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1. Introduction
1.1. Basic assumptions and conservation equations

Consider a fluid with

V.

P
P .
o

velocity, has components v, 1=1, 2, 3
density

pressure

viscous stress tensor, has components Gij, I, ] =1, 2, 3

where cjj =n Ly _277Ks

n : coefficient of shear viscosity
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conservation equation for mass
op
ot

or
opV ;
op , 9PV

ot OX J-

+V-(pv)=0

=0

conservation equation for momentum
(body forces such as gravity ignored)

pﬁ—v+pv -VV=-Vp+V-o
ot

or
OV v _ op | doj
pP—-+pV; = o+
ot 8 axi OX;

J
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1.2. Thermodynamic relationships

Consider a fluid element with constant mass m, undergoing
a reversible process (heat added, volume changed).

change of internal energy: dU = dH — pdVv
heat work done
energy on fluid
added element
change of entropy: ds = slal
T
Introduce the specific quantities, i.e. quantities per unit mass:
internal energy heat energy entropy
e = H h = i S = E
m M M
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1

- specific entropy: ds =-—dh
! 1V
m
m density (definition): p=— = —=—
ass density (definition): p v .

= specific internal energy: de=dh-p d(l) =Tds-p d(l)
Y Y

specific enthalpy (definition): B=e+2
Y
- change of the specific enthalpy of the fluid element:
dB =de + d(B) = de + o) d(1)+1dp —Tds +1dp
P PP p

specific heat capacities (ratio of added heat to corresponding
iIncrease in temperature):

(dh) (oe) _(o0s _(dh)} (0B T 0S
ov=|—| =|—=| =T|=|.¢c=|—=| =| = | =T|=
dT ), \aT ), ar ), dT J, \aT ), aT J,
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When heat is added to the fluid element, the density of the
fluid becomes a function of two variables, the pressure and
specific entropy, say: p=p(p,s). Hence

dp = £@] dp + (@j ds
op ) oS 0

H—J H—J

1 p .
.2 =—g for an ideal gas
because: p=% . SO (@j _ (@j (8_Tj __P
oS P oT p | 8§ D Ch
or o =
Dp_1Dp p Ds  RT2 G

Dt 2 Dt c, Dt
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2. Lighthill’s acoustic analogy

2.1. Derivation
Consider an unbounded fluid with a finite source region
containing vortices and combustion.

D — fluid at rest
[T TN Po» Po
/ // | ™ \ \\( .

* . ' . region of heat sources uniform

/and turbulence ,
R N A A mean density
N N~ S § and
NN ) mean pressure

Aim: derive a governing equation for the pressure p from
the two conservation equations for mass and momentum
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from mass conservation:

op . 0PV 1 0p > [op
+ +— ch =| —
ot ox, 2ot Wwhere %o .

j
Co - Will turn out to be the speed of sound

=0

subscript s : isentropic process, i.e. no heat added

1ap Opv a(p_pj

6t 8xj ot
from momentum conservation:
. 00 8 V.
at 8x axi OX; "ot axj
. OpV:V. 0C;:
_, oV OPYVy 9P, O Reynold’s form
ot OX; OX;  OX;

J ]
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opV ;
mass 128p+ pJ:a pz_p o
CO 8’[ 8XJ 8’( CO ot
. OpV.V. 0C;:
momentum PV LY P P
ot OX; OXj  OX; OX;

differentiate as indicated and subtract equations to eliminate

the momentum density pv;

Po: Po inserted constants (convention)

Pe = P _2p0 —(p—po) excess density

Co

16 September 2014 Thermoacoustics introduction



This is an exact equation: no approximations (e.qg.
linearisation) have been made.

If

- there is no source region,
- the motion is linear,
- viscosity effects are neglected,

then it reduces to2 .
10°p° o°p" _
cd ot? X 0x

Wave equation for the acoustic pressure p’
Co: the propagation speed of acoustic waves.
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A governing equation for the density p can be obtained in
the same way.

0
Just add Cg a—? to either side of the momentum equation,

10
instead of adding —Za—i) to the mass equation.
Co

This is Lighthill’s acoustic analogy equation.

The term pviv; —o; +((P—Pg)—C§(p—Po)d;
on the right hand side is called Lighthill stress tensor.
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2.2. Interpretation

Analogy equation:

10°p  &°p _ 0°pe N 52(PViVj —Gjj )
c3 ot Ox 0% ot OX; OX;

| Dp _ 1 Dp p Ds |
With Dt 2 Dt c, Dt (see section 1.2)

and a few straightforward mathematical manipulations,

the source term Pe can be expressed in terms of the

ot
entropy:
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e __PoDS_peli 1 4 PoCo)Dp P—Pg Dp
2

ot c, Dt 0%, ¢f Dt ¢ Dt

and the analogy equation then becomes

2
1%z
c* at?
2

0poDs 1, PoCo)Dp P—Po Dp _dpelti 0" (PViVj ~ )
otc, Dt ¢§ cs Dt O%; OX; OX;
N ~ S~ —— — — _
entropic indirect combustion noise Lighthill's

term quadrupole

term
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Opobs 1, oCo)Dp P—Po Dp Opey 82(PViVj—Gij)
otc, Dt ¢ cg Dt ox OX; OX

The analogy equation describes the effect of all the

thermo-acoustic sources:

entropic term related to heat release rate:
0 Po Ds BDS ( ) where 0 = Dh
GthDt c, Dt ¢ T Dt

heat energy added to the fluid per unit mass

significant if there are regions of
unsteady flow with different
mean density and sound speed

IS the rate of

_(1 PoCo)DP P—Po Dp

CO cg Dt

Opel;  describes effect of momentum changes of
ox; | density inhomogeneities
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3. Rayleigh’s criterion
3.1. Balance equation for the acoustic energy

A balance equation for the acoustic energy can be
derived from the conservation equations for mass and
momentum.

Assumptions: p=p,+p', Py =const

p=pg+p, pg=-const
V; =U; (no mean flow or vorticity)

u; : acoustic velocity
=0

Gij
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j Co
1 .00 p'dpy, p' 6(p_j
2 o 2 P
poC” __ Ot Po OX po Ot\c
_16p* < pr U _q'Po
2 ot OXi Cp
Wiy gy Y Py,
momentum P o PU; P o i
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add the two equations:

5 1 1 12 1 2 a ' p'q

—| =——=p“ + —=pou + —(p'y) = ——

8t[2 PoC” 27 ] 8xi( ) Cp
poténtial Kinetic acoustic  rate of energy
energy energy energy gain per unit
density density flow volume

e ey

P

This is the local form of the conservation equation for the
acoustic energy. To get the global form, integrate it over a
fixed control volume V, which contains the heat sources.
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surface 6(V)

control volume V
/.source

(

\region

5
%
©
28
N

[je dV + | edej p'u; dS; +—qudV
SV) Cpl v
rate of change of Ioss of acoustic gain of acoustic
acoustic energy E  energy at the energy from the
surface heat source

The system is unstable if E grows, averaged over a long time.

If losses are absent, instability occurs when [ (p'q)dV >0.

AN

time average
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The balance equation can be extended to:

- case with mean flow (Chu's disturbance energy)
- rotational flow
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3.2. Rayleigh's criterion

instability if [ (p'q)dV >0.
VvV
time average

The time average (p'q) is positive if the pressure
and rate of heat release are in phase.

Note
Rayleigh'’s criterion is a simplified form of the acoustic

energy balance; it neglects energy losses, such as radiation
from openings, losses in boundary layers, and vorticity.
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Thank you!
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