

Measurements in thermoacoustic oscillations: (i) pressure and acoustic velocity uncertainty in practical systems

S. Hochgreb University of Cambridge **Tango Workshop** IIT Madras, 4-7 Feb, 2014

Outline

- Introduction
- Experimental issues in pressure measurements
- Acoustic velocity calculations
- Uncertainties in velocity calculations
- Example: two-microphone vs. PIV

The problem: how to make predictions for real injectors in real engines

Engine tests

System characterization:

- geometry
- flows (including leaks)
- acoustic boundary conditions
- flame behaviour

Resulting spectrum: sum of interactions:

- amplification of random fluctuations
- system interaction with amplitude
 - dependent heat release rate response

Background – Linearized Euler equations (1D)

- Inviscid flow
- Small perturbations about mean flow

Couple
s u and
$$\frac{\partial \rho'}{\partial t} + u \frac{\partial \rho'}{\partial x} + \rho \frac{\partial u'}{\partial x} = \frac{D\rho'}{Dt} + \rho \frac{\partial u'}{\partial x} = 0$$
mass ρ $\frac{\partial u'}{\partial t} + u \frac{\partial u'}{\partial x} = \frac{Du'}{Dt} = -\frac{1}{\rho} \frac{\partial p'}{\partial x}$ momentum ρ $\frac{\rho}{c_v} \frac{Ds'}{Dt} = \frac{1}{c^2} \frac{Dp'}{Dt} - \frac{D\rho'}{Dt}$ thermodynamic
sHow to measure?Couples p and ρ

Background – Linearized Euler equations

Take div (momentum) + D/Dt (thermodyn)

$$\frac{D^2 p'}{Dt^2} - c^2 \frac{\partial^2 p'}{\partial x^2} = \frac{\gamma - 1}{\gamma} \frac{p}{\mathcal{R}} \frac{D^2 s'}{Dt^2}$$

heat release rate/volume

Usual assumption:

$$\frac{Ds'}{Dt} = \frac{q'}{\rho T} = q' \frac{\mathcal{R}}{p}$$

So that:

$$\frac{D^2 p'}{Dt^2} - c^2 \frac{\partial^2 p'}{\partial x^2} = \frac{\gamma - 1}{\gamma} \frac{Dq'}{Dt}$$

wave equation source term

Measuring pressure (at a surface): easy Measuring heat release rate: hard!

Network models

Transfer function between boxes Coupling between state variables

Allows de-coupling between different elements Individual model for each sub-system

Largely most used and very successful model

Pressure measurements

Hardware

- Accuracy ۲
- Location ullet
- Frequency resolution •
- Background ullet
- Vibration ullet
- Reflections
- Losses ۲

Signal processing

- Simultaneity (multiplexing) One-dimensionality •
- Frequency range •
- Frequency resolution
 - Phase resolution
 - Multiple frequencies
 - Unsteady frequency and phase •

Assumptions

- Losses across componer •

Pressure measurements

Hardware

- Accuracy:
- Location:
- Frequency: records;
- Background:
- Vibration:
- Reflections:

differential / absolute; static / dynamic calibration positioning relative to flow/event response curve, Nyquist as a minimum; long windowing vibration, changing thermal conditions particularly important during forcing flush or infinite loop used

Pressure transducers

Туре	Principle	Pros	Cons	Manufacture rs
Capacitance	Variable gap	Sensitive, inexpensive	Fragile, sensitive to temperature	B&K,GRAS, others
Piezoelectric	V from strain	Sensitive, robust, high T, p	More expensive, sensitive to vibration	PCB, Vibrometer,, Kulite, Kistler, other
Quartz crystal	V from p, T	Accurate, robust	High cost, T sensitive	PCB, GE, others

Sensor response attributes

GRAS

Sensor assembly

Phasing:

- zero lag/no multiplexing
- flush or identical distances

No reflections 'infinite'

Close-coupled transducer on hot HP tube

Dynamic pressure measurements

Fourier transform

Fourier transform - windowed

Rules:

- must sample at least two points per cycle (Nyquist criterion) $f_s > f$
 - (higher frequencies will show up as harmonics 'aliasing') $\Delta f = f_s/N$
- record length determines frequency resolution

Acoustic velocity from pressure measurements: multiple microphone

Abom, M., H. Bodén, Error analysis of two-microphone measurements in ducts with flow, J. Acoust. Soc. Am. 83 (1988) 2429–2438.

Jang, S., J. Ih, On the multiple microphone method for measuring in-duct acoustic properties in the presence of mi flow, 103 (1998) 1520–1526.

