
Sound radiation from structures

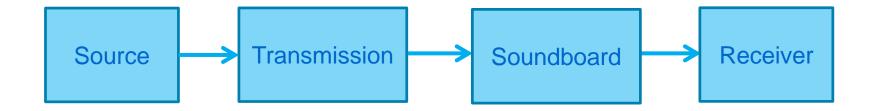
Prof. dr. Ines Lopez Arteaga Structural Acoustics

Department of Mechanical Engineering

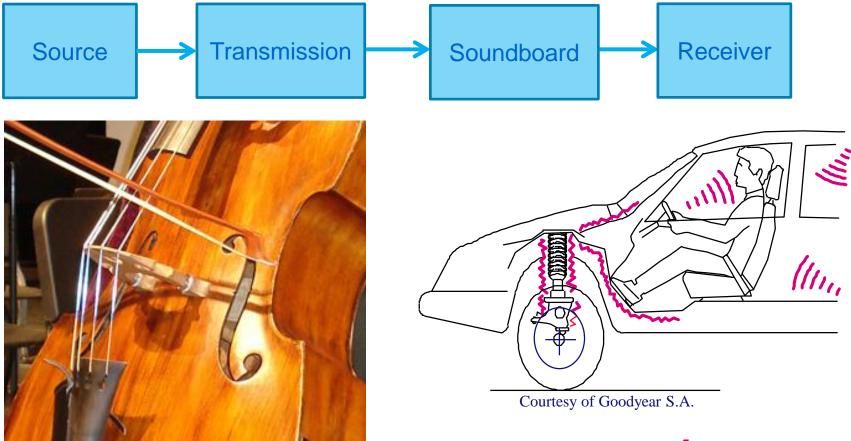
Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU



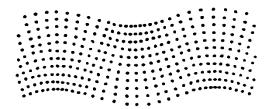
What do they have in common?



What do they have in common?

What do they have in common

TUe Technische Universiteit Eindhoven University of Technology

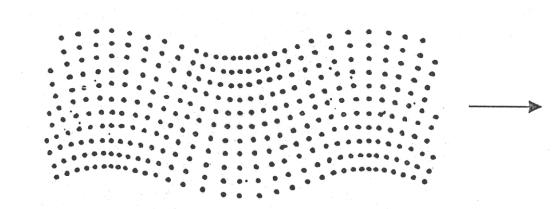

Wave types

		٠	•	••	•		٠	٠		•	•			••	••	•	•						••			٠	
	٠	•	•		•		•	•	•	•			• •	••			٠		٠	٠		•	-	• •		٠	
,	٠	٠	٠	••	-	•	•	٠	٠	٠	٠		••	-	••	٠	٠					••	••	• •	•	٠	
	٠	٠	٠	••	•	•	٠	٠	٠	٠	•	•	• •	••	••	٠	٠	٠	٠	٠		•	••	• •	•	٠	٠
	٠	٠	٠	••	•	•	•	٠	٠	•		•	• •	••	• •	٠	٠	٠	٠	٠		• •	••	• •	•	٠	
	٠	٠	٠		•	•	٠	٠	٠	٠	•		•	••	•	٠	٠	٠	٠	٠		-		• •	•	٠	
•	٠	٠	•	••	•	•	٠	٠		٠	•	•	•	+1	•	٠	•	٠	٠	٠		•		• •	•	٠	•
	٠	٠	٠	**	•	•	•	•	٠	•	•		•	••	•	٠	٠		٠	٠	• •	•	•••	• •	•	٠	
	٠	٠	٠	••	•	•	٠	٠	•	٠	•	•	• •	-	• •	٠	٠	٠	•	•	• •			• •	٠	٠	
•	٠	٠	٠	••	•	•	٠	٠	•	٠	•	•	• •	•	••	٠	٠	٠	٠	٠	•	•	•••	• •	•	٠	•
•	٠	٠	*	••	٠	•	٠	٠	٠	٠	•		•	-	••	٠	•	•		٠		-	• ••		•	٠	

Longitudinal

Transverse

Bending



/ Mechanical Engineering

Structural wave types

- Pure / corrected bending wave
- Mainly transverse vibrations

Corrected bending wave includes effects of rotary inertia and shear deformation

Most important for acoustic radiation

- most strongly excited (lowest mechanical impedance in audio freq.range)
- radiates most effectively (as compared to other wave types)

