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1 Introduction
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Combustion instabilities [Photos from Lieuwen, 2005]

Applications:

Jet engines
Rocket engines
Gas turbine engines

Problems:

Vibrations
Structural fatigue
Increase in fuel consumption

Phenomena

Self-sustained, large amplitude pressure fluctuations and flame oscillations

Generally occurs around the characteristic frequency of the combustor

Objective:

Understanding the fundamental mechanisms of combustion instabilities
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Physical mechanisms: Flame-Flow-Acoustic interactions

1 Flame excites the acoustic pressure

Acoustic pressure amplifies according to Rayleigh’s criterion, i.e when
heat release and acoustic pressure are in phase.

2 Acoustic velocity and acoustic acceleration advect and modulate the
flame front.

3 The flame influences the hydrodynamic flow, which in turn influences
the flame.

Multi-scale, Extremely challenging for DNS!
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Existing models and comparison

The G-equation [see e.g. Dowling, JFM, 1999]

Model the advection effect of acoustic on the flame

Purely kinematic (no hydrodynamics)

Ignores dynamic effect of acoustics

Hydrodynamic theory of flames

Flame-flow interaction model, no acoustic considerations
[Pelcé & Clavin, JFM 1982], [Matalon & Matkowsky, JFM 1982]

Reduces to Michelson-Sivashinsky equation (M-S)

Advection Hydrodynamics (D-L) Flame-acoustics coupling R-T
G-equation ✓ ✗ ✓ ✗

M-S ✓ ✓ ✗ ✗

Aim: ✓ ✓ ✓ ✓
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The G-equation

G-equation

∂G

∂t
= −u · ∇G+ Su|∇G|,

∂F

∂t
= uG − Su

√
1 +

(
∂F

∂y

)2

G = G(x, y, t) : level set function representing the flame

Su: normal flame speed propagation

Write G(x, y, t) = x− F (y, t) and consider 1D velocity fluctuations

uG = uG(t): “u gutter”, acoustic velocity at the flame (1D)

Allows for wrinkling of anchored flames...

... but not for freely propagating flames.
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The Michelson-Sivashinsky equation

The M-S equation (2D)





∂ϕ
∂t

= 1
2
I(ϕ; y) + 1

γ
∂2ϕ
∂y2

+ 1
2

(
∂ϕ
∂y

)2
,

̂I (ϕ; y) (k, t) = |k|ϕ̂ (k, t) ,

ϕ : flame shape

γ : “free” parameter

̂ : Fourier transform in y direction

Good for unconfined freely propagating flames

Predicts Darrieus-Landau instability: i.e. flames tend to curve
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Searby’s experiment [Searby, Combust. Sci. Technol., 1992]

Setup Results
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Flame-flow-acoustics in the literature

Externally imposed acoustics
For example [Markstein & Squire, 1955], [Searby & Rochwerger, JFM 1991],

[Clanet & Searby, PRL 1998], [Bychkov, PoF 1999]

No consideration of back-action of the flame onto the acoustics

Focused on secondary instability

Including spontaneous acoustic field
[Pelcé & Rochwerger, JFM 1992]

First mathematical treatment of flow-flame-acoustics interactions

Ad-hoc modelling of flame profile as cosine function

Focused on primary instability
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Presentation of the Problem

Geometry

Burnth∗ Unburnt
Θ−∞

ρ−∞

Θ∞

ρ∞

y

z

x = f(y, z, t)

ℓ∗
x

Physical assumptions

One-step irreversible chemical reaction

Fuel deficient reactant: lean combustion

Mixture obey state equation for perfect gas

Newtonian compressible fluid
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Equations to be solved

Equations

Conservation of mass

Conservation of momentum

Transport equation governing the diffusion of chemical species

Energy conservation

State equation

Main variables of non-dimensional problem

u, ρ, p, θ

M : Mach number

q: heat release

β: activation energy

ρ−∞, θ−∞,UL

δ: flame thickness

q = (θ∞ − θ−∞)/θ−∞

Ma: Markstein number
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Change of coordinate, flame frame of reference

