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Sound plays a crucial role in combustion instabilities 

Generic combustion system 

Flames interact with sound thermoacoustic  
instability 

demo: Rijke tube 

Flow perturbations interact with sound → 
demo: orifice tube 

combustion 
instability 

aeroacoustic  
instability 

→ 

Multiple interactions with sound → 
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Where do combustion instabilities occur? 

gas turbine  
engines 
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boilers 
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Combustion instabilities can occur whenever there is a 
continuously burning flame in a cavity. 

furnaces rockets 
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Combustion instabilities can be destructive 

Gas turbine damaged by a combustion instability 
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Instabilities tend to occur without warning 

Possible triggers of a combustion instability: 

- wear and tear over a long time 
- noise 
- change in ambient temperature 
- other unknown factors … 

Generally:  
some change in condition – even a tiny change! 
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Reduced-pollution combustion technologies 
- use lean premixed flames  
- burn at low temperatures 
- use hydrogen-blend fuels 

- use carbon-free fuels (hydrogen, ammonia) 
- use biofuels 

Combustion systems and instability control strategies 
need to be re-designed for carbon-free fuels 

Low-pollution combustion systems are susceptible to 
combustion instabilities  

Zero-carbon combustion technologies 

Benefits 
- minimise CO2 production 
- minimise NOx production 

Problems 
- risk of combustion instabilities 
- flame flashback (for hydrogen) 
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What is a premixed flame? 

Flame: visible part of an exothermic chemical reaction 
fuel + oxidizer → combustion products + light 

Premixed flame 
- fuel and oxidizer are mixed prior to combustion 
- combustion takes place in a thin interface 

Flame sheet in a stationary premix 

SL: laminar flame speed, depends on: 
- fuel type  
- fuel/oxidizer ratio 
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:u

:α

kinematic balance: 
α =sin Lu S

velocity of premix 

half-angle of flame 

A stationary flame adjusts its angle to the velocity ratio .LS
u

increase in SL → increase in α  → flame becomes flatter  

SL: laminar flame speed 

Bunsen-burner flame in a uniform velocity field 

increase in u  → decrease in α → flame becomes longer  
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Bunsen-burner flame in a vorticity field 

flame surface area ~ heat release rate 
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Outline of mathematical modelling approach 

combustion system  acoustic resonator unsteady flame = + 

Separate combustion system into two elements: 

Acoustic resonator:  
modelled by tailored Green’s function 

Unsteady flame:  
modelled by amplitude-dependent transfer function 

The two elements are then combined by a Green’s function 
approach 
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Acoustic resonator and its tailored Green’s function 

pressure impulse, fired at point x* and time t* 

observer, measuring response at point x and time t 

Mathematical name: tailored Green's function 

The tailored Green’s function describes the acoustic resonator 

Physical name: impulse response of the resonator 
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The tailored Green’s function is a superposition of modes 

- calculated analytically for quasi-1D geometries 
- measured for any geometry 

General form of the tailored Green’s function: 

i ( *)

1

0 before the impulse
( , *, *)

( , *)e after the impulsen t t
n

n

G x x t t
g x x

∞ − ω −

=


− = 


∑

eigenfrequencies of  
acoustic resonator  

Green’s function  
amplitudes 

( , *)ng x x and ωn can be 

Superposition of modes n 
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The unsteady flame is modelled as an input/output system 

Flame transfer function: 
ˆ( ) /( )
ˆ( ) /

Q Q
u u
ω

ω =
ω

T

− ω+ ω iˆ( )e tu u − ω+ ω iˆ ( )e tQ Q

- calculated analytically for linear laminar flames 
- calculated numerically (low effort) from level-set approach  
- calculated numerically (high effort) from combustion CFD 
- measured for many flames 

 

can be ωT ( , )A

flame 
ω( )T

Flame describing function: ω
ω =

ω
T

ˆ( , ) /( , )
ˆ( ) /

Q Q
u

AA
u

velocity amplitude 

Flame response in the frequency domain 
input output 
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Time-domain description of the flame 

frequency domain time domain inverse 
Fourier transform 

− τ
= τ τ∫

0

'( ) '( )( ) d
tQ t u th

uQ
impulse  
response 

ω ω
= ωT

ˆ ˆ( ) ( )( )Q u
uQ

typical result for a flame’s impulse response: 

Flame response in the time domain 
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Green’s function approach combines resonator and flame 

