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1. Time history calculations

1.1. Green’s function method
acoustic analogy equation for the velocity potential ®

18% 0%
c2 5t px2 - .‘\ fluctuations of rate of heat

~  release (per unit mass)
forcmg term

alternative form for the acoustic pressure p’

forcing term

Forced PDEs — suitable for Green’s function approach
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Governing equation for the Green’s function
18°G 9°G _

¢ at?  ox?
Combine with equation for @
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to get integral equation

O(x — x™)o(t —t*)

t 00

o) =-11 [ [ Gxxtt— 1) q'(x 1) dx * dt
¢ 120 x=o /

can be calculated for a
compact heat source at Xg

q'(x,t)=q(f) 3(x - xg)
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0  evaluate
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o) oG
— - X*=Xq
OX| x=Xq OX | x =X
equation for velocity at x,, :

4t

uq(t):—y—21 [ @x:xq g(t*) dt *

C -0 X X*=Xq

Assume time-lag law: q(t) =q(u,(t —7)) (linear or nonlinear)
= _r-1 j oG x=x, q( ) dt *
2 x_d
C t*=0 OX X =Xq

This is an integral equation for u (t) (Volterra equation).

q
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Solve with iteration: time-stepping method

Discretise: — t,, =0, At, 2At, ... mAt
t* — t; =0,Af 2AL,... AL
t m
[ ..dt*> Y At
t*=0 J=1
Then
m
Uy (tm) = 3 a(ty ) at
J=0 ~-10G
abbreviation for —* 5 X=Xq

OX | x*=
This can be solved iteratively. ¢ S

Initial conditions: the initial heat pulse is known, q(t)\t:O =qp

the velocity before t = 0 is zero,
Ug(t—1)=0 for t-1t<0
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First few iteration steps:
m=0,t,=0:
q(0)=qo
uq(0)=9(0)q(0)
m=1,t, =At:
q(At) = q(ug (At — 1))

uq(At) = g(Af)q(0)+g(0)q(At)
j=0 J=1

m=2,t, =2At:

q(At) = q(uy(2At - 1))

Uq(2At) = g(2At)q(0) + g(At)q(At) + g(0)q(2Af)
..... j=0 j=1 j=2
Problem: As m increases, more and more terms need to

be calculated and added.
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ldea: Find a more efficient iteration scheme by exploiting
the fact that we know the Green's function
analytically as a superposition of modes.

N g
Gx,x*t—t" =3 G, (x,x*)e ) for t>¢*
n=1
w,: eigenfrequencies
G,: Green’s function amplitudes
N: maximum number of modes considered
_y-10G,

Introduce abbreviation 95 =—" x=xq , then
C OX x*:xq

LN —im, (t—t*)
ug(t)y="[ X gne " g(t*)dt*
t*=0 n=1

Collect terms with t*:
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N _ t
Uq(t): Z gn e—l(x)nt J‘ eI(x)n (t*)dt*
n=1 \t -0 J
In(t) (abbreviation)
t t—At t
split up integration range: j = j + j
t*=0 t*=0 t*=t—At
Then
t-At o
It = [ e g(t)dt*+ j e'®nt” g(t*)dt *
=0 r=t-at
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lteration scheme

N .
ug ()= gpe " It
n=1

eioont

with Io(t)= Ip(t-At)+q(t)~ —(1-e7n)

o
q(t) = q(ug(t — 1))
Only N terms need to be calculated in each iteration step.
Example: Rijke tube
ideal open ends: ¢(0,t)=0, ¢(L,t)=0
hot-wire gauze at Xq
heat release characteristic from hot wire theory:

Q(t)‘@uq(t—r)‘ nonlinear!

constants  mean flow velocity
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Time history of the velocity
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Time history of the heat release rate (fluctuating part only)
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Summary
If we know the

- tailored Green’s function
- heat release law

of a thermoacoustic system, then we can calculate the
time histories

- U,(f) (velocity at the heat source)
- q(t) (heat release rate)

from a straightforward iteration scheme, stepping forward in
time.
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1.2. Comparison with Galerkin method
ldea: expand the acoustic field in terms of idealised

eigenmodes
pressure: p'(x,t)= Z pp(t)sin(nmx)
N \ for tube with
velocity: u'(x,t)=> u,(t)cos(nmx) open ends

n=1 J
These are normalised: ®, =n=
practical tubes have: end correction

temperature gradient
change in cross-sectional area

Note: The Galerkin modes are an approximation
of the real modes in the tube.
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substitute into conservation equations

op +yM ou
ot 0

= (v =1)q(t)3(x - x4)
X
N
2_11 [P (t) = yMnmu, ()] sin(nmx) = (y = )q(t)(x — x4 )

Mass.

orthogonality of sin(nmx) gives (see aside)

ou' op'
. M n :O
momentum: v + o
N
> [yMu,(t)+ nrp,(t)]cos(nnx)=0
n=1

orthogonality of cos(nmx) gives
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Aside
orthogonality of the eigenfunctions:
T o 0 ifnzn'
jo sin(nnx)sin(n’nx)dx = ; fn_p' (same for cos(nmx))
X=
This will help to separate the modes, e.g. in mass equation:
N
>, [Pn(t)—yMnrup(t)]sin(nmx) = (y - 1)q()3(x - xq)
n=1 1
multiply both sides by sin(n'1trx), integrate over tube [ ..dx
=0, unless n=n’ x=0
N gl B
> [Pa(t)—yMnrup(t)] | sin(nnx)sin(n'nx)dx =
n=1 x=0

