Computational aeroacoustics: sound sources and propagation

Sophie Le Bras¹

¹ Siemens Industry Software NV sophie.le_bras@siemens.com

POLKA Network Week 3, Leuven, Belgium $25^{\rm th}$ October 2021

Introduction

Aeroacoustics: study of the generation and propagation of sound in moving fluids

Sound generation

- Turbulent flows
- Aerodynamic forces on surfaces

Sound propagation

- Convection and refraction effects due to the flow
- Also accounting for surface scattering effects

イロト イボト イヨト イヨト

Monopole source pulsating at 5 Hz

Introduction

A few orders of magnitude

Introduction

Sound propagation over long distances

Adapted from Wilson et al., 2015

E

Objectives of this lecture

- Focus on the predictions of sound produced by turbulent flows
- How to tackle aeroacoustic problems using numerical methods?
- Challenges and practical applications

Outline

Introduction

- Examples of aeroacoustic applications
 - Wind turbine noise
 - Aircraft noise
- Sound generation and propagation in turbulent flows
 - Modelling turbulence
 - Direct Noise Computations: main challenges & methods

<ロ> (四) (四) (三) (三) (三) (三)

- Hybrid approaches
 - Acoustic analogies
 - Wave extrapolation methods
- Conclusions

Wind turbine noise

Main sources of sound

- Mechanical noise: nacelle (gear box)
- Aerodynamic noise: blades

Many sound sources can be reduced with a good blade design

www.siemensgamesa.com

https://en.wikipedia.org/wiki/Strata_SE1.com

www.siemens.com

Wind turbine noise

Multiple aerodynamic sources of sound

- Low frequency noise: emitted by the blade when it encounters a change in wind speed due to the presence of the tower and wind shear
- Turbulent inflow noise: turbulent eddies of the atmospheric boundary layer interacting with the blade
- Blade self-noise: due to the interaction of the airfoil with the turbulence that develops within its boundary layer and wake

Oerlemans et al. (2007)

Flow conditions producing blade self-noise Brooks et al. (1989)

Aircraft noise

Multiple sound sources

• Depend on the flight conditions

 Main sound sources for conventional medium-range commercial aircraft:

Source: https://www.rolls-royce.com

Turbofan engine noise

Multiple noise sources fan - compressor -

combustor - turbine - jet

Source: Sjoerd W. Rienstra's web page (www.win.tue.nl/ sjoerdr/)

Different nature

- Tonal noise (periodic phenomena)
- Broadband noise (turbulence)

Dual stream turbofan Source: ENOVAL project report

イロト イヨト イヨト イヨト

э

Lighthill's equation

Exact combination of the compressible Navier-Stokes equations (Lighthill, 1952)

$$rac{\partial^2
ho'}{\partial t^2} - c_\infty^2
abla^2
ho' = rac{\partial^2 T_{i,j}}{\partial x_i x_j}$$

 \rightarrow Sound propagation modeled by the standard sound wave equation

- \rightarrow Lighthill stress tensor $T_{i,j} =
 ho u_i u_j + (p' c_{\infty}^2
 ho') au_{i,j}$
 - $\rho u_i u_j$: Reynolds stresses non-linear effects \rightarrow turbulent flows
 - $p' c_\infty^2
 ho'$: non-isentropic effects ightarrow unsteady heat source (combustion)
 - $\tau_{i,j}$ describes viscosity effects (often negligible)

Jet

Sheared flow:

- Jet diameter D
- Flow speed uj
- Fluid viscosity ν
- Speed of sound *c_j*

Jet noise $\propto u_j^8$

Sound source mechanisms (for subsonic flows) related to the dynamics of the turbulent structures

- Coherent structures Low-frequency noise in the jet direction
- Fine-scale turbulence

Broadband noise component

Subsonic jet at $Re_D = 5500$. Liepmann and Gharib (1992)

Jet

Sheared flow:

- Jet diameter D
- Flow speed *u_j*
- Flow viscosity ν
- Speed of sound c_j

Sound source mechanisms (for subsonic flows) related to the dynamics of the turbulent structures

Jet noise $\propto u_j^8$

Reynolds number $Re_D = \frac{u_j D}{\nu} = \frac{D^2/\nu}{D/u_j} = \frac{\text{viscous time}}{\text{convective time}}$

