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Summary

Summary

Acoustic modes in flow ducts, with radial mean flow and
temperature gradients.

Boundary condition (Helmholtz resonator-type) varies axially.

Mode matching works well for uniform flow, but here?

Slowly-varying mode approximation works well
if Z not passing resonance.

Efficient and accurate new Mode-Matching method based
on exact integrals of modes.

Published in: AIAA-2011-2871, AIAA-2013-2172.
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Background / motivation

APU: Auxiliary Power Unit

produces power when main engines are switched off
to start main engines, AC, ...
major source of ramp noise

APU on an Airbus A380

Study sound propagation & attenuation in APU exhaust duct.
5 / 47



Modelling assumptions

Modelling assumptions

hard wall resistive sheet

liner cavity

cool air inlet

exhaust

temperature

profile T0(r)
mean flow velocity

profile u0(r)

straight, circular, hollow exhaust duct

non-uniform parallel mean flow (axially varying)

strong temperature gradients (axially varying)

segmented liner ⇒ slowly varying or mode-matching

Euler eqn. & perfect gas: p = ρRT , c2 = γRT
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Ordinary & Generalised Pridmore-Brown equation

For perturbations p1, ρ1,v1 of a parallel mean flow

v0 = u0(y, z)ex, ρ0 = ρ0(y, z), c0 = c0(y, z), p0 = const
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the Linearised Euler equations can be reduced to:

Generalised Pridmore-Brown equation (arbitrary cross-section)

For modes of the form p1(x, y, z, t) = P (y, z) eikx−iωt:

∇·
( c2

0

Ω2
∇P

)
+
(

1− k2c2
0

Ω2

)
P = 0, Ω = ω − ku0
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∇·
( c2

0

Ω2
∇P

)
+
(

1− k2c2
0

Ω2

)
P = 0, Ω = ω − ku0

Ordinary Pridmore-Brown equation (circular cross-section)

For u0(r), ρ0(r), c0(r) and p1(x, r, θ, t) = P (r) eikx−iωt+imθ:

P ′′ +

(
1

r
+ 2

c′0
c0

+ 2
ku′0
Ω

)
P ′ +

(
Ω2

c2
0

− k2 − m2

r2

)
P = 0
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Boundary conditions

hard wall

facing sheet /
vortex sheet

liner:

duct: u0 = c∞M(r) LPridBrown(P ) = 0

u0 = 0

centerline

r = d

r = 0

honeycomb liner:
Z = Z(ω)

bulk absorber:
Z = Z(ω, k)

Ingard-Myers boundary condition for slipping flow:

−iω(v1·n)Z = (−iω + v0·∇)p1
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Boundary value problem

Pridmore-Brown equation

P ′′ +

(
1

r
+ 2

c′0
c0

+ 2
ku′0
Ω

)
P ′ +

(
Ω2

c2
0

− k2 − m2

r2

)
P = 0

+

Boundary conditions

iωZP ′ = −ρ0Ω2P at r = d, P is regular at r = 0

=
Eigenvalue Problem in k

Countable set of modal solutions: Pmµ(r) eikmµx−iωt+imθ

eigenfunctions: Pmµ(r)

eigenvalue (modal axial wavenumber): kmµ

Non-uniform parallel flow: modes are found numerically
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Numerical solution: COLNEW

Write eigenvalue problem as boundary value problem:

Add k to solution vector by adding equation k′ = 0

Fix P (r) at r = d

COLNEW (NL-BVP software package available on netlib):

Collocation at Gaussian points

Runge-Kutta monomial basis representation

Automatic meshing

Damped Newton solver

Path-following/predictor-corrector/automatic step-size strategy
from known solution to desired solution.
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Numerical approach: example of path-following

Example of path-following in Z
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Numerical results: eigenfunctions & eigenvalues
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(e) µ = 5
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(f) µ = 6

Eigenfunctions for upstream-running modes, ωd/c∞ = 25, m = 5,
Z/ρ∞c∞ = 2− i, u0/c∞ = 2

3 (1− 1
2r

2), uniform temperature.
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Numerical results: further tests

Test case borrowed from quantum-mech. potential well problem:

Pridmore-Brown equation:

P ′′ + β(r, k)P ′ + γ(r, k)P = 0

Quantisation condition based on high-freq. approximation∫ r2

r1

√
γ(r, k) dr = (n− 1

2)π, n = 1, 2, . . .

