Generalities on the acoustic flame response

Camilo F. Silva

April 28, 2022

Outline

- Some few words about LRF and LNSE
- † The heat release rate: what does it depend on?
- † About the zero frequency limit
- † How do we obtain the flame response?
 - Experiments
 - CFD + SI
 - Analytical modeling
- † Some words about the nonlinear flame response

The LRF equations do not need an external model for the heat release rate

This equations are known as the Linearized Reactive Flow (LRF) equations

mass

 $\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{\rho} u_j' + \rho' \bar{u}_j \right) = 0$

momentum

 $\frac{\partial}{\partial t} \left(\bar{\rho} u_i' + \rho' \bar{u}_i \right) + \frac{\partial}{\partial x_j} \left(\bar{\rho} \bar{u}_i u_j' + \bar{\rho} u_i' \bar{u}_j + \rho' \bar{u}_i \bar{u}_j \right) = -\frac{\partial p'}{\partial x_i} + \frac{\partial \tau'_{ij}}{\partial x_j}$

energy

$$\bar{T}\left[\frac{\partial}{\partial t}\left(\bar{\rho}s'+\rho'\bar{s}\right)+\frac{\partial}{\partial x_{j}}\left(\bar{\rho}\bar{u}_{j}s'+\bar{\rho}u'_{j}\bar{s}+\rho'\bar{u}_{j}\bar{s}\right)\right]+T'\frac{\partial}{\partial x_{j}}\left(\bar{\rho}\bar{u}_{j}\bar{s}\right)\neq\dot{q}'$$

species

$$\frac{\partial}{\partial t} \left(\bar{\rho} Y_k' + \rho' \bar{Y}_k \right) + \frac{\partial}{\partial x_j} \left(\bar{\rho} \bar{u}_j Y_k' + \bar{\rho} u_j' \bar{Y}_k + \rho' \bar{u}_j \bar{Y}_k \right) = \frac{\partial}{\partial x_j} \left(\bar{D}_k \frac{\partial Y_k'}{\partial x_j} + D_k' \frac{\partial \bar{Y}_k}{\partial x_j} \right) + \dot{\Omega}_k'$$

LRF delivers a local flame response

local flame response

LRF is capable of capturing both the flame response and entropy response of a laminar flame.

duct flame (fully premixed)

Meindl et al 2021

LRF is capable of capturing both the flame response and entropy response of a laminar flame.

duct flame (fully premixed)

Fig. 11. Entropy transfer function from CFD _____ (system identification), LRF \times and LNSE+ $\mathcal{F}_G \times$ (both discrete frequency sampling).

Meindl et al 2021

LNSE requires a flame response model (from experiments or CFD)

Linearized Navier Stokes Equations

$$\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{\rho} u_j' + \rho' \bar{u}_j \right) = 0$$

$$\frac{\partial}{\partial t} \left(\bar{\rho} u_i' + \rho' \bar{u}_i \right) + \frac{\partial}{\partial x_j} \left(\bar{\rho} \bar{u}_i u_j' + \bar{\rho} u_i' \bar{u}_j + \rho' \bar{u}_i \bar{u}_j \right) = -\frac{\partial p'}{\partial x_i} + \frac{\partial \tau'_{ij}}{\partial x_j}$$

$$\bar{T} \left[\frac{\partial}{\partial t} \left(\bar{\rho} s' + \rho' \bar{s} \right) + \frac{\partial}{\partial x_j} \left(\bar{\rho} \bar{u}_j s' + \bar{\rho} u'_j \bar{s} + \rho' \bar{u}_j \bar{s} \right) \right] + T' \frac{\partial}{\partial x_j} \left(\bar{\rho} \bar{u}_j \bar{s} \right) = \underline{\vec{q}}'$$

LNSE requires a flame response model (from experiments or CFD)

local flame response

or

$$\dot{Q} = \int \dot{q} \ dV$$

global flame response

The global flame response is used most of the time

local flame response

Spurious entropy production is generated if LNSE is used together with a global flame response

duct flame (fully premixed)

Fig. 11. Entropy transfer function from CFD _____ (system identification), LRF \times and LNSE+ $\mathcal{F}_G \times$ (both discrete frequency sampling).

