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No free-field! 
Most fluid- or turbomachinery 

problems correspond to 
confined flows in pipe or duct 

systems…
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Sir Michael JAMES Lighthill FRS 

(1924-1998)

Aeroacoustics - Started around 1950´s related 
to noise issues with the then new jet powered 
civil aircrafts…

Lighthills acoustic analogy
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Limitations in Lighthill´s theory 

Alt. 1

Flow Sound

Alt. 2

Flow Sound

Alt. 3

Flow Sound Alt. 1: Sound production by a flow. 

Alt. 2: Sound-vortex interaction
(dissipation/ amplification). 

Alt. 3: Whistling (Non-linear Aero-
Acoustics)
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Limitations in Lighthill´s theory 

Alt. 1

Flow Sound

Alt. 2

Flow Sound

Alt. 3

Flow Sound Alt. 1: Sound production by a flow. 

Alt. 2: Sound-vortex interaction
(dissipation/ amplification). 

Alt. 3: Whistling (Non-linear Aero-
Acoustics)

Lighthill or linear Aero-Acoustics is OK 



• In the low frequency (plane wave) range ( f < fcut-on) a source is  
strongly coupled to a system and the acoustic output (power) can vary
strongly.

• In the mid frequency range up to (2-3)x fcut-on , plane + non-plane 
waves exist. Also in this range strong coupling between source and 
system is possible. 

• In the high frequency range f >> 3xfcut-on , sound propagates as rays, 
there is no coupling between a source and a system and the acoustic
power equals the free field value.

Acoustic 
power Resonant behaviour 

with maxima at 
multiples of λ/2
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In practice the limit is around ~ 10 propagating 
modes or: 

He = kd < 3π,

where k is the wave-number and d the duct 
diameter.

ACOUSTIC INSTALLATION EFFECTS 
(”No free-field”)



AEROACOUSTIC MULTI-PORTS [1-5,12]
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The sound field in a duct can be expanded 
in propagating waves or modes:

where N is at least the number of cut-on 
modes and z the duct axis.   13
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The sound field in a duct can be expanded 
in propagating waves or modes:

where N is at least the number of cut-on 
modes and z the duct axis.  

The eigenmodes can be based on a rigid walled duct 
and a plug flow forming a complete functional basis. 
The axial wave-number should include visco-thermal 
losses as described e.g. by: C Weng, F Bake (2016), 
Acta Acustica united Acustica 102(6), 1138-1141.  
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AEROACOUSTIC MULTI-PORTS [1-5,12]
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Assuming we sample the field at         
points in space we can write: 

2M N≥
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AEROACOUSTIC MULTI-PORTS [1-5,12]

(0,0) (0,+/-1) (0,+/-2) (1,0)

The sound field in a duct can be expanded 
in propagating waves or modes:
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This is the basis for so called wave 
decomposition methods:

The accuracy will depend on the condition 
number of M, i.e., the sampling positions. 16
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Example: The two-microphone technique

• If only plane waves are propagating then N=1 and we get
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Example: Circular duct 6 modes 

18

From Ref. [12] showing the effect of optimization on a 
configuration of 12 flush mounted microphones. 

Condition number:

Weak singularities:                                                  ,2 1 2
nz z l
λ

− =



The Multi-port relates the amplitudes for  
modes at two (or several) Reference cross-
sections (a&b).

AEROACOUSTIC MULTI-PORTS [1-5,12]

(0,0) (0,+/-1) (0,+/-2) (1,0)

a b
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AEROACOUSTIC MULTI-PORTS [1-5,12]
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Assume linear and time-invariant systems then a multi-
port in a duct can in (the Fourier domain) be characterized
by

where p+/- represent travelling modal pressure amplitudes 
and S is the scattering matrix and ps represents the 
source part.

Reflection/transmission 
of sound

Black-box modelLoudspeakers LoudspeakersMics. Mics.

20



AEROACOUSTIC MULTI-PORTS [1-5,12]


Part (Source) ActivePart Passive

2221

1211

0 =

+

+

−

−

=

+

+

+
−+












+








⋅







=









s

s
b

s
a

b

a

b

a

ppSp

p
p

p
p

RT
TR

p
p

Assume linear and time-invariant systems then a multi-
port in a duct can in (the Fourier domain) be 
characterized by

where p+/- represent travelling modal pressure amplitudes 
and S0 is the scattering matrix and ps represents the 
source part.

