Theoretical determination of flame transfer function using the G-equation – Comparison with experiments

Sébastien Ducruix

EM2C Laboratory, CNRS and Ecole Centrale Paris, 92295 Châtenay-Malabry, France sebastien.ducruix@ecp.fr

E.M.2.C

Motivations

- One of the major problems encountered while designing rocket motors, jet engines, ground gas turbines, industrial furnaces,...
- Characterised by large flow oscillations

Consequences...

Example of a combustion instability leading to flashback

Research on instabilities

> Flame response to acoustic modulations

- ➤ Simple model
- > Experiments
- ➤ G-equation calculations
- > Velocity field analysis
- Conclusions and perspectives

Perturbation equation

Assumptions :

- Low speed reactive flows d./dt ~ ∂ ./ ∂ t
- γ constant
- Weak pressure waves: $p = p_0 + p_1$ with $p_1 << p_0$
- Mean pressure does not change spatially

Then (...)

$$\nabla \cdot c^{2} \nabla p_{1} - \frac{\partial^{2} p_{1}}{\partial t^{2}} = \frac{\partial}{\partial t} \left[(\gamma - 1) \sum_{k=1}^{N} h_{k} \dot{\omega}_{k} \right] - \gamma p_{0} \nabla \mathbf{v} : \nabla \mathbf{v}$$
Wave-like equation
$$6 \quad \text{E.M.2.C}$$

Heat release source-term

• Assuming a single reaction step and equal c_{pk}

$$\frac{\partial}{\partial t} \left[(\gamma - 1) \sum_{k=1}^{N} h_k \dot{\omega}_k \right] = -\frac{\partial}{\partial t} \left[(\gamma - 1) (-\Delta h_f^0) \dot{\omega} \right]$$

 Δh_f^o : formation enthalpy per unit mass of the mixture $\dot{\omega}$: rate of reaction

$$-(\gamma - 1)(-\Delta h_f^0)\frac{\partial \dot{\omega}}{\partial t}$$
 or $(-(\gamma - 1)\frac{\partial \dot{q}_1}{\partial t})$

 q_1 : nonsteady rate of heat release per unit mass of fuel

Driving processes

 $\phi = \phi_0 + \phi'$

Equivalence ratio

10

perturbations

Unsteady strained flames

Response to equivalence ratio modulations

Driving processes (2)

Acoustically modulated flames

Perturbed flames interacting with a wall

11

Ducruix et al., J. Prop. Power (2003)

Ducruix et al., Prog. in Astronautics and Aeronautics (2005)

Linear assumption or Flame Describing Function (FDF) framework

Model for laminar cases

Experimental determination of the flame response (wide frequency range and modern diagnostics)

Understanding and modelling of the interaction phenomena based on Fleifil *et al.* (96)

 $\eta_0(\mathbf{r})$

(a)

-R

burnt oases

η(r,t)

(b)

15

fresh gases

R

Modelling of the flame response

Assumptions

➢Constant flame burning velocity S_{l} >Axial velocity field in the fresh gases \succ Velocity field spatially uniform in the fresh gases

16

Ducruix et al. (2000)

Simple model

Starting from the G-equation: $\frac{\partial G}{\partial t} + \mathbf{v} \cdot \nabla G = -S_L |\nabla G|$

v: velocity vector, S_L : (laminar) flame displacement speed

Introducing η as $G = \eta - y$, one gets

$$\frac{\partial \eta}{\partial t} + u \frac{\partial \eta}{\partial r} - v = -S_{\rm L} \left[1 + \left(\frac{\partial \eta}{\partial r} \right)^2 \right]^{1/2}$$

Assuming $\eta = \eta 0 + \eta 1$ and $\eta 1 << \eta 0$

$$\frac{\partial \eta_1}{\partial t} = S_L \cos \alpha_0 \frac{\partial \eta_1}{\partial r} + v_1$$

$\frac{\partial \eta_1}{\partial t} = S_L \cos \alpha_0 \frac{\partial \eta_1}{\partial r} + v_1$

Area fluctuations

Then (...)

$$A_{\eta} = 2\pi \cos \alpha_0 \int_0^{\kappa} \eta_1 dr$$

Heat release fluctuations

Simple model (2)

$$Q_1 = \rho_U S_L \Delta q A_1$$

$$\frac{Q_1}{Q_0} = \frac{V_1}{V_0} \frac{2}{\omega_*^2} \left[\left(1 - \cos \omega_* \right) \cos \omega t + \left(\omega_* - \sin \omega_* \right) \sin \omega t \right]$$