All remaining approaches require a so-called 'acoustic flame response' model. The global flame response does it well if entropy fluctuations are not of interest

Linearized Navier Stokes Equations

$$\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{\rho} u'_j + \rho' \bar{u}_j \right) = 0$$

$$\frac{\partial}{\partial t} \left(\bar{\rho} u'_i + \rho' \bar{u}_i \right) + \frac{\partial}{\partial x_j} \left(\bar{\rho} \bar{u}_i u'_j + \bar{\rho} u'_i \bar{u}_j + \rho' \bar{u}_i \bar{u}_j \right) = -\frac{\partial p'}{\partial x_i} + \frac{\partial \tau'_{ij}}{\partial x_j}$$

$$\bar{T} \left[\frac{\partial}{\partial t} \left(\bar{\rho} s' + \rho' \bar{s} \right) + \frac{\partial}{\partial x_j} \left(\bar{\rho} \bar{u}_j s' + \bar{\rho} u'_j \bar{s} + \rho' \bar{u}_j \bar{s} \right) \right] + T' \frac{\partial}{\partial x_j} \left(\bar{\rho} \bar{u}_j \bar{s} \right) = \bar{q}'$$

Helmholtz Equation

$$s^{2}\hat{p} - \frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{p}}{\partial x_{i}} \right) = s(\gamma - 1) \hat{q}$$

Network model

In this lecture we do not consider entropy in the analysis.

Consequently, the global flame response is just fine

Outline

- † Some few words about LRF and LNSE
- † The heat release rate: what does it depend on ?
- † About the zero frequency limit
- † How do we obtain the flame response?
 - Experiments
 - CFD + SI
 - Analytical modeling
- † Some words about the nonlinear flame response

What is $\hat{\dot{q}}$ function of?

What do we know?

Sattelmayer (1997)

The global heat release rate $\,Q\,$ is the sum of local values of $\,\dot{q}\,$

The global heat release rate reads

$$\dot{Q} = \int \dot{q} \ dV$$

where

We know that

A function of

We know that

We know that

We know that

We know that

We know that

A function of burner flow velocity $u_{
m B}$

S function of

We know that

A function of burner flow velocity $u_{
m B}$

S function of turbulence intensity $\propto u_{
m B}$ equivalence ratio ϕ

We know that

A function of burner flow velocity $\,u_{
m B}$

S function of turbulence intensity $\propto u_{
m B}$ equivalence ratio ϕ

 Δh function of

We know that

A function of burner flow velocity $u_{
m B}$

S function of turbulence intensity $\propto u_{
m B}$ equivalence ratio ϕ

 Δh function of equivalence ratio ϕ

We know that

A function of burner flow velocity $\,u_{
m B}$

S function of turbulence intensity $\propto u_{
m B}$ equivalence ratio ϕ

 Δh function of equivalence ratio ϕ

Therefore we can state that

$$\dot{Q} = f\left(u_B, \phi\right)$$

and thus

$$\frac{\dot{Q}'}{\dot{\bar{Q}}} = f\left(\frac{u_B'}{\bar{u}_B}, \frac{\phi'}{\bar{\phi}}\right)$$
Innear function

We know that

A function of burner flow velocity $\,u_{
m B}$

S function of turbulence intensity $\propto u_{
m B}$ equivalence ratio ϕ

 Δh function of equivalence ratio ϕ

Therefore we can state that

$$\dot{Q} = f\left(u_B, \phi\right)$$

for premixed flames

$$\frac{\dot{Q}'}{\bar{\dot{Q}}} = f\left(\frac{u_B'}{\bar{u}_B}, \frac{\phi'}{\bar{u}_B}\right)$$
 linear function