Transverse vibrations an infinite string

$$T\left(\not\theta + \frac{\partial\theta}{\partial x}dx\right) - T\not\theta = \rho_L dx \frac{\partial^2 u}{\partial t^2}$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c_s^2} \frac{\partial^2 u}{\partial t^2} \quad \text{where} \quad c_s = \sqrt{\frac{T}{\rho_L}} \quad \text{is the phase} \\ \frac{\partial^2 u}{\partial x^2} = \frac{1}{c_s^2} \frac{\partial^2 u}{\partial t^2} \quad \text{where} \quad c_s = \sqrt{\frac{T}{\rho_L}} \quad \text{is the phase} \\ \frac{\partial^2 u}{\partial t^2} = \frac{1}{c_s^2} \frac{\partial^2 u}{\partial t^2} \quad \text{where} \quad c_s = \sqrt{\frac{T}{\rho_L}} \quad \text{is the phase} \\ \frac{\partial^2 u}{\partial t^2} = \frac{1}{c_s^2} \frac{\partial^2 u}{\partial t^2} \quad \text{where} \quad c_s = \sqrt{\frac{T}{\rho_L}} \quad \text{is the phase} \\ \frac{\partial^2 u}{\partial t^2} = \frac{1}{c_s^2} \frac{\partial^2 u}{\partial t^2} \quad \text{where} \quad c_s = \sqrt{\frac{T}{\rho_L}} \quad \text{is the phase} \\ \frac{\partial^2 u}{\partial t^2} = \frac{1}{c_s^2} \frac{\partial^2 u}{\partial t^2} \quad \text{where} \quad c_s = \sqrt{\frac{T}{\rho_L}} \quad \text{is the phase} \\ \frac{\partial^2 u}{\partial t^2} = \frac{1}{c_s^2} \frac{\partial^2 u}{\partial t^2} \quad \text{where} \quad c_s = \sqrt{\frac{T}{\rho_L}} \quad \text{is the phase} \\ \frac{\partial^2 u}{\partial t^2} = \frac{1}{c_s^2} \frac{\partial^2 u}{\partial t^2} \quad \text{where} \quad c_s = \sqrt{\frac{T}{\rho_L}} \quad \text{is the phase} \\ \frac{\partial^2 u}{\partial t^2} = \frac{1}{c_s^2} \frac{\partial^2 u}{\partial t^2} \quad \text{where} \quad c_s = \sqrt{\frac{T}{\rho_L}} \quad \text{is the phase} \\ \frac{\partial^2 u}{\partial t^2} = \frac{1}{c_s^2} \frac{\partial^2 u}{\partial t^2} \quad \text{where} \quad c_s = \sqrt{\frac{T}{\rho_L}} \quad \text{is the phase} \\ \frac{\partial^2 u}{\partial t^2} = \frac{1}{c_s^2} \frac{\partial^2 u}{\partial t^2} \quad \text{where} \quad c_s = \sqrt{\frac{T}{\rho_L}} \quad \text{is the phase} \\ \frac{\partial^2 u}{\partial t^2} = \frac{1}{c_s^2} \frac{\partial^2 u}{\partial t^2} \quad \text{where} \quad c_s = \sqrt{\frac{T}{\rho_L}} \quad \text{is the phase} \\ \frac{\partial^2 u}{\partial t^2} = \frac{1}{c_s^2} \frac{\partial^2 u}{\partial t^2} \quad \text{where} \quad c_s = \sqrt{\frac{T}{\rho_L}} \quad \text{where} \quad c_s = \sqrt{T$$

Transverse bending of a beam

Fourth order partial differential equation:

$$\frac{\partial^2 \boldsymbol{u}}{\partial \boldsymbol{t}^2} + \frac{\boldsymbol{E}\boldsymbol{I}}{\rho_L} \frac{\partial^4 \boldsymbol{u}}{\partial \boldsymbol{x}^4} = 0$$

Consider the solution

Consider the solution
$$u(x,t) = Ae^{i(\omega t - kx)} \rightarrow k^4 = \frac{\rho_L}{EI}\omega^2$$

 $k_B = \pm \sqrt[4]{\frac{\rho_L}{EI}\omega^2} \rightarrow c_B = \frac{\omega}{k_B} = \sqrt{\omega}\sqrt[4]{\frac{EI}{\rho_L}}$

where ρ_L is the mass per unit length.

$$c_B = \sqrt{1.8c_L fh}$$
 with $c_L = \sqrt{\frac{E}{\rho}}$, $f = \frac{\omega}{2\pi}$ and
h is the beam height.