µ kQC k

1 -60.470038 -60.4392
2 -55.761464 -55.7281
3 -51.134207 -51.0980 - 0.0000i
4 -46.605323 -46.5659 - 0.0003i
5 -42.195790 -42.1422 - 0.0212i
6 -37.931052 -37.5622 - 0.3254i

k’s for upstream-running modes.

High-freq. approx. & numerical result: excellent agreement
14 / 47
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Options for varying Z

General solution by sum over modes

pm(r, x) =

µmax∑
µ=1

[
A+
mµP

+
mµ(r) eik+mµx +A−mµP

−
mµ(r) eik−mµx

]
Classic option for (piecewise) varying Z is Mode Matching.

This is efficient and well-established (BAHAMASJNLR) for
no-flow and uniform flow conditions, mainly because

exact solutions of PB equation (Pmµ = Jm Bessel functions),

exact modal inner products (integrals) at interfaces.

Questions for non-uniform mean flow:

What can we do with a slowly varying impedance?

Can we improve the efficiency of the mode-matching?
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WKB for slowly varying Z

Slowly varying modes:

Assumptions

Z(x) has an inherent length scale L� d, no sudden changes.
We rewrite

Z := Z(εx) = Z(X), ε =
d

L
� 1. X = εx.

No modal interaction (reflection, cut-on/cut-off, etc)

Mode, slowly varying in axial direction (WKB Ansatz)

p̃m(r,X) = P (r,X) exp

(
i

ε

∫ X

0
κ(η)dη

)
Eigenfunction P (r,X) and wave number κ(X) to be found.
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WKB for slowly varying Z

Expand in ε

P (r,X) = P0(r,X) + εP1(r,X) +O(ε2)

To leading order, the slowly varying mode of order m,µ

P0(r,X) = N(X)ψmµ(r,X), with κ = κmµ(X)

where ψmµ(r,X) and κmµ(X) are modal solutions per X

N(X) is found from solvability condition for P1, eventually
leading to

N(X)2 = N2
0 exp

(
−
∫ X

0

f(η)

g(η)
dη

)
where f(X), g(X) are complicated but explicit functions of
X, ω, u0, ρ0, c0, Z(X), ψmµ, and κmµ.
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Numerical results: linear Z(X)

Linear Z(X)
constant impedance
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WKB
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Z/ρ∞c∞ varies linearly from 1.5− i to 1.5 + i. BAHAMAS: 10 segments.

⇒ x-dependency of Z is important
⇒ BAHAMAS and WKB agree well (ε ≈ 0.2)
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Numerical results: non-uniform flow velocity

Non-uniform velocity

BAHAMAS
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(a) Uniform mean flow velocity with u0/c∞ = 0.3.

WKB
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(b) u0/c∞ = 0.3 · 4
3
(1− 1

2
r2)

ωd/c∞ = 10, m = 2, µ = 1, Z/ρ∞c∞ varies linearly from 1.5− i to 1.5+i

so ε ≈ 0.2.

⇒ Non-uniformity of mean flow velocity is important 21 / 47



Numerical results: Helmholtz resonator (no resonance)

Helmholtz resonator (no resonance)

BAHAMAS
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ωd/c∞ = 6, m = 2, µ = 1, uniform mean flow velocity u0/c∞ = 0.3
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⇒ No resonance and ε ≈ 0.3: BAHAMAS
and WKB show good agreement
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Numerical results: Helmholtz resonator (passing resonance)

Helmholtz resonator (passing resonance)

BAHAMAS
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ωd/c∞ = 10, m = 2, µ = 1, uniform mean flow velocity u0/c∞ = 0.3.
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⇒ Resonance: WKB assumptions not valid
(Z(x) not slowly varying, intermodal
scattering)
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Numerical results: strong temperature gradient

Realistic APU exhaust: strong temperature gradient

hard wall resistive sheet

liner cavity

cool air inlet

exhaust

temperature

profile T̄ (r)
mean flow velocity

profile ū(r)

(a) APU exhaust duct geometry
with cool air inlet.
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(b) Temperature profile
T/T∞ = 1
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(
1+tanh
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50( 3
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.
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Numerical results: strong temperature gradient

WKB
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(a) WKB, µ = 1.

