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a b s t r a c t

An optimized unit cell design of a micro-slit resonant metamaterial is proposed to increase the size of the
frequency stop-bands and to enhance the sound absorption at normal incidence. Micro-slit resonant
metamaterials offer a compact and lightweight solution for low-frequency noise reduction, in contrast
to traditional methods such as absorptive foams. A combination of numerical and semi-analytical solu-
tions based on dispersion and absorption curves is presented. A novel algorithm allows for the decoupling
of wave types from raw numerical data in the dispersion curves, without using the stiffness and mass
matrices. A thorough optimization process of unit cell designs with genetic algorithms is performed.
Focus is given to the first frequency stop-band, located in the frequency range of application of micro-
slit resonant metamaterials. The process shows that relatively large resonators (with respect to the unit
cell total area) produce a larger first frequency stop-band, whereas slit size has a negligible effect. The
optimized design increases the first frequency stop-band by 20% and the second stop-band by 25% com-
pared to the literature standard. The absorption curves at normal incidence of acoustic waves are derived
numerically for a rigid and elastic frame of the metamaterial backed by a cavity. These curves are vali-
dated by the JCAPL semi-analytical model. The optimized unit cell design shows a 9% increase in the first
peak of absorption coefficient compared to the literature standard at a cavity depth of 30 mm, and an
increase of 10% at a cavity of size 53 mm. Stop-band behavior does not influence sound absorption at nor-
mal incidence of acoustic waves in the frequency range of interest.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction lightweight. Acoustic metamaterials offer a lightweight and com-
Acoustic noise reduction has been a topic of interest in the sci-
entific community for years. As technology evolves, novel solutions
are emerging to deal with problems as soundproofing of recording
studios, aero-engine noise reduction, or preventing the propaga-
tion of structure-borne sound to protect high-tech machinery.
For the past decades, heavy materials such as absorptive foams
or porous materials have been the most common choice. These
materials are proven effective for wavelengths up to a quarter of
the thickness of the material [1]. For this reason, foams require a
large thickness to achieve low-frequency noise reduction. In the
architectural sector, the impact of weight and thickness of the
absorptive materials is not a primary concern. However, for high-
speed trains or aircraft, designs are required to be compact and
pact solution for noise reduction in harsh environment with high
heating and ventilation such as launcher fairings [2] or mufflers
[3]. Metamaterials are plates with periodic structures consisting
of small repeated unit cells, with dimensions in the order of cen-
timeters [4].

In recent years, acoustic metamaterials have gained a lot of
interest [5–9]. One particular property of interest is the use of res-
onators to create frequency stop-bands to achieve low-frequency
sound reduction. A frequency stop-band is a range of frequencies
where the free propagation of incoming acoustic waves is prohib-
ited, because of a fano-type-like interference occurs between the
incoming and re-radiated waves [10]. In Claeys et al. (2013) [7],
the potential of applying stop-bands to decrease the vibrational
response of panels is discussed. Another property of interest is
the inclusion of micro-slits to improve acoustic absorption. When
the width of the slits is in the sub-millimeter range (micro-slits),
viscous and thermal losses occur in the perforations and improve
acoustic absorption. Because of the dimensions of the slits, the
accuracy of the manufacturing process is of key importance. Firstly,
the sharpness of the edges in contact with the slits can not be
guaranteed. Rounded edges heavily affect the impedance of the
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micro-slits and the absorption. Secondly, the periodicity of the per-
foration pattern can be not perfect. Both these effects are discussed
in Aulitto et al. (2021) [11]. Several manufacturing techniques can
be employed to realise accurate slits such as laser cutting or
milling. Plates with micro-perforations (MPPs) and micro-slit
plates (MSPs) backed by a shallow cavity have been introduced
by Maa (2000) [12]. As shown in recent works, MPPs and MSPs
are efficient sound absorbers in the low-frequency range [13–16].
Metamaterials can achieve similar effects by embedding micro-
slits in the design of the unit cell. In each unit cell, the micro-
slits and resonator are created by cutting out a resonant shape
instead of positioning a mass-spring resonator on top [4,6].
Another advantage of micro-slit metamaterials is that they are
easier to manufacture than the original structure with resonators
added on top. In the works of Ruiz et al. (2016) [6] and Zieliński
et al. (2019) [4], a numerical and experimental study is performed
on the normal absorption of the unit cell shown in Fig. 1. The
design can be optimized to improve the size of the stop-bands.
The stop-bands can be improved by changing the shape of the res-
onator and by increasing the ratio between the resonant area and
the total area of the unit cell. In these works, the presence of the
stop-bands is assumed, based on the presence in previous findings
on the original metamaterials.

