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Can we model this?
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Let us start with the equations for compressible reactive flows!



From the Navier-Stokes equations to the LRF and LNSE
]L From the Navier-Stokes equations to the wave equation

T Recapitulating: What is the Helmholtz Equation good for?



Nothing but conservation of mass, momentum, energy and species
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Nothing but conservation of mass, momentum, energy and species
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Nothing but conservation of mass, momentum, energy and species
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Nothing but conservation of mass, momentum, energy and species
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Now linearization of equations is performed. Why? because we want to evaluate

instability

We want a system that can be writtenas Ax = (

Thereforewe do [| =[] + [’
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Now linearization of equations is performed. Why? because we want to evaluate

instability

We want a system that can be writtenas Ax = (
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Now linearization of equations is performed. Why? because we want to evaluate

instability

This equations are known as the Linearized Reactive Flow (LRF) equations
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The LRF equations still have to probe their utility in turbulent flows

This equations are known as the Linearized Reactive Flow (LRF) equations
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The LNSE equations are simplified LRF equations

This equations are known as the Linearized Navier Stokes (LNSE) equations
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The LNSE equations can capture the coupling of acoustics with the flame

response in addition to the coupling with vortical and entropy waves

This equations are known as the Linearized Navier Stokes (LNSE) equations
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The LNSE equations can capture the coupling of acoustics with the flame

response in addition to the coupling with vortical and entropy waves

This equations are known as the Linearized Navier Stokes (LNSE) equations
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Obtaining and interpreting the solution of the LNSE equations is not straight

forward.

This equations are known as the Linearized Navier Stokes (LNSE) equations
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What is the actual state of the art?
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The coupling between the flame response and the acoustics of the system is the

most investigated mechanism in thermoacoustics

What is the actual state of the art?

acoustic waves acoustic waves
» Flame

System <

In order to capture the essence of this mechanism, we should consider the information
given by the conservation of mass, momentum
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The coupling between the flame response and the acoustics of the system is the

most investigated mechanism in thermoacoustics

In order to capture the essence of this mechanism, we should consider the information
given by the conservation of mass, momentum and energy. However, the acoustic
pressure is the only one variable of interest.
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P >
. { Ideal gas + /
Mathematic > D
/ .
S d tricks
p’ g




T From the Navier-Stokes equations to the LRF and LNSE

" From the Navier-Stokes equations to the wave equation

T Recapitulating: What is the Helmholtz Equation good for?



Combine Eq. of state and 1st-2nd law of Thermodynamics
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Combine Eq. of state and 1st-2nd law of Thermodynamics
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Combine Eq. of state and 1st-2nd law of Thermodynamics
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Combine Eq. of mass and energy with Eq. 4
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Combine Eq. of mass and energy with Eq. 4

Mass IO Dt : amj

momentum 0 = |

Dt 0x;
Ds
energy T | — g
P Dy q
Eq. 4 1 Ds 1L Dp |1 Dp 1 Dp Ou;
I— m— pTCp } — q
c, Dt | vp Dt | p Dt vp Dt Ox;




So far we have reduced the entire system to two equations
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- Mass conservation
- Energy conservation
- ideal gas

annoying
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Invent a new variable call /[ : a pure mathematical trick

- Energy conservation |
- ideal gas vp Dt Ox;

annoying

- Mass conservation 1 Dp ou,; ,
plcy — 4




Invent a new variable call /[ : a pure mathematical trick
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Invent a new variable call /[ : a pure mathematical trick
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Invent a new variable call /[ : a pure mathematical trick

momentum pDui — 8p |

Dt Or; Oz,

= Dt:_c&p'

- Mass conservation | D O
- Energy conservation ol'c 1 Dp | Ou; = ( = pTCp : :q
- ideal gas P\ ~vp Dt = Ox; Dt 0x;



The second assumption is now introduced

We assume a low-Mach number flow, so that D /Dt =~ 0 /0t
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The second assumption is now introduced

We assume a low-Mach number flow, so that D /Dt =~ 0 /0t
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Finally we apply the classical trick for the wave equation to be obtained
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Finally we apply the classical trick for the wave equation to be obtained
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Finally we apply the classical trick for the wave equation to be obtained
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Very few assumptions have been made so far

So far we have:

T Assumed ideal gas
]L Assumed low-Mach number flow

T Assumed viscous terms to be negligible

We have not yet linearized. We will do that now =
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A wave equation for reacting flows in time and frequency domain is obtained

Wave Equation (time domain)
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A wave equation for reacting flows in time and frequency domain is obtained
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The Helmhotz Equation + Flame response = nonlinear Eigenvalue problem
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The Helmhotz Equation + Flame response = nonlinear Eigenvalue problem
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T From the Navier-Stokes equations to the LRF and LNSE

]L From the Navier-Stokes equations to the wave equation

Recapitulating: What is the Helmholtz Equation good for?
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The linearized Navier Stokes equations should be capable of modeling this
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The LNSE equations can capture the coupling of acoustics with the flame

response in addition to the coupling with vortical and entropy waves

These equations are known as the Linearized Navier Stokes (LNSE) equations
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The Helmholtz Equation should be capable of modeling only part of this
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The Helmholtz Equation can only model the interaction between the flame and

acoustics

This equation is known as the Helmholtz equation
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The influence of vortical waves is usually included in the flame response

This equation is known as the Helmholtz equation
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The energy conversion mechanism (entropy-acoustic) can be modeled by a

transfer function as done by Motheau et al. 2014

This equation is known as the Helmholtz equation
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