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Purpose of uncertainty analysis

To present margins of error within which the data 
lies with a certain probability, for example the 95% 
confidence interval.



Introduction

Accuracy and precision

Random and bias errors

Model

Accuracy reflects how close a measurement is to a known or accepted value, while precision reflects how 
reproducible measurements are, even if they are far from the accepted value. Measurements that are 
both precise and accurate are repeatable and very close to true values



General uncertainty analysis procedure

1. Define the measurement procedure
2. Identify the error sources and distributions
3. Estimate uncertainties
4. Combine uncertainties
5. Report the analysis results
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Basic Statistics



Amplitude probability density function

The probability to find the signal in the interval (a<x<b) 
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The Student t-distribution and the central limit theorem.

The central limit theorem from statistics states that the resulting process of 
a random process obtained by superposition of a number of independent 
random processes tends to be Gaussian when the number of processes 
becomes large.

If we try to estimate the uncertainty in a measured quantity by repeating 
the measurement N times we can assume that the distribution becomes 
Gaussian if N is sufficiently large (N=30). If we do not have sufficient 
amounts of data we can instead use the Student t-distribution. It is the 
probability distribution function obtained from the mean of n+1 
independent stochastic variables, which  is given by
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where Γ is the gamma function



Confidence intervals.

One goal of uncertainty analysis is to state in which range the true value of 
a quantity will be, with a certain probability, based on a single set of 
measurements, i.e

xx kxkx σµσ +≤≤− ~~

where µ is the true value of a quantity,     the uncertainty, (standard 
deviation) of the measured quantity, k the so called coverage factor and   
the estimate of the quantity (measurement).
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The covarage factor depends on the distribution/ probability density function 
(pdf) and the probability that the real value will be in a certain interval around 
the mean value.
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Confidence intervals.

Consider a random quantity which has a normal probability density 
function with mean µ and variance   
The standard deviation is equal to the square root of the variance and the 
coverage factor for a probability of 95%, P = 0.95 is k = 2. Thus with a 
probability of 95 % the true value with a normally distributed error will lie 
within the interval: 
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Handling of outliers

Chauvenet´s criterion 
Data points outside a certain interval around the mean should be discarded. 
The size of the interval is determined from the estimated standard deviation 
of the data and the number of available samples (N).  For Gaussian data the 
criterion says that the interval is limited by data which is close to the mean 
with a probability 1-1/(2N).  This means that the data points to retain are 
located within [ ]xx xxx κσκσ +−∈ ~,~



The ISO Guide to Uncertainty Management 
vs traditional uncertainty analysis

Pre GUM
Traditionally measurement errors are categorized as random or bias 
(systematic). 
GUM,
Errors are only described in terms of the measurement process from which 
they originate and all measurement errors are considered to be random 
variables.
Pre GUM
Traditionally measurement uncertainty due to random errors is expressed 
using confidence limits.
GUM,
Bias and random errors are replaced by standard uncertainty, which is a 
statistical quantity equivalent to standard deviation. 
Uncertainty is not considered to be a plus/minus interval. It is instead 
determined for so called type A or type B estimates.



The ISO Guide to Uncertainty Management 
vs traditional uncertainty analysis

Type A estimates are obtained by statistical analysis of measurement data. 

Type B estimates are obtained from: past experience, manufacturer 
specifications etc.



The ISO Guide to Uncertainty Management 
vs traditional uncertainty analysis

Pre GUM
Traditionally, different ways  have been proposed for to combine random 
and systematic uncertainties (B). One possibility is to just linearly add the 
uncertainties. Another frequently used method has been to use root sum 
square (RSS), so that the combined uncertainty is given by

GUM,
A variance addition rule is used to combine uncertainties of different 
origins. If we consider a measured quantity x which has two error sources 
with errors e1 and e2 so that x = xtrue+e1+e2 we can obtain the total 
uncertainty in x from
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Multi-variate analysis



Determination of the scattering matrix

Taylor expansion in each step





The ”Two-Microphone Method”



How do we get information about the errors?



How do we get information about the errors?

Parameters:
• Variance
• Probability density function

Source:
• From manufacturer data sheets
• Measurements
• Educated guess



Example: From manufacturer



Example: From measurement



Uncertainty in the results



Confidence intervals



Uncertainty propagation
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Example of multi-variate data reduction equation

Two main methods for determining the uncertainty:

Tayor series expansion metods gives detailed 
information about the contribution of each error 
source to the final result but is a linear analysis. 

Monte-Carlo simulation is a numerical analysis and 
does not assume linear propagation of the errors, 
however it is computationally more expensive. It is 
also more difficult to estimate the contribution of 
each error source to the final result.