Bending waves in plates

Fourth order partial differential equation:

$$\rho_{s} \frac{\partial^{2} u}{\partial t^{2}} + \frac{Et^{3}}{12(1-v^{2})} \left\{ \frac{\partial^{4} u}{\partial x^{4}} + 2\frac{\partial^{4} u}{\partial x^{2} \partial y^{2}} + \frac{\partial^{4} u}{\partial y^{4}} \right\} = 0$$

where ρ_s is the mass per unit area.

Vectorial sum in x- and y-direction:

$$\vec{k}_B = \vec{k}_x + \vec{k}_y \longrightarrow |k_B|^2 = |k_x|^2 + |k_y|^2$$

$$c_B = \sqrt{1.8c_L fh}$$
 with $c_L = \sqrt{\frac{E}{\rho(1-\nu^2)}}$, $f = \frac{\omega}{2\pi}$ and
h is the plate thickness

Dispersion

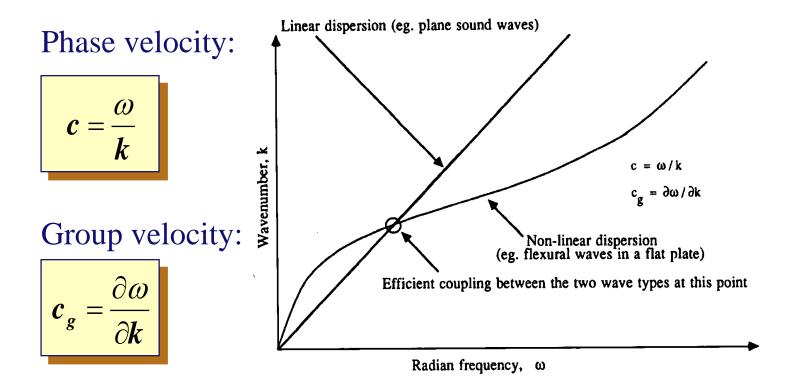
Beam:

$$c_B = \sqrt{1.8c_L fh}$$
 with $c_L = \sqrt{\frac{E}{\rho}}$, $f = \frac{\omega}{2\pi}$ and
h is the beam height

Plate:

$$c_B = \sqrt{1.8c_L fh}$$
 with $c_L = \sqrt{\frac{E}{\rho(1-v^2)}}$, $f = \frac{\omega}{2\pi}$ and
h is the plate thickness.

In both cases:


$$c(f) \propto \sqrt{fh} \qquad \Rightarrow \lambda_B \propto \sqrt{h} / \sqrt{f}$$

