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1. Free-space Green’s function
1.1. General concept (in 1-D)
Consider: infinitely long tube

filled by compressible fluid with speed of sound c
two thin plates at x*, moving apart abruptly at time t*
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Green’s function: 

depends on x*: source position
t*: firing time
x: observer position
t: observer time

notation:                  G(x,t; x*,t*)

The Green’s function can be given in terms of various 
physical quantities, e.g.

sound pressure p’
acoustic velocity u’
velocity potential Φ

response of the fluid to 
impulsive point source
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Properties of the Green’s function
causality: no response before the impulse, i.e.

G(x,t; x*,t*) = 0   for   t < t*

→ G(x,t; x*,t*) = G(x,x*,t -t*) 

reciprocity: same signal if source and receiver are 
swapped over, i.e.

G(x,x*,t-t*) = G(x*,x,t-t*) 

governing equation:
2 2
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Solution of the governing equation 
(from theory of generalised functions)
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Application of the Green’s function
Building block for generating solutions of the acoustic 
wave equation with a source term S(x,t)
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Exploit reciprocity: x ↔ x*
Multiply as indicated
Subtract resulting equations

Integrate on both sides:
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Result:


 
   

* 0 *
( , ) ( , *, *) ( *, *) d * d *

t

t x
x t G x x t t S x t x t

This is the solution of the above PDE for Φ.

Special case: point source at xs, i.e.

( , ) ( ) ( )sS x t S t x x  

Then
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Summary

We know: ( , *, *)G x x t t

( , )S x t

Green’s function

source distribution

We get:
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t
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x t G x x t t S x t x t

Solution of the PDE for Φ in terms of an integral 
over the source region and the forcing duration
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1.2. Extension to 3-D

Consider: infinitely extended 3-D region
filled by compressible fluid with speed of sound c
tiny balloon at x*, inflating abruptly at time t*
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Green’s function: 

depends on x*: source position
t*: firing time
x: observer position
t: observer time

G(x,t; x*,t*)

Properties of the Green’s function
causality:
reciprocity: G(x,x*,t-t*) = G(x*,x,t-t*) 

G(x,x*,t-t*) = 0 for t < t*

governing equation: 
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x x

Solution: | |*1( , *, *) ( * )
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spherical wave travelling away from x*
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Application of the Green’s function
Building block for generating solutions of the acoustic 
wave equation with a source term S(x,t)
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Solution
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Summary

We know: ( , *, *)G t tx x
( , )S tx

Green’s function
source distribution

We get: acoustic field generated by the source distribution

Note: This works in free space (1-D, 2-D and 3-D).
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2. Tailored Green’s function
also called “exact Green’s function”

Idea: extend the building-block concept to fluids with 
boundaries

Example: 1-D tube with open ends

backward and forward 
travelling acoustic waves

x*

open end
with =0

open end 
with =0

x=0 LK
ee

le
 w

or
ks

ho
p 

pp
t4

.c
dr

plate 1

t t> *

plate 2



Introduction to Green’s functions16 September 2014 14


  




   
 i ( *)

1

0 for *
( , *, *) ( , *) e for *n t t

n
n

t t
G x x t t G x x t t

Tailored Green’s function: response of the fluid to 
impulsive point source, with 
boundary conditions satisfied

Governing equations

PDE:

bc’s:
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x L
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(assuming that G is a velocity potential)
The solution is of the form

Superposition of modes frequenciesamplitudes
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ωn: eigenfrequency of mode n

ωn and Gn can be calculated from the PDE and bc’s.
Gn: Green’s function amplitude of mode n

n:   mode number

Results (calculation not shown)


 n
n c
L ( * )( 1) sin sin for *

( , *)
( ) *( 1) sin sin for *

n
n n

n n
n n

x x L x xc cnG x x
x L x x xc cn

   
 

   

Calculation possible for other simple cases, e.g.
- tube with cold and hot region
- tube with general end conditions
- tube with jump in cross-sectional area
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The field in a tube with general source distribution S(x,t) is 
described by:

   
 

 

2 2

2 2 2
1 ( , )S x t

c t x
PDE:

bc’s:
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If G(x,x*,t - t*) is known, the solution to these equations is


 
   

* 0 *
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t
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x t G x x t t S x t x t

Special case: Rijke tube, ( , ) ( ) ( )sS x t S t x x  
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Building block concept
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Physical interpretation of this equation

*
( ) ( ) ( *) ( *) d *n n

n t
S t G t t S t G t t t   

K
ee

le
 w

or
ks

ho
p 

pp
t1

0.
cd

r

t

t

t

t
t

t

t1

t1

t1

t2

t2

t2

t2

S

S

S

S1

S G(t-t )1 1

S G(t-t )+S G(t-t )+ ...1 1 2 2

S G(t-t )2 2S2

S2
S1

t1



Introduction to Green’s functions16 September 2014 18

Summary

The tailored Green’s function is the response of a fluid with 
boundaries (typically a fluid within a resonator).