Tayor series expansion metods

A data reduction equation describing the relation between 
the desired quantity (calculated result, (q) and the input data 
(x1, ….,xn) in the form of measured quantities (type A) or 
parameters determined from previous experience (type B) is 
given by q = f (x1, ..., xn).

If the equation is linear around the nominal values the 
uncertainty ui(q) in the desired quantity q due to the 
uncertainty in xi is calculated using a first order Taylor 
expansion
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where the first term on the right hand side is the sensitivity 
coefficient for that quantity.



Tayor series expansion metods

In summary the Taylor series expansion method starts with 
defining the data reduction equation and then the sensitivity 
coefficient for each input data quantity is calculated. 

The uncertainty for each input data quantity is then obtained 
using the uncertainty estimates for the input data (u(xi)) .

The final uncertainty in the calculated result is then obtained 
using the summation formula
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where ρij is the correlation coefficient



A data reduction equation q = f (x1, ..., xn).
The input data xi is perturbed by a certain amount δi which is 
decided from the statistical properties of the component 
uncertainties, i.e., the uncertainty ui and the probability 
distribution. The perturbed input data is then

Monte Carlo simulation
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and the perturbed output is ( )nxxfq ~,....,~~
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The difference in the output can then be calculated. A new 
set of perturbed input data is then generated from the 
statistical properties of the component uncertainties and a 
new perturbed output is calculated. This is performed 
many times until sufficient statistical data is obtained for 
the uncertainty in the calculated output.



Application example: Two-microphone measurement in ducts
The uncertainty propagation was investigated using numerical simulation for 
different duct termination impedances. Only four component uncertanties were 
considered: the amplitude and phase of the measured transfer function and the 
position of the microphones.



Application example: Two-microphone measurement in ducts

The uncertainty propagation was studied using first order Taylor expansions. 



Errors in the Two-Microphone Method

To avoid large sensitivity to the errors in the input data 
the two-microphone yechnique should be restricted to 
the frequency range:
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Spring School in Aeroacoustics, UFSC, 23-
27 October 2017

Everytime you start 
with impedance tube 
measurements it is 
two years of 
suffering

Application example Impedance tube measurements



Spring School in Aeroacoustics, UFSC, 23-
27 October 2017

Investigation of systematic errors in impedance 
tube measurements



Calibration against ideal hard walled termination



Experimental setup used to determine the reflection 
coefficient of the solid termination



Disconnecting the loudspeaker section from the test section



S.C.S. C.

D.A. System

Mic. 1

Loud Speakers

Mic. 6

Loud Speakers

Test
Object DamperDamper

MM

Mic. 3Mic. 4

Effect of loudspeaker mounting configurations

One should isolate the loudspeakers from the test pipe and also avoid 
equidistant loudspeker separations which may cause cancellation at 
certain frequencies



Temperature variation



Microphone positions



Identified errors



Correcting for the identified errors



Comparing with calibration standard and including 
confidence interval



Systematic errors in impedance tube measurements

Error sources accounted for:
• Vibrations induced by loudspeaker mounting
• Microphone positions
• Temperature variations

Identified errors:
• Microphone impedance
• Acoustic-structure interaction
• Apparent absorption



Test setup for investigating the origin of the oscillations



Determination of the relative influence of 
microphones and pipe vibration calibration standard 
and including confidence interval



Apparent absorption



Possible causes of the apparent absorption

• Volumetric losses
• Konstantinov effect
• 3D edge effects
• Wall rougness

Too small
Too small
Too small
Possible cause of 
extra absorption



Application example: 
Scattering matrix measurement for area expansion



The scattering matrix S gives the relations between the 
pressure waves propagating in the positive and negative 
directions in the ducts on the upstream (a) and downstream 
(b) side of the area expansion.

Application example: 
Scattering matrix measurement for area expansion
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The matrix consists of four coefficients Ra, Tab , Rb and Tba, 
representing the reflection coefficient at the upstream side when 
the downstream side is non-reflecting, the transmission of waves 
incident on the upstream side towards the downstream side when 
the downstream side is non-reflecting, the reflection coefficient at 
the downstream side when the upstream side is non-reflecting and 
the transmission from the downstream to the upstream side when 
the upstream side is non-reflecting respectively.



Application example: 
Scattering matrix measurement for area expansion



Application 
example: 
Scattering 
matrix 
measurement 
for area 
expansion



Application 
example: 
Scattering 
matrix 
measurement 
for area 
expansion



Spring School in Aeroacoustics, UFSC, 23-
27 October 2017

Result M = 0.15



Spring School in Aeroacoustics, UFSC, 23-
27 October 2017

Result absorption M = 0.15



SUMMARY

The following topics were discussed:

Basic statistics

The ISO Guide to Uncertainty Management vs traditional uncertainty analysis 

Uncertainty in input data

Uncertainty propagation

Application examples
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