Example: gas turbine injector nonreacting flow response

Separate turbulent signal from acoustic sign

Barker, a., J. Carrotte, P. Denman, Analysis of hot-wire anemometry data in an acoustically excited turbulent flow field, Exp. Fluids. 39 (2005) 1061–1070 doi:10.1007/s00348-005-0039-z.

TMM vs PIV - CIPCF

Particle Image Velocimetry (PIV) setup

UNIVERSITY OF

Pressure data acquisition

- Dynamic pressures P1 and P2 at plenum section, P3 at injector sections are recorded for each test point
- From P1 and P2 data, phase and amplitude of acoustic velocity are calculated
- Pressure P3 is used to synchronize the siren with PIV acquisition

Cycle resolved PIV synchronization with Siren

Instantaneous PIV image pair

One example of instantaneous PIV image pair ($\Delta t = 4 \mu s$)

PIV post processing

UNIVERSITY OF CAMBRIDGE

PIV Image pre-processing

- Subtracting a sliding background: 6 pixel scale length
- Normalizing the particle intensity using min/max filter: 5 pixel scale length

PIV vector calculation

- Multi-pass cross-correlation scheme
 - Initial window size: 64X64 one pass
 - Final window size: 32X32 three passes
- Window overlap : 50%
- Spatial resolution: 340 µm

PIV vector post-processing

- Q-factor: 1.2 (ratio of highest to the second highest peaks in the displacement correlation map)
- Median filtering: 5X5 pixels

No siren Mean flow field

PIV post processing

UNIVERSITY OF CAMBRIDGE

PIV Image pre-processing:

- Subtracting a sliding background: 6 pixel scale length
- Normalizing the particle intensity using min/max filter: 5 pixel scale length

PIV vector calculation:

- Multi-pass cross-correlation scheme
 - Initial window size: 64x64 one pass
 - Final window size: 32x32 three passes
- Window overlap : 50%
- Spatial resolution: 340 µm

PIV vector post-processing:

- Q-factor: 1.2 (ratio of highest to the second highest peaks in the displacement correlation map)
- Median filtering: 5x5 pixels

No siren mean flow field

Mean flow field: forcing frequency 82 Hz

Mean flow field: forcing frequency 100 Hz

Phase: m1

Phase: m2

UNIVERSITY OF CAMBRIDGE

Mean flow field: forcing frequency 200 Hz

-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10

X (mm)

UNIVERSITY OF CAMBRIDGE

Phase: m1

 $\overbrace{\underline{III}}{30}^{35} \xrightarrow{30}$

X (mm)

-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10

X (mm)

(m) 35 ↓ 30

Phase: m2

Mean flow field: forcing frequency 275 Hz

UNIVERSITY OF CAMBRIDGE

Mean flow field: forcing frequency 350 Hz

Mean flow field: forcing frequency 475 Hz

PIV measurements: non-reacting

TMM pressure data processing

DP1, DP2, DP3: Kulite DP7, DP8: CP211

Pressure fluctuations (pk-pk)

• very clean, noise-free response

PIV data vs. TMM pre-injector

UNIVERSITY OF

PIV data vs. TMM pre-injector

Why such a large discrepancy?

UNIVERSITY OF CAMBRIDGE

- PIV region averaged
- TMM: Uncertainties in pressure measurements
 - Repeatability
 - Accuracy
 - Propagation of errors to velocity
 - Direct
 - Area change
- Injector transmissivity

PIV region averaged

Regions					
(mm)	R1	R2	R3	R4	R5
xmin	-45	-45	-45	-10	
xmax	10	10	10	10	Whole
ymin	4	2 606	1 038	4	image
ymax	10	2.000	4.058	10	

Variable cross section

Why such a large discrepancy?

UNIVERSITY OF CAMBRIDGE

- PIV region averaged
- TMM: Uncertainties in pressure measurements
 - Repeatability
 - Accuracy
 - Propagation of errors to velocity
 - Area change
 - Direct
- Injector transmissivity