Turbulence develops for $Re_D \gg 1$

Subsonic jet at $Re_D = 5500$. Liepmann and Gharib (1992)

Subsonic jets at $Re_D = 2500$ (top) and $Re_D = 10^4$ (bottom). Dimotakis et al. 1983

Example of isothermal subsonic jet simulation

Broadband sound spectra

 Often 2 to 3 orders of magnitude between the smallest and the largest acoustic wavelengths

Need to account for realistic flow conditions

- Jet nozzle
 - turbulence levels at the nozzle exit
 - geometry details (chevrons, central core)
- Installation effects
 - proximity to the wing
- Sound field predictions in the far-field region
 - sound travels over large distances

Subsonic jet at $Re_D = 5.7 \times 10^5$ from LES Instantaneous vorticity field near jet nozzle for different turbulent inflow conditions Source: Le Bras (2016)

Source: Williamschen et al. (2017)

Sound generation & propagation in turbulent flows

Large disparity of scales

- Variety of spatial scales:
 - Different turbulent scales
 - ${\scriptstyle \bullet}\,$ Acoustic wavelengths \gg characteristic size of turbulent structures
- Variety of time scales
 - Broadband acoustic field
 - Low frequency noise: long physical times to be simulated
- Variety of magnitude orders:
 - Acoustic perturbations \ll hydrodynamic perturbations (4 orders of magnitude!)

<ロ> (四) (四) (三) (三) (三) (三)

Sound generation & propagation in turbulent flows

Large disparity of scales

- Variety of spatial scales:
 - Different turbulent scales
 - ${\scriptstyle \bullet}\,$ Acoustic wavelengths \gg characteristic size of turbulent structures
- Variety of time scales
 - Broadband acoustic field
 - Low frequency noise: long physical times to be simulated
- Variety of magnitude orders:
 - Acoustic perturbations \ll hydrodynamic perturbations (4 orders of magnitude!)

Resolution cost?

Need to identify characteristic scales!

Modelling turbulence

Large variety of spatial scales to model

- Large turbulent scales L_s
- Kolmogorov turbulent scale I_{η} (smallest scales)
- Balance between production/dissipation:

$$ightarrow rac{L_s}{l_\eta} = Re_{L_s}^{3/4}
ightarrow$$
 estimation of l_η

Turbulence energy spectrum

Contraction of the second seco

A.N. Kolmogorov (1903-1987) Source: Chaumont et al. (2007)

Scales in turbulent region

- Large turbulent scales L_s and smallest ones I_η
- Reynolds number $Re_{L_s} = u_s L_s / \nu$
- Size of the source region Δs
- Flow speed u_s
- Characteristic time $T_s = L_s/u_s$

Scales in acoustic region

- Frequency $f \rightarrow$ acoustic wavelength λ_a
- Speed of sound c_∞ , flow speed u_∞
- Mach number $M = u_\infty/c_\infty$

・ロト ・日ト ・ヨト ・ヨト

Scales in turbulent region

- Large turbulent scales L_s and smallest ones I_η
- Reynolds number $Re_{L_s} = u_s L_s / \nu$
- Size of the source region Δs
- Flow speed u_s
- Characteristic time $T_s = L_s/u_s$

Scales in acoustic region

- Frequency $f \rightarrow$ acoustic wavelength λ_a
- Speed of sound c_∞ , flow speed u_∞
- Mach number $M = u_\infty/c_\infty$

Ratios between scales

- Strouhal number $St = f\Delta_s/u_{\infty}$
- $\frac{\lambda_a}{\Delta_s} = \frac{c_{\infty}}{f} \frac{u_{\infty}}{u_{\infty} \Delta_s} = \frac{1}{M \operatorname{St}}$ (compact source as $M \to 0$)

• Acoustic Mach number $M_a = u_s/c_\infty$

イロン イヨン イヨン トヨ

Now that we have defined the physics, let's look at the numerics!

Now that we have defined the physics, let's look at the numerics!

