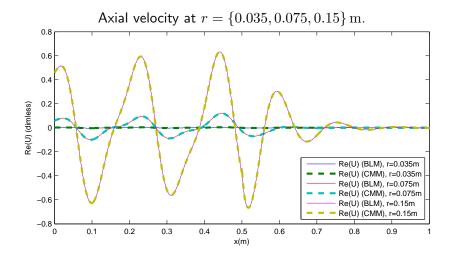
Numerical results — Conf I: no-slip flow, uniform temp



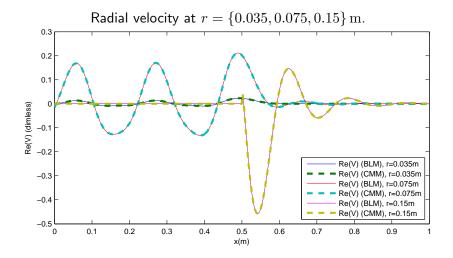
Numerical results — Conf II: slipping flow, uniform temp



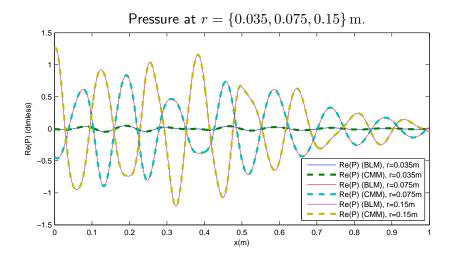
Numerical results — Conf II: slipping flow, uniform temp



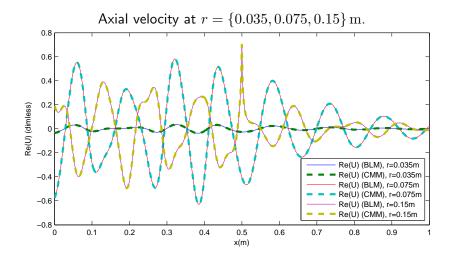
Numerical results — Conf II: slipping flow, uniform temp



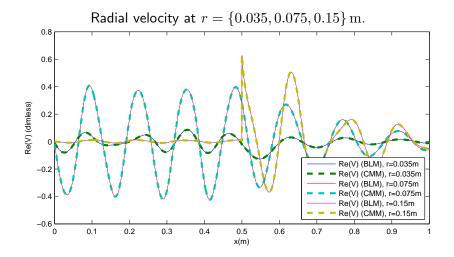
Numerical results — Conf III: bndary layer, non-unif. temp



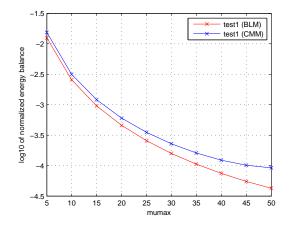
Numerical results — Conf III: bndary layer, non-unif. temp



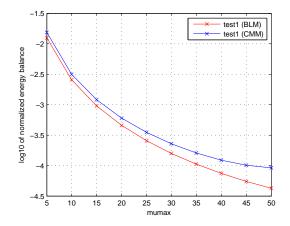
Numerical results — Conf III: bndary layer, non-unif. temp



Energy balance (Myers' Energy Corollary) vs μ^{\max} for conf. I

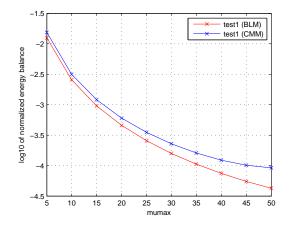


Energy balance (Myers' Energy Corollary) vs $\mu^{\rm max}$ for conf. I



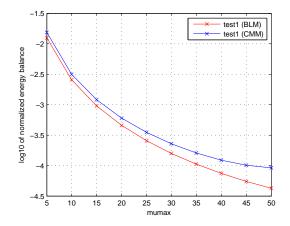
Energy balance better with more μ -modes.

