Imperial College London

Passive control of thermoacoustic instabilities by heat exchangers

Workshop on Analytical methods in thermo- and aeroacoustics

Aswathy Surendran

Research Associate Imperial College London United Kingdom a.surendran@imperial.ac.uk

Outline of Talk

Imperial College London

How? What?, Why? & Where? Passive control of thermoacoustic instabilities by heat exchangers

By use of

- Background Thermoacoustic Instability
- Control Strategies Active and Passive
- Motivation Use of Heat exchangers
- Applications

Background Thermoacoustic Instability Imperial College London

What?, Why? & Where? Passive control of thermoacoustic instabilities by heat exchangers

- What physical phenomenon are we looking at?
- Why is this important?
- Where does this occur?

Background WHAT is Thermoacoustic Instability?

Imperial College London

- Simple thermoacoustic device
 - Rijke tube

Sound generated

Courtesy: Prof. Maria Heckl Keele University

Background WHAT is Thermoacoustic Instability?

Imperial College London

- Simple thermoacoustic device
 - Rijke tube
- Thermo + Acoustics

Sound waves perturb flame

Flame generating sound waves

Courtesy: Prof. Maria Heckl, Dr. Sreenath Malamal Gopinathan Keele University

Background WHAT is Thermoacoustic Instability?

Imperial College London

- Simple thermoacoustic device
 - Rijke tube
- Thermo + Acoustics
 - Positive Feedback

_			_	_	_	_	_				_	_	_	_							_	_	_	_	_	_				_	_	_	_
		•	٠	٠	•	•	٠	٠		••	••		٠	٠						٠	٠	•	٠	٠	٠	٠	٠				•	-	•
•••		•	٠	٠	•		٠	٠	•	••	••		٠	٠					••	٠	٠	•	٠	٠	٠	٠	٠	•	 ••				
	 	2	÷.	-	÷.	- 21	-	-	а.	22			-	-					22	-	-	÷.	÷.	÷.	-	- 24	-	-	 23	 	- 2		2
		Ξ.	Ξ.																			Ξ.											
•••		•	٠	٠	•	٠	٠	٠	•	••	•••		٠	٠	•				•	٠	٠	•	•	•	٠	٠	٠	•	•	•	•		•
••		•	٠	٠	٠	٠	٠	٠	٠	••	••	••	٠	٠					••	٠	٠	٠	٠	٠	٠	٠	٠	••	••		٠		•
		•	٠	٠	٠	٠	٠	٠	٠	••	••	••	٠	٠				••		٠	٠	٠	٠	٠	٠	٠	٠	•	••		٠		•
•••		•	٠	٠	•	٠	٠	٠	•	••	••		٠	٠					••	٠	٠	•	٠	٠	٠	٠	٠	•	••				
		ε.	•						÷.,	-								1	-			÷.						-					
		Ξ.	Ξ.			- 21	-	-	- 21							- 2			22	-	-	Ξ.	а.	а.		- 2	-	-	 	 	- 2		
•••		•	٠	٠	•	•	٠	٠	•	••	•••		٠	٠	•				•••	٠	٠	•	•	•	٠	•	٠	•	•	•	•		•
••		•	٠	٠	٠	٠	٠	٠	٠		••	••	٠	٠					••	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•		•
••		•	٠	٠	٠	٠	٠	٠	٠		••	••	٠	٠					••	٠	٠	٠	٠	٠	٠	٠	٠	•	 ••		٠		•

Sound waves perturb flame

Flame generating sound waves

Courtesy: Prof. Maria Heckl, Dr. Sreenath Malamal Gopinathan Keele University

Background WHY Thermoacoustic Instability?

- Positive Feedback
 - Increasing pressure amplitudes \rightarrow Thermoacoustic Instability
 - Damage to structure

Damaged and undamaged burner assembly

Y. Huang and V. Yang, "Dynamics and stability of lean-premixed swirl-stabilized combustion", *Progress in Energy and Combustion Science*, Vol. 35, Issue 4, pp 293-364, (2009)

High amplitude pressure fluctuations

Background WHERE does this occur?

Imperial College London

Confined Heat source (or sink) + Acoustics

How? Passive control of thermoacoustic instabilities by heat exchangers

How can we control this?

