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Outline of Talk

Passive control of thermoacoustic instabilities

by heat exchangers

What?, Why? & Where?

By use of

How?

Background - Thermoacoustic Instability

Control Strategies - Active and Passive

Motivation - Use of Heat exchangers

Applications
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Background
Thermoacoustic Instability

Passive control of thermoacoustic instabilities

by heat exchangers

What?, Why? & Where?

What physical phenomenon are we looking at?

Why is this important?

Where does this occur?
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Background
WHAT is Thermoacoustic Instability?

Simple thermoacoustic device
• Rijke tube

Air moving in

Air moving out

Sound generated

Thermo + Acoustics

• Positive Feedback

Courtesy: Prof. Maria Heckl
Keele University

11 March 2020 Aswathy Surendran - Passive control of thermoacoustic instabilities by heat exchangers 4/28


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Workshop on Analytical methods in thermo- and aeroacoustics

Background
WHAT is Thermoacoustic Instability?

Simple thermoacoustic device
• Rijke tube

Thermo + Acoustics

• Positive Feedback

Flame generating sound waves

Sound waves perturb flame

Courtesy: Prof. Maria Heckl,
Dr. Sreenath Malamal Gopinathan

Keele University
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Background
WHAT is Thermoacoustic Instability?

Simple thermoacoustic device
• Rijke tube

Thermo + Acoustics
• Positive Feedback

Acoustic
fluctuations

Heat transfer
fluctuations

Positive feedback

Flame generating sound waves

Sound waves perturb flame

Courtesy: Prof. Maria Heckl,
Dr. Sreenath Malamal Gopinathan

Keele University
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Background
WHY Thermoacoustic Instability?

Positive Feedback
• Increasing pressure amplitudes → Thermoacoustic Instability
• Damage to structure

Damaged and undamaged burner assembly

Y. Huang and V. Yang, ”Dynamics and stability of lean-premixed swirl-stabilized combustion”,
Progress in Energy and Combustion Science, Vol. 35, Issue 4, pp 293-364, (2009)

Acoustic
fluctuations

Heat transfer
fluctuations

Positive feedback

Time

P
re

ss
u
re

High amplitude pressure
fluctuations
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Background
WHERE does this occur?

Confined Heat source (or sink) + Acoustics

Industrial
furnace

Domestic
boiler

Gas turbine
engine

Rocket engine
(SABRE)
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Control Strategies

Passive control of thermoacoustic instabilities

by heat exchangers

How?

How can we control this?
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Control Strategies
Active and Passive

Break positive feedback
• Active Control or Passive Control

Acoustic
fluctuations

Heat transfer
fluctuations

Positive feedback

Air

Fuel

Air

Flame Combustion
products

SensorActuator

Active Control

Air

Fuel

Air

Helmholtz resonator

Quarter-wave tube

Flame Combustion
products

V
lHR

lRPassive Control
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Control Strategies
Passive control

Other passive control devices
• Acoustic liners

Dissipative mechanism in liners

The jet engine, 5th Ed., Rolls-Royce plc, Derby, UK, (1996)
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Motivation

Passive control of thermoacoustic instabilities

by heat exchangers
By use of

What is so special about heat exchangers?

11 March 2020 Aswathy Surendran - Passive control of thermoacoustic instabilities by heat exchangers 10/28



Workshop on Analytical methods in thermo- and aeroacoustics

Motivation
Heat Exchanger

Heat exchangers
• Integral component of combustion systems

I No additions needed
• Act as both heat sink and acoustic scatterer/ dissipator

I Active/passive acoustic element

• Positive feedback → Thermoacoustic instability

Shear layer

Jet1D waves
Flow

Evanescent waves
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Summary

Thermoacoustic instability
• Characterised by high amplitude pressure

fluctuations
• Often lead to structural damage
• Caused by positive feedback

Control Strategies

• Active and Passive
• Passive: Acoustic liners

Heat exchangers

• Heat sink and Acoustic dissipator
• Active acoustic element

Time

P
re

ss
u
re

Acoustic
fluctuations

Heat transfer
fluctuations

Positive feedback
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Summary

Thermoacoustic instability
• Characterised by high amplitude pressure

fluctuations
• Often lead to structural damage
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Control Strategies
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Heat exchangers
• Heat sink and Acoustic dissipator
• Active acoustic element
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Applications...
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WHERE does this occur?
Domestic Boilers

Confined Heat source (or sink) + Acoustics

Industrial
furnace

Domestic
boiler

Gas turbine
engine

Rocket engine
(SABRE)
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The presented work is part of the Marie Curie Initial
Training Network - TANGO. We gratefully acknowledge
the financial support from the European Commission
under call FP7-PEOPLE-ITN-2012.

