The Galerkin approach to 'reduce' models in thermoacoustics

Camilo F. Silva

April 27, 2022

Even if LNSE or the Helmholtz equation are expressed in a state-space framework, they remain computationally expensive.

Linearized Navier Stokes Equations

$$\frac{\partial \rho'}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{\rho} u_j' + \rho' \bar{u}_j \right) = 0$$

$$\frac{\partial}{\partial t} \left(\bar{\rho} u_i' + \rho' \bar{u}_i \right) + \frac{\partial}{\partial x_j} \left(\bar{\rho} \bar{u}_i u_j' + \bar{\rho} u_i' \bar{u}_j + \rho' \bar{u}_i \bar{u}_j \right) = -\frac{\partial p'}{\partial x_i} + \frac{\partial \tau'_{ij}}{\partial x_j}$$

$$\bar{T}\left[\frac{\partial}{\partial t}\left(\bar{\rho}s'+\rho'\bar{s}\right)+\frac{\partial}{\partial x_{j}}\left(\bar{\rho}\bar{u}_{j}s'+\bar{\rho}u'_{j}\bar{s}+\rho'\bar{u}_{j}\bar{s}\right)\right]+T'\frac{\partial}{\partial x_{j}}\left(\bar{\rho}\bar{u}_{j}\bar{s}\right)=\dot{q}'$$

Helmholtz Equation

$$s^{2}\hat{p} - \frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{p}}{\partial x_{i}} \right) = s(\gamma - 1)\hat{\dot{q}}$$

How to model systems that are complex in frameworks that are easy for computation?

Let us take a look at reduced order models

Outline

Solving the Helmholtz Equation by modal expansion

And the state space?

† About a one mode expansion

The Helmholtz Equation is treated as the reference model to approximate

$$s^2 \hat{p} - \underbrace{\frac{\partial}{\partial x_i} \left(\bar{c}^2 \frac{\partial \hat{p}}{\partial x_i} \right)}_{\mathcal{L} \hat{p}} = \underline{s(\gamma - 1) \hat{q}}_{\text{Requires a flame response}}$$

Helmholtz Equation

$$s^{2}\hat{p} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{p}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{p}} = \hat{h}$$

Boundary Conditions

$$\mathbf{n} \cdot \frac{\partial \hat{p}}{\partial x_i} = -\hat{f}$$

The Helmholtz Equation is treated as the reference model to approximate

Helmholtz Equation

$$s^{2}\hat{p} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{p}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{p}} = \hat{h}$$

Boundary Conditions

$$\mathbf{n} \cdot \frac{\partial \hat{p}}{\partial x_i} = -\hat{f}$$

An auxiliary problem is required for the approximation

Helmholtz Equation

$$s^{2}\hat{p} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{p}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{p}} = \hat{h}$$

Boundary Conditions

$$\mathbf{n} \cdot \frac{\partial \hat{p}}{\partial x_i} = -\hat{f}$$

Auxiliary Problem

$$s^{2}\hat{G} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{G}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{G}} = \delta(x - x_{0}) \qquad \mathbf{n} \cdot \frac{\partial \hat{G}}{\partial x_{i}} = 0$$

$$\mathbf{n} \cdot \frac{\partial \hat{G}}{\partial x_i} = 0$$

The solution is given in terms of a Green's function G

Helmholtz Equation

$s^{2}\hat{p} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{p}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{p}} = \hat{h}$

Boundary Conditions

$$\mathbf{n} \cdot \frac{\partial \hat{p}}{\partial x_i} = -\hat{f}$$

Auxiliary Problem

$$s^{2}\hat{G} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{G}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{G}} = \delta(x - x_{0}) \qquad \mathbf{n} \cdot \frac{\partial \hat{G}}{\partial x_{i}} = 0$$

$$\mathbf{n} \cdot \frac{\partial \hat{G}}{\partial x_i} = 0$$

$$\hat{p} = \int_{V} Gh dV + \int_{\partial V} Gf dS$$

Let us solve the Auxiliary problem!

