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Purpose of uncertainty analysis

To present margins of error within which the data —
lies with a certain probability, for example the 95%

confidence interval. _
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Accuracy reflects how close a measurement is to a known or accepted value, while precision reflects how
reproducible measurements are, even if they are far from the accepted value. Measurements that are
both precise and accurate are repeatable and very close to true values




General uncertainty analysis procedure

Define the measurement procedure
Identify the error sources and distributions
Estimate uncertainties

Combine uncertainties

Report the analysis results
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Basic Statistics
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Amplitude probability density function

The probability to find the signal in the interval (a<x<b)

P{a <x< b} = jp(x)dx

T p(x)dx =1




The Student t-distribution and the central limit theorem.

The central limit theorem from statistics states that the resulting process of
a random process obtained by superposition of a number of independent
random processes tends to be Gaussian when the number of processes
becomes large.

If we try to estimate the uncertainty in a measured quantity by repeating
the measurement N times we can assume that the distribution becomes
Gaussian if N 1s sufficiently large (N=30). If we do not have sufficient
amounts of data we can instead use the Student t-distribution. It is the
probability distribution function obtained from the mean of n+1
independent stochastic variables, which 1is given by
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Confidence intervals

One goal of uncertainty analysis is to state in which range the true value of
a quantity will be, with a certain probability, based on a single set of
measurements, 1.e

X—ko Su<x+ko,

where u 1s the true value of a quantity,O, the uncertainty, (standard
deviation) of the measured quantity, & the so called coverage factor and x
the estimate of the quantity (measurement).

The covarage factor depends on the distribution/ probability density function
(pdf) and the probability that the real value will be in a certain interval around
the mean value.

U+ko,

P= jp(x)dx

:u_ko-x




Confidence intervals.

Consider a random quantity which has a normal probability density
function with mean x and variance o

The standard deviation is equal to the square root of the variance and the
coverage factor for a probability of 95%, P=0.95 is k£ = 2. Thus with a
probability of 95 % the true value with a normally distributed error will lie
within the interval:
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Chauvenet’s criterion

Data points outside a certain interval around the mean should be discarded.
The size of the interval is determined from the estimated standard deviation
of the data and the number of available samples (V). For Gaussian data the
criterion says that the interval 1s limited by data which 1s close to the mean
with a probability 1-1/(2N). This means that the data points to retain are
located within
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The ISO Guide to Uncertainty Management
vs traditional uncertainty analysis

Pre GUM

Traditionally measurement errors are categorized as random or bias
(systematic).

GUM,

Errors are only described in terms of the measurement process from which
they originate and all measurement errors are considered to be random
variables.

Pre GUM

Traditionally measurement uncertainty due to random errors is expressed
using confidence limits.

GUM,

Bias and random errors are replaced by standard uncertainty, which is a
statistical quantity equivalent to standard deviation.

Uncertainty is not considered to be a plus/minus interval. It is instead
determined for so called type A or type B estimates.




The ISO Guide to Uncertainty Management
vs traditional uncertainty analysis

Type A estimates are obtained by statistical analysis of measurement data.

Type B estimates are obtained from: past experience, manufacturer
specifications etc.




The ISO Guide to Uncertainty Management
vs traditional uncertainty analysis

Pre GUM

Traditionally, different ways have been proposed for to combine random xo,
and systematic uncertainties (B). One possibility is to just linearly add the
uncertainties. Another frequently used method has been to use root sum

square (RSS), so that the combined uncertainty 1s given by

Upss = \/B2 + (Ko-x )2

GUM,

A variance addition rule is used to combine uncertainties of different
origins. If we consider a measured quantity x which has two error sources
with errors e; and e, so that x = x,,,+e,+e, we can obtain the total
uncertainty in x from

2, 2
U, = \/ul +uy +2p,u,

U, = 1/Var(el) Uy =+ varfe, ) P> 1s a correlation coefficient




Measurement
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Multi-variate analysis

Measurement

;i  |f—o» G(x) Ui

Taylor expansion

oG 10°G
V(X + €) = G(X) + 2=

a 28 2€X+O(€X)

Conditions for linear error propagation

- Ratio between the second and first order term




Determination of the scattering matrix

Multiple acoustic fields

o

Microphone positions Acoustic Dressures -

Speed of sound p DEtEI:ﬂDILﬂtlﬂn.

Duct dimensions l scattering matrix
\:[' » Wave decomposition - S

Taylor expansion in each step




Linear uncertainty analysis valid when certain conditions
are satisfied:

- Can easily satisfied in the plane wave range (low
frequencies)

- Amount of conditions increases for higher order
mode measurements

Assessing precision and accuracy in acoustic scattering
matrix measurements

Dioctoral Thesis
Stockholm, Sweden, 2017
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How do we get information about the errors?

Measurement
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How do we get information about the errors?