Let us analyze first the quasi-steady case

$$\dot{Q} = \rho_u S A \Delta h$$

Let us assume we impose a change of velocity ... and wait for the flame to stabilize

velocity of premixture $u_{B} \longrightarrow u_{B} + \delta u_{B}$

$$\dot{Q} = \rho_u S A \Delta h$$

Let us assume we impose a change of velocity ... and wait for the flame to stabilize

recall that the flame is fully premixed

Once the transient goes away, $\delta \dot{Q}/\dot{Q}$ is equal to $\delta u_B/u_B$

$$\dot{Q} = \rho_u S A \Delta h$$

velocity of premixture

$$\dot{Q} + \delta \dot{Q} = \rho_u S(A + \delta A) \Delta h \implies$$

$$\frac{\delta \dot{Q}}{\dot{Q}} = \frac{\delta u_B}{u_B}$$

Once the transient goes away, $\delta \dot{Q}/\dot{Q}$ is equal to $\delta u_B/u_B$

$$\dot{Q} = \rho_u S A \Delta h$$

velocity of premixture

$$\dot{Q} + \delta \dot{Q} = \rho_u S(A + \delta A) \Delta h \implies$$

$$\frac{\delta \dot{Q}}{\dot{Q}} = \frac{\delta u_B}{u_B}$$

$$\frac{\delta A}{A} = \frac{\delta u_B}{u_B}$$

Once the transient goes away, $\delta \dot{Q}/\dot{Q}$ is equal to $\delta u_B/u_B$

$$\frac{\delta \dot{Q}}{\dot{Q}} = \frac{\delta u_B}{u_B} \quad \Rightarrow \quad \text{for a premixed flame}$$

quasi-steady solution

$$\dot{Q} = \rho_u S A \Delta h$$

$$\dot{Q} = \rho_u S A \Delta h$$

$$\dot{Q} + \delta \dot{Q} =$$

$$\dot{Q} = \rho_u S A \Delta h$$

velocity of air

$$\dot{Q} + \delta \dot{Q} = \text{not straight forward} \dots$$

fuel mass flow

$$\dot{Q} = \rho_u S A \Delta h = \dot{m}_F \Delta H$$

heat of reaction of fuel per unit mass

Let us assume we impose a change of velocity ... and wait for the flame to stabilize

$$u_B \xrightarrow{\text{velocity of air}} u_B + \delta u_B$$

$$\dot{Q} + \delta \dot{Q} =$$

fuel mass flow

 $\dot{Q} = \rho_u SA\Delta h = \dot{m}_F \Delta H$

heat of reaction of fuel per unit mass

Let us assume we impose a change of velocity ... and wait for the flame to stabilize

$$u_B \xrightarrow{\text{velocity of air}} u_B + \delta u_B$$

$$\dot{Q} + \delta \dot{Q} = (\dot{m}_F + \delta \dot{m}_F)(\Delta H + \delta \Delta H) \implies \frac{\delta Q}{\dot{Q}} = \frac{\delta \dot{m}_F}{\dot{m}_F} + \frac{\delta \Delta H}{\Delta H}$$

fuel mass flow

heat of reaction of fuel per unit mass

Let us assume we impose a change of velocity ... and wait for the flame to stabilize

$$u_B \xrightarrow{\text{velocity of air}} u_B + \delta u_B$$

$$\dot{Q} + \delta \dot{Q} = (\dot{m}_F + \delta \dot{m}_F)(\Delta H + \delta \Delta H) \implies \frac{\delta \dot{Q}}{\dot{Q}} = \frac{\delta \dot{m}_F}{\dot{m}_F} + \frac{\delta \Delta \dot{Q}}{\dot{M}}$$

the fuel composition remains the same

heat of reaction of fuel per unit mass

Let us assume we impose a change of velocity ... and wait for the flame to stabilize

$$u_B \xrightarrow{\text{velocity of air}} u_B + \delta u_B$$

$$\dot{Q} + \delta \dot{Q} = (\dot{m}_F + \delta \dot{m}_F)(\Delta H + \delta \Delta H) \implies \frac{\delta \dot{Q}}{\dot{Q}} = \frac{\delta \dot{m}_F}{\dot{m}_F} + \frac{\delta \Delta \dot{Q}}{\dot{M}}$$

the fuel composition remains the same

 $\dot{Q} = \rho_u SA\Delta h = \dot{m}_F \Delta H$

heat of reaction of fuel per unit mass

Let us assume we impose a change of velocity ... and wait for the flame to stabilize

