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Summary
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Summary

Acoustic modes in flow ducts, with radial mean flow and
temperature gradients.

Boundary condition (Helmholtz resonator-type) varies axially.

Mode matching works well for uniform flow, but here?

Slowly-varying mode approximation works well
if Z not passing resonance.

Efficient and accurate new Mode-Matching method based
on exact integrals of modes.

Published in: AIAA-2011-2871, AIAA-2013-2172.
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@ Background & motivation
© Pridmore-Brown modes

© Options for varying Z

@ WKB for slowly varying Z
© New mode-matching method

@ Conclusions



@ Background & motivation



Background / motivation

e APU: Auxiliary Power Unit
e produces power when main engines are switched off
e to start main engines, AC, ...
e major source of ramp noise

APU exhaust duct
Studied part

APU on an Airbus A380

Study sound propagation & attenuation in APU exhaust duct.
5,47



Modelling assumptions

Modelling assumptions

cool air inlet

hard wall resistive sheet

exhaust

liner cavity

mean flow velocity temperature
profile ug(r) profile Ty(r)

@ straight, circular, hollow exhaust duct



Modelling assumptions

Modelling assumptions

cool air inlet

hard wall resistive sheet

exhaust

liner cavity

mean flow velocity temperature
profile ug(r) profile Ty(r)

@ straight, circular, hollow exhaust duct

@ non-uniform parallel mean flow {axialy-varying)



Modelling assumptions

Modelling assumptions

cool air inlet

hard wall resistive sheet

exhaust

liner cavity

mean flow velocity temperature
profile ug(r) profile Ty(r)

@ straight, circular, hollow exhaust duct

@ non-uniform parallel mean flow {axialy-varying)
@ strong temperature gradients {axially-varying)}



Modelling assumptions

Modelling assumptions

cool air inlet

hard wall resistive sheet

exhaust

liner cavity

mean flow velocity temperature
profile ug(r) profile Ty(r)

straight, circular, hollow exhaust duct

non-uniform parallel mean flow {axiaty-varying)
strong temperature gradients {axialy-varying)

segmented liner = slowly varying or mode-matching
Euler eqn. & perfect gas: p = pRT, ¢* = yRT

6 /47



© Pridmore-Brown modes
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Ordinary & Generalised Pridmore-Brown equation

For perturbations p1, p1, vy of a parallel mean flow

vo = uo(y,2)ez, po=po(y,2), co=co(y,z), po= const

the Linearised Euler equations can be reduced to:

Generalised Pridmore-Brown equation (arbitrary cross-section)

For modes of the form py(z,vy, z,t) = P(y, z) eFe—ivt:

v-(é@vp)+( k;gg)P:o, B s Py

Ordinary Pridmore-Brown equation (circular cross-section)

For ug(r), po(r), co(r) and pi(z,r,0,t) = P(r) elke—iwt+imd,

1 / / QQ 2
P”+<+200+2ku0>P’+<—k:2—m>P:0
T




Boundary conditions

honeycomb liner: bulk absorber:
7 =Z(w) 7 = Z(w, k)
hard wall —»
liner: uy = AN
4\/\/\

facingsheet /| —» r=qd ----------q-----b---L--L__L___L__________
vortex sheet

duct: Uy = Coo M (1) Lpridsrown(P) =0

centerline —» =90

Ingard-Myers boundary condition for slipping flow:

—iw(vy+n)Z = (—iw +vg- V)p1




Boundary value problem

Pridmore-Brown equation

1 / / QZ 2
P”+<+2CO+2]€50>P’+<2—k2—m>P:0
T C

Boundary conditions

iwZP' = —pgQ2P atr=d, P isregular at r =0

Eigenvalue Problem in &

Countable set of modal solutions: P, (r) ei*muz—iwt+im0

@ eigenfunctions: Pmﬂ(r)

e eigenvalue (modal axial wavenumber): k;,,
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Boundary value problem