2π

x = 0 x = 2πℓ∗

h∗

y

2πℓ∗

h∗

x = f(y, z, t)

Non-dimensionalised coordinates

Unburnt Burnt

x

y = π

z

y = −π

Change of variable (x, y, z, t) → (ξ, η, ζ, τ)
ξ = x− f(y, z, t), η = y, ζ = z and τ = t

u = ueξ + v

ξ = 0

ζ

η

η = π

η = −π

2π
ξ

Unburnt (ξ < 0) Burnt (ξ > 0)

∇̃ =




∂

∂η
∂

∂ζ



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2 Asymptotic analysis
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Different scalings of the problem

ξ = 0

ζ

O(1)

Reaction zone

O(1/M)

O(1/M)

Acoustic zone

η
O (δ/β)

Hydrodynamic zone

O(δ)
Preheat zone

Acoustic zone

ua, pa

ua, pa
U, V, P

U, V, P

η = π

η = −π

2π
ξ

Large-Activation-Energy : β ≫ 1

Low Mach Number: M ≪ 1
Thin flame : δ ≪ 1

δ

β
≪ δ ≪ 1 ≪

1

M

[Hydro. theo. flames]

[Wu et al, JFM 2003]
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Acoustic zone

Stretch of variable ξ̃ = Mξ

Acoustic Equations




∂pa
∂τ

+
∂ua

∂ξ̃
= 0

R
∂ua
∂τ

+
∂pa

∂ξ̃
= 0

ρ = R to first order in δ

Acoustic Jumps (weakly nonlinear)




JpaK+− = 0

JuaK+− = Ja(τ) =
q

2

(
∇̃F

)2
f = F to first order in δ

Acoustic-flame coupling
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Hydrodynamic zone 1/2: (u,v, p) = (U,V , P ) +O(δ2)

Linearising the hydrodynamic equations and the jumps to second
order in δ leads to:

Hydrodynamic equations




∂U

∂ξ
+ ∇̃ · V = 0,

R
∂U

∂τ
+

∂U

∂ξ
= −

∂P

∂ξ
+ δ Pr∆U,

R
∂V

∂τ
+

∂V

∂ξ
= −∇̃P + δ Pr∆V ,

Jump conditions





[U ]+− = JU

(
F ,V

−
)

[V ]+− = JV

(
F ,V

−
)

[P ]+− = JP

(
F ,U

−
,V

−
,Ba(τ )

)

U
− = U(0−, η, ζ, τ )

Weakly nonlinear Flame equation

∂F

∂τ
= U− − V

− · ∇̃F − (∇F )2/2 + δMa∇̃
2F + δEF

(
V

−, F
)

Ba(τ) =

s
∂pa

∂ξ̃

{+

−

=

s
−R

∂ua
∂τ

{+

−

Acoustic-flow coupling

Flow-flame coupling
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What now?

Using Fourier analysis, this whole system can be simplified.

Making some simplifications, the equations can be reduced to

The G-equation
The M-S equation

Objective

Retaining key terms to allow for a simple model accounting for the
three-way coupling physics of the problem.
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Hydrodynamic zone 2/2: (u,v, p) = (U,V , P ) +O(δ)

Considering only the leading order in δ, and partially linearising the
flame equation leads to:

Hydrodynamic equations





∂U

∂ξ
+ ∇̃ · V = 0

R
∂U

∂τ
+

∂U

∂ξ
= −

∂P

∂ξ

R
∂V

∂τ
+

∂V

∂ξ
= −∇̃P

Jump conditions





[U ]+− = 0

[V ]+− = −q
(
∇̃F

)