WKB
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(b) WKB, µ = 2.

ωd/c∞ = 10, m = 2, uniform velocity u0/c∞ = 0.3,
Z(x)/ρ∞c∞ linear: 1.5− i to 1.5 + i.

⇒ 2 different sound speeds: 2 concentric ducts
Sound refracts from warm to cold
Enhances effect of lining
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Classical mode-matching

Mode-Matching Basics

a+l

a−l

b+
l

a−l+1b−
l+1

a+l+1

a−l−1

a+l−1

a−l+2

a+l+2

xl xl+1xl−1

Total field in segment l: sum of left- and right-running waves

pl(x, r) =

∞∑
µ=1

(
a+
l,µP

+
l,µ(r) eik+l,µ(x−xl−1) +a−l,µP

−
l,µ(r) eik−l,µ(x−xl)

)
(same for velocity)
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At the interface at x = xl:

pl(r) =

µmax∑
µ=1

(
b+l,µP

+
l,µ(r) + a−l,µP

−
l,µ(r)

)
.

(same for velocity)
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Classical mode-matching

Mode-Matching Basics
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Continuity of pressure at x = xl leads to

pl(xl, r) = pl+1(xl, r)
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inner products with suitable test functions Ψν , e.g. = Jm(ανr)

µmax∑
µ=1

(
b+l,µ(P+

l,µ,Ψν) + a−l,µ(P−l,µ,Ψν)
)
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(
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µ=1

(
a+
l+1,µ(P+

l+1,µ,Ψν) + b−l+1,µ(P−l+1,µ,Ψν)
)

Similar for continuity of axial velocity.
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Classical mode-matching

Mode-Matching Basics

a+l

a−l

b+
l

a−l+1b−
l+1

a+l+1

a−l−1

a+l−1

a−l+2

a+l+2

xl xl+1xl−1

Results in linear system to be solved[
A+ A−

C+ C−

] [
b+
l

a−l

]
=

[
B+ B−

D+ D−

] [
a+
l+1

b−l+1

]
.
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Computing inner products

Matrix entries are inner products

A±νµ = (P±l,µ,Ψν) =

∫ d

0
P±l,µ(r)Ψν(r)r dr

Note that for non-uniform flow:

P±l,µ is determined numerically

All inner-products have to be determined at all interfaces by
quadrature

P±l,µ and Ψν are oscillatory ⇒ numerical problems

Problem

Computing inner products numerically is expensive / less accurate

e 1.000.000 question

Can we find closed-form expressions for the inner-product?
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From Classical to a New Mode-matching method

Summary of new matching method

Classical

(CMM)

→ new

(BLM)

mode-matching

(Pµ,Ψν) → 〈F µ,Ψ ν〉

=

∫ d

0
PµΨνr dr → =

∫ d

0

[
w1PµPν + w2UµPν

+w3(VµVν +WµWν)
]
r dr

quadrature → =
id

kµ − kν

[
PνVµ − VνPµ

Ων

]
r=d
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expensive
less accurate

→ cheap
accurate
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Closed form integrals of 2D eigenmodes

Prototype example of Generalised Prid-Brown : Helmholtz eqn

φ
(

∇2ψ + β2ψ

)

= 0

ψ
(

∇2φ+ α2φ

)

= 0

on arbitrarily shaped cross-section A

Subtract and integrate over A
GAUSS
↓

(α2 − β2)

∫∫
A

φψ

dS

=

2D inner-product for Helmholtz eigenfunctions

〈〈φ, ψ〉〉 =
1

α2 − β2

∫
Γ
(φ∇ψ·n− ψ∇φ·n)d`,

for arbitrary boundary conditions on φ and ψ

What if α = β and φ = ψ? Something similar.
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Closed form integrals of 1D eigenmodes

Circular duct: Helmholtz equation → Bessel equation

Substitute into 2D inner-product:

φ = Jm(αr) eimθ, ψ = Jm(βr) e−imθ

1D inner-product of Bessel functions

〈Jm(αr), Jm(βr)〉 =

∫ 1

0
Jm(αr)Jm(βr) rdr

=
1

α2 − β2

[
βJm(α)J ′m(β)− αJ ′m(α)Jm(β)

]
If α = β: something similar.
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Closed form integrals for Generalised P-B modes

By analogous manipulations . . .

