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1. The tailored Green’s function
Green’s function:
impulse source at point X*,t* — response at point X,t
1 %G
c? at?
Tailored Green'’s function:
also satisfies the boundary conditions (resonator)

governing equation: V3G = (X — X*)o(t —t*)

General form: G(x,x*,t —t*) = H(t —-t*) Y Gn(x,x*)e‘iwn(t‘t*)
n=1
Superposition of modes n, where

H: Heaviside function (to ensure causality)

o, -eigenfrequencies of the resonator
(with steady, but no unsteady, heat source)

G, :Green’s function amplitudes
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Example: 1-D tube with open ends

open end backward and forward openend -
with ¢=0 travelling acousti\c waves with =0 =
N\ =
A
x=0 O\ |
plate 1 plate 2

¢: velocity potential
Results for Green's function:

0. — ¢
n L (
_1\" * _
(=) sin—mnxsinm”(x L) for x<x*
G, (X, X*) =+ . ¢ ¢
D" . o, (Xx-L) . ox* .
n o SIn c SIN— ¢ for x>Xx

\
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o, and G, (X, x*) can be calculated analytically for semi-1D
configurations, with:

- jJump In mean temperature
- ends described by reflection coefficients Ry and R

- jJump in cross-sectional area
- localised blockage

RO
f SN B

x=0
X=L
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Summary

- The tailored Green'’s function is the response of a fluid with
boundaries (typically a fluid within a resonator).

- tailored to the geometry of the resonator
- superposition of resonator modes

- can In principle be measured
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2. Solution of the acoustic analogy equation
Analogy equation for the velocity potential @:

1 ach ach y—1
c2 52 _8x2 -T2 fluctuations of rate of heat

C .
- ~ - release (per unit mass)

forcing term

Forced PDE — suitable for Green’s function approach

Governing equation for the Green’s function:

2 2
L2 0T (k- x)(t— %)
c” ot OX

Combine with equation for ¢ to get integral equation:
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— Integral equation:

at L
(p(x,t):_y—zlj j G(X,x*t—t*) g'(x*t*)dx* dt*
C t*ZO\X*ZO

-3
c?

7

—~—

can be calculated for a compact
heat source at Xy, g'(x,t) =q(t) 8(X —Xg)

0]

0  evaluate

OX atx=x

q
i .
OX | x=Xq OX X*=Xg
equation for velocity at x :
t
ug M =-"1 ] Sl qtr) i
C™ r=p OXIX™=Xq

11 March 2020 POLKA Green's function talk



Assume heat release law of the form: q(t) = F(u(t))
(linear or nonlinear)

Then
SIS P Flug () de
C% +_0 ox x x H(_J
velocity at
earlier times

This Is a Volterra integral equation for uq(t).
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Summary

- Acoustic analogy equation is PDE with forcing term
- Convert into integral equation with tailored Green's function

- For compact heat source, get Volterra integral equation
for u,(t)

- Can be solved for given initial conditions
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3. Time history calculations
Solve integral equation with time-stepping method:

Discretise: t — t, =0, At, 2At, ... MAt

t* — t¥ =0,At, 2At,... jAt

t

m
[ dtr—> > LAt

Introduce abbreviation g, __¥~10G, Xx=Xq , then

02 OX | x*= xq’

number of modes considered
u ('[)— j %: '(Dn(t—t*)q(t*)dt*
t*=0 n=1
Collect terms with t *:
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N . t
g =3 gpe ™ | e“ntq(tr)dt>
n=1 t*=0

- J

1,(t) (abbreviation)

t t—At t
Split up integrationrange: | = | + |
t*=0 t*=0 tr=t—At
Then
t-At o
I = [ g dt*+ j e'®nUq(t*) dt *
i =0 ), E_t Al _
I}
=In(t—At) ~qt) [ e“dtx
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N .
lteration scheme  u,(t) = > dn e 'ent I, (1)
n=1 :
ot _
with — T.(t)= I (t—At)+q(t) S (1-e7ton)
o,

q(t) = F(ug(t))

Only N terms need to be calculated in each iteration step.
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Example: Nonlinear interaction between two modes
R, R,

g

heat source

7_-1! 51! C1 E/ 7_-2’ 52’ CZ ; :—

x=0 X=X, x=1L

G(X,x*,t —t*) =H(t —t*) [Gl(X, x*)e_iml(t_t*)+62(x’ X*)e—icoz(t—t*)}

J/

) resonator mode 1 resonator mode_2
0.0) 0.0)
at) =K |ny [ ug(t-t)Oytdr-n, [ ug(t-1)O,(xDdv
| =0 =0 / |
_ (3 distribution around distribution around
with K=—— time-lag tq time-lag T,
Suypo

Alessandra Bigongiari and Maria Heckl (2018) Analysis of the interaction of thermoacoustic modes with a
Green's function approach. International Journal of Spray and Combustion Dynamics, Vol. 10(4), pp. 326-336
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Time-lag distributions around t, and 15 :

_(T—Tl)2

2

D1(T)=G Zﬁzne 201
. _(T—Tz)2

2

D, (1) = 2_o 203

Gzﬂ

The time-lags are amplitude-dependent:
)

