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The LRF equations do not need an external model for the heat release rate

This equations are known as the Linearized Reactive Flow (LRF) equations
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LRF delivers a local flame response

local flame response




LRF is capable of capturing the flame response and entropy response of a

laminar flame.

duct flame
(fully premixed)
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LRF is capable of capturing the flame response and entropy response of a

laminar flame.

duct flame
(fully premixed)
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LNSE requires a flame response model (from experiments or CFD)

Linearized Navier Stokes Equations
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LNSE requires a flame response model (from experiments or CFD)

Q= [adv

local flame response global flame response
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The global flame response is used most of the time

local flame response

Q=/4dv

global flame response
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Spurious entropy production is generated if LNSE is used together with a global

flame response

duct flame
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1
! ) 0.8 oo :
- = 06|
§ 0.5 - E 04| xx xXxx i
o2 < e -
0 1 l j l 0 Mm&w:mmm
0 100 200 300 400 500 0 100 200 300 400 500
0 | |
<)
SR
©
[.)5
N 2wt T T e
' ' l ' | | | Xk :
0 100 200 300 400 500 0 100 200 300 400 500
w [Hz| w [Hz|
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All remaining approaches require a so-called ‘acoustic flame response’ model.

The global flame response does it well if entropy fluctuations are not of interest

Linearized Navier Stokes Equations
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In this lecture we do not consider entropy in the analysis.

Consequently, the global flame response is just fine
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What is C] function of?
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What do we know?
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The global heat release rate () is the sum of local values of (

The global heat release rate reads
Q= [adv

Q) = puSéAh

\

heat of reaction per unit
unburned gas density mass of premixture

where

\

turbulent burning velocity flame surface area



The response of a turbulent flame is linkedto U and ¢

= pu S AAh
unburned gas densﬂy heat of reaction per unit
mass of premixture
turbulent burning flame surface area

velocity

We know that

A function of



The response of a turbulent flame is linkedto U and ¢
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heat of reaction per unit
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turbulent burning flame surface area
velocity
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A functionof  burner flow velocity UB
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The response of a turbulent flame is linkedto U and ¢

— pu S AAh
unburned gas densﬂy heat of reaction per unit
mass of premixture
turbulent burning flame surface area
velocity
We know that
A function of burner flow velocity UB AT Q T




The response of a turbulent flame is linkedto U and ¢

— pu S AAh
unburned gas densﬂy heat of reaction per unit
mass of premixture
turbulent burning flame surface area
velocity
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The response of a turbulent flame is linkedto U and ¢
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The response of a turbulent flame is linkedto U and ¢
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The response of a turbulent flame is linkedto U and ¢

— puSAAh

heat of reaction per unit

unburned gas densﬂy mass of premixture

turbulent burning flame surface area
velocity

We know that

A functionof  burner flow velocity UB

S function of turbulence intensity & up
equivalence ratio ¢

/\h function of

TuTl .



The response of a turbulent flame is linkedto U and ¢

— puSAAh

heat of reaction per unit

unburned gas densﬂy mass of premixture

turbulent burning flame surface area
velocity

We know that

A functionof  burner flow velocity UB

S function of turbulence intensity & up
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TuTl .



The response of a turbulent flame is linkedto U and ¢

= puSAAh

heat of reaction per unit

unburned gas densﬂy mass of premixture

turbulent burning flame surface area
velocity

We know that Therefore we can state that
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The response of a turbulent flame is linkedto U and ¢

— puSAAh

heat of reaction per unit

unburned gas densﬂy mass of premixture

turbulent burning flame surface area
velocity

Therefore we can state that

Q:f(u37¢)

We know that

A functionof  burner flow velocity UB

S ftunction of turbulence intensity < Ug for premixed flames
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Let us analyze first the quasi-steady case
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QQ = puSAAQ

Let us assume we impose a change of velocity ...
and wait for the flame to stabilize

velocity of premixture

up

. uUp +oup
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QQ = puSAAQ

Let us assume we impose a change of velocity ...
and wait for the flame to stabilize

A Q

7N\
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velocity of premixture

UpB » UB + 0UpB

? recall that the flame is
fully premixed

TUrree

Up T 5UB
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Once the transient goes away, (5Q / Q is equal to dup/up

Q — pu SAAh velocity of premixture

Let us assume we impose a change of velocity ... ué . uUp +oup
and wait for the flame to stabilize

A/\Q (A+517\(Q+5Q)
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Q+0Q = puS(A+JA)Ah = 5—Q = OuB
Q  UuB




Once the transient goes away, (5Q / Q is equal to dup/up

Q — pu SAAh velocity of premixture

Let us assume we impose a change of velocity ... ué . uUp +oup
and wait for the flame to stabilize

A/\Q (A+517\(Q+5Q)
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Once the transient goes away, 5Q / Q is equal to dup/up