Isothermal cases

Designation	Burner	Pin (bar)	T30 (K)	m (kg/s)	Cooling %	dP/P (%)	Notes	DP1	DP2	DP3	DP7	DP8
100511_A		2,5	300	0,44	0	7		x		x	3mm	x
100511_B	CD3b	5,7	300	0,99	0	7	No baffle		x			
100511_C		5,7	300	0,82	38	4,5						
100513_A	CD2h	2,5	300	0,44	0	7		~			95mm	~
100513_B	CD30	5,7	300	0,99	0	7		^	^		0311111	^
101215_s1	CD2h	5,7	593	0,69	20	6,2	Shakedown, Possibly a		x		3mm	
101215_s2	CD30	5,7	595	0,67	20	6,2	different baffle?	^				
110125_1	CD3P	5,7	800	0,575	20	6	Small hole haffle				3mm	
110125_10		5,7	800	0,535	40	5,3		^	^			
110127_11		2,5	297	0,44	0	7,1			x			
110127_12		2,5	293	0,41	20	5,9						
110127_13	CD3b	2,5	293	0,37	40	4,8	With baffle	x				
110127_14		5,7	296	0,93	20	6,1						
110127_15		5,7	300	1	0	7,1						
110218_1	CD3b	5,7	800	0,575	20	6	Long combustor	х	x		3mm	
110302_11		2,5	290	0,48	0	8,3		x	x		3mm	
110302_12	CD3h	2,5	292	0,44	20	6,8						
110302_13	(Orifice)	2,5	294	0,37	40	5	Orifice					
110302_14		5,6	297	0,99	20	7,1						
110302_15		5,6	302	1,1	0	8,4						
110308_10	CD3b	5,7	800	0,535	40	5,3	Long combustor	x	x		3mm	
110412_1	CD1	5,7	801	0,57	20	6,2	No haffle				3mm	
110412_10		5,6	804	0,51	40	5,1	No banne	Ĺ			511111	
		2,5	293	0,39	20	7						
120711	CD3b	2,5	293	0,39	20	7	No baffle	x	x	x		
		2,5	293	0,39	20	7						
		2,5	293	0,39	20	7						
		2,5	293	0,39	20	7						
120718	CD3h	2,5	293	0,39	20	7	No haffle		l x			
120,10		2,5	293	0,39	20	7	7					
		2,5	293	0,39	20	7						

Repeatability: identical experiments on different dates

Date	Burner	Pin (bar)	T30 (degC)	T30 (K)	m (kg/s)	Cooling %	dP/P (%)
11.07.12	CD3b	2.5	20	293	0.39	20	7
18.07.12	CD3b	2.5	20	293	0.39	20	7

up to 14% variation from mean

Surprisingly good given that FS accuracy of Kulites is 0.5% p @ 10 bar

Propagation of errors: repeatability of acoustic velocity

Good reproducibility

Accuracy: CP211 in plenum: capped inlets

Variable cross section

Propagation of errors: effect of transducer error on acoustic velocity

Small variance \rightarrow high coherence γ

$$\epsilon(|H_{12}|) \approx \epsilon(|\phi_{12}|) \approx [(1 - \gamma_{12}^2)/(\gamma_{12}^2 n)]^{1/2}$$

 $0.1\pi < \kappa s < 0.8\pi$

 $s = x_2 - x_1$

Seybert, A.F., B. Soenarko, Error analysis of spectral estimates with application to the measurement of acoustic parameters using random sound fields in ducts, J. Acoust. Soc. Am. 69 (1981) 1190–1199.

Åbom, M., H. Bodén, Error analysis of two-microphone measurements in ducts with flow, J. Acoust. Soc. Am. 83 (1988) 2429–2438.

Boden, H., Åbom, M. Influence of errors on the twomicrophone method for measuring, J. Acoust. Soc. Am. 79 (1986) 541–549.

Not always possible over a wide range of frequencies

Multiple microphones

essential

Propagation of errors: sensitivity of u' to p' uncertainty

Small errors in pressure \rightarrow large deviation in velocity

Propagation of 10% rms Gaussian error in DP1, DP2 into **acoustic velocity** at **75 Hz**

Propagation of 10% rms Gaussian error in DP1, DP2 into acoustic velocity at **inlet** of injector

Orifice transmittance

TMM velocity: forwards and backwards

UNIVERSITY OF CAMBRIDGE

Why such a large discrepancy?

UNIVERSITY OF CAMBRIDGE

- PIV region averaged
- TMM: Uncertainties in pressure measurements
 - Repeatability
 - Accuracy
 - Propagation of errors to velocity
 - Area change
 - Direct
- Injector transmissivity

Injector transmittance

Injector transmittance and reflectance

$$T = \frac{A^{-}B^{-} - A^{+}B^{+}}{A^{-2} - B^{+2}}$$

$$R = \frac{B^+B^- - A^+A^-}{B^{-2} - A^{+2}}$$

Obtained from reflection in atmospheric rig

injector

Final comparison: PIV + TMM

Challenges for acoustic pressure and velocity measurements at high p,T

- Results on calculated acoustic velocity very dependent on accuracy of pressure transducers and their coherence: differential transducers required, not sensitive to vibration
- Area changes and transmissivity losses important, particularly for complex injectors: needs good measurements of non-reacting transfer functions, also dependent on M.
- Comparing apples and apples: PIV measurements for a window may not reflect effect over full flow
- Overall agreement is good, but not perfect: lack of symmetry, inaccuracies in pressure measurements, non-harmonic behavior of velocity and very high turbulent levels.