Governing integral equation:  = −∫
*

' ( ) Q'( *) ( *) d *q
t

u t t G t t t

' ( ), '( )qu t Q t

+ ∆ = −∫
*

' ( ) Q'( *) ( *) d *
t

q
t

u t t t G t t t + ∆ = + ∆F'( ) ( ' ( ))qQ t t u t t

Iteration to find time history of  
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Prediction of limit cycle amplitude and hysteresis 
with Alessandra Bigongiari 

Acoustic resonator: tube with open ends 

Flame: described by nonlinear time-lag law 
− τ

= −1 0

' '( ) ( )'( ) q qu t u tQ t
n n

Q u u

amplitude-dependent 

time history at  1.47mqx =stability map 

limit cycle 

stable 

unstable 
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further details in: Bigongiari, A. & Heckl, M.A. (2016) A Green's function approach to the rapid prediction of 
thermoacoustic instabilities in combustors. Journal of Fluid Mechanics 798, 970-996.  

backward path 
forward path different → hysteresis 

Prediction of limit cycle amplitude and hysteresis 
with Alessandra Bigongiari 
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Instability and flashback for hydrogen flames 
with Sreenath M. Gopinathan 

Acoustic resonator: 

Flame:  
H2 - enriched methane flame with laminar flame speed SL 
depending on equivalence ratio     and H2-concentration xH2  

SL increases 
dramatically at high H2 
concentrations 

φ
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Instability and flashback for hydrogen flames 
with Sreenath M. Gopinathan 

Impulse response of flame 

3-D map for stability 
and flashback 

further details in:  
Gopinathan, S.M., Surendran, A. & Heckl, M.A. 
(2021) Effect of equivalence ratio on stability 
and flashback of combustion systems using 
hydrogen-blended fuels. Proceedings of the 
Symposium on Thermoacoustics in 
Combustion: Industry meets Academia (SoTiC 
2021), Munich, Germany, 6-10 September 
2021   
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Passive instability control in a boiler 
with Aswathy Surendran 

Acoustic  
resonator: 

Flame: 

Heat exchanger: 

iˆ ˆ ( )( )
e quQ

n
Q u

ωτ ωω
=

heat sink sound scatterer + 

Sound scatterer 
modelled in terms of scattering matrix,  
calculated analytically with quasi-steady approach 

Heat sink 
modelled in terms of heat transfer function,  
calculated by CFD 

modelled by flame transfer function 
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further details in: Surendran, A., Heckl, Maria, Hosseini, N. and Teerling, O.J. (2018) Passive control of instabilities in 
combustion systems with heat exchanger. International Journal of Spray and Combustion Dynamics, Vol. 10(4), pp. 
362-379.    

Passive instability control in a boiler 
with Aswathy Surendran 

Variable parameters: cavity length  
flame location 
mean flow velocity 
temperature difference 
tube spacing … 
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further details in: Arabi, S. and Heckl, Maria (2022) The effects of different types of noise on thermoacoustic 
systems using a Green's function approach. Proceedings of the InterNoise 2022, to be held 21-24 August 2022, 
Glasgow, UK.  

Effects of noise on instabilities 
with Sadaf Arabi  

Acoustic resonator: tube with open ends 

Flame: described by nonlinear time-lag law 

amplitude-dependent 

Noise: pink noise, level measured by β 

Stability map: 

− τ
= −1 0

' '( ) ( )'( ) q qu t u tQ t
n n

Q u u

stable 

unstable 
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Effects of noise on instabilities 
with Sadaf Arabi  

stable 

instability is triggered 

stable with noisy residue 

intermittent, not sustained 

β=0 β=1 

β=4 β=6 

Time histories with different levels of noise 



InterNoise Glasgow 21 August 2022 29 

The POLKA project 

16 network partners (across Europe and India) 

POLKA: POLlution Knowhow and Abatement 

POLKA website 

funded by:    Horizon 2020 (Marie-Curie ITN) 
total budget: €4.02 million 
duration:       2019 – 2023 (4.5 years) 

https://polka-eu.org/  

15 PhD positions 

POLKA logo: 

POLKA aims: gain insight into H2 combustion instabilities  
POLKA session at InterNoise: Tuesday, 23/08, 08:00 – 10:20 

https://polka-eu.org/
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Conclusions 

Sound plays a key role in combustion instabilities 

The Green’s function gives physical insight into: 
- nonlinear dynamics (limit cycles, hysteresis, …) 
- instability and flashback of hydrogen flames 
- potential strategies to control combustion instabilities 
- noise effects on combustion instabilities   

Sustainable combustion technologies need acoustics 
research! 

Very useful modelling tool! 
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Thank you! 

Maria Heckl 
School of Chemical and Physical Sciences 

Keele University 
Staffordshire ST5 5BG, U.K. 

 
m.a.heckl@keele.ac.uk 
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