$$\dot{Q} + \delta \dot{Q} = (\dot{m}_F + \delta \dot{m}_F)(\Delta H + \delta \Delta H) \implies \frac{\delta \dot{Q}}{\dot{Q}} = \frac{\delta \dot{m}}{\dot{Q}} + \frac{\delta \Delta \dot{Q}}{\dot{M}}$$

stiff injector

the fuel composition remains the same

heat of reaction of fuel per unit mass

Let us assume we impose a change of velocity ... and wait for the flame to stabilize

$$u_B \xrightarrow{\text{velocity of air}} u_B + \delta u_B$$

$$\delta \dot{Q} = 0$$

Once the transient goes away, we have that:

$$\frac{\delta \dot{Q}}{\dot{Q}} / \frac{\delta u_B}{u_B} = 1$$

→ for a premixed flame

quasi-steady solution

$$\frac{\delta \dot{Q}}{\dot{Q}} / \frac{\delta u_B}{u_B} = 0$$

for a partially premixed flame with stiff injector

quasi-steady solution

what does it mean?

Is that important?

Outline

- † Some few words about LRF and LNSE
- † The heat release rate: what does it depend on?
- † About the zero frequency limit
- † How do we obtain the flame response?
 - Experiments
 - CFD + SI
 - Analytical modeling
- † Some words about the nonlinear flame response

The response of a turbulent flame is linked to $\,u_{B}\,$ and $\,\phi\,$

$$\frac{\dot{Q}'}{\bar{Q}} = f\left(\frac{u_B'}{\bar{u}_B}, \frac{\phi'}{\bar{\phi}}\right) \qquad \xrightarrow{\text{harmonic} \atop \text{decomposition}} \qquad \frac{\dot{Q}(\omega)}{\bar{Q}} = \mathcal{F}_u(\omega) \frac{\hat{u}_B(\omega)}{\bar{u}_B} + \mathcal{F}_\phi(\omega) \frac{\hat{\phi}(\omega)}{\bar{\phi}}$$

The response of a turbulent flame is linked to $\,u_B\,$ and $\,\phi\,$

$$\frac{\dot{Q}'}{\dot{\bar{Q}}} = f\left(\frac{u_B'}{\bar{u}_B}, \frac{\phi'}{\bar{\phi}}\right) \qquad \frac{\text{harmonic}}{\text{decom}}$$

$$\frac{\hat{\phi}}{\bar{\phi}} = \frac{m_F'}{\bar{m}_F} - \frac{m_a'}{\bar{m}_a} \qquad \frac{\bar{\phi}(\omega)}{\bar{q}} + \mathcal{F}_{\phi}(\omega) \frac{\hat{\phi}(\omega)}{\bar{\phi}}$$

$$\frac{\dot{Q}'}{\bar{Q}} = f\left(\frac{u_B'}{\bar{u}_B}, \frac{\phi'}{\bar{\phi}}\right) \qquad \frac{\text{harmonic decom}}{\frac{\dot{\phi}}{\bar{\phi}}} = \underbrace{\frac{\dot{\phi}}{\bar{m}_F} - \frac{m_a'}{\bar{m}_a}}_{\text{stiff injector}} - \underbrace{\frac{B(\omega)}{\bar{u}_B} + \mathcal{F}_{\phi}(\omega)}_{\bar{q}} \underbrace{\frac{\dot{\phi}(\omega)}{\bar{\phi}}}_{\bar{q}} + \underbrace{\frac{\dot{\phi}(\omega)}{\bar{\phi}}}_{\bar{q}}$$

$$\frac{\dot{Q}'}{\bar{Q}} = f\left(\frac{u_B'}{\bar{u}_B}, \frac{\phi'}{\bar{\phi}}\right) \qquad \frac{\dot{\Phi}(\omega)}{\dot{\bar{\phi}}} = -\frac{\dot{u}_B}{\bar{u}_B} \qquad \frac{\dot{\Phi}(\omega)}{\bar{u}_B} + \mathcal{F}_{\phi}(\omega) \frac{\dot{\Phi}(\omega)}{\bar{\phi}}$$