https://www.youtube.com/watch?v=dwMIaDg4Zeg

Technische Universiteit **Eindhoven** University of Technology

TU

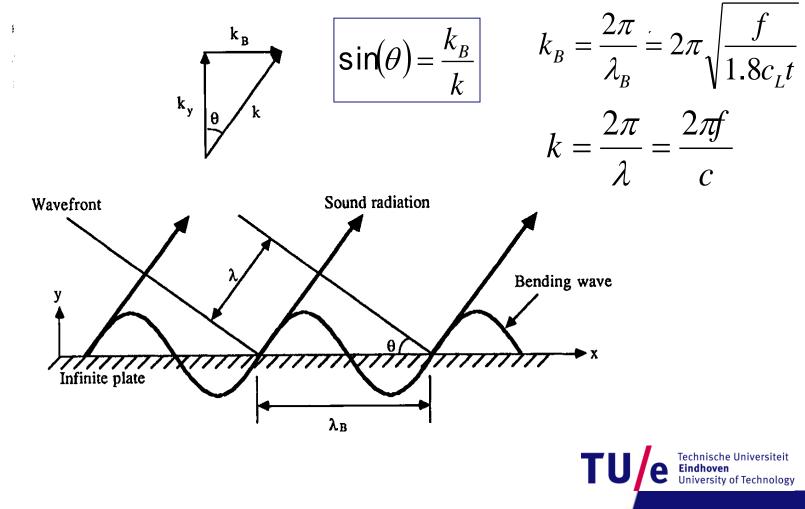
Phase velocity, group velocity

Critical frequency plates

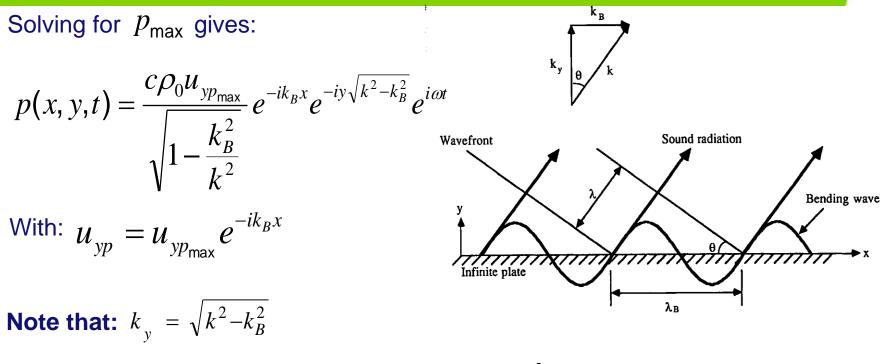
At the critical frequency (coincidence frequency) the acoustic wave velocity and the bending wave velocity are equal:

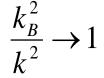
$$\boldsymbol{c} = \boldsymbol{c}_{\boldsymbol{B}} = \sqrt{1.8\boldsymbol{c}_{\boldsymbol{L}}\boldsymbol{f}_{\boldsymbol{c}}\boldsymbol{h}} \quad \text{with} \quad \boldsymbol{c}_{\boldsymbol{L}} = \sqrt{\frac{\boldsymbol{E}}{\rho(1-\nu^2)}}$$

h : plate thickness.

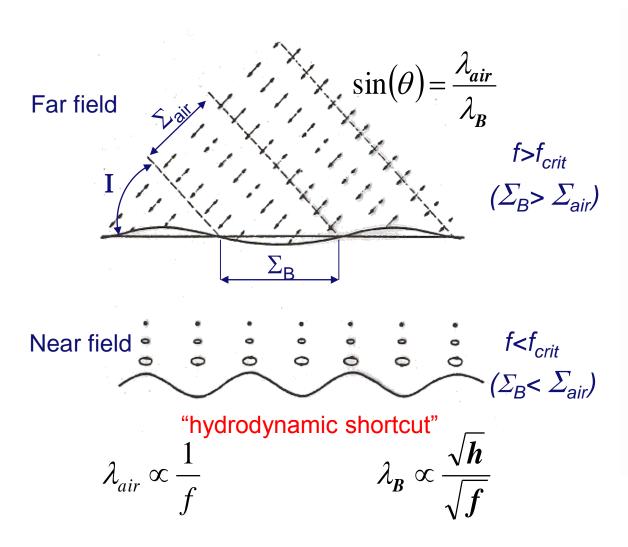

This leads to:

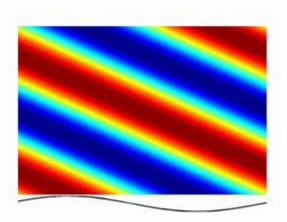
$$f_c = \frac{c^2}{1.8c_L h}$$

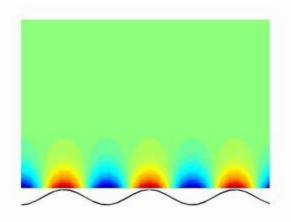

The critical frequency of a plate only depends on the material properties and plate thickness