Define vector of shape functions F (y, z) =
[
P,U, V,W

]
P solution of Generalised PB equation, U, V,W follow from P

Similarly to 2D Helmholtz example, it can be found:

Closed form integral of parallel flow modes

〈〈F ,F̃ 〉〉 =∫∫
A

1

Ω̃

[(
u0

ρ0c2
0

+
k̃

ρ0Ω̃

)
P̃P +

ω

Ω̃
P̃U − ρ0u0(Ṽ V + W̃W )

]
dS

=
i

k − k̃

∫
Γ

P̃ (V ny +Wnz)− (Ṽ ny + W̃nz)P

Ω̃
d`,

Something similar for k = k̃.
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P̃U − ρ0u0(Ṽ V + W̃W )

]
dS

=
i

k − k̃

∫
Γ

P̃ (V ny +Wnz)− (Ṽ ny + W̃nz)P
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Closed form integrals for radial Pridmore-Brown modes

Substitute for circular symmetric geometry. . .

modes of the form F (r) e±imθ

F (r) = [P (r), U(r), V (r),W (r)]

P solution of the radial Pridmore-Brown equation
U, V,W follow from P

Exact integrals of radial Pridmore-Brown modes

〈F , F̃ 〉 =∫ d

0

1

Ω̃

[(
u0

ρ0c2
0

+
k̃

ρ0Ω̃

)
PP̃ +

ω

Ω̃
UP̃ − ρ0u0(V Ṽ +WW̃ )

]
r dr

=
id

k − k̃

[
P̃ V − Ṽ P

Ω̃

]
r=d

Weighted products of Pridmore-Brown eigenfunctions.
Something similar for k = k̃.
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Some special cases

Some special cases

With Ingard-Myers condition (slipping flow)

〈F , F̃ 〉 =

[
idP̃P

(k − k̃)Ω̃ω

(
Ω

Z
− Ω̃

Z̃

)]
r=d

For hard walls:

“orthogonal”:

{
〈F , F̃ 〉 = 0

〈F ,F 〉 6= 0

In case of no-slip flow, u0(d) = 0:

〈F , F̃ 〉 =

[
idP̃P

(k − k̃)ω

(
1

Z
− 1

Z̃

)]
r=d

For hard walls, or same impedance Z = Z̃:

“orthogonal”:

{
〈F , F̃ 〉 = 0

〈F ,F 〉 6= 0
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“orthogonal”:

{
〈F , F̃ 〉 = 0

〈F ,F 〉 6= 0

In case of no-slip flow, u0(d) = 0:

〈F , F̃ 〉 =

[
idP̃P

(k − k̃)ω

(
1

Z
− 1

Z̃

)]
r=d

For hard walls, or same impedance Z = Z̃:

“orthogonal”:

{
〈F , F̃ 〉 = 0

〈F ,F 〉 6= 0
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Bilinear map-based mode-matching

Classic mode-matching (CMM)

µl∑
µ=1

b+l,µ(P+
l,µ,Ψν) + a−l,µ(P−l,µ,Ψν)

=

µl+1∑
µ=1

a+
l+1,µ(P+

l+1,µ,Ψν) + b−l+1,µ(P−l+1,µ,Ψν)

(same for velocity) with test functions (for example)

Ψν = Jm(ανr)

Quadrature required for (Pµ,Ψν) terms (non-uniform flow)
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Bilinear map-based mode-matching

Bilinear map-based

∗

(BLM) mode-matching

µl∑
µ=1

b+l,µ〈F+
l,µ,Ψ ν〉+ a−l,µ〈F−l,µ,Ψ ν〉

=

µl+1∑
µ=1

a+
l+1,µ〈F+

l+1,µ,Ψ ν〉+ b−l+1,µ〈F−l+1,µ,Ψ ν〉

but now as test functions the same modes:

Ψ ν = F l,ν

No extra calculations and 〈F µ,Ψ ν〉 in closed form

∗Technically not an inner-product, except for no flow or uniform flow.
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Numerical results