$$\frac{\dot{Q}'}{\bar{\dot{Q}}} = f\left(\frac{u_B'}{\bar{u}_B}, \frac{\phi'}{\bar{\phi}}\right) \qquad \xrightarrow{\text{harmonic decomposition}} \qquad \frac{\dot{\dot{Q}}(\omega)}{\bar{\dot{Q}}} = \left[\mathcal{F}_u(\omega) - \mathcal{F}_\phi(\omega)\right] \frac{\hat{u}_B(\omega)}{\bar{u}_B}$$

$$\frac{\dot{Q}'}{\bar{\dot{Q}}} = f\left(\frac{u_B'}{\bar{u}_B}, \frac{\phi'}{\bar{\phi}}\right) \qquad \xrightarrow{\text{harmonic} \atop \text{decomposition}} \qquad \frac{\dot{\dot{Q}}(\omega)}{\bar{\dot{Q}}} = \left[\mathcal{F}_u(\omega) - \mathcal{F}_\phi(\omega)\right] \frac{\hat{u}_B(\omega)}{\bar{u}_B}$$

recall

$$\frac{\delta \dot{Q}}{\dot{Q}} / \frac{\delta u_B}{u_B} = 0 \qquad \Longrightarrow \begin{array}{l} \text{for a partially} \\ \text{premixed flame with} \\ \text{stiff injector} \end{array}$$

quasi-steady solution

The flame response of a partially premixed flame is zero in the limit of zero frequency (with stiff injector)

$$\frac{\dot{Q}'}{\bar{Q}} = f\left(\frac{u_B'}{\bar{u}_B}, \frac{\phi'}{\bar{\phi}}\right) \qquad \xrightarrow{\text{harmonic decomposition}} \qquad \frac{\hat{Q}(\omega)}{\bar{Q}} = \left[\mathcal{F}_u(\omega) - \mathcal{F}_\phi(\omega)\right] \frac{\hat{u}_B(\omega)}{\bar{u}_B}$$
with $\left[\mathcal{F}_u(0) - \mathcal{F}_\phi(0)\right] = 0$

The response of a turbulent premixed flame is linked to u_B

for partially premixed flames

$$\frac{\dot{Q}'}{\bar{Q}} = f\left(\frac{u_B'}{\bar{u}_B}, \frac{\phi'}{\bar{\phi}}\right) \qquad \xrightarrow{\text{harmonic decomposition}} \qquad \frac{\dot{\bar{Q}}(\omega)}{\bar{Q}} = \left[\mathcal{F}_u(\omega) - \mathcal{F}_\phi(\omega)\right] \frac{\hat{u}_B(\omega)}{\bar{u}_B}$$
 with $\left[\mathcal{F}_u(0) - \mathcal{F}_\phi(0)\right] = 0$

for premixed flames

$$\frac{\dot{Q}'}{\bar{\dot{Q}}} = f\left(\frac{u_B'}{\bar{u}_B}, \frac{\phi'}{\bar{\psi}}\right)^{\text{0}} \xrightarrow{\text{decomposition}} \frac{\dot{Q}(\omega)}{\bar{\dot{Q}}} = \mathcal{F}(\omega) \frac{\hat{u}_B(\omega)}{\bar{u}_B}$$

$$\frac{\dot{Q}'}{\bar{Q}} = f\left(\frac{u_B'}{\bar{u}_B}, \frac{\phi'}{\bar{\phi}}\right) \qquad \xrightarrow{\text{harmonic decomposition}} \qquad \frac{\dot{Q}(\omega)}{\bar{Q}} = \left[\mathcal{F}_u(\omega) - \mathcal{F}_\phi(\omega)\right] \frac{\hat{u}_B(\omega)}{\bar{u}_B}$$

for a premixed flame

recall

f¢

$$\frac{\delta \dot{Q}}{\dot{Q}} / \frac{\delta u_B}{u_B} = 1$$

quasi-steady solution

$$(0) - \mathcal{F}_{\phi}(0)] = 0$$

$$\mathcal{F}(\omega) \frac{\hat{u}_B(\omega)}{\bar{u}_B}$$

The flame response of a fully premixed flame is one in the limit of zero frequency

for partially premixed flames

$$\frac{\dot{Q}'}{\dot{\bar{Q}}} = f\left(\frac{u_B'}{\bar{u}_B}, \frac{\phi'}{\bar{\phi}}\right) \qquad \xrightarrow{\text{harmonic decomposition}}$$

