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Feedback between acoustics & combustion drives
large amplitude oscillations that are catastrophic

Positive Feedback
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“Combustion instability”

aero engines & power plants leading to failure
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Practical engines have turbulent combustors
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ldentical symptoms, different problems!






Prognose



Onset of an impending instability



“Incipient” vs “impending”



Can we listen and forecast transition to instability?

Freedomscope.com www.oxford-instruments.com



Forecast



Combustion Instability



by listening to it



“hearing” vs “listening”



Experiments were performed on swirl stabilized
and bluff body stabilized flames
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Ack: Komarak & Polifke



TARA (Thermo-Acoustic Rig for studying Axial mode Instabilities)

Vishnu & Dileesh




Measure fluctuating pressure




What is “stable operation”?



During stable operation we have “combustion
noise”. Combustion noise is a misnomer.
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Combustion noise is deterministic chaos




A chaotic time series has a self similar structure,
with patterns that fill non-integer dimensions




Combustion noise signal appears to be self-similar
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Self-similarity



Clouds are not spheres,
mountains are not cones,

coastlines are not circles,
and bark is not smooth,
nor does lightning travel in a straight line




_ Nature displays self-similarity
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What about turbulent flow?



Turbulence flows are self similar: images or signals look
the same statistically under increasing magnification

Ecke (Los Almos Science, 2005)



Inertial cascade is formed by a hierarchy of eddies. No
intrinsic length scale, as viscous effects are absent

Javier Jiménez (2004) “The contributions of A. N. Kolmogorov to the theory of turbulence”



»

Credit: X-ray: NASA / CXC /' SAO; Otti®o: Detlef
Hartmann; Infrarosso: NASA / JPL-Caltech



http://aquariusreportages.blogspot.in
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Fractional dimension



How long is the coast of Britain?




Perimeter depends on the size of the ruler!

10°F

Slope gives
fractal dimension
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http://pil.phys.uniromal.it/twiki/pub/Pil/ErosionModel/figure5.jpg



Fractal dimension of a time series



For a fractal, measures of dispersion
such as standard deviation will not converge



Slope of log-log plot of standard deviation vs time
scale gives the Hurst exponent

¢ White noise
* Combustion noise (swirler)

3.5 ® Combustion noise (bluff-body)
= Periodic data
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Signals are classified as persistent & anti-persistent

Persistent White Noise Anti-persistent
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Combustion noise has antipersistent fractal attributes



Signals with a single scaling behavior are called
monofractals



Nature is more complex



A monofractal description was found insufficient to
describe turbulent flows




Turbulence is multifractal:

Different scalings for different amplitudes




Slope of log-log plot of standard deviation vs time
scale gives the Hurst exponent

¢ White noise
* Combustion noise (swirler)

3.5 ® Combustion noise (bluff-body)
= Periodic data
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Standard deviation is a special case of a
generalized structure function

Q
Q=

Rl = %ZW AR

g > 0 : Focus on high amplitudes g <0 : Focus on low amplitudes



Variation in Hurst exponents with scaling exponents
is a consequence of the multifractal nature
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Combustion noise Periodic



We construct a spectrum of fractal dimensions

Structure function (g—order RMS) g-order Hurst exponent
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Combustion noise is multifractal



Spectrum is broad for “combustion noise”;
concentrated to a point for white noise & periodic data
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Multifractality should disappear at the onset

Nair & Sujith (JFM 2014)



Abrupt or smooth?



Stable operation Unstable operation

—

Combustion noise Full blown instability



Question: What is combustion instability?

Answer: Periodic oscillations



Stable operation Unstable operation

>
Chaos Order



How do we go from chaos to order?

Sujith’s office (Chaos) Maria’s office (order)
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Between chaos and order, we have intermittency

Nair, Thampi & Sujith (JFM 2014); Pawar et al. (2016)



Intermittency presages the onset of thermoacoustic
instability
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We see the same behaviour in thermoacoustic and
aeroacoustic systems
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Combustion noise mmp Intermittency mmp Full blown instability



Combustion noise mmp Intermittency mmp Full blown instability

Not just thermoacoustics, but any aero-mechanical instability



aeroacoustic, aeroelastic, FIV, surge....



We need tools & measures to quantify transition
from chaos to periodic oscillations, via intermittency

http://1.bp.blogspot.com



The Hurst exponent smoothly approaches zero as

we approach an impending instability
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As we approach an impending instability, we see Hurst

exponent approaches 0 & a loss of multifractality
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We now know well in advance
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Will this idea work outside thermoacoustics?



Our findings hold good in aeroacoustics
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Usually equations are written for the system
variables in dynamical systems theory

dy .
~~=f(%)

X=20 00 X020 ]
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In @ numerical simulation, we calculate all the state variables






Phase Space Reconstruction



The phase space is reconstructed using

embedding theorem

/P’(t)—timeseries /l:t)
4

Average Mutual
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RP is created from recurrence matrix which tells
whether pairs of points in the phase space are close



RP is created from recurrence matrix which tells
whether pairs of points in the phase space are close

Adapted from http://www.math.uni-bremen.de/zetem/D|
Schwerpunkt/jahrestreffen07/skripte/Marwan.pdf




RP has black & white points, black denoting that two
points are sufficiently close, indicating a recurrence




RP has black & white points, black denoting that two
points are sufficiently close, indicating a recurrence




RP has black & white points, black denoting that two
points are sufficiently close, indicating a recurrence




RP has black & white points, black denoting that two
points are sufficiently close, indicating a recurrence