Energy balance (Myers' Energy Corollary) vs $\mu^{\rm max}$ for conf. I



Energy balance better with more μ -modes. BLM performs better than CMM!

Energy balance (Myers' Energy Corollary) vs $\mu^{\rm max}$ for conf. I



Energy balance better with more μ -modes. BLM performs better than CMM! Why?

Numerical results — Convergence of modal amplitudes

Edge Condition (a posteriori)

Numerical results — Convergence of modal amplitudes

Edge Condition (a posteriori)

It is reasonable to assume that for some p<0 the amplitudes % p<0

$$A_n = O(n^p) \quad \text{for} \quad n \to \infty$$

so $\log |A_n| = p \log n + O(1)$.

Numerical results — Convergence of modal amplitudes

Edge Condition (a posteriori)

It is reasonable to assume that for some p<0 the amplitudes % p<0

$$A_n = O(n^p) \quad \text{for} \quad n \to \infty$$

so $\log |A_n| = p \log n + O(1)$. Then

$$p_n = \frac{\log |A_n|}{\log n} \to p \quad \text{for} \quad n \to \infty$$

Edge Condition (a posteriori)

It is reasonable to assume that for some p<0 the amplitudes % p<0

$$A_n = O(n^p) \quad \text{for} \quad n \to \infty$$

so $\log |A_n| = p \log n + O(1)$. Then

$$p_n = \frac{\log |A_n|}{\log n} \to p \quad \text{for} \quad n \to \infty$$

At the interface, at the wall (*edge*): boundary cond. discontinuous. Field may be singular, but Power Flux must vanish at edge.

Edge Condition (a posteriori)

It is reasonable to assume that for some p<0 the amplitudes % p<0

$$A_n = O(n^p) \quad \text{for} \quad n \to \infty$$

so $\log |A_n| = p \log n + O(1)$. Then

$$p_n = \frac{\log |A_n|}{\log n} \to p \quad \text{for} \quad n \to \infty$$

At the interface, at the wall (*edge*): boundary cond. discontinuous. Field may be singular, but Power Flux must vanish at edge.

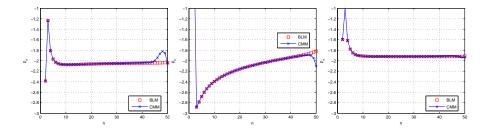
It can be shown that:

$$p < -1 \Rightarrow {\rm uniform\ convergence\ of\ modal\ series} \\ \Rightarrow {\rm edge\ condition\ satisfied}$$

Do we have p < -1 for numerical solutions?

Do we have p < -1 for numerical solutions?

Convergence of amplitudes (BLM and CMM), for conf. I, II and III



Do we have p < -1 for numerical solutions?

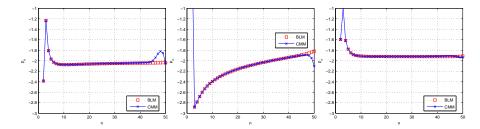
Convergence of amplitudes (BLM and CMM), for conf. I, II and III



 $p\approx -2 \Rightarrow$ edge condition satisfied \checkmark

Do we have p < -1 for numerical solutions?

Convergence of amplitudes (BLM and CMM), for conf. I, II and III



 $p\approx -2 \Rightarrow$ edge condition satisfied \checkmark

Convergence of p_n reveals inaccuracies of CMM amplitudes:

BLM amplitudes smoother than CMM as $n \to \infty$: no quadrature inaccuracies for BLM. Explains energy behaviour.