harmonic

We also know then that

$$\frac{\dot{Q}(\omega)}{\dot{Q}} = \left[\mathcal{F}_u(\omega) - \mathcal{F}_\phi(\omega)\right] \frac{\hat{u}_B(\omega)}{\bar{u}_B}$$

with
$$\left[\mathcal{F}_u(0)-\mathcal{F}_\phi(0)\right]=0$$

for premixed flames

$$\frac{\dot{Q}'}{\bar{Q}} = f\left(\frac{u_B'}{\bar{u}_B}, \frac{\phi'}{\bar{Q}'}\right) \qquad \xrightarrow{\text{harmonic decomposition}} \qquad \frac{\hat{Q}(\omega)}{\bar{Q}} = \mathcal{F}(\omega) \frac{\hat{u}_B(\omega)}{\bar{u}_B}$$

harmonic

$$\frac{\dot{Q}(\omega)}{\dot{Q}} = \mathcal{F}(\omega) \frac{\hat{u}_B(\omega)}{\bar{u}_B}$$

with
$$\mathcal{F}(0)=1$$

The quasi-steady solution shows us the limit of zero frequency

$$\frac{\delta \dot{Q}}{\dot{Q}} / \frac{\delta u_B}{u_B} = 1$$

→ for a premixed flame

quasi-steady solution

$$\frac{\delta \dot{Q}}{\dot{Q}} / \frac{\delta u_B}{u_B} = 0$$

> for a partially premixed flame with stiff injector

quasi-steady solution

Polifke and Lawn 2006

Let us focus on the flame response of premixed flames

$$\frac{\dot{Q}'}{\bar{\dot{Q}}} = f\left(\frac{u_B'}{\bar{u}_B}\right)$$

Assuming that the flame is a linear time invariant system, we model

$$\frac{\dot{Q}'_n}{\dot{\bar{Q}}} = \frac{1}{\bar{u}_B} \sum_{k=0}^{L} h_k u'_{B,n-k} \qquad \longleftarrow \qquad \text{in time}$$

Let us focus on the flame response of premixed flames

$$\frac{\dot{Q}'}{\bar{\dot{Q}}} = f\left(\frac{u_B'}{\bar{u}_B}\right)$$

Assuming that the flame is a linear time invariant system, we model

$$\frac{\dot{Q}'_n}{\bar{Q}} = \frac{1}{\bar{u}_B} \sum_{k=0}^L h_k u'_{B,n-k} \qquad \longleftarrow \qquad \text{in time}$$

$$\frac{\dot{Q}}{\dot{\bar{Q}}} = \underbrace{\left[G(\omega)e^{i\varphi(\omega)}\right]}_{\mathcal{F}(\omega)} \frac{\hat{u}_B}{\bar{u}_B} \qquad \qquad \text{in frequency}$$

The frequency response is the z transform of the impulse response

$$\frac{\dot{Q}'}{\bar{\dot{Q}}} = f\left(\frac{u_B'}{\bar{u}_B}\right)$$

Assuming that the flame is a linear time invariant system, we model

$$\frac{\dot{Q}'_n}{\bar{\dot{Q}}} = \frac{1}{\bar{u}_B} \sum_{k=0}^{L} h_k u'_{B,n-k}$$

$$\frac{\dot{Q}}{\dot{Q}} = \left[G(\omega)e^{i\varphi(\omega)}\right] \frac{\hat{u}_B}{\bar{u}_B}$$

$$\frac{\dot{Q}_n'}{\dot{\bar{Q}}} = \frac{1}{\bar{u}_B} \sum_{k=0}^L h_k u_{B,n-k}' \qquad \text{note that}$$

$$\mathcal{F}(\omega) = \sum_{k=0}^L h_k e^{-i\omega k \Delta t}$$

$$\frac{\dot{\bar{Q}}}{\bar{\bar{Q}}} = \left[G(\omega) e^{i\varphi(\omega)} \right] \frac{\hat{u}_B}{\bar{u}_B}$$

Example

Impulse response

frequency response

Outline

- † Some few words about LRF and LNSE
- † The heat release rate: what does it depend on?
- † About the zero frequency limit
- How do we obtain the flame response?
 - Experiments
 - CFD + SI
 - Analytical modeling
- † Some words about the nonlinear flame response

How to obtain the relation between $\,\dot{Q}'$ and $\,u_B'$?