Helmholtz Equation

$s^{2}\hat{p} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{p}}{\partial x_{i}}\right)}_{\text{and }} = \hat{h}$

Boundary Conditions

$$\mathbf{n} \cdot \frac{\partial \hat{p}}{\partial x_i} = -\hat{f}$$

Auxiliary Problem

$$s^{2}\hat{G} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{G}}{\partial x_{i}}\right)}_{c\hat{G}} = \delta(x - x_{0}) \qquad \mathbf{n} \cdot \frac{\partial \hat{G}}{\partial x_{i}} = 0$$

$$\hat{p} = \int_{V} Gh dV + \int_{\partial V} Gf dS$$

$$s^{2}\hat{G} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{G}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{G}} = \delta(x - x_{0})$$

$$s^{2}\hat{G} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{G}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{G}} = \delta(x - x_{0})$$

operator matrix vector
$$\mathcal{L} \longrightarrow L$$

$$\hat{G} \xrightarrow{\text{discretization}} G$$
 $\delta(x-x_0) \longrightarrow \delta$

$$s^{2}\hat{G} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{G}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{G}} = \delta(x - x_{0})$$

$$s^{2}\hat{G} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{G}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{G}} = \delta(x - x_{0})$$

L can be approximated by

L can be approximated by

Note that each column $\,\psi_k\,$ of $\,\Psi\,$ is an eigenmode of $\,L\,$

passive acoustic mode of the system, where $\hat{\dot{q}}=0$

We assume that G is a superposition of passive acoustic modes

After discretization of
$$s^2 \hat{G} - \underbrace{\frac{\partial}{\partial x_i} \left(\bar{c}^2 \frac{\partial \hat{G}}{\partial x_i} \right)}_{\hat{C}\hat{C}} = \delta(x - x_0)$$

We assume that G is a superposition of passive acoustic modes

After discretization of $s^2 \hat{G} - \underbrace{\frac{\partial}{\partial x_i} \left(\bar{c}^2 \frac{\partial \hat{G}}{\partial x_i} \right)}_{\mathcal{L} \hat{G}} = \delta(x - x_0)$

After discretization of $s^2 \hat{G} - \frac{\partial}{\partial x_i} \left(\bar{c}^2 \frac{\partial \hat{G}}{\partial x_i} \right) = \delta(x - x_0)$

After discretization of $s^2 \hat{G} - \underbrace{\frac{\partial}{\partial x_i} \left(\bar{c}^2 \frac{\partial \hat{G}}{\partial x_i} \right)}_{\mathcal{L} \hat{G}} = \delta(x - x_0)$

By doing some linear algebra we have solved the Equation!!

$$s^{2} \begin{bmatrix} \boldsymbol{\eta} & \Lambda \boldsymbol{\eta} & \Psi^{H} \\ s^{2} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\psi}^{H} & I & I \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \boldsymbol{\eta} & I & \Lambda \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Psi}^{H} \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \end{bmatrix}$$

recall that

The solution of the Helmholtz equation reads

Helmholtz Equation

$$s^{2}\hat{p} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{p}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{p}} = \hat{h}$$

Boundary Conditions

$$\mathbf{n} \cdot \frac{\partial \hat{p}}{\partial x_i} = -\hat{f}$$

Solution

$$\hat{p} = \int_{V} Gh dV + \int_{\partial V} Gf dS$$

evaluated at BC

what about the state space approach?

Outline

Solving the Helmholtz Equation by modal expansion

And the state space?

† About a one mode expansion

After discretization of
$$s^2 \hat{G} - \underbrace{\frac{\partial}{\partial x_i} \left(\bar{c}^2 \frac{\partial \hat{G}}{\partial x_i} \right)}_{\hat{s}} = \delta(x - x_0)$$

$$s^{2}\hat{G} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{G}}{\partial x_{i}}\right)}_{C\hat{G}} = \delta(x - x_{0})$$

The dynamics of η is governed by

$$\ddot{\boldsymbol{\eta}} - \Lambda \boldsymbol{\eta} = \Psi^H \boldsymbol{\delta}$$

After discretization of
$$s^2 \hat{G} - \underbrace{\frac{\partial}{\partial x_i} \left(\bar{c}^2 \frac{\partial \hat{G}}{\partial x_i} \right)}_{\hat{C}\hat{G}} = \delta(x - x_0)$$