= (y—1)q(t)sin(n"nxg)

Only the term n = n’ remains,
Pre(8) = yYMn' . (£) = (v = 1)g(t)sin(n' nx, )
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From conservation equations:

In matrix form:

_Jo =0 o o ]
Gl e 0 0 o ! Y nei
P WM | Py (v —T)sinnx,
p1=10 0 0 =20 .| Uy |+q(l) : 01) |

—1)SIN tX

P21 1o 0 2 o P2 " 7
- S ' '
P (t) ™M (1) F

or P(t)=M¥(t)+q(t)F

Matrix differential equation for u,(t), uy(t),..., p(t), po(t),...
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Solution
Iteration by time stepping method

discretise: t =0, At, 2At, ...
CW(t+Af) P ()

P(t) ~
_ _ At unit matrix
The resulting equation

W(t+At) = (M At + 1V (t)+ () F
A)= (3 up(t-)cos(nmx,))

can be solved iteratively.
Initial conditions:
the initial heat pulse is known, q(t);_, = qo.
the amplitudes u,(0) and p,(0) are zero for all modes.
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Comparison with the Green’s function method
Both methods apply to compact heat sources and lead to
explicit iteration schemes stepping forward in time.

Green’s function modes: real physical modes, with

w,: resonance frequencies

G, (x,x*): spatial distribution of modal amplitudes
truncation of sum: Z N Z

N: largest relevant mode number given by observation

Galerkin modes: approximation of physical modes, with
w,= nTr: resonance frequencies of ideal tube

sin(NTrx): approxmate dlstrlbutlon of modal amplitudes

truncation of sum: Z — Z -whatis N ?
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2. Stability analysis of individual modes
Integral equation for the velocity

t N . .
ug(t)=Re) [ 3 gn e T g(tdt

omitted in earlier material

Rel...]= ;([...] \ complex conjugate

Assume that only mode n is present:

t : * t - *
up(t)="1 [ gpeng(tdt*+] [ g, e g(er)dt >
t*=0 t*=0

I, () I, (t)

-

or

t | .
Up(t) = 1[It I,(0)]  with T(t)= [ g, e On{=)q(+)dt *
t*=0
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Conversion of integral equation into differential equation
Step 1: Determine 8],, noting that t appears in the integrand

ot
and in the integration limit. % =—lo,t, +g9,q(t)

Step 2: Use this result to calculate u, and i, .
= 1[(9n +9n)a(t)~iopI, +io, I, |
. . ——— o 27
_ ;[(Qn +9, )q(t)—(loongn +|mngn)q(t) I In}

Step 3: Multiply as indicated and add the resulting equations.
up(0)= 1[I0+ I, (0] -(0p0p)

un—z[gn+gn)q( ) —io, T, +io, I, | ‘ (io), )
This eIiminatesI— and gives an expression for /,,
I = wnmn | 2(iuy, + wpu,)-ig, +95)q(t) ]

Step 4: In the equation for U, substitute for J,, and simplify.
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Result
Up —2Im(o, ) uy+| o, |2 Up=- |m(0)n€) q(t)+Re(g,)q(t)
damped harmonic oscillator forcin\g/term

Assume heat release law  q(f) =@U(t @)— u(t)]
N

amplitude-dependent coefficients
can be obtained e.g. from FDF measurements

substitute into oscillator equation:

Uy, +[-2Im(e,)+ nyRe(g,)]u, +[| ®p, 4 -y Im(mn%)} u, =

;?1 h ¥CO -
= [-mIm(ng,)|un(t - 7)+ | mRe(gy) |t (t - <)
b, = b,
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Un(t) + C1Un(t) + Coun(t) = boUn(t — T) + b1Un(t — T)
We look for steady limit cycle solutions: u,(t) = Acos@t
For any time-lag: ~ On

U, (t—1)=AcosQ(f —1)=(cosQr)u,(t)- sin{le

up(t)
u,(t—t)=-QAsinQ(t —1)=(QsinQrt) u,(t)+(cosQt)u,(t)

ODE for u,(f):

U, (t)+[cq+ by Sin€r _ by cos Qt]u, (t)+

N— 7

+[cq — by cos Qt - b QsinQr|u,(t)=0

_ao

ay - oscillation frequency (squared)
as . damping coefficient, amplitude-dependent

a,> 0: stability, a4,< 0: instability
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The stability behaviour can be examined at different
amplitudes for various system parameters.

Example: 2 wave resonator with variable length and
amplitude-dependent time-lag law
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time-lag:t=19+1 A 2 A velocity amplitude
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Summary

Analysis works well for weakly coupled modes.
Straightforward stability predictions.

Suitable for cases where the nonlinear heat release law is
given in terms of amplitude-dependent coefficients.
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Thank you!

Maria Heckl
Department of Mathematics
Keele University
Staffordshire ST5 5BG
England
m.a.heckl@keele.ac.uk
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