Control Strategies Active and Passive

Actuator

- Break positive feedback
 - Active Control or Passive Control

Sensor

Active Control

Flame

Combustion

products

Δir

Air

Fuel

Control Strategies Passive control

- Other passive control devices
 - Acoustic liners

Dissipative mechanism in liners

The jet engine, 5th Ed., Rolls-Royce plc, Derby, UK, (1996)

Imperial College

Motivation

Passive control of thermoacoustic instabilities

by heat exchangers

By use of

What is so special about heat exchangers?

Motivation Heat Exchanger

- Heat exchangers
 - Integral component of combustion systems
 - No additions needed
 - Act as both *heat sink* and *acoustic scatterer/ dissipator*
 - Active/passive acoustic element
 - Positive feedback \rightarrow Thermoacoustic instability

Summary

- Thermoacoustic instability
 - Characterised by high amplitude pressure fluctuations
 - Often lead to structural damage
 - Caused by positive feedback

Imperial College London

Summary

- Thermoacoustic instability
 - Characterised by high amplitude pressure fluctuations
 - Often lead to structural damage
 - Caused by positive feedback
- Control Strategies
 - Active and Passive

Summary

- Thermoacoustic instability
 - Characterised by high amplitude pressure fluctuations
 - Often lead to structural damage
 - Caused by positive feedback
- Control Strategies
 - Active and Passive
 - Passive: Acoustic liners

Imperial College London

Summary

- Thermoacoustic instability
 - Characterised by high amplitude pressure fluctuations
 - Often lead to structural damage
 - Caused by positive feedback
- Control Strategies
 - Active and Passive
 - Passive: Acoustic liners
- Heat exchangers
 - Heat sink and Acoustic dissipator
 - Active acoustic element

Imperial College London

Applications...

WHERE does this occur? Domestic Boilers

Imperial College London

Confined Heat source (or sink) + Acoustics

The presented work is part of the Marie Curie Initial Training Network - TANGO. We gratefully acknowledge the financial support from the European Commission under call FP7-PEOPLE-ITN-2012.

Prediction of thermoacoustic instabilities in domestic boilers

Collaborators

Maria A. Heckl

Luck Peerlings Susann Boij Hans Bodén

Avraham Hirschberg Naseh Hosseini (also Bekaert)

Joan Teerling

BEKAERT

Outline

- Modelling of Boiler
- Heat exchanger modelling
- Solution methodology
- Stability predictions
- Summary & Conclusions

Modelling of Boiler Idealised system

- Domestic boilers
 - Burner + Heat exchanger

Courtesy: Wolf (http://en.wolf-heiztechnik.de)

Modelling of Boiler Idealised system

- Domestic boilers
 - Burner + Heat exchanger
 - Radially symmetric

Courtesy: Wolf (http://en.wolf-heiztechnik.de)

Burner + Heat exchanger Radially symmetric

Idealised system

Modelling of Boiler

Domestic boilers

Courtesy: Wolf (http://en.wolf-heiztechnik.de)

Modelling of Boiler Assumptions

- 1-D acoustic waves, perpendicular to the rods
- Acoustically compact heat source
 - Heat source thickness \ll acoustic wavelength
- Heat exchanger : Heat sink + Acoustic scatterer
- Inlet open end and Outlet closed end

Modelling of Boiler Heat Source

- Infinitesimally thin, acoustically compact heat source
- Obeys "Simple" $n \tau$ law

$$\hat{Q}_{f}(x,\omega) = n u_{1}(x) e^{i\omega\tau} \delta(x - l_{f})$$

Courtesy: Dr. O. J. Teerling, Bekaert Combustion Technology

Modelling of Boiler Heat Exchanger

Heat Sink + Acoustic Scatterer Acoustic transmission Heat Sink and reflection • Spaced infinitesimal distance (Δx) apart (2)(3)Heat sink - Transfer function p_2^+ 91616 Acoustic scattering - Quasi-steady model Net scattering behaviour x = L $x = l_{*}$ • Combine both and let $\Delta x \rightarrow 0$ Δx Heat Source Heat Exchanger (1)(2) R_L Piston 318181818 p_{2}^{+} R_0 (4) R_n $x = l_f$ x = Lx = 0