Parameters:
e Variance
 Probability density function

Source:

 From manufacturer data sheets
« Measurements

 Educated guess




Example: From manufacturer

Microphone Cartridge

Acoustic pressure
Microphone sensitivity

Temperature coefficient
Atm Pressure coefficient

11Pa

1.6 mV/Pa

3¢~ 3 dB/K
—3¢3dB/kPa

Temperature error +5°C 95%  Normal B oo 2.55°C 2.82 pV

Atm pressure error +5hPa 95% Normal B oo 2.55 hPa 0.28 uV

Nexus

Input 1.6 mV oo 283 puV 0.177 mv

signal amplification 625

Harmonic distortion < 30ppm 99% Normal B oo 116 pV 116 pV

HP1432A

Input 100 mv oo 0.109 mV

Resolution 16bit +0.153 100%  Uniform B 1% 17.6 puV 176 pV
mVy

Repeatability amplitude Normal A 6600 0.99 pV 0.99 uV

Flow noise SNR = 100 1 my




Example: From measurement

e H(w,,t)

x(t) = cos(w,t) y(t) = A(t) cos(w,t + o(t) m(t)

Stepped sine measurements

- Representation of the reference signal using Hilbert transform

- Synchronous demodulation (also used in radio)




Uncertainty in the results
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Confidence intervals
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* p =~ 68 %, € [u—1o,u+ o], 0 = /var(x)
* p~95%, € [ —20,p+ 20|, 0 = y/var(x)




Uncertainty propagation

Example of multi-variate data reduction equation

pz(f)
R(f)=2 _(f) exp(=/k.5) - n(f)
P, f P, ]7 —exp(jk_s)

Two main methods for determining the uncertainty:

Tayor series expansion metods gives detailed
information about the contribution of each error
source to the final result but is a linear analysis.

Monte-Carlo simulation is a numerical analysis and
does not assume linear propagation of the errors,
however it i1s computationally more expensive. It 1s
also more difficult to estimate the contribution of
each error source to the final result.




Tayor series expansion metods

A data reduction equation describing the relation between
the desired quantity (calculated result, (¢) and the input data
(x,, ....,x,) in the form of measured quantities (type A) or
parameters determined from previous experience (type B) is

given by g =f (x1, ..., xXn).

If the equation is linear around the nominal values the
uncertainty ui(q) in the desired quantity g due to the
uncertainty in x; is calculated using a first order Taylor
expansion

99
OxX,

u,(q)=——ulx,)

where the first term on the right hand side is the sensitivity
coefficient for that quantity.




Tayor series expansion metods

In summary the Taylor series expansion method starts with
defining the data reduction equation and then the sensitivity
coefficient for each input data quantity is calculated.

The uncertainty for each input data quantity is then obtained
using the uncertainty estimates for the input data (u(x))) .

The final uncertainty in the calculated result 1s then obtained

using the summation formula
1/2

ula)=| Lulg)+ 2%, Y pyulahs o)

i=1 j=i+l

where p;, is the correlation coefficient




Monte Carlo simulation

A data reduction equation g = f(x1, ..., xn).

The input data x; 1s perturbed by a certain amount o, which is
decided from the statistical properties of the component
uncertainties, i.e., the uncertainty u; and the probability
distribution. The perturbed input data 1s then X, =X, +0,

and the perturbed outputis g = f (32’1,,3?”)

The difference in the output can then be calculated. A new
set of perturbed input data 1s then generated from the
statistical properties of the component uncertainties and a
new perturbed output is calculated. This is performed
many times until sufficient statistical data is obtained for
the uncertainty in the calculated output.




Application example: Two-microphone measurement in ducts

The uncertainty propagation was investigated using numerical simulation for
different duct termination impedances. Only four component uncertanties were
considered: the amplitude and phase of the measured transfer function and the

position of the microphones.
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Figure 5.1: Maximum error in imaginary part of impedance for Z=0.5¢1+j): solid line — 1/s=5.

dashed line I/s=1, dashed-dotted line 1/s=0.2. a) 1% error in | and s, b) 1% error in the

magnitude and phase of the transfer function (from Bodén and Abom (9)).



Application example: Two-microphone measurement in ducts

The uncertainty propagation was studied using first order Taylor expansions.

MAXIMUM ERAOR IN REAL PART OF IMPEDANCE (X)

KS/ (1-M%) 11

Figure 5.2: Maximum error in real part of impedance for Z=0.5(1+j), I/s=2, caused by a 1%
length error: solid line M =0, dashed line A/=0.3, dashed-dotted line A/=0.5, (from Abom and

_ Bodén (10)). _




Errors in the Two-Microphone Method

To avoid large sensitivity to the errors in the input data

the two-microphone yechnique should be restricted to
the frequency range:

0.1-7-(1-M?)< ks <0.8-7-(1-M?)
i MICc-2
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Application example Impedance tube measurements

4R
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Everytime you start
with impedance tube
measurements it is
two years of
suffering

Spring School in Aeroacoustics, UFSC, 23-
27 October 2017




Investigation of systematic errors in impedance
tube measurements

Calibration standard

Spring School in Aeroacoustics, UFSC, 23-
27 October 2017




Calibration against ideal hard walled termination
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Experimental setup used to determine the reflection
coefficient of the solid termination

Excitation section Measurement section
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Amplifier




Disconnecting the loudspeaker section from the test section
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Figure 5.2: Measured reflection coefficient of the rigid wall for the upstream side. Two cases
are shown, the first where the excitation and speaker section are connected (——) and the
second where the two sections are disconnected (——).