[P ]+− = −

(
Ba(τ ) +

qG

1 + q

)
F

Weakly nonlinear Flame equation

∂F

∂τ
= U− −

1

2

(
∇̃F

)2
+ δMa∇̃

2F

Ba(τ) =

s
∂pa

∂ξ̃

{+

−

=

s
−R

∂ua
∂τ

{+

−

Acoustic-flow coupling

Flow-flame coupling
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3 Steady state solutions and linear instability
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Steady results

Steady solution ↔ solution of steady Michelson-Sivashinsky

Free parameter γ =
q

δMa

Results agree with analytical results of the theory of N -pole solutions.
[Vaynblat & Matalon, SIAM J. Appl. Math., 2000]
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Linear stability analysis

No acoustic considerations [Vaynblat & Matalon, SIAM J. Apl. Math., 2000]

Flat

ϕ1

γ3 γM γM+1

ϕM
γ

ϕ2

ϕ1

Steady unstable

Steady stableϕ1

ϕ2

Flat FlatFlat

γ1 γ22.1 6.2

Considering acoustics : linear instability!
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4 The one-equation model
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The spectral flame equation

Using Fourier transforms ̂ in the η and ζ direction, we can solve the
hydrodynamic system analytically. We can then reduce the hydro
equations, hydro jumps and flame equation to one equation in the spectral
space

A
∂2F̂

∂τ2
+B(k)

∂F̂

∂τ
+ C(k,Ba(τ))F̂ = −|k|

(
̂̃
∇F ⋆

̂̃
∇F

)
(k)

− A


̂̃∇F ⋆

∂
̂̃
∇F

∂τ


 (k),

where A, B and C are functions known explicitly and ⋆ represents the
convolution.

The whole problem reduces to two subproblems:

1 The acoustic system

2 The spectral flame equation
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5 2D unsteady numerical approach
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Acoustic resolution

System of PDEs with discontinuous coefficient
{

(pa)τ + (ua)ξ̃ = 0

(ua)τ + c2(pa)ξ̃ = 0
, where c =

{
c− if ξ̃ < 0

c+ if ξ̃ > 0

Boundary and jump conditions
{

ξ̃ ∈ [L−, L+]
τ > 0

,

{
ua(L

−, τ) = 0
pa(L

+, τ) = 0
,

{
JuaK+− = Ja(τ)

JpaK+− = 0

Solved by semi-analytical method of characteristics

L−

C

A

D

B

L+0

x

So if we know Ja(τ), we can solve the acoustic problem...
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Hydrodynamic-flame resolution

The spectral flame equation

A
∂2F̂

∂τ2
+B(k)

∂F̂

∂τ
+ C(k,Ba(τ))F̂ = −|k|

(
̂̃
∇F ⋆

̂̃
∇F

)
(k)

− A


̂̃∇F ⋆

∂
̂̃
∇F

∂τ


 (k),

F̂ (k, 0) = F̂0(k) and
∂F̂

∂τ
(k, 0) = 0

Use FFT and IFFT to evaluate the convolutions

March in time using e.g. 4th-order Adams-Bashforth

So in theory if we know Ba(τ), the flame equation can be solved...
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Coupling

The whole system can be solved by coupling the two methods

Solver

Acoustic

Solver

Spectral flame

Ba Ja
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6 Numerical results
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Parameters

Constants of the problem

Parameters σ M UL q ℓ∗ h∗ G

Values 0.5 0.0007 0.24 m · s−1 5.25 1.2 m 0.1 m 0

Results presented for two values of the “free” parameter γ:

γ = 2.1 γ = 6.2
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Acoustic pressure and flame shape

γ = 2.1
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Validation 1: growth rate

γ = 2.1
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Agreement between numerics and linear stability analysis
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Validation 2: nonlinear behaviour 1/2

γ = 2.1
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ω1 dominant + pressure saturation → Ba(τ) ≈ Aa cos(ω1τ)

flattening of the flame → linearisation of the flame equation around
flat state
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Validation 2: nonlinear behaviour 2/2

Simplified spectral flame equation: damped Mathieu Equation

∂2F̂

∂τ2
+ ν∗(k)

∂F̂

∂τ
+ [δ∗(k) + ǫ∗(k) cos(ω1τ)] F̂ = 0

γ = 2.1
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Raphaël Assier (University of Manchester) Modelling combustion instabilities Keele, Sept 16, 2014 27 / 37



Physical interpretation

The curved steady states are linearly unstable.