@_5UJB
Q  uB

guasi-steady solution

—> for a premixed flame




QQ = puSAAQ

Let us assume we impose a change of velocity ...
and wait for the flame to stabilize

§ mixture

velocity of air

un . uUp +oup
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QQ = puSAAQ

Let us assume we impose a change of velocity ...
and wait for the flame to stabilize

A Q

7N\

§ mixture

velocity of air

up

iainininipi}

Q+6Q =

TUrree

. uUp +oup

Up

—5UB

35



Q) = p,SAAR

Let us assume we impose a change of velocity ...
and wait for the flame to stabilize

A Q

7N\

§ mixture

velocity of air

up
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Q + 5Q = not straight forward ...
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Up -
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Q = puSAAh = mpAH
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fuel mass flow —  fuel

\ heat of reaction of fuel
~~ per unit mass

velocity of air
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Let us assume we impose a change of velocity ... URB . uUp +oup
and wait for the flame to stabilize
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— %}‘
L — <
alr —> § mixture

fuel mass flow —  fuel

\ heat of reaction of fuel

Q’ _ ,OuSAAh _ mFAH/ per unit mass

_____ velocity of air
Let us assume we impose a change of velocity ... URB . uUp +oup
and walit for the flame to stabilize

A Q ?
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stiff injector
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stiff injector
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fuel mass flow

N\

stiff injector
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Once the transient goes away, we have that:

N — —> for a premixed flame
Q/ uB P
guasi-steady solution
6Q /oup )
N — —> for a partially premixed flame with stiff injector

guasi-steady solution



what does it mean?

Is that important?
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The response of a turbulent flame is linkedto U and ¢

for partially premixed flames
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The response of a turbulent flame is linked to U B

for partially premixed flames
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for partially premixed flames

stiff injector




for partially premixed flames

49



for partially premixed flames

g _ f (ulB gb/) 2le:r:)]rc::;)ic():sition> QA(CU)
Q g ¢ 0




for partially premixed flames

ICE?
¢ "\

harmonic .
decomposition Q (W )

>

Q

recall

@ 5UB
Q/ us

= (

guasi-steady solution

—

for a partially
premixed flame with
stiff injector
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The flame response of a partially premixed flame is zero in the limit of zero

frequency (with stiff injector)

for partially premixed flames

g _ ulB gb_/ ggcr:rgr?]r;gsition QA(W) B B up (W)
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The response of a turbulent premixed flame is linked to U B

for partially premixed flames

g _ ulB gb_/ ggggr?]r;gsition QA(CU) B up (w)
-~ f ( , ) - Fulw) = Folw)] =2
with [, (0) — Fy(0)] =0

for premixed flames
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for partially premixed flames

= |[Fulw) = Fo(w)]

fq

' harmonic A
Q/ — f ulB gb/ decomposition Q (w)
D — n > —
@ Up ¢ Q
recall
5@ 5UB
: — 1 —> for a premixed flame

Q/ us

guasi-steady solution
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The flame response of a fully premixed flame is one in the limit of zero frequency

for partially premixed flames We also know then that
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for premixed flames
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The quasi-steady solution shows us the limit of zero frequency

@ 5UB
O/ up

guasi-steady solution

=1 —> for a premixed flame

@ 5uB
Q/ us

guasi-steady solution

=0 —> for a partially premixed flame with stiff injector

Polifke and Lawn 2006



Let us focus on the flame response of premixed flames

Assuming that the flame is a linear time invariant system, we model
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Let us focus on the flame response of premixed flames

Assuming that the flame is a linear time invariant system, we model
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The frequency response is the z transform of the impulse response

Assuming that the flame is a linear time invariant system, we model
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Example
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How to obtain the relation between Q’ and u’B ?

u' [\ Q)

Combustion Chamber

Experiments Numerical simulations fundamental modeling
(first principles)

44444444444444
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Usually, a harmonic signal is sent and a response is measured

. T
Experimentally Fll o
/ | N/
w N\ = Q
Combustion Chamber Frequency |
imposed by loudspeakers The intensity of OH”* is often used as a

measure of the heat release

T §



Usually, a harmonic signal is sent and a response is measured

. T
Experimentally Fl o
_ | /
u V- - Q
Combustion Chamber Frequency |
imposed by loudspeakers The intensity of OH”* is often used as a

measure of the heat release
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If gb/ # 0 the chemiluminescence signal is in general not proportional to Q’

Experimentally Fll o
w - - Q)
Combustion Chamber Frequency |
N
imposed by loudspeakers The intensity of OP*(d\%\e@n used as a
measure of tr 9% release
) ((\\g
\!
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Brute force numerical simulation is (and does not always generate
useful insight)




