Dynamical Systems Approaches to Combustion Instability

Prof. R. I. Sujith Indian Institute of Technology Madras India

Acknowledgements:

- 1. P. Subramanian, L. Kabiraj, V. Jagadesan, V. Nair, G. Thampi,.....
- 2. P. Wahi, W. Polifke, M. Juniper, P. Schmid, R. Govindarajan
- 3. Department of Science and Technology India

What is dynamical systems theory?

Dynamical systems theory describes changes in systems that evolve in time

Image from Wikipidea en.wikipedia.org/wiki/Buckling What is a bifurcation?

A small smooth change in parameter values causes a sudden 'qualitative' change in behaviour

Linear Stability/Instability Acknowledgement: Prof. Zinn's notes, with permiss A system is Linearly stable/unstable if wery/any small amplitude disturbance decays/amplifies with time.

Comments

- · instability spontaneous
- · growth rate exponential (i.e., 10'~ et; ~~growth rate)
- · one of the systems natural modes is writed.

Note: ~~ [G]-[L]

A system is nonlinearly unstable if some finite amplitude disturbance grows with time

From Prof. Zinn's notes, with permission

For triggering instability, the initial amplitude should be greater than a "threshold amplitude"

Two distinct kinds of instability can be identified – called Hopf bifurcation in dynamical systems theory

Regions of linear & nonlinear instability are different in sub-critical bifurcation / triggered instability

Even if triggering does not occur, a sub-critical bifurcation is more dangerous for our system

We discuss the application of tools from dynamical systems theory in thermoacoustics

Slow flow equations

$$\frac{dU}{dt} = \left(B_{1}\varepsilon^{2} + iB_{2}\right)U + \left(B_{3} + iB_{4}\right)\left|U\right|^{2}U$$

Numerical continuation to obtain bifurcation plots

Nonlinear time series analysis

Slow flow equations

A horizontal Rijke tube is modeled

Matveev & Culick (2003) Balasubramanian & Sujith (2008)

We sidestep the effects of natural convection on the mean flow

The acoustic field within the thermoacoustic system evolves as

$$\gamma M \frac{\partial u'}{\partial t} + \frac{\partial p'}{\partial x} = 0$$

$$\frac{\partial p'}{\partial t} + \varsigma p' + \gamma M \frac{\partial u'}{\partial x} = \left(\gamma - 1\right) \dot{q}_{f}'(t) \delta\left(x - x_{f}\right)$$

$$u' = \sum_{j=1}^{N} U_j \cos(j\pi x) \text{ and } p' = -\sum_{j=1}^{N} \frac{\gamma M}{j\pi} P_j \sin(j\pi x)$$

Zinn & students (late 60s, early seventies)

Method of multiple scales can be used to obtain an amplitude equation

$$\begin{split} \ddot{U} + a_0 \dot{U} + a_1 U + a_{2p} \left[\sqrt{1 + 3\cos\left(\pi x_f\right) U\left(t - \tau\right)} - 1 \right] &= 0 \\ U\left(t\right) &= \varepsilon y\left(t\right) = A_1\left(t\right) \sin\left(t + \phi_1\left(t\right)\right) \end{split}$$

Define multiple scales: $t_0(t) = t$ $t_1(t) = \epsilon t$ $t_2(t) = \epsilon^2 t$

$$y(t) = Y_0(t_0, t_1, t_2) + \varepsilon Y_1(t_0, t_1, t_2) + \varepsilon^2 Y_2(t_0, t_1, t_2) + O(\varepsilon^3) + \dots$$

Evolution equation for the slow flow is of the Stuart-Landau form

Priya Subramanian

$$\frac{dW}{dt} = \left(B_{1}\varepsilon^{2} + iB_{3}\right)\left(\sigma - \sigma_{H}\right)W + \left(B_{2} + iB_{4}\right)\left|W\right|^{2}W$$

JFM 2012

Slow flow equations for amplitude & phase:

$$\frac{dA}{dt} = B_1 \left(\sigma - \sigma_H \right) A + B_2 A^3 ; \qquad \frac{d\varphi}{dt} = B_3 \left(\sigma - \sigma_H \right) + B_4 \varphi^2$$

Triggering amplitude:

$$\boxed{A\propto \left(\sigma-\sigma_{_{H}}\right)^{^{1/2}}}$$

Numerical Continuation

Jahanke & Culick (1994)