Collaborators

Maria A. Heckl

Luck Peerlings
Susann Boij
Hans Bodén

Avraham Hirschberg
Naseh Hosseini
(also Bekaert)

Joan Teerling

Prediction of thermoacoustic instabilities
in domestic boilers

Outline

Modelling of Boiler

Heat exchanger modelling

Solution methodology

Stability predictions

Summary & Conclusions
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Modelling of Boiler
Idealised system

Domestic boilers
• Burner + Heat exchanger

• Radially symmetric
• Idealised combustion system

Exhaust

Fuel-Air mixture

Water in

Water out

Combustion chamber

Burner

Heat Exchanger

Courtesy: Wolf (http://en.wolf-heiztechnik.de)
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Modelling of Boiler
Idealised system

Domestic boilers
• Burner + Heat exchanger
• Radially symmetric
• Idealised combustion system

Exhaust

Fuel-Air mixture

Water in

Water out

Combustion chamber

Burner

Heat Exchanger

p+1 p+2

p−1 p−2

x = 0 x = lf x = L

Heat Source

1 2

Heat Exchanger

lc

Piston

R0 4

RL

Rp
Courtesy: Wolf (http://en.wolf-heiztechnik.de)
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Modelling of Boiler
Assumptions

1-D acoustic waves, perpendicular to the rods

Acoustically compact heat source
• Heat source thickness � acoustic wavelength

Heat exchanger : Heat sink + Acoustic scatterer

Inlet - open end and Outlet - closed end

p+1 p+2

p−1 p−2

x = 0 x = lf x = L

Heat Source

1 2

Heat Exchanger

lc

Piston

R0 4

RL

Rp
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Modelling of Boiler
Heat Source

Infinitesimally thin, acoustically compact heat source

Obeys “Simple” n − τ law

Q̂f (x , ω) = n u1 (x) e iωτδ (x − lf )

Courtesy: Dr. O. J. Teerling,
Bekaert Combustion Technology
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x = 0 x = lf x = L

Heat Source

1 2

Heat Exchanger

lc

Piston

R0 4

RL

Rp
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Modelling of Boiler
Heat Exchanger

Heat Sink + Acoustic Scatterer
• Spaced infinitesimal distance (∆x) apart

Heat sink - Transfer function

Acoustic scattering - Quasi-steady model

Net scattering behaviour
• Combine both and let ∆x → 0

p+2

p−2

x = L

2

p+3

p−3

p+4

p−4

x = ls

3 4

Heat Sink

∆x

Acoustic transmission
and reflection

p+1 p+2

p−1 p−2

x = 0 x = lf x = L

Heat Source

1 2

Heat Exchanger

lc

Piston

R0 4

RL

Rp
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Modelling of Boiler
Cavity backed Heat Exchanger

Rigid end → Cavity backing

RL = Ru +
Td→uTu→dRpe

2ik4lc

1− RdRpe2ik4lc

∆L = 1− |RL|2

RL : effective reflection coefficient at x = L

Heat exchanger scattering coefficients : Tu→d ,Ru,Td→u & Rd

p+1 p+2

p−1 p−2

x = 0 x = lf x = L

Heat Source

1 2

Heat Exchanger

lc

Piston

R0 4

RL

Rp
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Heat exchanger modelling
Heat sink

Transfer Function (HTF) : complex quantity

HTF =
Q̂h/Q̄h

û2/ū2

Q̂h =
(
u+

2 + u−2
) (

Q̄h/ū2

){
|HTF | e iΦ(HTF )