The dynamics of η is governed by

$$egin{aligned} \dot{m{\eta}} = m{v} \ \ddot{m{\eta}} - \Lambda m{\eta} = \Psi^H m{\delta} & \Longrightarrow & \dot{m{v}} = \Lambda m{\eta} + \Psi^H m{\delta} \ & \uparrow & \end{aligned}$$

state vector

After discretization of
$$s^2 \hat{G} - \underbrace{\frac{\partial}{\partial x_i} \left(\bar{c}^2 \frac{\partial \hat{G}}{\partial x_i} \right)}_{C\hat{G}} = \delta(x - x_0)$$

The dynamics of η is governed by

$$\dot{m{\eta}} - \Lambda m{\eta} = \Psi^H m{\delta} \implies \dot{m{v}} = m{v}$$
 These Equations are the first step towards the state space representation

Does makes to consider only one mode in the expansion?

Yes!

Outline

 \dagger Solving the Helmholtz Equation by modal expansion

And the state space?

† About a one mode expansion

Consider only one mode in the approximation

Consider only one mode in the approximation

$$\eta_k$$
 $\lambda_k^2 \eta_k$ $\psi_k^H q$
 s^2 $= s(\gamma - 1)$

Consider only one mode in the approximation

$$\eta_k$$
 $\lambda_k^2 \eta_k$ $\psi_k^H q$
 s^2 $=$ $s(\gamma-1)$

$$s^2 \eta_k - \lambda_k^2 \eta_k = s(\gamma - 1) \boldsymbol{\psi}_k^H \boldsymbol{q}$$

We have gone from here
$$s^2\hat{p} - \underbrace{\frac{\partial}{\partial x_i}\left(\bar{c}^2\frac{\partial\hat{p}}{\partial x_i}\right)}_{\mathcal{L}\hat{p}} = s(\gamma-1)\hat{q}$$

to here
$$s^2\eta_k - \lambda_k^2\eta_k = s(\gamma - 1)\boldsymbol{\psi}_k^H\boldsymbol{q}$$

We have gone from here
$$s^2\hat{p} - \underbrace{\frac{\partial}{\partial x_i}\left(\bar{c}^2\frac{\partial\hat{p}}{\partial x_i}\right)}_{\mathcal{L}\hat{p}} = s(\gamma-1)\hat{q}$$

to here
$$s^2 \eta_k - \lambda_k^2 \eta_k = s(\gamma - 1) \boldsymbol{\psi}_k^H \boldsymbol{q}$$

Consider now two models for the flame response

$$\boldsymbol{q} = I_{\mathrm{f}} I_{\mathrm{ref}}^{\mathsf{T}} \boldsymbol{p} \ n_{\mathrm{p}} e^{-s\tau_{\mathrm{p}}} \approx \eta_{k} I_{\mathrm{f}} I_{\mathrm{ref}}^{\mathsf{T}} \boldsymbol{\psi}_{k} n_{\mathrm{p}} e^{-s\tau_{\mathrm{p}}}$$

We have gone from here
$$s^2\hat{p} - \underbrace{\frac{\partial}{\partial x_i}\left(\bar{c}^2\frac{\partial\hat{p}}{\partial x_i}\right)}_{\mathcal{L}\hat{p}} = s(\gamma-1)\hat{q}$$

to here
$$s^2 \eta_k - \lambda_k^2 \eta_k = s(\gamma - 1) \boldsymbol{\psi}_k^H \boldsymbol{q}$$

Consider now two models for the flame response

$$\mathbf{q} = I_{\rm f} I_{\rm ref}^{\mathsf{T}} \mathbf{p} \ n_{\rm p} e^{-s\tau_{\rm p}} \approx \eta_k I_{\rm f} I_{\rm ref}^{\mathsf{T}} \psi_k n_{\rm p} e^{-s\tau_{\rm p}} \qquad \Longrightarrow \qquad s^2 - \lambda_k^2 = s(\gamma - 1) \kappa n_{\rm p} e^{-s\tau_{\rm p}}$$

$$s^2 - \lambda_k^2 = s(\gamma - 1)\kappa n_p e^{-s\tau_p}$$

We have gone from here
$$s^2\hat{p} - \underbrace{\frac{\partial}{\partial x_i}\left(\bar{c}^2\frac{\partial\hat{p}}{\partial x_i}\right)}_{\mathcal{L}\hat{p}} = s(\gamma-1)\hat{q}$$

to here
$$s^2 \eta_k - \lambda_k^2 \eta_k = s(\gamma - 1) \boldsymbol{\psi}_k^H \boldsymbol{q}$$