Pridmore-Brown equation

Boundary conditions

iwZP' = —pgQ2P atr=d, P isregular at r =0

Eigenvalue Problem in &

Countable set of modal solutions: P, (r) ei*muz—iwt+im0

@ eigenfunctions: Pmﬂ(r)

e eigenvalue (modal axial wavenumber): k;,,

Non-uniform parallel flow: modes are found numerically
10 /47



Numerical solution: COLNEW

Write eigenvalue problem as boundary value problem:
e Add k to solution vector by adding equation k' =0
e Fix P(r)atr=d
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COLNEW (NL-BVP software package available on netlib):
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@ Runge-Kutta monomial basis representation
@ Automatic meshing

@ Damped Newton solver

11 /47



Numerical solution: COLNEW

Write eigenvalue problem as boundary value problem:
e Add k to solution vector by adding equation k' =0
e Fix P(r)atr=d

COLNEW (NL-BVP software package available on netlib):
@ Collocation at Gaussian points
@ Runge-Kutta monomial basis representation
@ Automatic meshing
@ Damped Newton solver

Path-following/predictor-corrector/automatic step-size strategy
from known solution to desired solution.
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Numerical approach: example of path-following

Example of path-following in Z
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Z-k-lambda.avi
Media File (video/avi)


Numerical results: eigenfunctions & eigenvalues

Im(P)
m(P)
me)

Re(P)
Re(P)
Re(P)

$
?
|

(d) p=4 (e) p=5 (f)u=6

Eigenfunctions for upstream-running modes, wd/co, = 25, m = 5,
Z/poscCos =2 —1, up/Coc = 5(1 — 372), uniform temperature.



Numerical results: further tests

Test case borrowed from quantum-mech. potential well problem:

@ Pridmore-Brown equation:
P" + B(r, k)P +~(r,k)P =0

@ Quantisation condition based on high-freq. approximation
T2
/ VAl k)dr=(n—H)m, n=12,...
T1

kac k

-60.470038 -60.4392
-55.761464 -55.7281
-51.134207 -51.0980 - 0.0000i
-46.605323  -46.5659 - 0.0003i
-42.195790  -42.1422 - 0.0212i
-37.931052  -37.5622 - 0.3254i

oA WNR|T

k's for upstream-running modes.

o High-freq. approx. & numerical result: excellent agreement
14 /47



© Options for varying Z
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Options for varying Z

General solution by sum over modes

max

uw
pm(T’, a:) = Z [A;i_nupntu(r) eik';;l.tx +A;WPW_W(T’) eik;wx]
pn=1

Classic option for (piecewise) varying Z is Mode Matching.
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Options for varying Z

General solution by sum over modes

max

uw
pm(T, a:) = Z [Ajnﬂpﬂtu(r) eik';;l.tx +A;WPW_W(T’) eik;wx]
pn=1

Classic option for (piecewise) varying Z is Mode Matching.

This is efficient and well-established (BAHAMAS<NLR) for
no-flow and uniform flow conditions, mainly because

e exact solutions of PB equation (P, = J,, Bessel functions),

@ exact modal inner products (integrals) at interfaces.

Questions for non-uniform mean flow:
@ What can we do with a slowly varying impedance?

@ Can we improve the efficiency of the mode-matching?

16 /47



@ WKB for slowly varying Z
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WKB for slowly varying 7

Slowly varying modes:

Assumptions
@ Z(x) has an inherent length scale L > d, no sudden changes.
We rewrite

d
Z:=Zex)=2(X), e= 7 <1l X=cx
e No modal interaction (reflection, cut-on/cut-off, etc)

@ Mode, slowly varying in axial direction (WKB Ansatz)

) = Pl )0 (1 [ stryan)

Eigenfunction P(r, X)) and wave number x(X) to be found.

18 /47



WKB for slowly varying 7

@ Expand in e
P(r,X) = Py(r, X) +ePy(r, X) + O(?)
@ To leading order, the slowly varying mode of order m, i
Po(r, X) = N(X)Ympu(r, X), with k= Kpu(X)

where ¢, (7, X)) and Ky, (X) are modal solutions per X

e N(X) is found from solvability condition for P;, eventually

leading to
N(X)* = Ng exp (— /OX 'gg”))dn>

where f(X), g(X) are complicated but explicit functions of
Xl wy uOr poy COY Z(X)r ¢m/,l,l and ﬁm,u,-

19 /47



= z-dependency of Z is
= BAHAMAS and WKB g e well (e = 0.2)



Numerical results: non-uniform flow velocity

Non-uniform velocity

BAHAMAS

RN

1

0 0.1 0.2 0.3 0.4 0.5

) Uniform mean flow velocity with uo/cOO =0.3.