Numerical continuation tracks the solution of a set of parameterized nonlinear equations

Simulations in time domain are replaced by iterative root finding of the corresponding constrained set of equations

The flow giving rise to a limit cycle can be also viewed as a map

Flow:
$$\frac{du}{dt} + F(u,\lambda) = 0$$

Map:
$$u_{(n+1)T} = \Phi u_{nT}$$

Floquet multipliers are the eigenvalues of the state transition matrix

Increase in power destabilizes the system through a sub-critical Hopf bifurcation

Stability variation with heater location is not monotonic

Nonlinear time series analysis

 $\frac{d\vec{\chi}}{dt} = f(\vec{\chi})$

 $\vec{\chi} = \left[\chi_1, \chi_2, \chi_3, \dots, \chi_n\right]$

$$\vec{\chi} = \left[\chi_1, \chi_2, \chi_3, \dots, \chi_n\right]$$

In a CFD simulation, we calculate all the state variables;

In an experiment, we have one pressure transducer!

The phase space is reconstructed using embedding theorem

The onset of instability is classified into soft and hard excitation

Experimental data in a combustor with a bluff body flame holder - Nair & Sujith (2012)

Zinn & Lieuwen (2005) (p19): "Although large-amplitude disturbances are generally required to initiate unstable oscillations in nonlinearly unstable systems, a system may be nonlinearly unstable at low-amplitude disturbances that are of the order of the background noise level. This scenario is somewhat analogous to the hydrodynamic stability of a laminar Poiseuille flow."

We investigate the role of noise in a ducted non-premixed flame system

Jagadesan & Sujith (2012 symposium)

System undergoes transition via subcritical Hopf bifurcation.

Triggering instability is observed when the system is in hysteretic region

Scenario proposed by Balasubramanian & Sujith (2008) Juniper (2011)

Bifurcation diagram is separated in to globally stable, globally unstable and bistable regions

Spurts in amplitude are observed

System undergoes transition analogous to bypass transition to turbulence

Jagadesan & Sujith (Combustion Symposium 2012)

In thermoacoustics, the final state is "believed" to be a limit cycle, when driving balanced damping

We observed intermittency in a turbulent swirl stabilized burner

Thampi & Sujith (2012)

Experimental setup: Ducted laminar premixed flame

Lipika Kabiraj

Kabiraj & Sujith (JFM 2012)

Limit cycle breaks leading to a state of flame detachment and reattachment

We see a subcritical Hopf bifurcation

Bifurcation: limit cycle, quasi-periodic and intermittent oscillation

During limit cycle, wrinkles originate at the base of the flame and propagate downstream

Flame response during quasi-periodic oscillations shows elongation, neck formation, cusping & pinch off

Dynamical behavior before flame blowout: Intermittent oscillations

Time~(Sec)

$$x_f = 64 \text{ cm to } x_f = 68.5 \text{ cm}$$

Two types of bursts are observed along with sections of laminar state

L- laminar state, B1 & B2- two types of burst, F-fixed point (no oscillation)

Recurrence plot is a graphical representation for visualizing system dynamics from short time series

Embedding theorem

A square binary recurrence matrix

 $\mathbf{R}_{ij}|_{N imes N}$

$$\mathbf{R}_{ij} = \Theta(\epsilon - ||\vec{x}_i - \vec{x}_j||), \quad i, j = 1, \dots, N$$

p(t) - Time series p(t) $p(t + 2\tau)$ $p(t + \tau)$

Reconstructed phase space

Recurrence plot: limit cycle and quasi-periodic oscillation

Features of RP for type-II intermittency

Flame attachment and reattachment leads to intermittent oscillations

Simultaneous to these bursts, flame oscillates violently, lifts off & then reattaches to the burner rim

a-c: Laminar state (L), d-o: Burst state (B2), p-r: Reattachment.

What does dynamical systems theory tell us about instabilities in a turbulent combustor?

Thermoacoustic oscillations have a "micro-structure" which can be revealed using nonlinear dynamics calculation

Can be used to detect the onset* of an impending instability before the instability occurs

*Patent pending

In summary, dynamical systems theory provides us with tools that can be used to gain new insights

Recognized by Web o f Science (isiknowledge.com)