The impulse response delivers physical evidence for response mechanisms
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Minima and maxima result from the interference of the superposition
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Use System ldentification (Sl) techniques to obtain the impulse response

ilk i Impulse response
Numerical simulations
/ | N/
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) Q ] "-.|.
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frequency response
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The quality of S| depends on the quality of input and output signals
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The quality of S| depends on the quality of input and output signals
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The quality of S| depends on the quality of input and output signals
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The quality of S| depends on the quality of input and output signals
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A quick explanation of system identification for FIR: Optimization is just a linear

regression problem

L
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Nowadays experiments are still preferred over numerical simulations due to their

capability of simulating “real-world conditions”

:
Experimentally Fl o

Combustion Chamber Frequency
Numerical simulations ‘}_f

u,/W\T ‘< I Q/

\Combustion Chamber Frequency —

imulati ffices!
One carefully designed signal ! One simulation suffices

TUTi
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T Some words about the nonlinear flame response
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The G-equation is a useful model to characterize flame dynamics
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The flame response is characterized by a convective and a restoration time
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The characteristic impulse response of canonical laminar flames can be obtained

Impulse response

CONICAL

WEDGE
how

Blumenthal et al. 2013




The characteristic impulse response of canonical laminar flames can be obtained

frequency response

Blumenthal et al. 2013




By adding some complexity of the model (which requires calibration from

experiments), it is possible to infer the flame response of a swirled turbulent flame

It then accounts also for turbulent velocity effects ~ —
N
/ \ frequency response
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Palies et al. 2011




The model of the flame response can be combined with acoustic models to

evaluate the linear growth rate

Linearized Navier Stokes Equations
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The model of the flame response can be combined with acoustic models to

evaluate the linear growth rate

Linearized Navier Stokes Equations
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What about situations when we are not anymore in the linear region?




]L Some few words about LRF and LNSE

T The heat release rate: what does it depend on ?
]L About the zero frequency limit

T How do we obtain the flame response?

- Experiments
- CFD + Sl

- Analytical modeling

o - o L v e — e e o 2 e o pae

Tt Some words about the nonlinear flame response |




E = Acoustic Energy .
E = Source — Losses

Unstable case
> lLosses

>

Acoustic amplitude
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E = Acoustic Energy

Unstable case
> lLosses

>

Acoustic amplitude

E = Source — Losses

Stable case
< Losses

>

Acoustic amplitude
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E = Acoustic Energy

Unstable case

> JLosses
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Acoustic amplitude
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Source - Losses

Acoustic amplitude
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Combustion instability refers to the concept of linear stability

89



Enough of linear stability analysis. Let’'s move on !
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E = Acoustic Energy

[L.osses

>
Acoustic amplitude

E = Source — Losses

[.osses

>
Acoustic amplitude

[.osses

>
Acoustic amplitude

91



E = Acoustic Energy

[Losses
L .
E E
>
Acoustic amplitude
\ 4
L t Source - Losses 15

Stable limit cycle

E = Source — Losses
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Acoustic amplitude

E
Acoustic amplitude
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! Limit cycle Limit cycle
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Acoustic amplitude
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Moeck et al. 2008

pressure amp. in kPa

P
=
-

=

preheat temperature in °C

preheater -
[CCD camera

speaker
< i :
< . | .
< § microphones VAN

./‘l ¢ x/l ( :
=
| B -

ey NN ON NN :
| - o microphones -
oroooccen photomultiplier :
speaker speaker

pressure amp. in kPa

A

—_
f
—

air mass flow in kg/h

pressure amp. in kPa

(d)

preheat temperature in °C

94



By experiments or numerig
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By experiments or numerig
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By experiments or numerig
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By experiments or numerical simulations

: I
— = F(w,a)

@ —

S|

Flame

/

Numerical simulations or
analytical modeling

Acoustics
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Eigenvalue problem

output

- Frequency or resonance Wy
- Growth rate W
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Several computations are necessary. Each computation for each (w, CL)
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Stable limit cycle
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A
— =
v Stable limit cycle

Y

Unstable limit cycle

Stable limit cycle
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Laminar flames in simple combustors are “toy” models of real combustion

chambers. Their understanding is fundamental for combustor’s design.

Laminar Flames




Flame Describing Function
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mode | mode 2
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Noiray et al. 2008
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Evaluating the linear growth rate is just part of the answer. The whole realm of

nonlinear dynamics should still be considered for a complete picture
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Good news: The acoustics model remain the same. The only thing that is required

IS an accurate flame response model.
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Machine Learning approaches may be a suitable way for the evaluation of such

nonlinear flame response models

0.5 ' u’(t)
siis 0y
u’(t-At)
-0.5
o ( y=a,
Output Layer
0.5

FC Layer 2
tanh Activation
Dropout

u’(t-(n-1)At)

S 0 v\fw —
! 1 u’(t'nAt)

-0.5 l
0 0.1 0.2 0.3 Input Layer

tanh Activation
Dropout

Time |s]
Inputs and Outputs Neural networks