Comparing CMM and BLM
Test configurations

Length: 1m

Radius: 15cm

hard wall – soft wall, interface at x = 0.5m

µmax = 50 modes in both directions

Configuration I II III

Helmholtz & m ωd/c∞ = 13.86, m = 5 ωd/c∞ = 8.86, m = 5 ωd/c∞ = 15, m = 5

Temperature T0/T∞ = 1 T0/T∞ = 1 T0/T∞ = 2 log(2)(1− r2

2 )

Mean flow u0/c∞ = 0.5 · (1− r2) u0/c∞ = 0.3 · 4
3(1− r2

2 ) u0/c∞ = 0.3 · tanh(10(1− r))
Impedance Z/ρ∞c∞ = 1− i Z/ρ∞c∞ = 1 + i Z/ρ∞c∞ = 1− i

Incident mode µ = 1 µ = 1 µ = 2
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Numerical results — Conf I: no-slip flow, uniform temp

Real part of pressure
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(a) Classical mode-matching.
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(b) Bilinear map-based mode-matching.

Perfect match between BLM and CMM results
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Numerical results — Conf I: no-slip flow, uniform temp

Pressure at r = {0.035, 0.075, 0.15}m.
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Axial velocity at r = {0.035, 0.075, 0.15}m.
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Numerical results — Conf I: no-slip flow, uniform temp

Radial velocity at r = {0.035, 0.075, 0.15}m.
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Numerical results — Conf II: slipping flow, uniform temp

Pressure at r = {0.035, 0.075, 0.15}m.
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Numerical results — Conf III: bndary layer, non-unif. temp

Pressure at r = {0.035, 0.075, 0.15}m.
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Numerical results — Energy balance

Energy balance (Myers’ Energy Corollary) vs µmax for conf. I
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Energy balance better with more µ-modes.
BLM performs better than CMM! Why?
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Numerical results — Convergence of modal amplitudes

Edge Condition (a posteriori)

It is reasonable to assume that for some p < 0 the amplitudes

An = O(np) for n→∞
so log |An| = p log n+O(1). Then

pn =
log |An|

log n
→ p for n→∞

At the interface, at the wall (edge): boundary cond. discontinuous.
Field may be singular, but Power Flux must vanish at edge.

It can be shown that:

p < −1⇒ uniform convergence of modal series

⇒ edge condition satisfied
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Numerical results — Convergence of modal amplitudes

Do we have p < −1 for numerical solutions?

Convergence of amplitudes (BLM and CMM), for conf. I, II and III
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p ≈ −2 ⇒ edge condition satisfied 3

Convergence of pn reveals inaccuracies of CMM amplitudes:

BLM amplitudes smoother than CMM as n→∞: no quadrature
inaccuracies for BLM. Explains energy behaviour.
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Conclusions

The Pridmore-Brown equation was solved numerically

Using standard BVP solver COLNEW

Path-following/predictor-corrector with automatic step size

Favourable comparison with high-frequency approximation

Slowly varying mode-approximation applied to typical APU duct

Small enough ε: favourable comparison with BAHAMAS
(mode matching)

WKB fails when Helmholtz liner passes resonance

Strong effects of temperature and mean flow gradients.

The need for Mode Matching was clear
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Conclusions

Classic mode-matching (CMM):

Uniform flow & temp:

Mode shapes are Bessel functions
Inner products are available in closed form

Parallel (non-uniform) flow & temp:

Mode shapes are Pridmore-Brown solutions (determined
numerically)
Inner products require numerical quadrature
→ expensive & less accurate

Bilinear map-based mode-matching (BLM):

Parallel (non-uniform) flow & temp:

Mode shapes are Pridmore-Brown solutions (determined
numerically)
Closed form expressions for “inner-products” cheaper
Solutions in very good agreement with CMM
BLM amplitudes more accurate
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Epilogue

Epilogue

The success of the BLM matching method is, in a way, too
good. At least far better than expected, because the
“inner-product” is not a proper inner-product (unless u0 = 0
or uniform) and we can’t be sure that it is able to single out
each modal contribution.

Nevertheless, from the success we can only conclude that it
must be “almost” an inner-product. The modes are all “seen”
and distinguished.

Possibly related to this is the fact that the set of discrete
modes is not complete, i.e. not sufficient to construct any
possible solution. There is a “continuous” spectrum at the
locus of ω − ku0(r) = 0. From the energy result we can
conclude that this part is very small.

A fine task in functional analysis remains . . .
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