Consider now two models for the flame response

model 1

$$\mathbf{q} = I_{\rm f} I_{\rm ref}^{\mathsf{T}} \mathbf{p} \ n_{\rm p} e^{-s\tau_{\rm p}} \approx \eta_k I_{\rm f} I_{\rm ref}^{\mathsf{T}} \psi_k n_{\rm p} e^{-s\tau_{\rm p}} \qquad \Longrightarrow \qquad s^2 - \lambda_k^2 = s(\gamma - 1) \kappa n_{\rm p} e^{-s\tau_{\rm p}}$$

$$s^2 - \lambda_k^2 = s(\gamma - 1)\kappa n_p e^{-s\tau_p}$$

$$\mathbf{q} = -I_{\mathrm{f}}I_{\mathrm{ref}}^{\mathsf{T}}\partial\mathbf{p}/\partial t \ ne^{-s\tau} \approx s\eta_{k}I_{\mathrm{f}}I_{\mathrm{ref}}^{\mathsf{T}}s\boldsymbol{\psi}_{k} \ ne^{-s\tau}$$

We have gone from here
$$s^2\hat{p} - \underbrace{\frac{\partial}{\partial x_i}\left(\bar{c}^2\frac{\partial\hat{p}}{\partial x_i}\right)}_{\mathcal{L}\hat{p}} = s(\gamma-1)\hat{\dot{q}}$$

to here
$$s^2 \eta_k - \lambda_k^2 \eta_k = s(\gamma - 1) \boldsymbol{\psi}_k^H \boldsymbol{q}$$

Consider now two models for the flame response

model 1

$$\mathbf{q} = I_{\rm f} I_{\rm ref}^{\mathsf{T}} \mathbf{p} \ n_{\rm p} e^{-s\tau_{\rm p}} \approx \eta_k I_{\rm f} I_{\rm ref}^{\mathsf{T}} \psi_k n_{\rm p} e^{-s\tau_{\rm p}} \qquad \Longrightarrow \qquad s^2 - \lambda_k^2 = s(\gamma - 1) \kappa n_{\rm p} e^{-s\tau_{\rm p}}$$

$$s^2 - \lambda_k^2 = s(\gamma - 1)\kappa n_p e^{-s\tau_p}$$

$$q = -I_{\rm f} I_{\rm ref}^{\mathsf{T}} \partial \mathbf{p} / \partial t \ n e^{-s\tau} \approx s \eta_k I_{\rm f} I_{\rm ref}^{\mathsf{T}} s \psi_k \ n e^{-s\tau} \implies \qquad s^2 - \lambda_k^2 = -s^2 (\gamma - 1) \kappa n e^{-s\tau}$$

The entire PDE has been reduced to a simple algebraic equation!

We have gone from here
$$s^2\hat{p} - \underbrace{\frac{\partial}{\partial x_i}\left(\bar{c}^2\frac{\partial\hat{p}}{\partial x_i}\right)}_{\mathcal{L}\hat{p}} = s(\gamma-1)\hat{\dot{q}}$$

to here
$$s^2 \eta_k - \lambda_k^2 \eta_k = s(\gamma - 1) \boldsymbol{\psi}_k^H \boldsymbol{q}$$