2

wd/coo =10, m =2, p =1, Z/pooCoo varies linearly from 1.5—1i to 1.5+1
so e~ 0.2.

= Non-uniformity of mean flow velocity is important 21/47



Numerical results: Helmholtz resonator (no resonance)

Irn(Z/(pO co))

Helmholtz resonator (no resonance)

BAHAMAS
0.15 \) \) \J T T
0.05 i
0 L ) I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
WKB

om0

wd/cs =6, m =2, u =1, uniform mean flow velocity ug/coc = 0.3

1

= No resonance and ¢ =~ 0.3: BAHAMAS
and WKB show good agreement

— — —WKB
BAHAMAS

0.2 0.4 0.6 0.8 1
x (m) 22 /47



Numerical results: Helmholtz resonator (passing resonance)

Helmholtz resonator (passing resonance)

BAHAMAS

LC_ bk

1

WKB

R

1

0.4

= Resonance: WKB assumptions not valid
(Z(x) not slowly varying, intermodal
scattering)

Irn(Z/(pO co))




Numerical results: strong temperature gradient

Realistic APU exhaust: strong temperature gradient

cool air inlet

hard wall resistive sheet

16

1.4
exhaust
1

0.8

0.6

liner cavity

0.4

mean flow velocity temperature
profile @(r) profile T'(r) 02, 0.2 0.4 06 08 1

(a) APU exhaust duct geometry (b) Temperature profile
with cool air inlet. T/Teo = i + g (1 +tanh(50(% —7’))).
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Numerical results: strong temperature gradient

TR RReee®

0 1

(b) WKB, p = 2.

wd/cs = 10, m = 2, uniform velocity up/cs = 0.3,
Z(2)/pocCoo linear: 1.5 —1 to 1.5 +1i.

= 2 different sound speeds: 2 concentric ducts
Sound refracts from warm to cold
Enhances effect of lining



© New mode-matching method
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Classical mode-matching

Mode-Matching Basics

N
a

—

a

Zyi—1 zy Zi+1

Total field in segment [: sum of left- and right-running waves

o0
. + L
ZCORDY (GLPZ,Z(?”) PP mn) o P (r) elkz,m—mz))
pn=1

(same for velocity)
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Classical mode-matching

Mode-Matching Basics

4
bl
—>

a

Zyi—1

At the interface at x = x;:

max

I

() = 3 (WP r) + ap, P () )

pu=1

(same for velocity)

x

Ti+1

27 /47



Classical mode-matching

Mode-Matching Basics

+ +
b; Ay
—

a; b,

Ti-1 i Ti+1
Continuity of pressure at = = x; leads to

pi(xy,r) = prya (@, )
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Classical mode-matching

Mode-Matching Basics

+ +
b; Ay
—

a; b,

Ti-1 Ty Ti+1

Continuity of pressure at = = x; leads to

max

I

+ p+ - —
Z(bl,u Pl,u +al,u Pl,u )
pn=1

max

I

_ + + - -

= E :(alJrLu Pl +0541, Py )
p=1

27 /47



Classical mode-matching

Mode-Matching Basics

+ +
b; Ay
—

a; b,

Ti-1 Ty Ti+1

inner products with suitable test functions ¥, e.g. = J,,(a,7)

max

o
S (P W) + 0, (P )
pn=1

Mmax
= Z (alJ:LLu(PliLu’ vy) + bl_+17u(Pl:L17u’ \IJ”)>
pn=1
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Classical mode-matching

Mode-Matching Basics

+ +
b; Ay
—

a; b,

Ti-1 Ty Ti+1

inner products with suitable test functions ¥, e.g. = J,,(a,7)

max

7
> (b (B W) + (P, 00)

p=1

Mmax
= Z (alJ:LLu(PliLu’ vy) + bl_+17u(Pl:L17u’ \IJ”))
pn=1

Similar for continuity of axial velocity.
27 /47



Classical mode-matching

Mode-Matching Basics

+ +
b; Ay
—

a; b,

Ti-1 Ty Ti+1

Results in linear system to be solved

At A7) [bf] _ [BY B [a),
C™ C||a | |[DY Db |’

w)

