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Even if LNSE or the Helmholtz equation are expressed in a state-space

framework, they remain computationally expensive.

Linearized Navier Stokes Equations
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How to model systems that are complex in frameworks that are easy for
computation?



Let us take a look at reduced order models



T " Solving the Helmholtz Equation by modal expansion

T And the state space?

T About a one mode expansion



The Helmholtz Equation is treated as the reference model to approximate
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Helmholtz Equation Boundary Conditions
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The Helmholtz Equation is treated as the reference model to approximate
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An auxiliary problem is required for the approximation
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The solution is given in terms of a Green’s function G
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Let us solve the Auxiliary problem !
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In the Helmholtz Equation, the matrix L gathers all the information of the system

operator matrix vector
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In the Helmholtz Equation, the matrix L gathers all the information of the system
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The auxiliary problem can be defined with ideal BC -> Self-adjoint Operator
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The auxiliary problem can be defined with ideal BC -> Self-adjoint Operator
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The auxiliary problem can be defined with ideal BC -> Self-adjoint Operator

Because L IS

self-adjoint

eigenmodes t transposed I, \I/H
eigenmodes T and ¥ 7T are orthogonal
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After discretization of
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We assume that (& is a superposition of passive acoustic modes
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We assume that (& is a superposition of passive acoustic modes




We exploit now the orthogonality (orthonormality) of the eigenmodes
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We exploit now the orthogonality (orthonormality) of the eigenmodes
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We exploit now the orthogonality (orthonormality) of the eigenmodes




By doing some linear algebra we have solved the Equation!!
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The solution of the Helmholtz equation reads
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what about the state space approach?
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T Solving the Helmholtz Equation by modal expansion

T About a one mode expansion



We can recover a differential equation for 7]




We can recover a differential equation for 7]

The dynamics of 7] is governed by

— An = 0§



We can recover a differential equation for 7]

The dynamics of 7] is governed by

n=uv
n—An=9"6 = H=An+ TS
!

state vector



We can recover a differential equation for 7]

The dynamics of 7] is governed by
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These Equations are
the first step towards
the state space
representation
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Does |
makes to consider only one mode in the expansion?

Yes!
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T Solving the Helmholtz Equation by modal expansion

T And the state space?




Let us assume homogeneous Neumann BC (no flux)

Consider only one mode in the approximation
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Let us assume homogeneous Neumann BC (no flux)
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The entire PDE has been reduced to a simple algebraic equation !
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For the case Iinvestigated, the agreement of the two approaches is remarkable

system under study
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For the case Iinvestigated, the agreement of the two approaches is remarkable

Helmholtz Eq. T =4ms

system under study

o] I W2
1 o
w0 i
~—
§= .
S -500
N——"
S o0l
8 = =
& o
1500 | o “ T8
I I I |°
< < @f’
-2000 ' ' ‘ ' '
0 500 1000 1500 2000 2500
w (rad/s)

Helmholtz Equation

A
°

o ([ ., 0p
2~ 2 _ _
S°p i(c Z.)—5(7 1)g

.

V

Lp
Algebraic Equation

52—\ = —s%(y — 1)kne 7

TuTl .



For the case Iinvestigated, the agreement of the two approaches is remarkable

system under study Helmholtz Eq. T =4ms
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For the case Iinvestigated, the agreement of the two approaches is remarkable
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For the case Iinvestigated, the agreement of the two approaches is remarkable
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