For reasonably low values of γ, a flat flame (intrinsically unstable in
silent environment) can survive in a noisy (spontaneous) environment.

For larger values of γ, a cellular flame is forming, corresponding to a
weakly-nonlinear instability (subharmonic parametric).

Both cases correspond qualitatively to experimental observations
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Propagating flame with gravity

Experiment [Searby, 1992] Numerics
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Raphaël Assier (University of Manchester) Modelling combustion instabilities Keele, Sept 16, 2014 29 / 37



Towards better agreement? Hint from steady states

Current

−2

−1

0

1

2

3

4

5

−π −2 −1 0 1 2 π

F
(η

)

η

γ = 2.1
γ = 6.2

γ = 30
γ = 45

γ = 55

Full model

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−π −2 −1 0 1 2 π
F

(η
)

η

γ = 13
γ = 15

γ = 20
γ = 30

γ = 45
γ = 55

For similar values of γ, the steady states of the full model
are less cusped and more compact.

Raphaël Assier (University of Manchester) Modelling combustion instabilities Keele, Sept 16, 2014 30 / 37



7 Instability triggering by vortical disturbances
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Vortical disturbances: another instability trigger

Periodic forcing of hydrodynamic velocity U

Spectral flame equation

A
∂2F̂

∂τ2
+B(k)

∂F̂

∂τ
+ C(k, τ)F̂ = −|k|

(
iuF̂ (u)

)
⋆
(
iuF̂ (u)

)
(k)

− A
(
iuF̂ (u)

)
⋆

(
iu

∂F̂

∂τ
(u)

)
(k)

+ N0(ω, k, k0, τ, ε)

ω: frequency of the disturbance

k0: wavenumber of the disturbance

ε: amplitude of the disturbance
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γ = 2.1 (was “stable” wihtout vortical disturbances)
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8 Feedback control of combustion instabilities
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Feedback control implementation

Loud speaker

Pref

K(s)

BurntUnburnt

i(t)
+
−

e(t)

vc(t)

G(s)

K(s)

pref(t)
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Adaptive control: STR algorithm [see e.g. Morgans 2009]

The controller: 1st order phase compensator

K (s) = K (s, t)

= k1 (t)
s+ zc

s+ zc + k2 (t)

Update rules

k1 (t) = −γ1

∫ t

0

(pref (τ))
2 dτ

k2 (t) = +γ2

∫ t

0

pref
(
t′
)
k1
(
t′
)
J
(
t′
)
dt′

J (t) =

∫ t

0

pref (τ) exp {− [zc + k2 (t− τ)] (t− τ)}dτ
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Reduction of instability effect 1/2

Without vortical disturbances
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Reduction of instability effect 2/2

New strategy to “kill” the signal faster: sequential control

Changing the convergence rate when gradient is “calm”

γ1,2 → 10× γ1,2
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Conclusion and perspectives

Summary [RCA & Wu, JFM, 2014]

Implementation of “complete” flame model

Analytical linear stability analysis of curved flames

Unsteady coupled numerical scheme

Other things that have been done [RCA & Wu, AIAA, 2014]

Modelling effect of weak turbulence in fresh mixture

Use adaptive feedback control to suppress instabilities

Implementation of O(δ) model

Future work and challenges

Refining model to get quantitative agreement with experiments

Analyse the effect of not making a weak nonlinear assumption

Implementation of acoustic loss in the system
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