27 /47



Computing inner products

Matrix entries are inner products

d
Aljfu = (Pli,\lly) = /0 Pli(r)\li,,(r)r dr
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Note that for non-uniform flow:
° Pzip is determined numerically

@ All inner-products have to be determined at all interfaces by
quadrature

° PljZ and W, are oscillatory = numerical problems
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Matrix entries are inner products

d
+ + +
ag = v = [
Note that for non-uniform flow:
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€1.000.000 question
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Computing inner products

Matrix entries are inner products

d
A= P = [ R

Note that for non-uniform flow:
° Pliﬂ is determined numerically

@ All inner-products have to be determined at all interfaces by
quadrature

° PljZ and W, are oscillatory = numerical problems

Problem

—

€1.000.000 question

Computing inner products numerically is expensive / less accurate

Can we find closed-form expressions for other ‘inner-product’? Yes!

28 /47



From Classical to a New Mode-matching method

Summary of new matching method

Classical — new mode-matching

(Pu, V) — (Fu,¥y)

29 /47



From Classical to a New Mode-matching method

Summary of new matching method

Classical (CMM) — new (BLM) mode-matching
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with U, = J, (o, 7) with @, =F,, F=[P,U,V,W|
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From Classical to a New Mode-matching method

Summary of new matching method

Classical (CMM) — new (BLM) mode-matching
(Pu, V) - (Fu, %)

d d
:/ PV, rdr — :/ [wlP“P,,—i—ng#P,,
0 0
+ws(V,V, + W, W) |rdr

with U, = J, (o, 7) with @, =F,, F=[P,U,V,W|
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From Classical to a New Mode-matching method

Summary of new matching method

Classical (CMM) — new (BLM) mode-matching
(Pu, V) - (Fu, %)

d d
:/ PV, rdr — :/ [wlP“P,,—i—ng#P,,
0 0
+ws(V,V, + W, W) |rdr

. id PI/VM - VVPM
quadrature - Tk —ky 0, r=d

with ), = J,, (o, 7) with @, =F,, F=[P,U,V,W|
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From Classical to a New Mode-matching method

Summary of new matching method

Classical (CMM) — new (BLM) mode-matching
(Pu, V) - (Fu, %)

d d
:/ PV, rdr — :/ [wlP“P,,—i—wQU#P,,
0 0
+ws(V,V, + W, W) |rdr

id PV, — V,,PM]
quadrature — = {
K =k Q2 r=d
with U, = J,, (1) with¥, =F,, F =[P, UV,W|
expensive cheap

less accurate accurate

29 /47



Closed form integrals of 2D eigenmodes

Prototype example of Generalised Prid-Brown : Helmholtz eqn

V2 + 5% =0

on arbitrarily shaped cross-section A
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Prototype example of Generalised Prid-Brown : Helmholtz eqn

V2 + 8% =0
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Prototype example of Generalised Prid-Brown : Helmholtz eqn

¢ (V0 + 5%)
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0

on arbitrarily shaped cross-section A
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Closed form integrals of 2D eigenmodes

Prototype example of Generalised Prid-Brown : Helmholtz eqn

¢ (V0 + 5%)
b (V26 +a0)

0
0

on arbitrarily shaped cross-section A
Subtract

(-8 v = PV — PV2¢
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Closed form integrals of 2D eigenmodes

Prototype example of Generalised Prid-Brown : Helmholtz eqn

¢ (V0 + 5%)
b (V26 +a0)

0
0

on arbitrarily shaped cross-section A
Subtract and integrate over A

(«® - %) //Aqﬁwds = /A(¢V2w—¢v2¢) ds
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Closed form integrals of 2D eigenmodes

Prototype example of Generalised Prid-Brown : Helmholtz eqn

¢ (V0 + 5%)
b (V26 +a0)

0
0

on arbitrarily shaped cross-section A
Subtract and integrate over A

<a2—52>/14¢¢ds - //Avww—wv@ds

30 /47



Closed form integrals of 2D eigenmodes

Prototype example of Generalised Prid-Brown : Helmholtz eqn

6 (V2 + 5%) =0

¥ (V¢ +a’p) =0
on arbitrarily shaped cross-section A
Subtract and integrate over A GAUSS