<u>Relevant parameter</u>: reduced frequency

$$\omega_* = \frac{\omega R}{S_L \cos \alpha_0} \qquad 18 \text{ E.M.2.C}$$

Transfer function amplitude

Transfer function phase

Experimental configuration

Simplified but perfectly controlled configuration > Wide range of frequencies and amplitudes

Spontaneous emission

Schlieren visualisations

Schlieren visualisations

Experimental measurements

Whatever the modulation conditions

- Almost sinusoidal signals of velocity and emission
- Main peak @ modulation frequency (negligible harmonics)

Transfer function amplitude

Transfer function phase

-

Transfer function analysis

>Good modelling of the flame behaviour for (very) low frequencies $\omega_* < 6$ for the amplitude and $\omega_* < 2$ for the phase BUT underestimation for intermediate frequencies May be due to (too) strong assumptions

Check the analytical solution of the flame transfer function
 ** G*-equation calculations of the flame response
 *** Level set approach to handle strong deformations

G-Equation Calculation

- G-Equation $\frac{\partial G}{\partial t} + \mathbf{v} \cdot \nabla G = -S_{\mathrm{D}} |\nabla G|$
- Resolution based on the flux splitting principle. First, non linear propagation then linear advection mechanism
- Calculations
 - ➤ Level set approach
 - ➤ Coarse grid: 41 × 51 points
 - ➤ Schemes
 - Time RK2, RK3
 - Propagation (H-J) WENO3-5
 - Advection (hyp) WENO3-5

Simple model simulation

$$v = \overline{v} + a\cos(\omega t)$$
 $\frac{a}{\overline{v}} = 0.2$
 $u = 0$

31

Transfer function analysis

 \succ Discrepancies may be due to strong assumptions on velocity.

- ℀PIV measurements

No analytical solution of the flame transfer function
 * G-equation calculations of the flame response
 * Necessary to propose a realistic modelling of the velocity in the fresh gases

Velocity field, $\omega_* = 2$

33

- > Small axial gradient, small radial velocity.
- \succ Validation of the assumptions on the velocity field
- > Trends of the transfer function correctly reproduced

Velocity field, $\omega_* = 15$

34

- > Large axial gradient, large radial velocity
- \succ Too strong assumptions on the velocity field
- ➤ Bad representation of the transfer function

Velocity modelling

<u>Key idea</u> : phase difference φ between velocity and acoustic modulation depends on *y* (see De Soete, 1964, Baillot *et al.*, 1998).

>Assumption: $\varphi(y) = -ky + b$

> Determination of k- Experimentally - Using : $k \approx K = \omega / V_0$

Phase difference = convection of perturbations by the flow

Velocity modelling (2)

1. Determination of axial velocity characteristics V_0 and v'_{max} $V = V_0 + v'_{max} \cos (\omega t - \varphi)$

2. Estimation of the phase difference φ : $\varphi = k \gamma$ using $k = \omega / V_0$

3. Determination of radial velocity using $\nabla \cdot \mathbf{V} = 0$: $U = \frac{1}{2} k v'_{max} sin(\omega t - \varphi)$

Remarks:

> Variations of V_0 and v'_{max} with y are not taken into account

Seems to be relevant for a certain range of frequencies

Schuller et al. (2003)

Axial velocity modelling

 $\omega_* = 10$, representation at a given phase

Good estimation of the evolution of the axial velocity with *y*

Radial velocity modelling

 ω_* = 10, representation at the same given phase

Good estimation of the evolution of the radial velocity

Simple model simulation

$$v = \overline{v} + a\cos(\omega t)$$
 $\frac{a}{\overline{v}} = 0.2$
 $u = 0$

G-equation simulations (ш 20 ≻ Ô X_(mm)

$$v = \overline{v} + a\cos(ky - \omega t) \qquad \qquad \frac{a}{\overline{v}} = 0.2$$
$$u = \frac{1}{2}k(x - 20)a\sin(ky - \omega t) \qquad \qquad \omega = k\overline{v}$$

Much better !

FTF modeling

GAIN

PHASE

ER = 1.05 S₁=0.39 m/s V=0.97 m/s v'=0.19 m/s

Much better !

Conclusions

- > Methods useful to study quasi-laminar industrial burners
 - Simplified modelling tool
 - Helpful for the design of burners
- \succ Interesting configuration for the validation of calculation codes
 - Completely controlled situation
 - Capability of a CFD code to simulate interactions
- Possibility to study other interaction modes
 - Instabilities in LPP burners
 - ♦ Tangential modes in rocket engines