Reflection/transmission 
of sound
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The classical (”first”) paper suggesting this: 



AEROACOUSTIC MULTI-PORTS [1-5,12]

Assume linear and time-invariant systems then a multi-
port in a duct can in (the Fourier domain) be characterized
by

where p+/- represent travelling modal pressure amplitudes 
and S0 is the scattering matrix and ps represents the 
source part.

Black-box modelLoudspeakers LoudspeakersMics. Mics.

s
+−+ += ppSp 0
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Linear Aeroacoustic model



AEROACOUSTIC MULTI-PORTS [1-5,12]

Assume linear and time-invariant systems then a multi-
port in a duct can in (the Fourier domain) be characterized
by

where p+/- represent travelling modal pressure amplitudes 
and S0 is the scattering matrix and ps represents the 
source part.

Black-box modelLoudspeakers LoudspeakersMics. Mics.

s
+−+ += ppSp 0
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N.B. The Scattering matrix 
contains vortex-sound effects

Reflection-free 
source data



- Projecting the pressure field on the acoustic modes will  
suppress Hydrodynamic pressure fluctuations 

- The effects of boundary conditions are eliminated i.e. 
reflection free source data can be determined

- Complex systems (low  & intermediate frequency range) can be 
broken down into sub-elements each described by a multi-port 

Fan 
multi-port

Duct 
multi-port

Duct 
multi-port

Advantages (Experimental/Numerical) of the 
Multi-Port Method
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Fan measurements as part of the IdealVent project
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In practice the full multi-port 
approach is restricted to the 
low- and mid-frequency 
range or (say) 10 modes 
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1) Test the multi-port using N different incident fields and 
measure p+ and p- for each case this gives an 
equation for the scattering-matrix  

EXPERIMENTAL/NUMERICAL CHARACTERIZATION 
[1-15]

s
+−+ += ppSp 0

Mics.Mics.Loudspeakers Loudspeakers

•28
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1. Test the multi-port using N different incident fields and 
measure p+ and p- for each case this gives an equation 
for the scattering-matrix S

where the pressure data should be uncorrelated with 
the

external source to supress 

2. Once      is known the source strength can be directly 
determined from 

3. This is used to estimate the source cross-spectrum matrix
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EXPERIMENTAL/NUMERICAL CHARACTERIZATION 
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1. Test the multi-port using N different incident fields and 
measure p+ and p- for each case this gives an equation 
for the scattering-matrix 

where the pressure data should be correlated with the
external source to supress 

2. Once      is known the source strength can be directly 
determined from 

3. This is used to estimate the source cross-spectrum matrix
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1. Test the multi-port using N different incident fields and 
measure p+ and p- for each case this gives an equation for 
the scattering-matrix 

where the pressure data should be correlated with the
external source to supress 

2. Once      is known the source strength can be directly 
determined from 

3. This is used to estimate the source cross-spectrum matrix

c stands for the Hermitian. 
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EXPERIMENTAL/NUMERICAL CHARACTERIZATION 
[1-15]

4. For low Mach-cases the determination of the source data 
will suffer from bad “S/N” ratios. To improve this correlation 
based on sets (k) with >=2N samples in each are used

where T is a transfer-matrix moving the data to the  
reference cross-sections (a & b). [13,15]

5. For experimental determination one is limited by the 
number of pressure probes. A solution is then to measure 
the reflection matrix R for the test rig which leads to

This formulation only requires sets with >= N data points
on each side. 

,s k s k+ +=p T p

1( ) ( )( )s
−

+ += − = − +
C

p E SR p E SR E R p

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EXPERIMENTAL/NUMERICAL CHARACTERIZATION 
[1-15]

4. For low Mach-cases the determination of the source data 
will suffer from bad S/N ratios. To improve this correlation  
based on sets (k) with >=2N samples in each are used

where T is a transfer-matrix moving the data to the  
reference cross-sections (a & b). [13,15]

5. For experimental determination one is limited by the 
number of pressure probes. A solution is then to measure 
the reflection matrix R for the test rig which leads to

This formulation only requires sets with >= N data points
on each side compared to >= 2N for alt. 4. [2,3,5,14]
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1. In experiments only pressure data at the walls are normally 
possible to measure. 