Combustion Chamber

Experiments

Numerical simulations

fundamental modeling (first principles)

Usually, a harmonic signal is sent and a response is measured

imposed by loudspeakers

The intensity of OH* is often used as a measure of the heat release

Usually, a harmonic signal is sent and a response is measured

imposed by loudspeakers

The intensity of OH* is often used as a measure of the heat release

imposed by loudspeakers

The intensity of O^L*_{misleading} as a measure of the only release it might be. release

Brute force numerical simulation is very expensive (and does not always generate useful insight)

The impulse response delivers physical evidence for response mechanisms

Minima and maxima result from the interference of the superposition

The superposition characterizes the global flame response

Swirler positions $\Delta x = 30, 90, 130 \text{ mm}$ (left to right)

Use System Identification (SI) techniques to obtain the impulse response

Numerical simulations

One carefully designed signal!

By accounting for the transformation

$$\mathcal{F}(\omega) = \sum_{k=0}^{L} h_k e^{-i\omega k\Delta t}$$

One simulation suffices!

The quality of SI depends on the quality of input and output signals

The quality of SI depends on the quality of input and output signals

The quality of SI depends on the quality of input and output signals

$$\dot{Q}'(t,\theta) = G(\theta) \cdot u'_{ref}(t) + H(\theta) \cdot e(t)$$

$$\dot{Q}'_{c}$$

$$\dot{Q}'_{s}$$

Finite Impulse Response model:

$$\dot{Q}'(t,\theta) = \sum_{i=0}^{n_b} b_i q^{-i} u'_{ref}(t) + e(t)$$

The quality of SI depends on the quality of input and output signals

$$\dot{Q}'(t,\theta) = G(\theta) \cdot u'_{ref}(t) + H(\theta) \cdot e(t)$$

$$\dot{Q}'_{c}$$

$$\dot{Q}'_{s}$$

Finite Impulse Response model:

$$\dot{Q}'(t,\theta) = \sum_{i=0}^{n_b} b_i q^{-i} u'_{ref}(t) + e(t)$$

Box-Jenkins model:

$$\dot{Q}'(t,\theta) = \frac{\sum_{i=0}^{n_b} b_i q^{-i}}{\sum_{i=0}^{n_f} f_i q^{-i}} u'_{ref}(t) + \frac{\sum_{i=0}^{n_c} c_i q^{-i}}{\sum_{i=0}^{n_d} d_i q^{-i}} e(t)$$

$$G(\theta) \qquad H(\theta)$$

A quick explanation of system identification for FIR: Optimization is just a linear regression problem

$$\frac{\dot{Q}'_n}{\bar{\dot{Q}}} = \frac{1}{\bar{u}_B} \sum_{k=0}^{L} h_k u'_{B,n-k}$$

Nowadays experiments are still preferred over numerical simulations due to their capability of simulating "real-world conditions"

Numerical simulations

One carefully designed signal!

One simulation suffices!

Outline

- † Some few words about LRF and LNSE
- † The heat release rate: what does it depend on?
- † About the zero frequency limit
- † How do we obtain the flame response?
 - Experiments
 - CFD + SI
 - Analytical modeling
- † Some words about the nonlinear flame response

The G-equation is a useful model to characterize flame dynamics

$$\frac{\partial G}{\partial t} + u_j \frac{\partial G}{\partial x_j} = S_D \left| \frac{\partial G}{\partial x_j} \right|$$

The flame response is characterized by a convective and a restoration time

The characteristic impulse response of canonical laminar flames can be obtained

Impulse response

Blumenthal et al. 2013

The characteristic impulse response of canonical laminar flames can be obtained

frequency response

Blumenthal et al. 2013

By adding some complexity of the model (which requires calibration from experiments), it is possible to infer the flame response of a swirled turbulent flame

The model of the flame response can be combined with acoustic models to evaluate the linear growth rate