Effect of loudspeaker mounting configurations

Loud Speakers L Loud Speakers

Mic. 4 Mic. 3

Mic. 6 Mic. 1 A
<«

T?St Damper
Object \

Damper

V7

One should isolate the loudspeakers from the test pipe and also avoid
equidistant loudspeker separations which may cause cancellation at
certain frequencies




Temperature variation
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Figure 5.3: Comparison of the phase of the determined reflection coefficient of the steel wall
for the upstream pipe (left) using the averaged measured temperature (——) and the averaged
temperature at each frequency (——). The temperature as function of measurement time is
shown on the right.




Microphone positions
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Figure 5.4: Result of using the measured microphone positions (——) and performing the
microphone position calibration (——) on the measured reflection coefficient of the rigid wall.

Table 5.1: Measured values, optimized values and uncertainties of the microphone positions.

Il I2 I3 I4

Measured value [m] 04800 0.5500 0.5850 0.6200
Optimized value  [m] 04816 0.5498 0.5847 0.6113
Uncertainty ¢ [mm] 0.0862 0.0985 0.1046 0.1440




Identified errors
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1. Vibrations induced by the loudspeaker mounting
2. Microphone positions
3. Temperature variations




Correcting for the identified errors
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Comparing with calibration standard and including
confidence interval
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Systematic errors in impedance tube measurements

Error sources accounted for:
« Vibrations induced by loudspeaker mounting

* Microphone positions
« Temperature variations

|dentified errors:

« Microphone impedance

« Acoustic-structure interaction
« Apparent absorption




Test setup for investigating the origin of the oscillations
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Table 6.2: Overview of the different measurement configurations. The symbols © and @
indicate the two different microphones that are used.

Configuration Microphone position Boundary condition

Pos 1 Pos2
la @ Buried
1b © Buried
2a e Suspended
2b o] Suspended
3a @ 7] Suspended
3b & @ Suspended




Determination of the relative influence of
microphones and pipe vibration calibration standard

and including confidence interval
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Apparent absorption

Figure 6.7: Measured absorption coefficient a,, , . relative to the theoretical wall losses a,, as

function of frequency for the measurement setup at the KTH (——), LAUM (——) and the
DLR (=——). Also, the linear regression is shown.




Possible causes of the apparent absorption

* Volumetric losses Too small

« Konstantinov effect Too small

« 3D edge effects Too small

« Wall rougness Possible cause of
extra absorption
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Figure 6.7: Measured absorption coefficient a,,,,, relative to the theoretical wall losses a,,, as

function of frequency for the measurement setup at the KTH (——), LAUM (—) and the
DLR (——). Also, the linear regression is shown.




Application example:
Scattering matrix measurement for area expansion

Figure 5.3: Pressure waves at the area expansion (from Peerlings (1)).




Application example:
Scattering matrix measurement for area expansion

The scattering matrix S gives the relations between the
pressure waves propagating in the positive and negative
directions in the ducts on the upstream (a) and downstream
(b) side of the area expansion.

(paj _ SLPZJ _ {Ra Tba}[pij

Py py) T R \p;

The matrix consists of four coefficients Ra, Tab , Rb and Tha,
representing the reflection coefficient at the upstream side when
the downstream side is non-reflecting, the transmission of waves
incident on the upstream side towards the downstream side when
the downstream side is non-reflecting, the reflection coefficient at
the downstream side when the upstream side 1s non-reflecting and

the transmission from the downstream to the upstream side when
the upstream side 1s non-reflecting respectively.




Application example:
Scattering matrix measurement for area expansion

Side A Side B

=% Towards anechoic chamber Muffler

VXI-DAQ
|
Amplifier

Figure 5.4: Test setup for measurement of scattering matrix for the area expansion (from

Peerlings (1)).




Application
example:
Scattering
matrix
measurement
for area
expansion
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Figure 5.5: Uncertainty analysis for the case of no flow. Relative summed contributions of
each error source to the total variance in the deternuned scattering matrix S for each of the
coefficients for a frequency range between 0.5 and 2.5 kHz. The results determined by the
multi-variate analysis are shown together with the results obtained from the Monte-Carlo

simulation (MC) (from Peerlings (1)).




Application
example:
Scattering
matrix
measurement
for area
expansion
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Figure 5.6: Uncertainty analysis for a case with mean flow. Relative summed contributions of
each error source to the total variance in the determined scattering matrix S for each of the
coetficients for a frequency range between 0.5 and 2.5 kHz. The results determined by the

multi-variate analysis are shown together with the results obtained from the Monte-Carlo

simulation (MC) (from Peerlings (1)).




Result M =0.15
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Result absorption M =0.15
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SUMMARY

The following topics were discussed:

Basic statistics
The ISO Guide to Uncertainty Management vs traditional uncertainty analysis

Uncertainty in input data

Uncertainty propagation

Application examples
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