}
Obtained from numerical simulations

Approximated using Least squares

Acoustic wave

Acoustic wave

Heat transfer fluctuations
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ū = 0.5m/s (approx)
ū = 1.0m/s (approx)
ū = 1.5m/s (approx)
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Heat exchanger modelling
Acoustic scattering

Quasi-steady model
• Approximated geometry

Experimentally validated[
(1 + M2) p+

2

(1−M1) p−1

]
=

[
T1→2 R2

R1 T2→1

] [
(1 + M1) p+

1

(1−M2) p−2

]

pj

uj

ρj

Sp hg Sj

d

(T1→2, R1) (T2→1, R2)

1 j 2

M1

p+1

p−1

M2

p+2

p−2

Surendran, A., Heckl, M. A., Peerlings, L., Boij, S., Bodén, H., and Hirschberg, A., “Aeroacoustic
response of an array of tubes with and without bias-flow”, Journal of Sound and Vibration, Vol. 434,
pp. 1–16,(2018).
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Heat exchanger modelling
Total Scattering Matrix

Heat Sink + Acoustic Scatterer

Combine at ∆x → 0[
p+

4

p−2

]
=

[
Tu→d Rd

Ru Td→u

]
︸ ︷︷ ︸

[SM]hex

[
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2

p−4

] p+2
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x = L
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3 4

Heat Sink
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Acoustic transmission
and reflection

Heat Sink Duct (∆x) Tube row
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Solution methodology
Eigenvalue problem

p+1 p+2

p−1 p−2

x = 0 x = lf x = L

Heat Source

1 2

Heat Exchanger

lc

Piston

R0 4

RL

Rp

Open end

p+
1 e
−ik1lf = R0p

−
1 e ik1lf

At x = L end

p−2 e−ik2(L−lf ) = RLp
+
2 e

ik2(L−lf )
Across heat source

p+
1 + p−1 = p+

2 + p−2

− (p+
1 −p−

1 )
ρ̄1c1

+
(p+

2 −p−
2 )

ρ̄2c2
= (γ−1)Q̂(lf )

ρ̄1c2
1S
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Solution methodology
Eigenvalue problem

p+1 p+2

p−1 p−2

x = 0 x = lf x = L

Heat Source

1 2

Heat Exchanger
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Piston

R0 4
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[Y (Ω)]


p+

1

p−1
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2

p−2

 =


0
0
0
0


det [Y (Ω)] = 0

Newton

Raphson
Ωm = ωm + i δm

δm

{
< 0 Stable
> 0 Unstable
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Solution methodology
Eigenvalue problem

p+1 p+2

p−1 p−2

x = 0 x = lf x = L
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 =


0
0
0
0


det [Y (Ω)] = 0

Newton

Raphson
Ωm = ωm + i δm

δm

{
< 0 Stable
> 0 Unstable

Linear stability
of the first mode
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Stability predictions

lc - lf plane

Time lag : 0 < τ < Tperiod/2
• Unstable (Rayleigh criterion)
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Surendran, A., Heckl, M. A., Hosseini, N., and Teerling, O. J., “Passive control of instabilities in com-
bustion systems with heat exchanger”, International Journal of Spray and Combustion Dynamics, Vol.
10, Issue 4, pp 362–379, (2018).

Surendran, A., Heckl, M. A., Hosseini, N., and Teerling, O. J., “Corrigendum - Passive control of in-
stabilities in combustion systems with heat exchanger”, International Journal of Spray and Combus-
tion Dynamics, Vol. 10, Issue 4, pp 393–398, (2018).
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Stability predictions

lc - lf plane

Influence of frequency
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Stability predictions

lc - lf plane

Influence of cavity length
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ū

11 March 2020 Aswathy Surendran - Passive control of thermoacoustic instabilities by heat exchangers 25/28



Workshop on Analytical methods in thermo- and aeroacoustics

Stability predictions

lc - lf plane

Influence of velocity
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Stability predictions

lc - lf plane
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Stability predictions
Stability maps
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Summary & Conclusions

Aim: To study the passive instability control
potential of heat exchangers

Crucial parameters
• Cavity length and Mean velocity
• Also depends on the dominant phenomenon

Outlook:
• Aimed at clean and compact combustion

units with hex
• Improved design flexibility
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