- Size of the domain $\propto \Delta_s$ and λ_a
- Mesh size $\Delta x \simeq I_{\eta}$
- Time step $\Delta t \propto \Delta x/c_\infty$

$$\begin{array}{lll} \displaystyle \frac{\Delta_s + \lambda_a}{l_\eta} & \propto & \displaystyle \frac{L_s + \lambda_a}{l_\eta} \\ & \propto & \displaystyle \frac{L_s}{l_\eta} \left(1 + \displaystyle \frac{1}{M_a \ {\rm St}_s}\right) \\ & \propto & \displaystyle \mathcal{R}e_{L_s}^{3/4} \left(1 + \displaystyle \frac{1}{M_a}\right) \end{array}$$

<ロ> (四) (四) (三) (三) (三) (三)

Now that we have defined the physics, let's look at the numerics!

- Size of the domain $\propto \Delta_{s}$ and λ_{a}
- Mesh size $\Delta x \simeq I_{\eta}$
- Time step $\Delta t \propto \Delta x/c_\infty$

- Computational cost in 1-D
 - Number of grid points $n_x \propto \frac{\Delta_s + \lambda_a}{l_{\eta}} \propto Re_{L_s}^{3/4} \left(1 + \frac{1}{M_a}\right)$ • Number of time steps $n_t \propto T_s/\Delta_t \propto Re_{L_s}^{3/4} \frac{1}{M_a}$

Drastic numerical requirements as $Re_{L_s} \nearrow$ and as $M_a \searrow$

Numerical requirements for direct noise computations

Direct Noise Computation (DNC)

Acoustic field directly computed from the fluid mechanics equations

Requirements for DNC

- Low dissipative and low dispersive numerical schemes
 - To resolve the small turbulent structures
 - To propagate sound waves over long distances $(u'_{\rm acoustic} \sim 10^{-4} u'_{\rm iet})$
- Non-reflecting boundary conditions
- Smart meshing techniques

Main DNC techniques

- Approaches based on the compressible Navier-Stokes equations
 - DNS, LES, DES, U-RANS, …
- Methods based on the Lattice Bolzmann Method (LBM)

• ...

Direct Noise Computation: from compressible Navier-Stokes equations

Direct Numerical Simulation (DNS)

All the scales of the turbulence are resolved. Mesh must be fine up to the Kolmogorov length scale

cost in 3-D:
$$n_{1\mathrm{D}}^3 \times n_t \propto Re_{L_s}^3 \left(1 + \frac{1}{M_a}\right)^3 \frac{1}{M_a}$$

 \rightarrow with Reynolds numbers of interest typically in the range of 10^5 and $10^7!$

イロト イボト イヨト イヨト

Direct Noise Computation: from compressible Navier-Stokes equations

Direct Numerical Simulation (DNS)

All the scales of the turbulence are resolved. Mesh must be fine up to the Kolmogorov length scale

cost in 3-D:
$$n_{1\mathrm{D}}^3 \times n_t \propto Re_{L_s}^3 \left(1 + \frac{1}{M_a}\right)^3 \frac{1}{M_a}$$

• Large Eddy Simulation (LES)

Only the large scales are resolved (spatial filtering of Navier-Stokes equations) Effects of the smallest ones are modeled

イロト イポト イヨト イヨト

Direct Noise Computation: from compressible Navier-Stokes equations

Direct Numerical Simulation (DNS)

All the scales of the turbulence are resolved. Mesh must be fine up to the Kolmogorov length scale

cost in 3-D:
$$n_{1\mathrm{D}}^3 \times n_t \propto Re_{L_s}^3 \left(1 + \frac{1}{M_a}\right)^3 \frac{1}{M_a}$$

• Large Eddy Simulation (LES)

Only the large scales are resolved (spatial filtering of Navier-Stokes equations) Effects of the smallest ones are modeled

Unsteady Reynolds-Averaged Navier-Stokes (RANS)

イロト イボト イヨト イヨト

Direct Noise Computation: DNS

Direct Numerical Simulation (DNS)

All the scales of the turbulence are resolved. Mesh must be fine up to the Kolmogorov length scale

cost in 3-D:
$$n_{1\mathrm{D}}^3 \times n_t \propto Re_{L_s}^3 \left(1 + \frac{1}{M_a}\right)^3 \frac{1}{M_a}$$

Large Eddy Simulation (LES)

Only the large scales are resolved (spatial filtering of Navier-Stokes equations) Effects of the smallest ones are modeled

Unsteady Reynolds-Averaged Navier-Stokes (RANS)

Question: do we always need to perform a DNS?