1 =41-66= 2 11073 |
a from combustion

T, =6.3-1.9— [107>s] > CFD simulations
u
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Results
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Summary

- explicit calculation, stepping forward in time.
- no increase in numerical effort as iteration progresses
- works for any heat release law of the form q(t) = j—‘(uq (1))

- resulting time history gives information on
frequency
growth rate
limit cycle amplitude
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4. Stability analysis for individual modes
Consider single mode n

— integral equation for the velocity:
t

up(t)= | gn e gedt
t*=0

Convert to differential equation for velocity of mode n:

Uy —2Im(@p) Uy +| o, |2 Uy =— Im(mng;) q(t)+Re(gn) q(t)

N

damped harmonic oscillator forcing term

Assume heat release law q(t):/@u(t@ ‘U(t)

amplitude-dependent coefﬂClents
can be obtained e.g. from FDF measurements

Heckl, M.A. (2013) Analytical model of nonlinear thermo-acoustic effects in a matrix burner. Journal of Sound and Vibration
332, 4021-4036.
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Substitute into oscillator equation:

i+ [~21m () + g Re(gn )]t + | | o P 19 Im(0ng7,) |up =

N—

—— L\ 7

Cl ¥CO
-y Im(0gn) |un(t =)+ nRe(gp) |un (t 1)

A

Zbo z b,

We look for steady limit cycle solutions: u,(t) = acos@
~ Q)n

’

For any time-lag:

u,(t —t)=acosQ(t — 1) = (cosQr) u, (t) - sinQt

Un (1)

U, (t —1)=—-QasinQ(t —t) = (Q2sinQrt) u,(t) + (cosQr)u,(t)
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ODE for u(t):
U, (t) +]cq + by — b, cosw,t] U, (t) +

N nv —
+[co —bg cos w, T — by, sinw,t]u,(t) =0

-~

SIN®,T

ay - oscillation frequency (squared)_
a, . damping coefficient, amplitude-dependent

a;> 0: stability, a;< 0: instability

The stability behaviour can be examined at different
amplitudes for various system parameters.
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Example: A4 resonator with variable length and
amplitude-dependent time-lag law

time-lag: t=1t9+ 1 (a/U) 2 a: velocity amplitude

-2.0
% 51.5
=
= _
= [1.0
2 ] o stable !
8 :
g.) Q@ :0.5

P
0.0

01 02 03 04 05 06 07 08
tube length [m]
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Summary

- Single mode in isolation behaves like harmonic oscillator,
forced by heat release rate

- For heat release rate with time-lags, mode behaves like
damped oscillator

- Damping coefficient gives stability behaviour

- Stablility depends on Green's function amplitude and
frequency of mode, also on time-lags
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5. Stability analysis in the frequency domain
Observation: instability frequencies are discrete
— Assumption: superposition of thermoacoustic modes

velocity at theRe z @ _I®t

m= 1/
heat source Complex frequency
complex velocity amplitude  of t-a mode m

of t-a mode m
Im(Q2,,,) gives the stability behaviour of t-a mode m

compare with Green's function:
G(x,x*t -t =H(t -t 3. Gp(x, x*)e—i@{t*)

complex eigenfrequency
Im(w,) <0, i.e. never unstable of resonator mode n
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Aim: determine Q,, and u,

Requires several mathematical steps: Volterra equation
Laplace transform, ...
equation for €, :

i | B 2_02685
Q(y-1

(ne*m* —ng) > |- —- =
n=1 | (op —Qn) Hop* +Qn) |

where: — q'(x,t) = q(t)5(x — Xq)
~ U, (t — 1) Uq (t)
q(t):sg{n1 R }

u

~ G, (X, x¥)
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linear equations for u, :

- matrix elements |[u; | [vector elements |
depend on U, |=| dependon
: initial conditions

_gn,(Dn,Qm,nO,nl,T_
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Stability predictions for amplitude-dependent time-lag
resonator: tube with open ends
time-lag: t= 5x107 + 4.4><10‘3(a/ U)2 [S]

2.0

amplitude
= Ln

=
Ln

0 0.5 1.0 1.5 2.0
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Hysteresis behaviour

2.0
1.5
1.0

0.5

[
(]

amplitude

1.0 1.2 1.4 1.6 1.8 2.0

Xg (M)
Bigongiari, A. & Heckl, M.A. (2016) A Green's function approach to the rapid prediction of thermoacoustic instabilities in
combustors. Journal of Fluid Mechanics 798, 970-996.
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Summary

- calculation faster than iterative solution of Volterra equation
- amplitude-dependence can be incorporated
- stability maps explain potential hysteresis behaviour

- to be used with caution for multiple modes
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6. Outlook and potential extensions

POLKA

Add more modes
Investigate interaction between modes
Use more realistic heat release law

Collaboration with Beihang University (Xiaoyu Wang)
3-D Green's function, cartesian coordinates:
— model flame in a box

3-D Green's function, cylinder coordinates:
— model flames in an annular combustion chamber
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Thank you!

Maria Heckl
School of Chemical and Physical Sciences
Keele University
Staffordshire ST5 5BG, U.K.
m.a.heckl@keele.ac.uk
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