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e Linearized conservation equations
e Linearized sources of sound
e Lighthill’s analogy
e Non-linear sources of sound
e Choice of the acoustical variable
e Solving the inhomogeneous wave propagation equation
e Green’s functions (free-field and tailored)
e Integral solution
e Duct acoustics
e Tailored Green’s functions for rectangular and circular ducts
e Curle’s analogy
e Compact and non-compact sources
e Acoustic energy

e Cycle-averaged integral form
e Applications: hard wall and Rijke’s tube
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Navier-Stokes equations =

e Continuity:

—

rate of change of
density moving with
the fluid particle

e Newton’s law:
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External body forces

Acceleration of the applied to the fluid
fluid particle particle

~
Dv W
— = —VII +f{

D! T~

External stresses applied to the fluid particle:
I1;; = pd;; — 0y
g Py X
A\

Hydrostatic pressure Viscous stresses

Dv

Dt

= —-Vp+V-o+f
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Linearization =
==
e Continuity and momentum equations:
0p Dv
e . p— m _— = — . f
atJrV (pv) = Q P oy Vp+V .o+

e Perturbations = deviations with respect to uniform and
stagnant fluid:

p=po+p
p=po+p
V:V,
e At first order:
0p’ ov’
O V.v = m =-Vp +V. .0 +f
8t+p0 vV =@ o=, p+V-o +
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e Eliminate v’ from the linearized conservation equations:

0 [ 0p
{ 4 +P0V'V’=Qm}

Wave propagation equation

ov’
—V'{po 8‘; I—Vp,+V'G,+f}

—V%’:?—t’””’—v-f—v-(v-a’)

e Introduce constitutive equation: p = p(p, s)

Op Op
I __ / I 2
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Sources of sound (linearized) ==

D’Alembertian
1 0%p/ 0?s’
2/ /
cg Ot ot
P
Fluctuating Entropy Non-uniform Fluctuating

mass injection fluctuations force field Viscous stresses
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In a non-linearized context: e
Lighthill’s aeroacoustical analogy

= N
-§vz
e The problem of sound produced by a
turbulent flow is, from the listener’s point of
view, analogous to a problem of propagation
in a uniform medium at rest in which

observer

Source in uniform
equivalent sources are placed. region i

e Wave propagation region: linear
wave operator applies

No source
82pl _C2 82pl :0/
ot? 0 0x?

e Turbulent region: non-linear fluid mechanics equations apply

S \o
propagation region

y uniform fluid at rest

continuity momentum
dp | Opv; 0 0pv; N dpviv;  Op N 00

ot | om ot | oz,  Ox | 0Oa,
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Lighthill’s analogy: formal =
derivation ==

0 [dp Opv;
8t{8t T oz _0}
0 [ 0Opy N 0pv;v; _ Op N 00
Ox; || Ot oz Ox;  Ox,
Op _ O (pviv; —0ij) | Op
o2 0z;x Ox?
Pp o Pp|_ 0 (pviv; — i) | O (pl=cir)
otz Y 0x? Oz Ox?
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Reference state =

e Reformulation of fluid mechanics equations:

O°p _ 2 p _ O (pvivj —0ij) | 0 (p—cip)
a2 0 9a? Oz dx?
e Definition of a reference state:
p=po+p
P =Dpo T+ pl observer
, source posmon
vV =V region

e Aeroacoustical analogy :
a2p/ ) 82 / aQTij
—C
o2 0 g2 8:197;8:133'

S .gpro agation region

uniform fluid at rest

1Ti; = pv;v; + (p' — Cg P’) 0ij — Tij

. Y
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Choice of the acoustic variable _g;ﬂ%—.

e Combining the mass and momentum equations yields:
@— O (pv;v 0)—|—82p
= 5 iVj — O ~
ot Oxx; ’ 7 Ox?
e From there, two choices are possible for the acoustic variable:
e Acoustical density perturbation:
0%y’ 02%p’ L 2 Isentropic
92 | C% 022 |~ Or.r. (pviv; — 0i5) + 922 (P’ — C%PI noise
L v ¢ generation

e Acoustical pressure perturbation:

|1 8210,! 0%p’ 0 1 9° — 5 ,, Combustion
% or) o] O (pvivy = i) + % o2 ‘ ; CO'O) noise
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Solving the wave equation —é\\v}
e General form of the wave equation:

82p! 1 82pl

55—V =ax1) 2o Vi = q(x,t)
e Homogeneous solution:

0°p/ 2 2 1 0%y

— 2V = — —V?%p =
gz V=0 2gp VP =Y

) acoustic field driven by initial and boundary conditions

e In frequency domain, at pulsation w: Helmholtz equation

Vip+k*p=0 P (x,t) = p(x) et
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Green’s function =

==
0°G "
e Wave equation: 53~ 0 VG =8(x—y)d(t—7) +BCs

e Free-field boundary conditions (Sommerfeld):

ot — 7 — |x —yl|/co)
drci|x —y)|

Go(x,tly,7) =

e Retarded (emission) time:
=t —|x—yl|/co

e Useful properties:
e Dirac function = convenient to obtain an integral solution
o Reciprocity: G(x,tly,7) = G(y, —7|x, 1)
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Integral solution of the wave eq. =
__—/ E__
(92[), § g
e Our problem to solve: v caV2p = q(x,1) =7
e Green’s function definition: °G 2 ) )
: Eroy — VG =8(x—y)d(t—71)

e ‘After some algebra’:

(x,t) //// q(y,7) G (x,tly,7) d’ydr
to

‘
o 90 ym)) 2
—c T n, d°ydr
’ /to / /av (p .7 8% dyi
Whatif — =07 J Q = —iwpeUn

8n

e Further simplifications:
e No solid surface in the propagation region, or

e Non-vibrating surfaces and tailored Green’s function
Integrating is good for health!

(x,1) / /// q(y,7) G (x,tly,7) d*ydr
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Tailored Green functions 0=

e In afew cases: analytical Green’s functions
e Infinite planes: image sources (semi-anechoic environment)
e Semi-infinite plane (trailing edge noise)
e Infinite straight ducts: rectangular, cylindrical, annular

e |n other cases: semi-analytical Green’s functions
e Compact (low-frequency) Green’s functions (Howe)
e Wiener-Hopf technique, Schwarzchild’s technique (TE-LE backscattering, Roger)
e Slowly-varying duct (Rienstra)

e In all other cases: numerical Green’s functions
e Low-frequency technigues
Finite Element Methods, Boundary Element Methods
e High-frequency techniques
Ray-tracing methods, Statistical Energy Analysis
e Mid-frequency techniques
Multigrid techniques, fast multipole BEM, ...
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Duct acoustics in frequency domain __g/fg%;__

Ty §v§
7\n
A <
>
p'(x,y, 2, t) = p(x,y, z) "

e Fourier decomposition: .
v(z,y,2)e

vi(z,y, 2, t)

e Homogeneous Helmholtz equation: VZp+k*p =0
with the wavenumber k= w/cq

e Neumann BCon 9dA : iwv+Vp=20
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0? 0° 07 =

2 _ 7 = o s
Rectangular duct v - o ToE T o 0=
Ay n -
TN
T a
i
9.A D [b 2

e Separation of variables: p(x,y,2) = F(x) G(y) H(z)
0*°F/0z* = —a*F
e PDE - setof ODEs: 9°G/0y* = —3°G + Neumann BCs
O°H/0z* = —(k* —o® — B H
F(z) = cos(anz), ap =nn/a, n=0,1,2, ...
G(y) = cos(Bmy), Bm =mm/b, m=0,1,2, ...
H(z) =70 | i = /B2 = a2 — 32

Re(knm)
Im (k)

o0 oo
@ p(x,y,z) = Z Z cos(anz) cos(Bmy) (Apm e *rm* + By, eTHmm?)