It is “tailored” to the geometry of the resonator.

It is a superposition of resonator modes.

It is harder to calculate than the free-space Green’s function.

It can in principle be measured.
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3. Green’s function in the frequency domain
3.1. Free-space Green’s function

1- D
Consider source distribution with harmonic time dependence
(frequency ω)

   iˆ( , ) ( , ) e tS x t S x
The resulting acoustic wave has the same time dependence:

     iˆ( , ) ( , ) e tx t x

Then the governing equation for Φ, 

reduces to
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If we put 
i ( *)1 ˆ( , *, *) ( , *, ) e d

2
t tG x x t t G x x


  


   

 
then we can transform the governing equation for G, 
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1 ( *) ( *)G G x x t t

c t x
from the time domain to the frequency domain:
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This is the acoustic wave generated by a pair of plates 
pulsating with frequency ω.

wavefronts wavefrontsx* x

wavelength:  c

K
ee

le
 w

or
ks

ho
p 

pp
t5

.c
dr

pulsating
plates 



Introduction to Green’s functions16 September 2014 22



Introduction to Green’s functions16 September 2014 23

3- D
   iˆ( , ) ( , ) e tS t Sx x

2 2 ˆˆ ˆ( ) ( , ) ( , )Sc
       x x

source distribution:
Governing equation for the velocity potential Φ in ω-domain:

Governing equation for Green’s function in ω-domain:
     2 2ˆ ˆ( ) ( , ', ) ( *)G Gc x x x x

Solution: i | *|
eˆ( , ', )

4 | * |

c
G

 

  
 

x x
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This is the acoustic wave generated by a balloon at x*, 
pulsating with frequency ω.
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wavefronts
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(animation: O.A. Power)
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3.2. Tailored Green’s function
Idea: extend the concept of the frequency-domain 

Green’s function to fluids with boundaries

Example: 1-D tube with open ends

Governing equations:
2
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To find a solution, assume a superposition of backward 
and forward travelling waves,

i i

i i
e e for *ˆ( , *, )
e e for *

kx kx

kx kx
A A x xG x x
B B x x


 


 

    
 

with ck

A+, A-, B+, B- : amplitudes (unknown)
4 equations required: 2 from bc’s

2 from PDE
calculation (not shown)
Result:     
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Summary

The frequency-domain Green’s function is the response to a 
harmonic point source (1-D, 2-D and 3-D).

Its governing equation is the Helmholtz equation 
with forcing term – δ (x-x*).

There is a free-space version and a tailored version.
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4. Compact Green’s function
also called “low-frequency Greens function”
4.1. General concept
The compact Green’s function is an approximation of 
the tailored Green’s function, which is valid if the 
following conditions are satisfied:
- the region of interest contains a compact solid body
- the sound source is close to the solid body, and
the observer far away from it.

x* x K
ee

le
 w

or
ks

ho
p 

pp
t8

.c
dr

sound sourceobserver

solid body

d

Example (1) Tube with localised constriction

compact if d << λ
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Example (2) Orifice plate

compact if d << λ and radius << λ

infinitely large rigid wall
(solid body)
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For compact geometries, the fluid near the solid body 
behaves like an incompressible fluid.
comparison: compact – non-compact

d << λ d > λ

(animations: O.A. Power)
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4.2. Calculation method

incompressible fluid: ρ=const  and c 

The governing equation for the Green’s function simplifies.

time-domain:

frequency-domain:

     2 2ˆ ˆ( ) ( , ', ) ( *)G Gc x x x x
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x x
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0 as c 
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outer region outer regioninner region
incompressiblecompressible compressible

General calculation method

2 ˆ 0G 2 2ˆ ˆ 0k G G  2 2ˆ ˆ 0k G G 

divide into compressible and incompressible regions:
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Asymptotic matching

Step 1: Solve in inner region
2 ˆ 0G  with

ˆ
0G

n





zero normal velocity on 
surface of solid body

→ inner solution ( )ˆ iG

Step 2: Solve in outer region
2 2ˆ ˆ 0 ,k G G 

→ outer solution ( )ˆ oG

ignoring solid body

Step 3: Assume that there is an intermediate region, 
where both inner and outer solutions are valid, 
and match the two solutions.
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Applications of the compact Green's function

orifice plates

tube ends

tubes with blockage
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Thank you!
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