Outline

- Background & motivation
- 2 Pridmore-Brown modes
 - Model & equations
 - Numerical method: COLNEW and path-following
- 3 Options for varying Z
- ④ WKB for slowly varying Z
- 5 New mode-matching method
 - Mode-matching basics
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Mode-matching based on closed form integrals of PB modes
 - Numerical results: comparing CMM and BLM

6 Conclusions

The Pridmore-Brown equation was solved numerically

- Using standard BVP solver COLNEW
- Path-following/predictor-corrector with automatic step size
- Favourable comparison with high-frequency approximation

The Pridmore-Brown equation was solved numerically

- Using standard BVP solver COLNEW
- Path-following/predictor-corrector with automatic step size
- Favourable comparison with high-frequency approximation

Slowly varying mode-approximation applied to typical APU duct

- Small enough ε: favourable comparison with BAHAMAS (mode matching)
- WKB fails when Helmholtz liner passes resonance
- Strong effects of temperature and mean flow gradients.
- The need for Mode Matching was clear

Classic mode-matching (CMM):

Classic mode-matching (CMM):

- Uniform flow & temp:
 - Mode shapes are Bessel functions
 - Inner products are available in closed form

Classic mode-matching (CMM):

- Uniform flow & temp:
 - Mode shapes are Bessel functions
 - Inner products are available in closed form
- Parallel (non-uniform) flow & temp:
 - Mode shapes are Pridmore-Brown solutions (determined numerically)
 - Inner products require numerical quadrature
 - \rightarrow expensive & less accurate

Classic mode-matching (CMM):

- Uniform flow & temp:
 - Mode shapes are Bessel functions
 - Inner products are available in closed form
- Parallel (non-uniform) flow & temp:
 - Mode shapes are Pridmore-Brown solutions (determined numerically)
 - Inner products require numerical quadrature
 - \rightarrow expensive & less accurate

Bilinear map-based mode-matching (BLM):

Classic mode-matching (CMM):

- Uniform flow & temp:
 - Mode shapes are Bessel functions
 - Inner products are available in closed form
- Parallel (non-uniform) flow & temp:
 - Mode shapes are Pridmore-Brown solutions (determined numerically)
 - Inner products require numerical quadrature
 - \rightarrow expensive & less accurate

Bilinear map-based mode-matching (BLM):

- Parallel (non-uniform) flow & temp:
 - Mode shapes are Pridmore-Brown solutions (determined numerically)
 - Closed form expressions for "inner-products" cheaper
 - Solutions in very good agreement with CMM
 - BLM amplitudes more accurate

Epilogue

• The success of the BLM matching method is, in a way, too good. At least far better than expected, because the "inner-product" is not a proper inner-product (unless $u_0 = 0$ or uniform) and we can't be sure that it is able to single out each modal contribution.

- The success of the BLM matching method is, in a way, too good. At least far better than expected, because the "inner-product" is not a proper inner-product (unless $u_0 = 0$ or uniform) and we can't be sure that it is able to single out each modal contribution.
- Nevertheless, from the success we can only conclude that it must be "almost" an inner-product. The modes are all "seen" and distinguished.

- The success of the BLM matching method is, in a way, too good. At least far better than expected, because the "inner-product" is not a proper inner-product (unless $u_0 = 0$ or uniform) and we can't be sure that it is able to single out each modal contribution.
- Nevertheless, from the success we can only conclude that it must be "almost" an inner-product. The modes are all "seen" and distinguished.
- Possibly related to this is the fact that the set of discrete modes is not complete, i.e. not sufficient to construct any possible solution. There is a "continuous" spectrum at the locus of $\omega ku_0(r) = 0$. From the energy result we can conclude that this part is very small.

- The success of the BLM matching method is, in a way, too good. At least far better than expected, because the "inner-product" is not a proper inner-product (unless $u_0 = 0$ or uniform) and we can't be sure that it is able to single out each modal contribution.
- Nevertheless, from the success we can only conclude that it must be "almost" an inner-product. The modes are all "seen" and distinguished.
- Possibly related to this is the fact that the set of discrete modes is not complete, i.e. not sufficient to construct any possible solution. There is a "continuous" spectrum at the locus of $\omega ku_0(r) = 0$. From the energy result we can conclude that this part is very small.
- A fine task in functional analysis remains