Patterns



Limit cycle and quasi-periodic oscillation appear as
diagonal lines in a recurrence plot
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Recurrence plot of an intermittent signal has black
patches of squares and rectangles
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Recurrence plots quantify intermittency in

measured signals
t



RQA gives smooth measures of proximity to instability



Pressure amplitude rises suddenly
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Shannon entropy decreases as we approach order
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Trapping time, the time spent by system in aperiodic
states, decreases as we approach instability
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Density of black points, showing recurrence rate in
the dynamics of the system, decreases
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Many precursors



remove false positives & negatives



Complexity



Loss of complexity



Signal + noise paradigm overlooks the
prognostic value of the irregular fluctuations

Signal + Noise
5 1 1 1 1

1 1
0 0.05 0.1 0.15 0.2 0.25
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] ]
0 0.05 0.1 0.15 0.2 0.25
Noise

1 1
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Don’t trash the “irregular fluctuations”




“Signal + noise” paradigm seems inadequate to

describe the “onset” of an impending instability



“Irregular fluctuations™




Onset of thermoacoustic instability



0.1 0.2 03 0.4 0

500 1000
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Shallow peak



Sharp peak



How shallow is shallow?



How sharp is sharp?



Pattern emerging during this transition needs to
be identified and formalized



Formalize the process of pattern discovery



Combustion dynamics is complex
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Can | apply complex systems theory?



In a reductionist approach, we focus on the parts

What are you

sayingl ltis like a

An clcPhant is

sheath of leather!!

like a big snake




In complex systems approach, we focus on the
interactions
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Simple Self-Organized
Local Relationships







Whole is different from the sum of its parts
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What is the pattern of connectivity in thermoacoustic systems?



Complex networks can be derived from time series



Complex networks can be derived from time series



Network - time series duality



We use visibility graph to convert time series to
complex network

(a)
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Lacasa et al. (2008)



What exactly is combustion noise?
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Combustion noise is scale-free



Bluff body
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What does scale-free structure imply in network topology?



Stable operation ‘ Unstable operation

(Combustion noise) (Combustion instability)
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Combustion noise ‘ Intermittency ‘ Full blown instability



How does this transition reflect in network’s topology?



What is combustion instability?

Ans: Periodic oscillations



How are periodic oscillations be represented in
visibility graph?
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Combustion instability

Combustion noise ‘

(scale-free) (regular)



Can we quantify this pattern formation using network properties?



Network properties quantify topology of a complex network



Network properties to quantify the topology of a
complex network

1. Short path length (L)

Shortest distance between any two nodes

AV W
2. Clusteri fficient (C
ustering coefficient (C) &\W//l

Measure of connectedness of nodes oo — SA
N

3. Global efficiency (E)
Inverse of short path length RS k \

4. Network diameter (D)

Maximum value of short path length



Clustering coefficient (C)



Clustering coefficient of a node

2N,
Kv (Kv o 1)

Cy

N,, is the number of connections in the neighborhood of node v

k,(k,-1)/2 Total no. of is the number of connections in the neighborhood

of node v



Clustering coefficient is a measure of
cliquishness of the nodes

http://ufos.homestead.com



Average clustering coefficient of a network

N
1
C= NZ Cy
v=1



Short path length (L; )



Short path length (Z; )

L; ; is the shortest distance between two nodes i and j.



Characteristic path length (L)

N N
N(N— 1)ZZL”

i=1 j=1

L is the average of short path lengths of all nodes in a network.



Global efficiency (£)

Inverse of short path length

N N 1
N(N_l)ZZm

i=1 j=1

For a disconnected node, L;; = «



Network diameter (D)

D = max(L; ;)



Variation of network properties forewarn the onset of
instability well before the rise in acoustic pressure
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Networks are used to

Ta [days]

200f

180}

1601

140f

120f

100}

80r

60

40f

— G 2 Y «

. Si

mulation (OL: HKG)

20

O
&
(=]
I
Ty
=z
pry
™
o
o
O
~

100F

T, [days]

0 5 10

D, [10% km]

D, [10% km]

model how contagions spread

E 200 SARS (2003)

Ta [days]

180Korea [indial
160F
0

1401

120F

100F

40F OSA

v 5 1b 15 20
D, [10% km]



Christian Huygens observed that two pendulum
clocks adjust their rhythms upon coupling

Christaan Huygens
(1629-1695)

Courtesy: Pikovsky et al, 2003



Synchronization of Candle Flames

wh B4

In-phase Synchronization Anti-phase Synchronization




We study the coupled behavior of acoustic field (p') and heat
release rate fluctuations (¢') using synchronization theory



We observe transition from desynchronized aperiodicity to
synchronized order via intermittency

,_\
2.
|

S
d

o
—

P & ¢ (V)

(a) Combustion noise

(b) Intermittency

(c) Low amplitude limit cycle

M “,H;HH ’xmx“l “W H'l“
H!HHHHHHHH VT

0 1.8 1.9 2

t(s)

(d) High amplitude limit cycle




The synchronization transition in a turbulent combustor
occurs on changing air flow rate

Desynchronized » IPS » PS » GS

state



Sonification of data



Combustion dynamics is complex
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We shy away from the complexity



Fanpop.com



| am a
linearized lion

http://m.animal.memozee.com



Let combustion dynamics be complex



This very complexity gives us early warning!






Let us QWETCLCQ com]o[exity

Let us remember that insmﬁifity is the loss of com}ofexity

Let us be forewameaf well in advance, and,

Let no engine get into insmﬁifity!