2. In simulations all points can be used AND also all fields are known. 
This means wave decomposition can be based on pressure and e.g. 
axial velocity. 

3. In experiments only wall mounted sources are normally used to 
determine the scattering, which makes excitation of single modes 
difficult. In simulations excitation of single incident modes is no 
problem.

4. In experiments a low S/N in source strength data can be handled by 
using a long measurement time. For simulations normally only a 
short time record is possible  (~1 s). BUT a very large number of 
sampling points are available. 

COMPARISON EXPERIMENTAL versus NUMERICAL 
CHARACTERIZATION 

•34
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Examples of numerical MULTI-PORT 
WORKS at KTH  

Single Orifice – i) Linearized Navier Stokes Equations 
(LNSE) – 2-port Scattering matrix & Whistling analysis; 
ii) LES – Complete 2-port. [8-10]

T-junction – LNSE model 3-port Scattering matrix-
Sound amplification. [11] 

Tandem orifice configuration – Complete multi-port 
up to the radial mode (=6 modes); Hybrid model –

Scattering using LNSE, Sound generation using hybrid 
RANS&LES (IDDES). [14,15]

Axial compressor – Modal Source spectra using IDDES.
[13]   

•35
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APPLICATION EXAMPLES-Experiments 

• Automotive turbo-charger [6,7]

• Axial fan (IDEALVENT) [13]

• Tandem orifice (IDEALVENT) [14,15]



Competence Center for Gas 
Exchange (CCGEx) www.ccgex.kth.se

 Research focus on the gas 
management of IC engines.

 Combined effort between KTH, 
the Swedish Energy Agency 
and some leading OEMs.

 Main research fields are fluid 
mechanics and acoustics.

CCGEx



KTH-CCGEx Acoustic Testrig [6,7]
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Compressor used in experiments

 Passenger car turbo-charger 
Garrett GT1752 driven by the 
compressed air feed to the turbine.

 Inlet diam. is 44mm.
 Outlet diam. is 42mm.
 The rotor has 6 

(+6 splitter) blades.
 Shaft frequency ~80…180kRPM –

blade pass frequency 8…18kHz.



Acoustic 2-port formulation

• The acoustical performance of a flow duct element is 
determined by the full 2-port model which consists both the 
passive and the active parts.

S-matrix



Reflection-free sound generation



 The following can be observed 
while operating close to deep 
surge: 
 a large (up to 25dB) broadband 

increase of SPL; 
 an additional generation of 

sound at ~.5 of shaft rotating 
order.

Δf = 1Hz

additional 
generation

Sound generation of the compressor [7]

~ 0.5 RO

Mass flux
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Δf = 1Hz

additional 
generation

 From the S-matrix dissipation (-) 
or amplification (+) of the 
compressor can be computed.

 The data shows that approaching 
surge amplifying flow instabilities, 
e.g., at ~0.5 RO occur. But the 
overall losses still dominate. 

 The only possibility for a self 
sustained oscillation (“strong 
surge”) is below  100 Hz. 

Aero-acoustic coupling [7]
Dissipation/Amplification of incident sound waves

Mass flux
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AIRCRAFT CLIMATE CONTROL SYSTEMS



Overview of results (exp&num) in the project involving 
KTH 

• Analysis (IDDES=RANS+LES) of an axial Liebherr fan unit for aircraft 
climate systems [13]

• Analysis of single and double diaphragms (orifices) [14,15]

• Novel noise control concepts involving Micro-Perforated-Plates (MPP:s)



Installation effects are an important 
aspect of the project
Note there are two types: Acoustic and Aerodynamic. 
 The Acoustic means the the acoustic nearfields (= non-

cut on modes) must have decayed at the next element. 
 The Aerodynamic means that the inflow to the next 

element should be back to a “normal” straight pipe 
condition, i.e., the flow near-fields should have decayed.



Test rig built by VKI & KTH

The rig is designed to separate 8 
propagating modes on each side of 
an object…

This requires 2x16 microphone 
positions.