イロト イボト イヨト イヨト

Direct Noise Computations

Direct Numerical Simulation of a controlled-diffusion airfoil (Deuse and Sandberg, 2020)

- M=0.4 and chord-based $Re_c = 10^5$
- High-order finite-difference code
- $\bullet~\mbox{Mesh}$ of $402\times10^6~\mbox{points}$

Instantaneous field of dilatation rate fluctuations and entropy contours.

Source: Deuse and Sandberg (2020) $\langle \Box \rangle$ $\langle \Box \rangle$

The good thing about Direct Noise Computations (DNC)

 \rightarrow Only one simulation needed to compute sound field at observer position

However, DNC (DNS, LES) mainly used for academic reference solutions

Very difficult to apply for large-scale aeroacoustic problems commonly found in industry and flows at high-Reynolds numbers

イロト イポト イヨト 一日

30 / 58

Alternative: hybrid methods

- Limit the application of DNC to the source region
- Ise simplified numerical approaches elsewhere

Characteristic regions: source region is localized!

Sound propagation with flow

Several acoustic operators exist to propagate sound in flow

Question: How to select the appropriate operator?

In many situations, propagation is linear

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

36 / 58

Other propagation methods

- Euler's equations
- High frequency methods: e.g. ray-tracing

• ...

Application of linear acoustic operators: monopole source in flow

Uniform flow in direction x at M = 0.6

Real part of the acoustic pressure

Sheared flow in direction x at M = 0.6

Real part of the acoustic pressure

Discussed in next talk about Sound propagation in non-reacting flows.

37 / 58

÷.,

Hybrid methods

<ロト < 部ト < 言ト < 言ト こ の Q () 38 / 58

Hybrid method: Acoustic analogy

Hybrid methods: Acoustic analogy

Acoustic analogy: a two-step method

- base flow + source terms
- oppagation step
- \rightarrow Weak coupling : no acoustic feedback on source region
- \rightarrow computation of inputs for source terms is key!
- \rightarrow interpolation source terms (and mean flow) on acoustic mesh is key!

Hybrid methods: Acoustic analogy

Turbulent flow region without solid surfaces

- Lighthill's analogy (1952) (medium at rest)
- Howe's analogy (1975) Vortex sound theory
- Goldstein's analogy (2003) (based on LEE)

Turbulent flow region with solid surfaces

- Curle's analogy (1955) (solid surfaces)
- Ffowcs Williams & Hawkings' analogy (1969) (moving solid surfaces)

Ffowcs Williams and Hawkings (1969)

Integral formulation based on exact recombination of Navier-Stokes equations

Solution at observer:

h

$$\begin{aligned} p'(x,t) &= \underbrace{\frac{1}{4\pi c_{\infty}^{2}} \frac{\partial}{\partial t} \int_{\Gamma_{\rm FWH}} \frac{Q_{i}(y,t-\frac{r}{c_{\infty}})}{r|1-M_{r}|}}_{\text{monopole mass source}} \mathrm{d}\Gamma \\ &+ \underbrace{\frac{1}{4\pi c_{\infty}^{2}} \frac{\partial}{\partial x_{i}} \int_{\Gamma_{\rm FWH}} \frac{L_{ij}(y,t-\frac{r}{c_{\infty}})}{r|1-M_{r}|}}_{\text{dipole loading noise}} \mathrm{d}\Gamma \\ &+ \underbrace{\frac{1}{4\pi c_{\infty}^{2}} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \int_{\Omega(f>0)} \frac{T_{ij}(y,t-\frac{r}{c_{\infty}})}{r|1-M_{r}|}}_{\text{quadrupole}} \mathrm{d}y} \end{aligned}$$

 ・ ・ 一戸 ・ ・ 三 ・ ・ 三 ・ うへで
 43 / 58
 43

Integral formulation based on exact recombination of Navier-Stokes equations

Solution at observer:

$$\rho'(x,t) = \underbrace{\frac{1}{4\pi c_{\infty}^{2}} \frac{\partial}{\partial t} \int_{\Gamma_{\rm FWH}} \frac{Q_{j}(y,t-\frac{r}{c_{\infty}})}{r|1-M_{r}|}}{\text{monopole mass source}} d\Gamma$$

$$+ \underbrace{\frac{1}{4\pi c_{\infty}^{2}} \frac{\partial}{\partial x_{i}} \int_{\Gamma_{\rm FWH}} \frac{L_{ij}(y,t-\frac{r}{c_{\infty}})}{r|1-M_{r}|}}{\text{dipole loading noise}} d\Gamma$$

$$+ \underbrace{\frac{1}{4\pi c_{\infty}^{2}} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \int_{\Omega(f>0)} \frac{T_{ij}(y,t-\frac{r}{c_{\infty}})}{r|1-M_{r}|}}{\text{dy}} dy$$

$$\underbrace{\text{quadrupole}}$$

Example of a rod-airfoil problem

DNC performed in the sound source region

• (Observer
(
	in the second se
	'