0
0

IN IV
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Cut-on vs. cut-off modes ==

Y =
,I\Il

X | \a
U s

A

A D

A
>

e General solution:

o o0

p(x,y,2) = Z Z cos(a,x) cos(Bmy) ( nm € E 4 By, e Tinm2)
n=0m=0
Re(knm) > 0
. 2 _ 2

e Mode wavenumber: k., = \/k az I (k) < 0

e Foragiven mode (n,m):

e Atlow frequencies - k? < 04721 + Bfn > Ky is negative imaginary > cut-off mode
evanescent

e At high frequencies - k2 > ozi + 6,3% > Knm s positive real - cut-on mode
propagative

e Planar mode (0,0): always propagative
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Circularduct v?=-—+ — + - + — =i
’ ror o 2002 922 ‘é\\v?
N =||2
N ,n
v
i o I
>
™ /
e Separation of variables: p(r,0,2) = F(z) G(r) H(0)
0*°H/00* = —m*H
e PDE - set of ODEs: 0°G/or* + (1/r) 0G /Or = (m?/r* — o) G
(+ NeumannBC@ r = R) 82F/822:(a2—k2)F
H)=e™ m=0, +1, +2, ...
G(r) =T (amur), m=1,2. ...
(r) .(a ur) s p Re(kyn,) > 0
F(Z) = T iFmuz 3 km,u — \/kZ - avznf_s Im(kmu) <0

where a;y,, is the y-th non-negative, non-trivial solution of J, (ay,,R) = 0
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Clicular duct v’=_—-+ -5+ 55+ =0
A —=\=
0

o e

oA

\A/ / \/kz —az,, Re(kmy.) 2 0
Im(ky,y,) <0
e General solution
p(r,0,z) Z Z Upp(r) (Amp e Tihmpz B et km“z) e imb
m=—0oc0 1
M= 1 2 , —1/2
Upnp (1) = Nopp I (@) Ny = 5 1 — " I (QmuR)
mp

e Evanescent vs. propagative modes (m,u): same as for rectangular duct
e Planar mode (0,0): always propagative

: 1
e First cut-on transversal mode (+1,1): kR =1.84 > f = 99.57 m/s 100 m/s

R R
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Circular duc
mode shap
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Curle’s analogy: when there’s no tailored Green
function available ==

82 pf B (.2 82 pf B @2T¢j
Ot2 Vox?2 T 00z,

e Lighthill’s aeroacoustical analogy:

o Integral solutlon usmg Green’s function

(x,t) Gd yd7  incident field
/ I] 5

dG C) ! : K
— ¢ / // ( p) n; d*y dr % éa%i ,o

scattered field

e Partial integration of source integral

t
' "'C)QTU 3 //// 02G
Gdydr = J dr
/ / / / Oyidy, 7 7 Dy,0y; ¢ Pydr
dpfu o Opf ) ( ) 8(}’} 9
G— | pvv; + () —Ep) 8 + 0y n; "y dr
/ /‘/a‘ {( T D d P J (p 0 ) J J dyj y

8(t — 7 — [x —yl|/co)
47?(%\)(—)!\

= o0 =g /] o Ll
X, 4’y — ‘ C
4 ~ Oz, dxj 47‘(0\)( —y| Y Ox; | Jov [4mc3|x —y] Y
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e Curle’s analogy: uses free field Green’s function Go(t,x|7,y) =




, : =
Curle’s analogy applied to compact sources é\@%}
e Sound generated by obstacle in flow
e Side mirror
e Antenna
e Sunroof spoiler
e HVAC vent grids

e Landing gear

e Acoustical compactness expressed by
Helmholtz number: He=2n fD / c,

e Flow unsteadiness expressed by
Strouhal number: Sr=fD /U= 0(0.1-1)

e Acoustical compactness depends on

Mach number: He=2nSrU/c,=2n Sr M e g@@@@ .

