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Combustion: 

Flame: visible part of combustion

1.1. Diffusion flame

Reaction zone: fuel and oxidizer have similar concentration

1. What is a flame?

fuel + oxidizer → burnt products + heat

not considered further
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1.2. Premixed flame

SL: laminar flame speed

propagation speed of flame relative to unburnt mixture      

concentration:

stoichiometric combustion: all fuel and all O2 is consumed

equivalence ratio:

2

mass of fuel
FO

mass of O


stoichiometric

FO

(FO)
 

depends on fuel type and concentration.
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Example: Methane combustion

CH4 + 2O2 → 2H2O + CO2

for hydrocarbons: SL = 0.1 – 0.5 m/s

for hydrogen: SL = 0.5 – 10 m/s
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conical flame

V - flame swirl flame

Examples of premixed flames
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2. The flame transfer function (FTF)

Definition of the FTF:
ˆ( ) /

( )
ˆ( ) /

Q Q

u u


 


T

Measurement:

Consider the flame as an input-output system:

Typical result:

gain phase



POLKA flame talk11 March 2010 7

3. Impulse response of the flame
ˆ ˆ( ) ( )

( )
Q u

uQ

 
 TApply inverse Fourier transform to

Result:
'( ) '( )

( ) d
Q t u t

h
uQ





 
  

inverse FT of ( )T
Impulse response

input:

response:

→ h(t) is the impulse response.

'( ) ( )u t u t 

'( ) ( )
( ) d ( )

Q t u t
h h t

uQ





  
   

contain the same physical information.( ) and ( )h tT

impulse
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4. The flame describing function (FDF)

Measurement:

ˆ( , ) /
( , )

ˆ( , ) /

Q a Q
a

u a u


 


T

ˆ( ) /
( )

ˆ( ) /

Q Q

u u


 


Tflame transfer function:

flame describing function:

Frequencies other that ω in the output are ignored: 

The inverse FT of the FDF is not the impulse response! 
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Example: FDF of Noiray's matrix flame
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Noiray’s test rig

Noiray, N., Durox, D., Schuller, T. & Candel, S. (2008) A unified framework for nonlinear combustion instability analysis 

based on the flame describing function. Journal of Fluid Mechanics 615, 139-167.  
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perturbed flame:

scalar 

increases from unburnt 

to burnt region

Flame surface: ( , ) 0G x t 

Kinematic argument: convected derivative of G must be zero.

→ G-equation: | |L
G

u G S G
t


   



5. Flame modelling with the G-equation 

Rotationally symmetric flame:

,G G
u G u v

x y

 
  

 

2 2

| |
G G

G
x y

   
     

    

( , , )
u

u u x y t
v
 

  
 

velocity field, 

excites the flame

nonlinear 

term
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Numerical solution of G-equation→ position of flame surface

→ flame surface area A

→ rate of heat release (Q ~ A)

Assumption:

Excitation by velocity perturbation travelling with u

 ( , , ) 1 sin( )u x y t u t ky     with /k u 

( , , )v x y t from 0
v u

x y

 
 

 

mean 
flow 
velocity

Repeat for various values of ε and ω → FDF

0° 60° 120° 180° 240° 300° v [m/s]

(incompressible mass balance) 
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gain

phase

FDF for a conical CH4-H2 flame

/a u 

CH4: 80%

H2: 20%

ϕ=0.95
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gain

phase

for higher amplitudes (ϵ = 0.15 … 0.6):
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Inverse Fourier transform of FDF for the CH4 - H2 flame:

1 2 3time lags:

surrounded by maxima/minima

6. Analytical approximation of a given FDF

6.1. Motivation and method
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1 2 3time lags:

surrounded by maxima/minima

for higher amplitudes (ϵ = 0.15 … 0.6): 
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1 1 1( , , )n  

2 2 2( , , )n   amplitude-dependent fitting parameters

Approximate dominant maxima/minima by Gauss curve: 
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: height of curve

: width of curve

: position of curve along time axis

n




superposition of Gauss curves:
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Determination of the fitting parameters

from simulation/experiment: ( , ),i kaT 1, 2, 3,i  1, 2, 3,k 

apply inverse Fourier transform: ( , ),j kh t a 1, 2, 3,j 

approximate by ( , , ),h n   1, 2, 3,

minimise the error
2

( , ) ( , , )j kh t a h n    

→ optimal fitting parameters

apply Fourier transform to optimal ( , , )h n  

(can be done analytically)

→ ( , )kaT

analytical approximation for ( , )i kaT

( , , )n  
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6.2. Application to Noiray's matrix flame

Results for 

(2 Gauss curves)

( ) and ( )h h 

( )h  ( )h 

( )

( )

h

h
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Results for

gain phase

( , ) and ( , )a a T T

(2 Gauss curves)( , )aT( , )aT
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6.3. Application to CH4 - H2 flame

/a u CH4: 80% H2: 20%ϕ=0.95

3 Gauss curves

( )

( )

h

h
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( )

( )

h

h





for higher amplitudes (ϵ = 0.15 … 0.6):
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Results for 

gain

phase

/a u ( , ) and ( , )a a T T

3 Gauss curves
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gain

phase

3 Gauss curves

for higher amplitudes (ϵ = 0.15 … 0.6):
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Amplitude-dependence of the fitting parameters

curve fitting with polynomials:

(0) (1) (2) 2 (3) 3( )n a n n a n a n a    

(0) (1) (2) 2 (3) 3( )a a a a         

(0) (1) (2) 2 (3) 3( )a a a a         

→ fully analytical FDF,

→ fully analytical 

time domain function 

( , )h t a

( , )aT

amplitude ϵamplitude ϵamplitude ϵ

n τ
[s

]

σ
[s

]
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Time history predictions for CH4 - H2 flame in a λ/4 tube

small initial 

disturbance:

large initial 

disturbance:

initial disturbance 

similar to limit cycle 

amplitude:

Gopinathan, S.M. and Heckl, Maria (2019) Stability analysis and flashback limits for combustion systems using hydrogen 

blends. Proceedings of the 26th International Congress on Sound and Vibration, 7-11 July 2019, Montreal, Canada, 8 pp. 

t (s)
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7. Summary

- Description in frequency-domain by FTF,

- Description in time-domain by impulse response,  

- Analytical approximations 

- Same fitting parameters in frequency and time-domain

- Linear flame: fitting parameters are constant

- Nonlinear flame: fitting parameters depend on amplitude

is no longer an impulse response

- Amplitude-dependence can be described by simple functions

- Fully analytical description of flame 

( )T

( )h 

( ) and ( )h T

( )h 
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Thank you!
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