Sound radiation from infinite plates

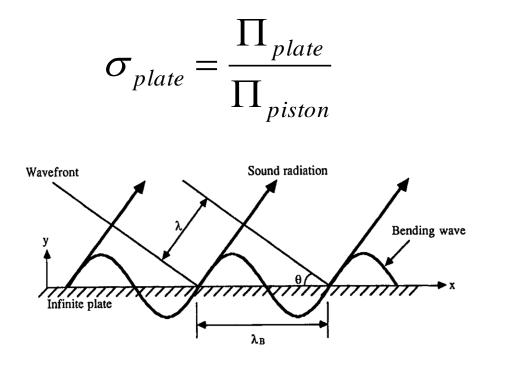
Sound radiation from infinite plates

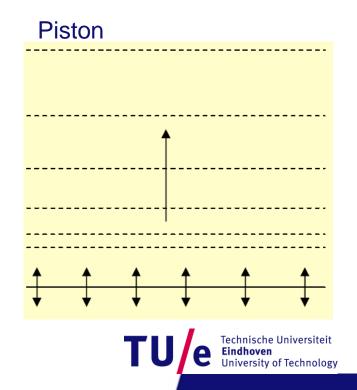



And that the pressure increases rapidly as $\frac{k_B^2}{L^2} \rightarrow 1$



Sound radiation from infinite plates



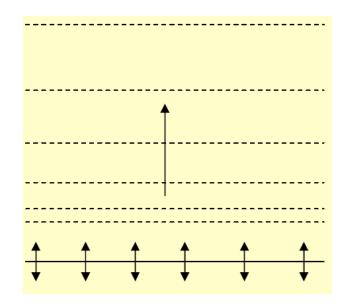


Technische Universiteit Eindhoven University of Technology

Radiation ratio (Radiation efficiency)

Radiation ratio: Sound power radiated by the plate divided by the sound power radiated by a large rigid piston with the same surface area and same r.m.s. vibration velocity

Acoustic radiation of a large (compared to the acoustic wavelength) and rigid piston.

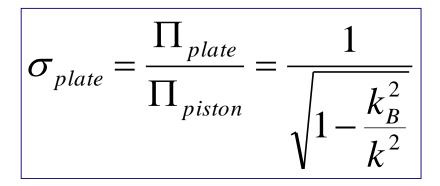

$$\Pi = \pi r^2 p_{rms} u_{rms}$$

For plane waves the velocity and the pressure are related through the specific acoustic impedance .

$$u = \frac{1}{\rho_0 c} p$$

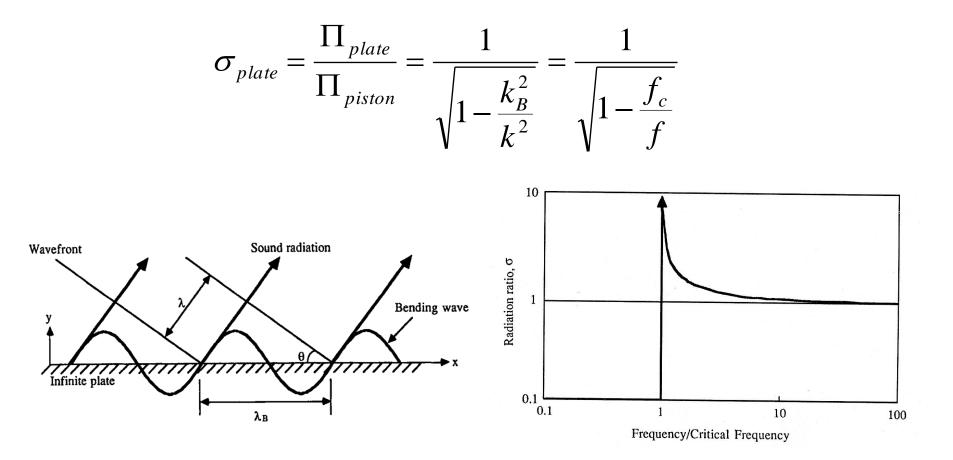
Therefore:

$$\Pi = \rho_0 c S u_{rms}^2$$

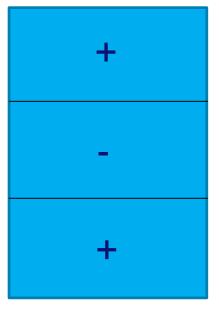

Radiation ratio infinite plate

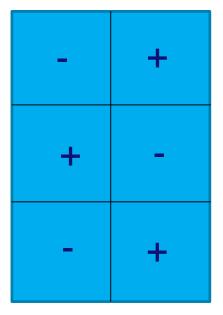
Plate

$$\Pi = \rho_0 cS \frac{u_{prms}^2}{\sqrt{1 - \frac{k_B^2}{k^2}}}$$


Piston

$$\Pi = \rho_0 c S u_{prms}^2$$


Radiation ratio infinite plate



Ue Technische Universiteit Eindhoven University of Technology

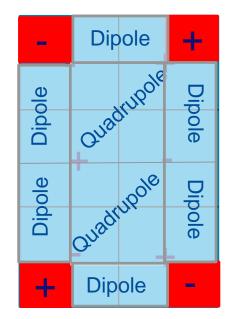
Radiation from finite plates

Below the critical frequency (subsonic modes) radiation efficiency depends on modeshape

