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1. The tailored Green’s function

Green’s function:

governing equation: 
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impulse source at point x*,t*  → response at point x,t

Tailored Green’s function:

also satisfies the boundary conditions (resonator)

General form: i ( *)

1

( , *, *) H( *) ( , *)e n t t
n

n

G x x t t t t G x x


  



   

Superposition of modes n, where

Heaviside function (to ensure causality)

eigenfrequencies of the resonator 

(with steady, but no unsteady, heat source)

Green’s function amplitudes
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Example:  1-D tube with open ends

Results for Green's function:
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φ: velocity potential
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and ( , *)n nG x x can be calculated analytically for semi-1D

configurations, with:

- jump in mean temperature

- ends described by reflection coefficients R0 and RL 

- jump in cross-sectional area

- localised blockage
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Summary

- The tailored Green’s function is the response of a fluid with 

boundaries (typically a fluid within a resonator).

- tailored to the geometry of the resonator

- superposition of resonator modes

- can in principle be measured
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2. Solution of the acoustic analogy equation

2 2

2 2 2 2

1
'

1
( , )

c t x
q x t

c

 


   
 

 

forcing term

fluctuations of rate of heat 

release (per unit mass)

Analogy equation for the velocity potential φ:

Forced PDE → suitable for Green’s function approach

Governing equation for the Green’s function:
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Combine with equation for φ to get integral equation:
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can be calculated for a compact

heat source at xq , '( , ) ( ) ( )qq x t q t x x  
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equation for velocity at xq :

→ integral equation:
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Assume heat release law of the form: ( ) ( )( )qq t u t F
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 F

(linear or nonlinear)

velocity at 

current time

velocity at 

earlier times

This is a Volterra integral equation for uq(t).

Then
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Summary

- Acoustic analogy equation is PDE with forcing term

- Convert into integral equation with tailored Green's function

- For compact heat source, get Volterra integral equation

for uq(t) 

- Can be solved for given initial conditions
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3. Time history calculations

Solve integral equation with time-stepping method:

Discretise: 0, , 2 , ...mt t t t m t    
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Iteration scheme i
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Only N terms need to be calculated in each iteration step.
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Alessandra Bigongiari and Maria Heckl (2018) Analysis of the interaction of thermoacoustic modes with a 

Green's function approach. International Journal of Spray and Combustion Dynamics, Vol. 10(4), pp. 326-336 

Example: Nonlinear interaction between two modes
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The time-lags are amplitude-dependent:

3
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from combustion 

CFD simulations

Time-lag distributions around 1 2and : 
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Results
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Summary

- explicit calculation, stepping forward in time.

- no increase in numerical effort as iteration progresses

- works for any heat release law of the form

- resulting time history gives information on

frequency

growth rate  

limit cycle amplitude

...

( ) ( )( )qq t u t F
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4. Stability analysis for individual modes

Consider single mode n

→ integral equation for the velocity:

Convert to differential equation for velocity of mode n:
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2 *2Im( ) | | Im( ) ( ) Re( ) ( )n n n n n n n nu u u g q t g q t       

damped harmonic oscillator forcing term

Assume heat release law  1 0( ) ( ) ( )q t n u t n u t   

amplitude-dependent coefficients

can be obtained e.g. from FDF measurements
Heckl, M.A. (2013) Analytical model of nonlinear thermo-acoustic effects in a matrix burner. Journal of Sound and Vibration

332, 4021-4036.  
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Substitute into oscillator equation:

  2 *
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We look for steady limit cycle solutions:  ( ) cosnu t a t
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For any time-lag:
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         0 0 1cos sin ( ) 0n n n nc b b u t
1a

0a

ODE for un(t):

1 :a
0 :a

damping coefficient, amplitude-dependent

oscillation frequency (squared)

a1> 0: stability, a1< 0: instability

The stability behaviour can be examined at different 

amplitudes for various system parameters.
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Summary

- Single mode in isolation behaves like harmonic oscillator, 

forced by heat release rate

- For heat release rate with time-lags, mode behaves like

damped oscillator

- Damping coefficient gives stability behaviour

- Stability depends on Green's function amplitude and 

frequency of mode, also on time-lags
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5. Stability analysis in the frequency domain

Observation: instability frequencies are discrete

→ Assumption: superposition of thermoacoustic modes
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velocity at the 

heat source
complex velocity amplitude 

of t-a mode m

complex frequency

of t-a mode m

gives the stability behaviour of t-a mode m
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of resonator mode nIm( ) 0 ,n  i.e. never unstable
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Aim: determine andm mu

Requires several mathematical steps: Volterra equation

Laplace transform, ...
equation for :m
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linear equations for 
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Stability predictions for amplitude-dependent time-lag

3 3 25 10 4.4 10 ( / ) [s]a u     
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unstable

resonator: tube with open ends
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Hysteresis behaviour
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Bigongiari, A. & Heckl, M.A. (2016) A Green's function approach to the rapid prediction of thermoacoustic instabilities in 

combustors. Journal of Fluid Mechanics 798, 970-996.  
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Summary

- calculation faster than iterative solution of Volterra equation

- amplitude-dependence can be incorporated

- stability maps explain potential hysteresis behaviour

- to be used with caution for multiple modes
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6. Outlook and potential extensions

3-D Green's function, cartesian coordinates:

→ model flame in a box

3-D Green's function, cylinder coordinates:

→ model flames in an annular combustion chamber

- Add more modes

- Investigate interaction between modes

- Use more realistic heat release law

- … 

Collaboration with Beihang University (Xiaoyu Wang)

POLKA
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Thank you!
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