Example of a rod-airfoil problem

 $\ensuremath{\mathsf{DNC}}$ performed in the sound source region

Immobile rigid surfaces \rightarrow thickness noise = 0

Dipolar contribution on solid surfaces

Quadrupolar contribution in the volume

Hybrid methods: Wave Extrapolation Methods (WEM)

Another strategy: source region encompassed by a permeable (fictitious) FW-H surface

Solution at observer:

$$\rho'(\mathbf{x}, t) = \underbrace{\frac{1}{4\pi c_{\infty}^2} \frac{\partial}{\partial t} \int_{\Gamma_{\rm FWH}} \frac{Q_j(y, t - \frac{r}{c_{\infty}})}{r|1 - M_r|}}{\text{monopole mass source}} d\Gamma$$

$$+ \underbrace{\frac{1}{4\pi c_{\infty}^2} \frac{\partial}{\partial x_i} \int_{\Gamma_{\rm FWH}} \frac{L_{ij}(y, t - \frac{r}{c_{\infty}})}{r|1 - M_r|}}{\text{dipole loading noise}} d\Gamma$$

$$+ \underbrace{\frac{1}{4\pi c_{\infty}^2} \frac{\partial^2}{\partial x_i \partial x_j} \int_{\Omega(f>0)} \frac{T_{ij}(y, t - \frac{r}{c_{\infty}})}{r|1 - M_r|}}_{\text{quadrupole term}} dy$$

 \rightarrow Quadrupole terms vanish if all sources are contained in the volume delimited by the surface \rightarrow Near-field acoustic data (ρ , p and u) recorded on surface Γ_{FWH}

Observer

F_{FW-H}

Hybrid methods: Wave Extrapolation Methods (WEM)

WEM: a two-step method

- base flow + sound field in near field region
- Propagation step

Integral formulation to extrapolate the sound field to the far-field region.

 \rightarrow Computation of near-field sound is key!

Well-known approaches

- Kirchhoff's formulation
- Ffowcs Williams & Hawkings formulation (permeable surfaces)

WEM: Ffowcs Williams & Hawkings (FW-H) formulation

Example of a rod-airfoil problem

Contributions on permeable FW-H surface

- From a Direct Noise Calculation in source region
- Density, pressure and Velocity data recorded on $\Gamma_{\mathrm FWH}$

Question: Where to define the permeable surface in practice?

- Sensitivity analysis
- Sound source truncature deserves some care

Example: hybrid simulation based on CFD inputs: jet noise

Jet flow characteristics

- Experiment (Cavalieri et al., 2012)
- Subsonic isothermal jet
- Mach number $M_a = u_j/c_\infty = 0.6$
- Reynolds number $Re_D = 5.7 \times 10^5$
- Far-field region at rest

Objective

Predict the sound field at 35 D from the jet nozzle using CFD+WEM

- LES simulation using high-order finite-volume approach (code elsA ONERA (Fosso et al., 2010))
- Sound field extrapolation to the far-field using FW-H

Example: hybrid simulation based on CFD inputs: jet noise

r/D physical domain r/D physical domain sponge zone + radiation condition -0.75 z/D 33 LES domain (Le Bras, 2016)

Step 1: LES simulation

Step 2: Far-field sound prediction using FW-H

- Mesh: 83 millions points
- 10^6 time iterations ightarrow $T=500D/c_{\infty}$

- FW-H surface at $r \simeq 2 D$
- LES data recorded on FW-H surface over $T_{\rm FWH} = 200 D/c_{\infty}$

イロト 不得 トイラト イラト 一日

Example: hybrid simulation based on CFD inputs: jet noise

- Mesh: 83 millions points
- 10^6 time iterations ightarrow $T=500 D/c_{\infty}$

Step 2: Far-field sound prediction using FW-H

イロト イポト イヨト イヨト

Wave Extrapolation Methods (WEM)

 \rightarrow In some situations, Direct Noise Calculations in a localized (small) region can still difficult to perform

- $\bullet~\mbox{Large computational domain} \to \mbox{high computational cost}$
- ${\scriptstyle \bullet}$ Low-order discretization schemes \rightarrow very fine mesh needed for accuracy
- $\bullet~$ Design stage $\rightarrow~$ many simulations to run

Question: When DNC is not feasible, what are the alternatives?

