Generalities of thermoacoustic instabilities

Camilo F. Silva

April 27, 2022

Technische Universität München • Professur für Thermofluiddynamik

Walking in the jungle: getting to know your combustion system

Example of stability map for two operating parameters

Equivalence ratio

- \star acoustic pulsation
- adequate operation \bigcirc

Strong oscillations in some physical quantities make some operating conditions non-viable

Walking in the jungle: getting to know your combustion system

Example of stability map for two operating parameters

Equivalence ratio

 \star acoustic pulsation

adequate operation \bigcirc

After an experimental campaign a stability map can be constructed (with a lot of empty spaces -> usually there are tens of operating parameters to consider!)

Example of stability map for two operating parameters

Equivalence ratio

 \star acoustic pulsation

adequate operation

Thermoacoustic instabilities in gas turbines imped the development of lowemission, fuel-flexible, reliable engines for power generation and propulsion

Modern gas turbines are prone to thermoacoustic instabilities!

Low noise

High flexibility in operation

Lean combustion (low equivalence ratio)

These systems are prone to combustion instabilities

Undesired pulsations is the monster in the jungle: you 'never' know how and when it will appear

After an experimental campaign a stability map can be constructed (with a lot of empty spaces -> usually there are tens of operating parameters to consider!)

Example of stability map for two operating parameters

Equivalence ratio

 \star acoustic pulsation

adequate operation

Walking in the jungle: let us walk in zic zac!

Example of a stability map for two operating parameters

Equivalence ratio

Thermal Power

 \star acoustic pulsation

adequate operation \bigcirc

What if thermoacoustic instabilities cannot be avoided?

Well ... we have to understand them if we want to 'kill' them

In combustion chambers of gas turbines, thermoacoustic instabilities are mainly generated by three mechanisms.

1. Heat release and acoustic coupling

Understanding complexity from simplicity

Aeronautical combustion chamber

Rijke tube

Stability criterion: The vibration is encouraged if heat be given to the air at the moment of greatest condensation [compression] (Rayleigh, 1878)

In combustion chambers of gas turbines, thermoacoustic instabilities are mainly generated by three mechanisms.

1. Heat release and acoustic coupling

2. Entropy waves and acoustic coupling

Part of the energy carried by entropy waves is transformed into acoustic energy in regions of non-uniform mean flow

Temperature fluctuations

Pressure fluctuations

In combustion chambers of gas turbines, thermoacoustic instabilities are mainly generated by three mechanisms.

1. Heat release and acoustic coupling

2. Entropy waves and acoustic coupling

3. Vortical waves and acoustic coupling

Hydrodynamic instabilities do not need acoustics to exist. However, they can couple with acoustics making the global feedback loop unstable

Sattelmayer (1997)

We have possible explanations for the observed instabilities

Can we model them?

Outline

Lecture 1: About the wave equation for reacting flows

From the Navier-Stokes equations to the LRF and LNSE From the Navier-Stokes equations to the wave equation Recapitulating: What is the Helmholtz Equation good for?

Lecture 2: Generalities of thermoacoustic network models + From the Navier-Stokes equations to the acoustic jump conditions From primitive variables to acoustic invariants (waves) The state space approach

Lecture 3: The Galerkin approach to 'reduce' models in thermoacoustics

Solving the Helmholtz Equation by modal expansion

And the state space?

About a one mode expansion