Consider now two models for the flame response

model 1

$$\mathbf{q} = I_{\rm f} I_{\rm ref}^{\mathsf{T}} \mathbf{p} \ n_{\rm p} e^{-s\tau_{\rm p}} \approx \eta_k I_{\rm f} I_{\rm ref}^{\mathsf{T}} \psi_k n_{\rm p} e^{-s\tau_{\rm p}} \qquad \Longrightarrow \qquad s^2 - \lambda_k^2 = s(\gamma - 1) \kappa n_{\rm p} e^{-s\tau_{\rm p}}$$

$$s^2 - \lambda_k^2 = s(\gamma - 1)\kappa n_p e^{-s\tau_p}$$

$$q = -I_{\rm f} I_{\rm ref}^{\mathsf{T}} \partial \mathbf{p} / \partial t \ n e^{-s\tau} \approx s \eta_k I_{\rm f} I_{\rm ref}^{\mathsf{T}} s \psi_k \ n e^{-s\tau} \implies \qquad s^2 - \lambda_k^2 = -s^2 (\gamma - 1) \kappa n e^{-s\tau}$$

$$s^2 - \lambda_k^2 = -s^2(\gamma - 1)\kappa ne^{-s\tau}$$

The entire PDE has been reduced to a simple algebraic equation!

We have gone from here
$$s^2\hat{p} - \underbrace{\frac{\partial}{\partial x_i}\left(\bar{c}^2\frac{\partial\hat{p}}{\partial x_i}\right)}_{\mathcal{L}\hat{p}} = s(\gamma-1)\hat{q}$$

to here
$$s^2 \eta_k - \lambda_k^2 \eta_k = s(\gamma - 1) \boldsymbol{\psi}_k^H \boldsymbol{q}$$

Consider now two models for the flame response

model 1

$$\mathbf{q} = I_{\rm f} I_{\rm ref}^{\mathsf{T}} \mathbf{p} \ n_{\rm p} e^{-s\tau_{\rm p}} \approx \eta_k I_{\rm f} I_{\rm ref}^{\mathsf{T}} \psi_k n_{\rm p} e^{-s\tau_{\rm p}} \qquad \Longrightarrow \qquad s^2 - \lambda_k^2 = s(\gamma - 1) \kappa n_{\rm p} e^{-s\tau_{\rm p}}$$

$$s^2 - \lambda_k^2 = s(\gamma - 1)\kappa n_p e^{-s\tau_p}$$

$$\mathbf{q} = -I_{\mathrm{f}} I_{\mathrm{ref}}^{\mathsf{T}} \partial \mathbf{p} / \partial t \ n e^{-s\tau} \approx s \eta_{k} I_{\mathrm{f}} I_{\mathrm{ref}}^{\mathsf{T}} s \psi_{k} \ n e^{-s\tau} \implies \qquad s^{2} - \lambda_{k}^{2} = -s^{2} (\gamma - 1) \kappa n e^{-s\tau}$$

$$s^2 - \lambda_k^2 = -s^2(\gamma - 1)\kappa ne^{-s\tau}$$

system under study

Helmholtz Equation

$$s^{2}\hat{p} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{p}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{p}} = s(\gamma - 1)\hat{q}$$

$$s^2 - \lambda_k^2 = -s^2(\gamma - 1)\kappa n e^{-s\tau}$$

system under study

Helmholtz Equation

$$s^{2}\hat{p} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{p}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{p}} = s(\gamma - 1)\hat{q}$$

$$s^2 - \lambda_k^2 = -s^2(\gamma - 1)\kappa ne^{-s\tau}$$

system under study

Helmholtz Equation

$$s^{2}\hat{p} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{p}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{p}} = s(\gamma - 1)\hat{q}$$

$$s^2 - \lambda_k^2 = -s^2(\gamma - 1)\kappa ne^{-s\tau}$$

system under study

Helmholtz Equation

$$s^{2}\hat{p} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{p}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{p}} = s(\gamma - 1)\hat{q}$$

$$s^2 - \lambda_k^2 = -s^2(\gamma - 1)\kappa ne^{-s\tau}$$

system under study

Helmholtz Equation

$$s^{2}\hat{p} - \underbrace{\frac{\partial}{\partial x_{i}} \left(\bar{c}^{2} \frac{\partial \hat{p}}{\partial x_{i}}\right)}_{\mathcal{L}\hat{p}} = s(\gamma - 1)\hat{q}$$

$$s^2 - \lambda_k^2 = -s^2(\gamma - 1)\kappa ne^{-s\tau}$$