@ -7 [ /A swas = [ /A V-iww—wv@ds
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Closed form integrals of 2D eigenmodes

Prototype example of Generalised Prid-Brown : Helmholtz eqn

6 (V2 + 5%) =0

¥ (V¢ +a’p) =0
on arbitrarily shaped cross-section A
Subtract and integrate over A GAUSS

<a2—52>/14¢¢ds - /F<¢Vfb-n—w¢-n>de

30 /47



Closed form integrals of 2D eigenmodes

Prototype example of Generalised Prid-Brown : Helmholtz eqn

¢ (V0 + 5%)
b (V26 +a0)

0
0

on arbitrarily shaped cross-section A
Subtract and integrate over A

<a2—52>///1¢¢ds = [(0Vin—vVo-mar

2D inner-product for Helmholtz eigenfunctions

(6:0) = =5 | @V-n—vTo-m)at

for arbitrary boundary conditions on ¢ and v

What if a = 8 and ¢ = 1?7 Something similar.
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Closed form integrals of 1D eigenmodes

@ Circular duct: Helmholtz equation — Bessel equation
@ Substitute into 2D inner-product:

¢ = Jp(ar)e™ o = J,,(Br)e” ™0
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Closed form integrals of 1D eigenmodes

@ Circular duct: Helmholtz equation — Bessel equation

@ Substitute into 2D inner-product:

¢ = Jp(ar)e™ o = J,,(Br)e” ™0

1D inner-product of Bessel functions

1
((ar), Jm(Br)) = /0 Ton(0r) I (Br) dr

1 , /
= 5 [BIm (@) 10 (B) — aTi(0) Jen(B)]

(07
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Closed form integrals of 1D eigenmodes

@ Circular duct: Helmholtz equation — Bessel equation

@ Substitute into 2D inner-product:

¢ = Jp(ar)e™ o = J,,(Br)e” ™0

1D inner-product of Bessel functions

1
((ar), Jm(Br)) = /0 Ton(0r) I (Br) dr

1 , /
= 5 [BIm (@) 10 (B) — aTi(0) Jen(B)]

(07

If & = 5: something similar.

31/47



Closed form integrals for Generalised P-B modes

By analogous manipulations ...
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Closed form integrals for Generalised P-B modes

By analogous manipulations ...

@ Define vector of shape functions F'(y,z) = [P, U,V, W]
@ P solution of Generalised PB equation, U, V, W follow from P
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Closed form integrals for Generalised P-B modes

By analogous manipulations ...

@ Define vector of shape functions F'(y,z) = [P, U,V, W]
@ P solution of Generalised PB equation, U, V, W follow from P

Similarly to 2D Helmholtz example, it can be found:

Closed form integral of parallel flow modes

(F.F) =
1| o E )= ws s
AQ POCH  pof2 Q

i /]B(Vny—i-an)—(?ny%-an)Pdg
k—kJr Q 7
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Closed form integrals for Generalised P-B modes

By analogous manipulations ...

@ Define vector of shape functions F'(y,z) = [P, U,V, W]
@ P solution of Generalised PB equation, U, V, W follow from P

Similarly to 2D Helmholtz example, it can be found:

Closed form integral of parallel flow modes

(F.F) =
1w | k \z,, wa S~
AQ POCH  pof2 Q
i / P(Vny +Wn,) — (Vn, + Wn,)P w
k—FkJr Q 7

Something similar for k = k.
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Closed form integrals for radial Pridmore-Brown modes

Substitute for circular symmetric geometry. ..
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Substitute for circular symmetric geometry. ..
modes of the form F(r)e*m?
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Closed form integrals for radial Pridmore-Brown modes

Substitute for circular symmetric geometry. ..
modes of the form F(r)e*m?

F(r)=[P(r),U(r), V(r), W(r)]

@ P solution of the radial Pridmore-Brown equation
o U, V,W follow from P
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Closed form integrals for radial Pridmore-Brown modes

Substitute for circular symmetric geometry. ..
modes of the form F(r)e*m?

