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And what if we want to apply different models for different parts?



A proper network model should be able to integrate information coming from

different kind of models and external data
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T " From the Navier-Stokes equations to the acoustic jump conditions

T From primitive variables to acoustic invariants (waves)

T The state space approach



Jump conditions In a duct with changes In area, temperature and including the

flame response can be done via conservation equations

From the previous lecture recall that
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By assuming a low-Mach number flow, neglecting viscous terms and linearizing, we obtain
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Jump conditions In a duct with changes In area, temperature and including the

flame response can be done via conservation equations

By assuming a low-Mach number flow, neglecting viscous terms and linearizing, we obtain
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Consider now a quasi-1D flow. The above equations become
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Jump conditions In a duct with changes In area, temperature and including the

flame response can be done via conservation equations
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Jump conditions In a duct with changes In area, temperature and including the

flame response can be done via conservation equations

Finally we integrated in x the quasi-1D equations
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Jump conditions In a duct with changes In area, temperature and including the

flame response can be done via conservation equations

Finally we integrated in x the quasi-1D equations
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Note that we have neglected viscous terms. Their effect can be brought back by

adding some terms in the derived relations

Finally we integrated in x the quasi-1D equations

u, d
0 ‘ / d
— ou dr = — B 5
8t . '0 [p]u | Ad
d d Uy (V|
a O 1
- / p'dx + [au’]i — S - )/ ¢ adx
/yp at u "}/p 1
Applying the compact assumption and considering []’ — ﬂest
Dqd = Pu + E For today afternoon
. . —1) =
aAqUuq + AuUy = 9 - )Q
TP




]L From the Navier-Stokes equations to the acoustic jump conditions

| From primitive variables to acoustic invariants (waves)

T The state space approach



At this point it is of great interest to introduce the definition of acoustic waves
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At this point it is of great interest to introduce the definition of acoustic waves
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The relation of upstream and downstream waves Iin a duct is straightforward
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All elements of the system can be concatenated to form an unique matrix
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All elements of the system can be concatenated to form an unique matrix
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All elements of the system can be concatenated to form an unique matrix

" fout _ Ti1(s) Ti2(8)| | fin
Gous|  |T21(8) T22(5)] |Gin.
—_—
T(s)
| where
Plenum %c;lmbli)stlon
a moper
1 Flame T(S) = Ip2lriIpidlcipo




All elements of the system can be concatenated to form an unique matrix

" fout _ Ti1(s) Ti2(8)| | fin
Gous|  |T21(8) T22(5)] |Gin.
—_—
T(s)
| where
Plenum %%I;lbli)sglon
a
1 Flame T(S) = Ip2lriIpilcipo

with known reflection coefficients

Rin _ é R Jout

out —
gm fout
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All approaches so far result in a eigenvalue problem

Linearized Navier Stokes Equations
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All approaches so far result in a nonlinear eigenvalue problem

Linearized Navier Stokes Equations

Nonlinear eigenvalue problems present many difficulties:

- lterative approaches are needed. They may not always
converge
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All approaches so far result in a nonlinear eigenvalue problem

Linearized Navier Stokes Equations

Nonlinear eigenvalue problems present many difficulties:

- lterative approaches are needed. They may not always
converge.

- Usually, only one eigenvalue can be computed at a

Helmholtz E time

- There are eigenvalues that, due to their small basin of
attraction (associated with the iterative solver) cannot

be captured
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TuTl :



All approaches so far result in a eigenvalue problem

Linearized Navier Stokes Equations

Can we do better?
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All approaches so far result in a nonlinear eigenvalue problem

Linearized Navier Stokes Equations

Can we do better?

Helmholtz B Yes! By writing the obtained system of equations under a
state space formalism
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]L From the Navier-Stokes equations to the acoustic jump conditions

T From primitive variables to acoustic invariants (waves)




Each subsystem of the system can be expressed as a state-space model
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Each subsystem of the system can be expressed as a state-space model

system matrix
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Each subsystem of the system can be expressed as a state-space model
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Each subsystem of the system can be expressed as a state-space model
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We should think in ‘time’ for a representation in state-space

Example: acoustic propagation in a duct
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We should think in ‘time’ for a representation in state-space

Example: acoustic propagation in a duct
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We should think in ‘time’ for a representation in state-space

Example: Cross section Jump with Flame
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We should think in ‘time’ for a representation in state-space

Example: Cross section Jump with Flame
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We should think in ‘time’ for a representation in state-space

Example: Cross section Jump with Flame
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We should think in ‘time’ for a representation in state-space

Example: Cross section Jump with Flame
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The nonlinearity in here is due to the flame response
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Think in discrete time and a convolution Equation
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We should think in ‘time’ for a representation in state-space

Example: Cross section Jump with Flame
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We should think in ‘time’ for a representation in state-space

Example: Cross section Jump with Flame
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Each subsystem of the system can be expressed as a state-space model




Each subsystem of the system can be expressed as a state-space model
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A global expression can be obtained by combining the equations
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The system matrix A is constant!
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The system matrix A is constant!

Frequency domain

A — st =0b Ax = s




The system matrix A is constant! A linear eigenvalue problem can be obtained

Linear Eigenvalue Problem

Ax = s

Advantages:

- There are many efficient algorithms to solve a linear eigenvalue
problem

- It is possible to obtain without many difficulties ALL the eigenvalues of
the system in one shot!

- Finding or not finding an eigenvalue is not an issue anymore as
iterative solvers (and corresponding basin of attraction) do not apply



How to model systems that are complex in frameworks that are easy for
computation?

Let us take a look at reduced order models
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