. oS P A ®

o He<<1: o 9%9 eoe
e Compact body, does not scatter its own sound field K % ©° O

e Neglecting scattering integral is not a significant error

25-29 October 2021 POLKA Scientific Workshop 22 /33



— =
‘X§

A popular formulation for many =
industrial applications I

e Curle’s formulation is quite powerful

e It enforces the correct radiation pattern of each source component:
quadru / PdeO ~ Mz
e Atlow Mach numbers, dipolar contribution dominates the quadrupolar
one for compact sources

e Surface scalar (p’) data are much less demanding in memory than
volumetric, tensorial (T;) data

e Surface mesh often available from design stage

/// [ ] 0 // [ p'n; ]d?y
C):r@d:rj \X—y\ a’liz' ov LIX =Yl

e BUT: tricky implementation for non-compact geometries...

dred pl(x,t)
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Flat plate boundary layer noise =0

S—_
==
e Interaction of turbulent boundary layer with an infinite flat

plate — can be resolved by two means:
e Curlée’s analogy

BRI SRR SRy
O 0 0O O o """*"""*

e Method of images: the effect of the infinite plane can be accounted for by
distributing image quadrupoles

RIS RS RS I T BT o BT
O 0 0O O O """*"""*

-t- -t- -\- -\'
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Flat surface: dipoles = reflection of the _|-

=
—

x

e Both solutions are equivalent = the dipoles represent the
reflection of the quadrupoles (actually, of their wall-normal
component only)

"'* * 5 =§=
'I--} 'l--]. $ £ BY & £ B

""8"8% gg - K- 38 g%.....g <E> ....................................................................................

e In this case, the dipoles have at most the same acoustic
efficiency as the wall-normal component of the quadrupoles
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Acoustical energy and intensity =0=

e From the linearized Navier-Stokes equations:

/ ’8/
o ”W'V,:Qm}
4 a /
+v' - < po 8‘; :—Vp’—I—V-o"—I—f}

_ acoustical intensity
acoustical energy
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CAUTION !!! =

e We deduced an equation for quadratic
functions of perturbation (E and |) from a
linear approximation

e These definitions of energy and intensity are
only valid in a uniform and stagnant fluid
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Steady harmonic oscillations ==

e Harmonic oscillations at pulsation w:

[ ] (2 w9 1) v
AR

) dtdV
e Acoustic power radiated over one cycle:

(P)://S(I-n)dS:///V<v’-f+p,§im>dv

12
e Control surface in acoustic far-field: (P) = // < b >dS
S

PoCo
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15t example: effect of hard wall g@%

kh <1 @Y ¢ = p,)+p. ~ 29, P =p;+p,
2
PoCo
1 L)
(P) ~ = (47r?[1]) =2 | 4717 (P) =2(FRy)
2 PoCo
source
h $
image O
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2"d example: Rijke tube

oy

L

31./4

L/2

L/4

A
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2"d example: Rijke tube

:BA

L
3L/4 | peanes

L/2

L/4
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Summary

=

e Assuming small amplitude acoustic perturbations, the equations of fluid motion
can be linearized and used to derive a wave equation for these perturbations.

e The relationship between the perturbations are given by the linearized momentum
equation and the linearized constitutive equation:

ov’ 9,
PO o7 = —Vyp' p=cip + i) I

s )
e The sources of the acoustic field can be due to

e Unsteady mass injection or entropy fluctuations > monopolar character.
e Non-uniform forces = dipolar character.
e Fluctuating viscous stresses or Reynolds stresses = quadrupolar character.

e Each of these sources has a different radiation efficiency in free field.

e Assuming a decoupling between the sound production and propagation, the
analogies provide an explicit integral solution for the acoustical field at the
listener position

e Improves numerical robustness
e Permits drawing scaling laws
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A few references éi:@%

e A. Pierce, Acoustics: an Introduction to its Physical Principles and

Applications,
McGraw-Hill Book Company Inc., New York, 1981.

e S.W.Rienstra and A. Hirschberg, An Introduction To Acoustics (corrections),
Report IWDE 01-03 May 2001, revision every year or so...

e M.E. Goldstein, Aeroacoustics, McGraw-Hill International Book Company,
1976.

e A.P. Dowling and J.E. Ffowcs Williams, Sound and Sources of Sound, Ellis
Horwood-Publishers, 1983.

e D.G. Crighton, A.P. Dowling, J.E. Ffowcs Williams, M. Heckl and F.G.
Leppington, Modern Methods in Analytical Acoustics, Springer-Verlag
London, 1992.

e And of course: the VKI Lecture Series...
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