Odd mode


Even mode

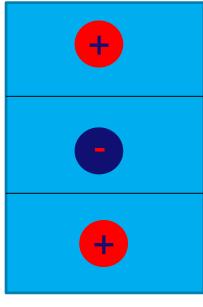
At low frequencies odd modes are better radiators (higher radiation efficiency) than even modes **TU/e TU/e TU/**


/ Mechanical Engineering

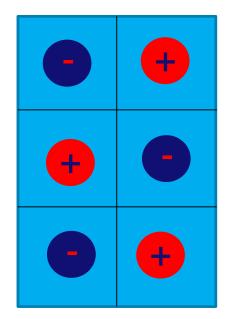
Radiation from finite plates

Below critical frequency dipole and quadrupole cancellations

Odd mode= Edge radiation



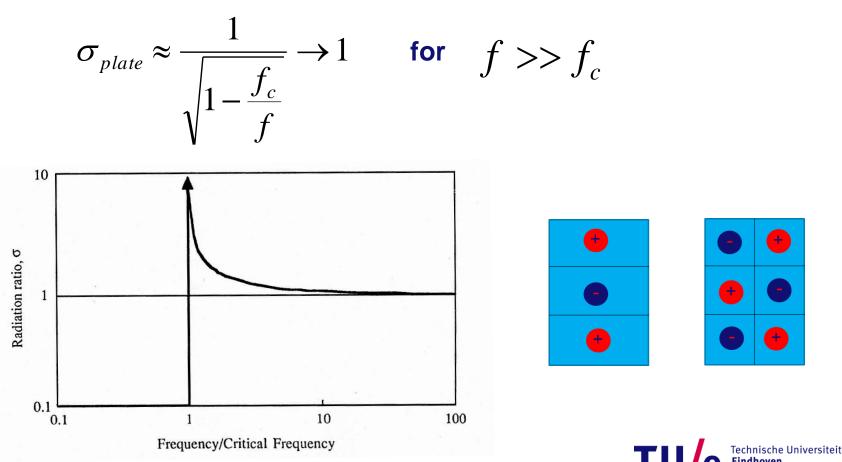
Even mode= Corner radiation


University of Technology

Radiation from finite plates

Above the critical frequency efficient radiation, each part of the plate radiates independently as a monopole

Odd mode



Even mode

Radiation ratio finite plates

Above the critical frequency approximately similar to infinite plates

University of Technology

Radiation ratio finite plates

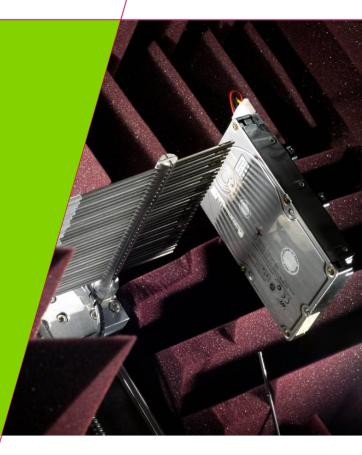
Design curve for broadband mechanical excitation of flat plates $10 \log_{10} \sigma$ λ_{C}^{2} $10 \log_{10} \frac{10}{S}$ 6 dB per octave 3 dB must be added in this region for clamped end conditions 2f_C f_C $\frac{c^2}{2Sf_C} \left\{ \frac{P^2}{8S} \right\}$ 3c $\frac{f_{C}}{4}$ $100\left(\frac{\lambda_{\rm C}}{\rm p}\right)\left(\frac{\rm c}{\rm p}\right)$ Frequency P

/ Mechanical Engineering

Technische Universiteit **Eindhoven** University of Technology

- Infinite plates can only radiate sound above the critical frequency.
- Real (finite) plates can radiate sound at all frequencies, but below the critical frequency they are inefficient radiators.

Recommended books


- Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies (3rd Edition), L. Cremer, M. Heckl, and B. A. T. Petersson, Springer Berlin, 2005.
- Fourier acoustics: Sound radiation and nearfield acoustic holography, E.G. Williams, Academic Press, London, 1999.
- Fundamentals of noise and vibration analysis for engineers, M. Norton, d. Karckub, Cambridge University Press, 2003.

Sound radiation from structures

Prof. dr. Ines Lopez Arteaga Structural Acoustics

Department of Mechanical Engineering

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU