

Introduction to thermoacoustics theory

Maria Heckl

Department of Mathematics, Keele University, UK

e-mail: m.a.heckl@keele.ac.uk

1. Introduction

- 2. Lighthill's acoustic analogy equation
- 3. Rayleigh's criterion

1. Introduction

1.1. Basic assumptions and conservation equations

Consider a fluid with

- **v** : velocity, has components v_i i = 1, 2, 3
- ρ : density
- *p*: pressure
- σ : viscous stress tensor, has components σ_{ij} , *i*, *j* = 1, 2, 3

where
$$\sigma_{ij} = \eta \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} - \frac{2}{3} \frac{\partial v_k}{\partial x_k} \delta_{ij} \right)$$

 η : coefficient of shear viscosity

conservation equation for mass

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = \mathbf{0}$$

or

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho \mathbf{v}_j}{\partial \mathbf{x}_j} = \mathbf{0}$$

conservation equation for momentum

(body forces such as gravity ignored)

$$\rho \frac{\partial \mathbf{v}}{\partial t} + \rho \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \boldsymbol{\rho} + \nabla \cdot \boldsymbol{\sigma}$$

or

$$\rho \frac{\partial \mathbf{v}_i}{\partial t} + \rho \mathbf{v}_j \frac{\partial \mathbf{v}_i}{\partial \mathbf{x}_j} = -\frac{\partial \boldsymbol{p}}{\partial \mathbf{x}_i} + \frac{\partial \sigma_{ij}}{\partial \mathbf{x}_j}$$

1.2. Thermodynamic relationships

Consider a fluid element with constant mass *m*, undergoing a reversible process (heat added, volume changed).

change of internal energy: dU = dH- p dVheat work done on fluid energy added element $dS = \frac{dH}{\tau}$ change of entropy: Introduce the specific quantities, i.e. quantities per unit mass: internal energy heat energy entropy $h = \frac{H}{H}$ m 16 September 2014 Thermoacoustics introduction 4

- ⇒ specific entropy: $ds = \frac{1}{T}dh$ mass density (definition): $\rho = \frac{m}{V}$ ⇒ $\frac{1}{\rho} = \frac{V}{m}$ ⇒ specific internal energy: $de = dh - p d(\frac{1}{\rho}) = T ds - p d(\frac{1}{\rho})$ specific enthalpy (definition): $B = e + \frac{p}{\rho}$
- ⇒ change of the specific enthalpy of the fluid element:

$$dB = de + d(\frac{p}{\rho}) = de + p d(\frac{1}{\rho}) + \frac{1}{\rho}dp = Tds + \frac{1}{\rho}dp$$

specific heat capacities (ratio of added heat to corresponding increase in temperature):

$$c_{v} = \left(\frac{\mathrm{d}h}{\mathrm{d}T}\right)_{\rho} = \left(\frac{\partial e}{\partial T}\right)_{\rho} = T\left(\frac{\partial s}{\partial T}\right)_{\rho}, \quad c_{\rho} = \left(\frac{\mathrm{d}h}{\mathrm{d}T}\right)_{\rho} = \left(\frac{\partial B}{\partial T}\right)_{\rho} = T\left(\frac{\partial s}{\partial T}\right)_{\rho}$$

When heat is added to the fluid element, the density of the fluid becomes a function of two variables, the pressure and specific entropy, say: $\rho = \rho(p,s)$. Hence

$$d\rho = \left(\frac{\partial \rho}{\partial p}\right)_{s} \quad d\rho \quad + \quad \left(\frac{\partial \rho}{\partial s}\right)_{p} \quad ds$$

$$= -\frac{\rho}{c_{p}} \quad \text{for an ideal gas}$$
because: $\rho = \frac{p}{RT}$, so $\left(\frac{\partial \rho}{\partial s}\right)_{p} = \left(\frac{\partial \rho}{\partial T}\right)_{p} \left(\frac{\partial T}{\partial s}\right)_{p} = -\frac{\rho}{c_{p}}$

$$= \frac{1}{c^{2}} \frac{D\rho}{Dt} - \frac{\rho}{c_{p}} \frac{Ds}{Dt}$$

or

Dρ

Dt

2. Lighthill's acoustic analogy

2.1. Derivation

Consider an unbounded fluid with a finite source region containing vortices and combustion.

Aim: derive a governing equation for the pressure *p* from the two conservation equations for mass and momentum

16 September 2014

Thermoacoustics introduction

from mass conservation:

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho V_j}{\partial x_j} = 0 \quad \left| + \frac{1}{c_0^2} \frac{\partial p}{\partial t} \right| \quad \text{where} \quad c_0^2 = \left(\frac{\partial p}{\partial \rho} \right)_s$$

 c_0 : will turn out to be the speed of sound

subscript s : isentropic process, i.e. no heat added

$$\Rightarrow \frac{1}{c_0^2} \frac{\partial p}{\partial t} + \frac{\partial \rho V_j}{\partial x_j} = \frac{\partial}{\partial t} \left(\frac{p}{c_0^2} - \rho \right)$$

from momentum conservation:

$$\rho \frac{\partial v_{i}}{\partial t} + \rho v_{j} \frac{\partial v_{i}}{\partial x_{j}} = -\frac{\partial p}{\partial x_{i}} + \frac{\partial \sigma_{ij}}{\partial x_{j}} \qquad \left| + v_{i} \frac{\partial \rho}{\partial t} + v_{i} \frac{\partial \rho v_{j}}{\partial x_{j}} = 0 \right|$$
$$\Rightarrow \quad \frac{\partial \rho v_{i}}{\partial t} + \frac{\partial \rho v_{i} v_{j}}{\partial x_{j}} = -\frac{\partial p}{\partial x_{i}} + \frac{\partial \sigma_{ij}}{\partial x_{j}} \qquad \text{Reynold's form}$$

16 September 2014

mass
$$\frac{1}{c_0^2} \frac{\partial p}{\partial t} + \frac{\partial \rho V_j}{\partial x_j} = \frac{\partial}{\partial t} \left(\frac{p}{c_0^2} - \rho \right) \quad \left| \frac{\partial}{\partial t} \right|$$

momentum
$$\frac{\partial \rho V_i}{\partial t} + \frac{\partial \rho V_i V_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \sigma_{ij}}{\partial x_j} \quad \left| \frac{\partial}{\partial x_i} \right|$$

differentiate as indicated and subtract equations to eliminate

the momentum density ρv_i

$$\Rightarrow \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x_i \partial x_i} = \frac{\partial^2}{\partial t^2} \left(\frac{p - p_0}{c_0^2} - (p - p_0) \right) + \frac{\partial^2 (p v_i v_j - \sigma_{ij})}{\partial x_i \partial x_j}$$

$$p_0, p_0 \quad \text{inserted constants (convention)}$$

$$\rho_e = \frac{p - p_0}{c_0^2} - (p - p_0) \quad \text{excess density}$$

16 September 2014

Thermoacoustics introduction

$$\frac{1}{c_0^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x_i \partial x_i} = \frac{\partial^2}{\partial t^2} \left(\frac{p - p_0}{c_0^2} - (p - p_0)\right) + \frac{\partial^2 (p v_i v_j - \sigma_{ij})}{\partial x_i \partial x_j}$$

This is an exact equation: no approximations (e.g. linearisation) have been made.

lf

- there is no source region,
- the motion is linear,
- viscosity effects are neglected,

then it reduces to

$$\frac{1}{c_0^2} \frac{\partial^2 p'}{\partial t^2} - \frac{\partial^2 p'}{\partial x_i \partial x_i} = 0$$

Wave equation for the acoustic pressure p'

 c_0 : the propagation speed of acoustic waves.

A governing equation for the density p can be obtained in the same way.

Just add
$$c_0^2 \frac{\partial p}{\partial t}$$
 to either side of the momentum equation,
instead of adding $\frac{1}{c_0^2} \frac{\partial p}{\partial t}$ to the mass equation.

$$\frac{\partial^2 \rho}{\partial t^2} - c_0^2 \frac{\partial^2 \rho}{\partial x_i \partial x_i} = \frac{\partial^2 [\rho v_i v_j - \sigma_{ij} + ((\rho - \rho_0) - c_0^2 (\rho - \rho_0) \delta_{ij}]}{\partial x_i \partial x_j}$$

This is Lighthill's acoustic analogy equation.

The term $\rho v_i v_j - \sigma_{ij} + ((p - p_0) - c_0^2 (\rho - \rho_0) \delta_{ij})$ on the right hand side is called **Lighthill stress tensor**.

2.2. Interpretation

Analogy equation:

$$\frac{1}{c_0^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x_i \partial x_i} = \frac{\partial^2 \rho_e}{\partial t^2} + \frac{\partial^2 (\rho v_i v_j - \sigma_{ij})}{\partial x_i \partial x_j}$$

With
$$\frac{D\rho}{Dt} = \frac{1}{c^2} \frac{D\rho}{Dt} - \frac{\rho}{c_p} \frac{Ds}{Dt}$$
 (see section 1.2)

and a few straightforward mathematical manipulations, the source term $\frac{\partial \rho_e}{\partial t}$ can be expressed in terms of the entropy:

$$\frac{\partial \rho_e}{\partial t} = -\frac{\rho_0}{c_p} \frac{\mathrm{Ds}}{\mathrm{Dt}} - \frac{\partial \rho_e u_i}{\partial x_i} - \frac{1}{c_0^2} (1 - \frac{\rho_0 c_0^2}{\rho c^2}) \frac{\mathrm{Dp}}{\mathrm{Dt}} + \frac{p - p_0}{c_0^2} \frac{\mathrm{Dp}}{\mathrm{Dt}}$$

and the analogy equation then becomes

$$\frac{\partial}{\partial t} \frac{\rho_0}{c_p} \frac{\mathrm{Ds}}{\mathrm{D}t} + \frac{1}{c_0^2} (1 - \frac{\rho_0 c_0^2}{\rho c^2}) \frac{\mathrm{Dp}}{\mathrm{D}t} - \frac{p - p_0}{c_0^2} \frac{\mathrm{Dp}}{\mathrm{D}t} - \frac{\partial \rho_e u_i}{\partial x_i} + \frac{\partial^2 (\rho v_i v_j - \sigma_{ij})}{\partial x_i \partial x_j}$$

The analogy equation describes the effect of all the thermo-acoustic sources:

entropic term related to heat release rate:

$$\frac{\rho}{c_p} \frac{Ds}{Dt} = \left(\frac{\rho}{c_p} \frac{q}{T}\right), \text{ where } q = \frac{Dh}{Dt} \text{ is the rate of}$$

heat energy added to the fluid per unit mass

$$\frac{1}{c_0^2} (1 - \frac{\rho_0 c_0^2}{\rho c^2}) \frac{\mathsf{D}p}{\mathsf{D}t} - \frac{p - p_0}{c_0^2} \frac{\mathsf{D}\rho}{\mathsf{D}t}$$

significant if there are regions of unsteady flow with different mean density and sound speed

describes effect of momentum changes of density inhomogeneities

3. Rayleigh's criterion

3.1. Balance equation for the acoustic energy

A balance equation for the **acoustic energy** can be derived from the conservation equations for mass and momentum.

Assumptions: $p = p_0 + p'$, $p_0 = \text{const}$ $\rho = \rho_0 + \rho'$, $\rho_0 = \text{const}$ $v_i = u_i$ (no mean flow or vorticity) u_i : acoustic velocity $\sigma_{ij} = 0$

$$\frac{1}{c_0^2} \frac{\partial p}{\partial t} + \frac{\partial \rho u_j}{\partial x_j} = \frac{\partial}{\partial t} \left(\frac{p}{c_0^2} - \rho \right) \quad \left| \cdot \frac{p'}{\rho_0} - \frac{p'}{\rho_0} \frac{\partial p'}{\partial t} + \frac{p'}{\rho_0} \frac{\partial \rho u_j}{\partial x_i} \right| = \frac{p'}{\rho_0} \frac{\partial}{\partial t} \left(\frac{p}{c^2} - \rho \right) \\ = \frac{1}{2} \frac{\partial p'^2}{\partial t} \quad \approx p' \frac{\partial u_j}{\partial x_i} \quad = q' \frac{\rho_0}{c_p T}$$

momentum

$$\rho \frac{\partial u_i}{\partial t} + \rho u_j \frac{\partial u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} \quad \left| \cdot u_i \right|$$
$$\rho \frac{\partial u_i}{\partial t} + \rho u_j u_i \frac{\partial u_i}{\partial x_j} = -u_i \frac{\partial p}{\partial x_i}$$
$$= \frac{1}{2} \frac{\partial u^2}{\partial t} \quad = \frac{1}{2} \frac{\partial u^2}{\partial x_j}$$

16 September 2014

Thermoacoustics introduction

add the two equations:

This is the local form of the conservation equation for the acoustic energy. To get the global form, integrate it over a fixed control volume V, which contains the heat sources.

$$\frac{\partial}{\partial t} \left(\int_{V} e_{p} \, \mathrm{d}V + \int_{V} e_{k} \, \mathrm{d}V \right) = \iint_{S(V)} p'u_{i} \, \mathrm{d}S_{i} + \frac{1}{c_{p}T} \int_{V} p'q \, \mathrm{d}V$$
rate of change of acoustic energy *E* loss of acoustic energy at the surface denergy from the heat source the system is unstable if *E* grows, averaged over a long time.

If losses are absent, instability occurs when
$$\int_{V} \langle p'q \rangle dV > 0$$
.

time average

The balance equation can be extended to:

- case with mean flow (Chu's disturbance energy)
- rotational flow

3.2. Rayleigh's criterion

instability if
$$\int_{V} \langle p'q \rangle dV > 0$$
.
time average

The time average $\langle p'q \rangle$ is positive if the pressure and rate of heat release are in phase.

Note

Rayleigh's criterion is a simplified form of the acoustic energy balance; it neglects energy losses, such as radiation from openings, losses in boundary layers, and vorticity.

Thank you!

Maria Heckl Department of Mathematics Keele University Staffordshire ST5 5BG England m.a.heckl@keele.ac.uk