Alternatives to DNC to compute sound sources

Incompressible unsteady CFD approach

- Aeroadynamics but no acoustics
- Low Mach number flows
- Can help when low-order numerical discretization schemes in the CFD domain
- Can help when absence of non-reflecting boundary conditions

Approaches based on steady CFD

- RANS + stochastic approaches (SGNR, RPM, ...)
- RANS + statistical approaches (Amiet's theory)

Computational Cost - Resolved Physics

Direct Numerical Calculations (DNS,LES,DES,)

イロト 不得 トイラト イラト 一日

Summary: Numerical methods to compute aerodynamic noise

Computational Cost - Resolved Physics

Conclusions

Large variety of models available in computational aeroacoustics

• DNC well-suited to study academical problems at moderate Reynolds numbers

イロト イポト イヨト 一日

56 / 58

• For industrial large-scale problems, hybrid methods are more often applied

Good understanding of physical mechanisms is needed for:

- sound generation
- sound propagation

References I

- Bertsch, L., D. G. Simons and M. Snellen (2015). "Aircraft Noise: The major sources, modelling capabilities, and reduction possibilities". In:
- Brooks, T. F., D. S. Pope and M. A. Marcolini (1989). *Airfoil self-noise and prediction*. Vol. 1218. National Aeronautics and Space Administration, Office of Management ...
- Cavalieri, A. V. et al. (2012). "Axisymmetric superdirectivity in subsonic jets". In: Journal of fluid Mechanics 704, pp. 388–420.
- Chaumont, L., L. Mazliak and M. Yor (2007). "Some aspects of the probabilistic work". In: Kolmogorov's heritage in mathematics. Springer, pp. 41–66.
- Deuse, M. and R. D. Sandberg (2020). "Different noise generation mechanisms of a controlled diffusion aerofoil and their dependence on Mach number". In: *Journal of Sound and Vibration* 476, p. 115317.
- Dimotakis, P. E., R. C. Miake-Lye and D. A. Papantoniou (1983). "Structure and dynamics of round turbulent jets". In: *The Physics of fluids* 26.11, pp. 3185–3192.
- Ffowcs Williams, J. and D. L. Hawkings (1969). "Sound generation by turbulence and surfaces in arbitrary motion". In: Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, pp. 321–342.
- Fosso, A. et al. (2010). "Curvilinear finite-volume schemes using high-order compact interpolation". In: *Journal of Computational Physics* 229.13, pp. 5090–5122.
- Le Bras, S. (2016). "Modélisation de paroi et traitement aux interfaces des maillages non conformes pour les simulations aéroacoustiques avec une approche numérique d'ordre élevé". PhD thesis. Ecole Centrale de Lyon.
- Liepmann, D. and M. Gharib (1992). "The role of streamwise vorticity in the near-field entrainment of round jets". In: *Journal of Fluid Mechanics* 245, pp. 643–668.

イロト 不得 トイラト イラト 一日

- Lighthill, M. J. (1952). "On sound generated aerodynamically I. General theory". In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 211.1107, pp. 564–587.
- Oerlemans, S., P. Sijtsma and B. M. López (2007). "Location and quantification of noise sources on a wind turbine". In: *Journal of sound and vibration* 299.4-5, pp. 869–883.
- Tam, C. K. (1998). "Jet noise: since 1952". In: Theoretical and Computational Fluid Dynamics 10.1, pp. 393–405.
- Williamschen, M., G. Gabard and H. Bériot (2017). "Diffraction of tonal noise by chevrons in a turbofan exhaust". In: 23rd AIAA/CEAS Aeroacoustics Conference.
- Wilson, D. K., C. L. Pettit and V. E. Ostashev (2015). Sound propagation in the atmospheric boundary layer. Acoustical Society of America.