@ P solution of the radial Pridmore-Brown equation
o U, V,W follow from P

Exact integrals of radial Pridmore-Brown modes

<F7ﬁ>:

Is
0 Q

k
M+ B\ PP+ 2UP - poup(VV + WW) | rdr
:0000 p()Q Q

PV VP
Q

id

kE—k

r=d

Weighted products of Pridmore-Brown eigenfunctions.
Something similar for k = k. 33 /47



Some special cases

Some special cases
With Ingard-Myers condition (slipping flow)

~ idPP  (Q Q
=)

r=d
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Some special cases

Some special cases

With Ingard-Myers condition (slipping flow)
idPP (Q Q
k—k)Qw \Z Z

“orthogonal”:
‘ {<F

(F,F) =

r=d
For hard walls:
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idPP (Q Q
k—k)Qw \Z Z

“orthogonal”:
‘ {<F

(F,F) =

r=d
For hard walls:

In case of no-slip flow, ug(d) = 0:

r=d
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Some special cases

With Ingard-Myers condition (slipping flow)
idPP (Q Q
k—k)Qw \Z Z

“orthogonal”:
‘ {<F

(F,F) =

r=d
For hard walls:

In case of no-slip flow, ug(d) = 0:

#5:(273)

For hard walls, or same impedance Z = Z:
(F,F)=0
(F,F)+0

<F’1~?>:

r=d

“orthogonal”: {
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Bilinear map-based mode-matching

Classic mode-matching (CMM)

Zb+ Pltw +alu(Plu’\Ij )

Hi41

- + - -
- Z alJ:LLu(PHLu’ \Il”) + bl+1,u(Pl+1 W )

(same for velocity) with test functions (for example)

U, = Jn(a,r)
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Zb+ Plti’ +alu(Plu’\Ij )

Mi41

- + - -
- Z alJ:LLu(PHLu’ \Il”) + bl+1,u(Pl+1 W )

(same for velocity) with test functions (for example)
U, = Jn(a,r)

Quadrature required for (P,, ¥,) terms (non-uniform flow)
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Bilinear map-based* (BLM) mode-matching

Zb+ Fl+u’ >+altu<Flu’gl )
Hi+1

_ + ~ —
=Yl (Fion Oo) + b W (Fryy e P0)

but now as test functions the same modes:
Wl/ = Fl,l/

No extra calculations and (F,,%,) in closed form

*Technically not an inner-product, except for no flow or uniform flow.
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Numerical results

Comparing CMM and BLM

Test configurations
@ Length: 1m
@ Radius: 15cm
@ hard wall — soft wall, interface at x = 0.5m
°

u™ = 50 modes in both directions

Configuration | 1 1
Helmholtz & m  wd/coo = 13.86, m =5 wd/ce = 8.86, m =5 wd/coo =15, m =5

Temperature  Ty/Tso = 1 To/Too = 1 Tp/Too = 2log(2)(1 - )
Mean flow Up/oo = 0.5+ (1 —12)  wp/ce =0.3-3(1— é) Up/Coo = 0.3 - tanh(10(1 — 7))
Impedance Z/pocCoc =1 —1 Z/pocCoo = 1+1 Z/pooCoo =1 —1

Incident mode =1 n=1 nw=2
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Numerical results — Conf I: no-slip flow, uniform temp

Real part of pressure

(b) Bilinear map-based mode-matching.

Perfect match between BLM and CMM results
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Re(P) (dimless)

15

-15

Pressure at r = {0.035,0.075,0.15} m.
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1 1
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x(m)

0.6

0.7 0.8 0.9
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Numerical results — Conf I: no-slip flow, uniform temp

Re(U) (dimless)

Axial velocity at » = {0.035,0.075,0.15} m.

- AP AN AN N
B T N v SR/

| Lol [ \/ - -
g ‘

= = = Re(U) (CMM), r=0.035m
Re(U) (BLM), r=0.075m
= = = Re(U) (CMM), r=0.075m
Re(U) (BLM), r=0.15m
Re(U) (CMM), r=0.15m

1 1

Re(U) (BLM), r=0.035m ||

0.5 0.6
x(m)

0.7 0.8 0.9

Perfect match between BLM and CMM results
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Numerical results — Conf I: no-slip flow, uniform temp

Radial velocity at » = {0.035,0.075,0.15} m.