Imperial College London

4

Modelling of Boiler Cavity backed Heat Exchanger

 $\blacksquare Rigid end \rightarrow Cavity backing$

$$R_L = R_u + \frac{T_{d \to u} T_{u \to d} R_p e^{2ik_4 l_c}}{1 - R_d R_p e^{2ik_4 l_c}}$$
$$\Delta_L = 1 - |R_L|^2$$

- R_L : effective reflection coefficient at x = L
- Heat exchanger scattering coefficients : $T_{u \rightarrow d}, R_u, T_{d \rightarrow u} \& R_d$

Imperial College London

Modelling of Boiler Cavity backed Heat Exchanger

 $\blacksquare Rigid end \rightarrow Cavity backing$

$$egin{aligned} R_L &= R_u + rac{T_{d
ightarrow u} T_{u
ightarrow d} R_
ho e^{2ik_4 l_c}}{1 - R_d R_
ho e^{2ik_4 l_c}} \ \Delta_L &= 1 - |R_L|^2 \end{aligned}$$

• R_L : effective reflection coefficient at x = L

• Heat exchanger scattering coefficients : $T_{u \rightarrow d}, R_u, T_{d \rightarrow u} \& R_d$

Imperial College London

Heat exchanger modelling Heat sink

Transfer Function (HTF) : complex quantity

$$egin{aligned} HTF &= rac{\hat{Q}_h/ar{Q}_h}{\hat{u}_2/ar{u}_2} \ \hat{Q}_h &= \left(u_2^++u_2^-
ight)\left(ar{Q}_h/ar{u}_2
ight)\left\{\left|HTF
ight|e^{i\Phi(HTF)}
ight\} \end{aligned}$$

- Obtained from numerical simulations
- Approximated using Least squares

Heat exchanger modelling Acoustic scattering

Surendran, A., Heckl, M. A., Peerlings, L., Boij, S., Bodén, H., and Hirschberg, A., "Aeroacoustic response of an array of tubes with and without bias-flow", *Journal of Sound and Vibration*, Vol. 434, pp. 1–16, (2018). Imperial College

Heat exchanger modelling Total Scattering Matrix

Solution methodology Eigenvalue problem

Solution methodology

Eigenvalue problem

Solution methodology

Eigenvalue problem

- *l_c l_f* plane
- Time lag : $0 < \tau < T_{period}/2$
 - Unstable (Rayleigh criterion)

Surendran, A., Heckl, M. A., Hosseini, N., and Teerling, O. J., "Corrigendum - Passive control of instabilities in combustion systems with heat exchanger', *International Journal of Spray and Combustion Dynamics*, Vol. 10, Issue 4, pp 393–398, (2018).

 I_c - I_f plane Influence of frequency

Imperial College

Piston

 R_p

London

Heat Exchanger

 R_L

(4)

2

Heat Source

(1)

 R_0

 $I_c - I_f$ plane Influence of cavity length

> Stable region

2 (1) R_L 9,9,9,9,9,6 Piston R_0 (4) R_p

Heat Source

Cavity length (l_c) [m]

Heat so

Imperial College

London

Heat Exchanger

 I_c - I_f plane Influence of velocity

Cavity length (l_c) [m]

Imperial College

Piston

 R_p

London

Heat Exchanger

 R_L

(4)

2

Heat Source

(1)

 R_0

 I_c - I_f plane Influence of velocity

Cavity length (l_c) [m]

Imperial College

Piston

 R_p

London

Heat Exchanger

 R_L

(4)

2

Heat Source

(1)

 p_1^-

 R_0

Summary & Conclusions

- Aim: To study the passive instability control potential of heat exchangers
- Crucial parameters
 - Cavity length and Mean velocity
 - Also depends on the dominant phenomenon
- Outlook:
 - Aimed at clean and compact combustion units with hex
 - Improved design flexibility

Imperial College London

Passive control of thermoacoustic instabilities by heat exchangers

Workshop on Analytical methods in thermo- and aeroacoustics

Aswathy Surendran Research Associate Imperial College London United Kingdom a.surendran@imperial.ac.uk

THANK YOU