Axial compressor spectrum [13]

 Axial compressor 
with strong BPF 
(2700 Hz) and higher 
order mode content

 The (0,0) & (2,0) 
 modes are 
 particularly strong 
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Installation effects – Single&Tandem Orifices [14,15]

Orifice-plate  in a circular duct

Active part computed by IDDES 
and the passive by Linearized 
Navier Stokes Eqs. (LNSE).

BUT here we will only present the 
experimental part.
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Objectives
Investigating the effect of installation (acoustic & aerodynamic) on the acoustic 
properties of induct orifice plates (separation 2D, 4D and 10D)

The problem is simplified to a single (clean) orifice and a tandem – orifice configuration 

Tandem
sep. 4D

Tandem
sep. 2D

Single

Orifice Orifice

Orifice Orifice

Orifice

For the 10D there is 
very small interaction 
in the mean flow field 
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Objectives
The problem is split into sub problems

Installation effect for orifice plates

Tandem Orifice

ScatteringSource

Single Orifice

Acoustic Properties

ScatteringSource
Acoustic Properties

Predicted tandem “Installation effects”

The installation effects will simply be the difference between ‘predicted’ and ‘real’.
The Scattering Matrices will “handle” the acoustic installation effects BUT the multi-
port Source strength assumes an undisturbed inflow….

- +
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Orifice Measurements
Measurements for model-validation at the Marcus Wallenberg Laboratory 
for Sound and Vibration Research at KTH

• 2x12 microphones and 16 loudspeakers 
in an optimised setup (max 6 modes)

• Aluminum pipe-sections with constraint 
layer damping

• Multi-channel excitation with algorithms for 
simultaneous, uncorrelated excitation

• Modal decomposition with advanced
wave-numbers to account for damping

• Two stage measurements for accurate 
scattering and source characterisation
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Orifice Measurements
Measurements for model-validation at the Marcus Wallenberg Laboratory 
for Sound and Vibration Research at KTH

• 2x12 microphones and 16 loudspeakers 
in an optimised setup (max 6 modes)

• Aluminum pipe-sections with constraint 
layer damping

• Multi-channel excitation with algorithms for 
simultaneous, uncorrelated excitation

• Modal decomposition with advanced
wave-numbers to account for damping

• Two stage measurements for accurate 
scattering and source characterisation

Figure from Ref. 12 showing the effect of optimizing the microphone 
configuration. Note the optimized configuration contains the minimum no. of 
mics for 6 modes (12) while the unoptimized contains 16 positions. 
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Tandem Orifice - Scattering 

Combining two multi-ports is a multiplication of their transfer matrices
Computing the transfer matrix is a linear operation on the scattering matrix

computational inexpensive 
m

ag
ni

tu
de

m
ag

ni
tu

de

Transmission                     Reflection                measured   
Transmission                     Reflection                predicted   

The scattering of an orifice 
plate is very little affected 
by disturbed inflow. Even 
for the shortest separation 
the Tandem case can be 
predicted using the Single 
orifice data.   

2D distance
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For the source, the power cross spectrum is computed, neglecting correlated 
sound sources between the two multi-ports

This will cause aerodynamic installation effects when the flow fields 
interact” 10D distanceDownstream Upstream

M
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al
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er

 [d
B]

Measurement 
Prediction

Tandem Orifice - Source strength 

Only good agreement 
for the long separation 
(10D)
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SUMMARY AND CONCLUSIONS

• The full multi-port approach gives a complete characterization of 
a duct element (scattering + sound generation)

• Applying the multi-port procedure to experimental or numerical 
data will eliminate the effect of boundaries i.e. represent the 
system under reflection free conditions

• The projection of pressure data on acoustic modes i.e. the basis 
of the modal decomposition used in the process will reduce the 
influence of hydro-dynamic disturbances (“turbulence”) 

• Multi-port models have traditionally been applied to fluid 
machines, e.g., IC-engines and fans and the data (passive/active) 
determined experimentally
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SUMMARY AND CONCLUSIONS

• The low frequency plane wave or 2-port case is today established 
in particular for the passive part

• In the IDEALVENT project the experimental procedures to 
determine multi-port data have been further developed 

• In addition the usefulness of applying the same procedures on 
numerical data have been demonstrated for a number of cases 
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