0.5 T

0.4 A -
0.3
0.2 [ 1 [\ -

0.1 j

—-— — — ' ! | / =
\ f / \J \/

-0.1f \j \/ | /‘ ‘ Re(V) (BLM), r=0.035m ||
\ | | = = = Re(V) (CMM), r=0.035m

Re(V) (dimless)
o

-0.2 \ Re(V) (BLM), r=0.075m ||
¥ = = = Re(V) (CMM), r=0.075m
-0.3| \ Re(V) (BLM), r=0.15m [
Re(V) (CMM), r=0.15m
-0.4 1 | | | | | 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x(m)

Perfect match between BLM and CMM results
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Numerical results — Conf II: slipping flow, uniform temp

Pressure at r = {0.035,0.075,0.15} m.

15
1f VAN - N
\ \ f 0\
f o\ \
\ J \ / \
0.5 | \ / \ -
@ \ | \ f \ .
7 \ \ \
£ e ‘ / | [\
S 0 ;Evgﬁvﬁ}*\hﬁ;ﬁ!__;m R S—
g \ i \ / ' / -
& \ i \ / b
—-05F \ / \ i ’ -
: \ ‘ \ / \ Re(P) (BLM), r=0.035m
\ o/ \ [/ = = = Re(P) (CMM), r=0.035m
\ J / 4 Re(P) (BLM), r=0.075m
-ir \ = = = Re(P) (CMM), r=0.075m |
Re(P) (BLM), r=0.15m
Re(P) (CMM), r=0.15m
1 1

-15 | I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x(m)

Perfect match between BLM and CMM results
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Numerical results — Conf II: slipping flow, uniform temp

Axial velocity at » = {0.035,0.075,0.15} m.
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Numerical results — Conf II: slipping flow, uniform temp

Radial velocity at » = {0.035,0.075,0.15} m.

0.3 ‘
0.2 il
N\ ]
\ 7/
E.)‘s o)
—_ - - NP — N e e, - . e W .
& oD% ‘ \hi*—k‘ e
@ | o
E /
S -01f l i
s L
T | |
& -02{ ‘ 1 R
. Re(V) (BLM), r=0.035m
-0.3| | f = = = Re(V) (CMM), r=0.035m ||
\ Re(V) (BLM), r=0.075m
v = = = Re(V) (CMM), r=0.075m
—04r \ / Re(V) (BLM), r=0.15m ||
J Re(V) (CMM), r=0.15m
-0.5 | | | | | | 1 1 1
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
x(m)
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Numerical results — Conf Ill: bndary layer, non-unif. temp

Pressure at r = {0.035,0.075,0.15} m.

15

Re(P) (dimless)

\ ! L, \/ (| \/ / Re(P) (BLM), r=0.035m | |
\ \ i | = = = Re(P) (CMM), r=0.035m
\ w / Re(P) (BLM), r=0.075m
-1t | \/ = = = Re(P) (CMM), r=0.075m [|
Re(P) (BLM), r=0.15m
Re(P) (CMM), r=0.15m
1 1

-15 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Numerical results — Conf Ill: bndary layer, non-unif. temp

Axial velocity at » = {0.035,0.075,0.15} m.

0.8

ol A AN

0.4+ f “‘ /\

1 } \ A .
f A / | J
02 ,{ \ // \ )’ f / 1 il /\ ‘\// .
| \\ / ’\/ ‘ i \/ \\ Re(U) (BLM), r=0.035m

Re(U) (dimless)
o
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T T
E 2
g
- 4
/r
T
A" )
\
J
\
/
L

_oald U = = = Re(U) (CMM), r=0.035m ||
0.4 )
i i v \Y Re(U) (BLM), r=0.075m
! = = = Re(U) (CMM), r=0.075m

—06 Re(U) (BLM), r=0.15m ||
Re(U) (CMM), r=0.15m
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Numerical results — Conf Ill: bndary layer, non-unif. temp

Radial velocity at » = {0.035,0.075,0.15} m.
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Numerical results — Energy balance

max

Energy balance (Myers' Energy Corollary) vs p™2* for conf. |

-15 T T T T T T T

—— test1 (BLM)
—>— testl (CMM)

-2 . . : 4

-3

log10 of normalized energy balance

5 10 15 20 25 30 35 40 45 50
mumax
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Numerical results — Energy balance