Linearized Navier Stokes Equations

$$\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{\rho} u'_j + \rho' \bar{u}_j \right) = 0$$

$$\frac{\partial}{\partial t} \left(\bar{\rho} u'_i + \rho' \bar{u}_i \right) + \frac{\partial}{\partial x_j} \left(\bar{\rho} \bar{u}_i u'_j + \bar{\rho} u'_i \bar{u}_j + \rho' \bar{u}_i \bar{u}_j \right) = -\frac{\partial \rho'}{\partial x_i} + \frac{\partial \tau'_{ij}}{\partial x_j}$$

$$\bar{T} \left[\frac{\partial}{\partial t} \left(\bar{\rho} s' + \rho' \bar{s} \right) + \frac{\partial}{\partial x_i} \left(\bar{\rho} \bar{u}_j s' + \bar{\rho} u'_j \bar{s} + \rho' \bar{u}_j \bar{s} \right) \right] + T' \frac{\partial}{\partial x_i} \left(\bar{\rho} \bar{u}_j \bar{s} \right) = \bar{q}'$$

Helmholtz Equation

$$s^{2}\hat{p} - \frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{p}}{\partial x_{i}} \right) = s(\gamma - 1) \hat{q}$$

Network model

The model of the flame response can be combined with acoustic models to evaluate the linear growth rate

Linearized Navier Stokes Equations

What about situations when we are not anymore in the linear region?

Outline

- † Some few words about LRF and LNSE
- † The heat release rate: what does it depend on ?
- † About the zero frequency limit
- † How do we obtain the flame response?
 - Experiments
 - CFD + SI
 - Analytical modeling
- Some words about the nonlinear flame response

$$E = Acoustic Energy$$

$$\dot{E} = \text{Source} - \text{Losses}$$

Unstable case

Source > Losses

$$E = Acoustic Energy$$

$$\dot{E} = \text{Source} - \text{Losses}$$

Unstable case

Source > Losses

Stable case

Source < Losses

$$E = Acoustic Energy$$

$$\dot{E} = \text{Source} - \text{Losses}$$

Unstable case

Source > Losses

Stable case

Source < Losses

Combustion instability refers to the concept of linear stability

Enough of linear stability analysis. Let's move on !

$$E = Acoustic Energy$$

$$\dot{E} = \text{Source} - \text{Losses}$$

$$E = Acoustic Energy$$

$$\dot{E} = \text{Source} - \text{Losses}$$

Moeck et al. 2008

By experiments or numerid

$$\frac{\hat{Q}}{\bar{Q}} = \mathcal{F}(\omega, a) \frac{\hat{u}}{\bar{u}}$$

 $\mathcal{F}(\omega, a)$

Numerical simula analytical modelir

By experiments or numerid

$$\frac{\hat{Q}}{\bar{Q}} = \mathcal{F}(\omega, a) \frac{\hat{u}}{\bar{u}}$$

Numerical simula analytical modeling

By experiments or numerid

$$\frac{\hat{\dot{Q}}}{\bar{\dot{Q}}} = \mathcal{F}(\omega, a) \frac{\hat{u}}{\bar{u}}$$

Numerical simula analytical modeling

By experiments or numerical simulations

Numerical simulations or analytical modeling

Eigenvalue problem

- Frequency or resonance $\,\omega_{
 m r}$
- Growth rate $\,\omega_{
 m i}$

Several computations are necessary. Each computation for each $\,\mathcal{F}(\omega,a)$

Laminar flames in simple combustors are "toy" models of real combustion chambers. Their understanding is fundamental for combustor's design.

Laminar Flames

Flame Describing Function

Noiray et al. 2008

Noiray et al. 2008

Noiray et al. 2008

Evaluating the linear growth rate is just part of the answer. The whole realm of nonlinear dynamics should still be considered for a complete picture

n-period limit cycles

hysteresis

nonlinear flame response

Good news: The acoustics model remain the same. The only thing that is required is an accurate nonlinear flame response model.

n-period limit cycles

hysteresis

Machine Learning approaches may be a suitable way for the evaluation of such nonlinear flame response models

Inputs and Outputs

Neural networks