Energy balance (Myers' Energy Corollary) vs p™2* for conf. |

-15 T T T T T T T

—— test1 (BLM)
—>— testl (CMM)

-3

log10 of normalized energy balance

5 10 15 20 25 30 35 40 45 50
mumax

Energy balance better with more p-modes.
BLM performs better than CMM! Why?
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Numerical results — Convergence of modal amplitudes

Edge Condition (a posteriori)
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It is reasonable to assume that for some p < 0 the amplitudes
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Edge Condition (a posteriori)

It is reasonable to assume that for some p < 0 the amplitudes
A, =0(mP) for n— o0
so log |A,| = plogn + O(1). Then

log |A
pn:7og\ n‘—>p for n— o
logn
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It is reasonable to assume that for some p < 0 the amplitudes
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log | A,
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At the interface, at the wall (edge): boundary cond. discontinuous.
Field may be singular, but Power Flux must vanish at edge.
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Numerical results — Convergence of modal amplitudes

Edge Condition (a posteriori)

It is reasonable to assume that for some p < 0 the amplitudes
A, =0(mP) for n— o0
so log |A,| = plogn + O(1). Then

log | A,
Pn = —p for n— oo
logn

At the interface, at the wall (edge): boundary cond. discontinuous.
Field may be singular, but Power Flux must vanish at edge.

It can be shown that:
p < —1 = uniform convergence of modal series

= edge condition satisfied
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Numerical results — Convergence of modal amplitudes

Do we have p < —1 for numerical solutions?
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Numerical results — Convergence of modal amplitudes

Do we have p < —1 for numerical solutions?

Convergence of amplitudes (BLM and CMM), for conf. I, Il and IlI

p ~ —2 = edge condition satisfied v/

Convergence of p,, reveals inaccuracies of CMM amplitudes:

BLM amplitudes smoother than CMM as n — oo: no quadrature
inaccuracies for BLM. Explains energy behaviour.
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Conclusions

The Pridmore-Brown equation was solved numerically
@ Using standard BVP solver COLNEW
e Path-following/predictor-corrector with automatic step size

@ Favourable comparison with high-frequency approximation
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Conclusions

The Pridmore-Brown equation was solved numerically
@ Using standard BVP solver COLNEW
e Path-following/predictor-corrector with automatic step size

@ Favourable comparison with high-frequency approximation

Slowly varying mode-approximation applied to typical APU duct
@ Small enough e: favourable comparison with BAHAMAS
(mode matching)
@ WKB fails when Helmholtz liner passes resonance
@ Strong effects of temperature and mean flow gradients.

@ The need for Mode Matching was clear
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Conclusions

Classic mode-matching (CMM):
@ Uniform flow & temp:
o Mode shapes are Bessel functions
o Inner products are available in closed form
e Parallel (non-uniform) flow & temp:
o Mode shapes are Pridmore-Brown solutions (determined
numerically)

e Inner products require numerical quadrature
— expensive & less accurate

Bilinear map-based mode-matching (BLM):
e Parallel (non-uniform) flow & temp:

e Mode shapes are Pridmore-Brown solutions (determined
numerically)

o Closed form expressions for “inner-products” cheaper

e Solutions in very good agreement with CMM

e BLM amplitudes more accurate
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@ The success of the BLM matching method is, in a way, too
good. At least far better than expected, because the
“inner-product” is not a proper inner-product (unless ug =0
or uniform) and we can't be sure that it is able to single out
each modal contribution.
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@ Possibly related to this is the fact that the set of discrete
modes is not complete, i.e. not sufficient to construct any
possible solution. There is a “continuous” spectrum at the
locus of w — kug(r) = 0. From the energy result we can
conclude that this part is very small.
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@ The success of the BLM matching method is, in a way, too
good. At least far better than expected, because the
“inner-product” is not a proper inner-product (unless ug =0
or uniform) and we can't be sure that it is able to single out
each modal contribution.

@ Nevertheless, from the success we can only conclude that it
must be “almost” an inner-product. The modes are all “seen”
and distinguished.

@ Possibly related to this is the fact that the set of discrete
modes is not complete, i.e. not sufficient to construct any
possible solution. There is a “continuous” spectrum at the
locus of w — kug(r) = 0. From the energy result we can
conclude that this part is very small.

@ A fine task in functional analysis remains ...
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