In this paper, an optimized unit cell design based on the work of
Ruiz et al. (2016) [6] and Zieliński et al. (2019) [4] of a micro-slit
resonant metamaterial is proposed with larger frequency stop-
bands and enhanced sound absorption at normal incidence. Fur-
thermore, an elastic numerical model is described to derive the
absorption curves for micro-slit resonant metamaterials. The soft-
ware used for the numerical simulations is COMSOL Multiphysics
V5.5 [17]. In Section 2, the methodology and proposed data pro-
cessing technique are discussed to derive the dispersion curves
of the unit cells. In this novel algorithm, the stiffness and mass
matrices are not used, and the procedure can be applied even when
the bending waves are non-smooth, unlike the branch-tracking
algorithm discussed in Magliacano et al. (2020) [18]. In Section 3,
the unit cell design is optimized with the use of genetic algorithms
to maximize the size of the first frequency stop-band. In Section 4,
the absorption curves of the proposed unit cell design are
compared to the design currently used in literature using a combi-
nation of rigid and elastic numerical models and the
semi-phenomenological JCAPL model [1,19–24].
2. Dispersion curves

2.1. Methodology

The structure of resonant metamaterials is given by the repeti-
tion of the same unit cell. In Fig. 1, an example of such a unit cell is
Fig. 1. Geometry overview of the DLR unit cell design as used in the work of Ruiz
et al. (2016) [6] and Zieliński et al. (2019) [4]. The unscaled design variables are
L ¼ 11:5 mm, d1 ¼ 3:6 mm, d2 ¼ 2:7 mm, and d3 ¼ 3:5 mm [4,6]. The plate
thickness tp ¼ 4:0 mm is in the out-of-plane direction. The slit size is given by
s ¼ 0:3 mm.

2

shown: a double-legged resonator (DLR) design with correspond-
ing design variables and slit size as used in the work of Ruiz
et al. (2016) [6] and Zieliński et al. (2019) [4].

Floquet-Bloch theory is applied to reduce the computational
cost for analysis of these materials [25]. The theorem states that
the response of a two-dimensional periodic system can be
expressed in terms of the response of a reference unit cell and an
exponential term describing the amplitude and phase change as
the wave travels from one cell to the adjacent cell [26]. As stated
in Fok et al. (2008) [5], the unit cells are very small and have min-
imal crosstalk, leaving the individual resonator eigenfrequencies
insensitive to lattice parameters and direction. As a result, to
describe the behavior of the entire structure, only a single unit cell
has to be analyzed. In this work, the dispersive behaviors of various
unit cell designs are analyzed along the irreducible Brillioun con-
tour (IBC) 0;1;2;3# ð0;0Þ; ð0; LÞ; ðL; LÞ; ð0;0Þ, where L is the length
of the square unit cell [27–29]. The IBC is the smallest contour in
the wave space that captures all information, that is, the minimum
and maximum eigenvalues, required to compute the frequency
stop-bands for the unit cell. For a 2D periodic square unit cell,
the IBC is shown in Fig. 2. The Floquet wavenumber kF = ½kx ky�>
is spanned along this contour by imposing wavenumbers in x-
direction kx, and y-direction ky. Floquet boundary conditions are
applied at the edges of the unit cell using the Floquet wavenumber.
The Floquet wavenumber is represented by 60 discretizations and
the eigenvalue problem is solved with the use of COMSOL Multi-
physics [17]. The output of the model is a matrix containing the
eigenvalues along the IBC used to produce the dispersion curves.
The Finite Element Method (FEM) model used to derive the disper-
sion curves is discussed in Appendix A and a validation of the
model is given in Appendix B.
2.2. Decoupling waves algorithm

The raw data retrieved from the FEM model contains in-plane
waves (longitudinal and transverse waves) and bending waves.
The curves are intertwined since the sorting order of the eigenval-
ues is mixed in the matrix representation. In Fig. 3, this issue is
visualized. In Magliacano et al. (2020) [18], a branch-tracking algo-
rithm is discussed for periodic porous materials. The algorithm
only considers the gradient between points and does not consider
the euclidean distance between them, hence failing when the
curves become non-smooth. For the unit cell discussed in the pre-
sent work, the resonant element introduces additional dispersion
curves above its resonance frequencies, that are non-smooth. This
phenomenon is similar to the result shown for a two-dimensional
infinite structure with a mass-spring system, as discussed in Claeys
et al. (2013) [7]. Consequently, the algorithm cannot be applied. As
a solution, a new algorithm is designed. The proposed algorithm
does not utilize the stiffness and mass matrices, allowing for fast
computations. The proposed algorithm considers the gradient
between points on the dispersion curves and the euclidean dis-
tance between points. Furthermore, the new algorithm removes
in-plane waves from the dispersion curves as they are inefficient
Fig. 2. The dashes gray line represents the IBC for a 2D periodic square unit cell.



Fig. 3. Dispersion curves of the DLR unit cell design. In gray, the dispersion curves
plotted from the raw model output data. In black, the dispersion curves after the
decoupling algorithm.

Fig. 4. Dispersion curves and frequency stop-bands of the DLR unit cell design.
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as acoustic radiators compared to bending waves [9]. The ratio
Ra ¼ tp=L is defined as the ratio between the plate thickness tp
and the side length of a unit cell L, as shown in Fig. 1. In this work,
only square unit cells are considered. The dispersion curves corre-
sponding to the bending modes are not influenced by variations in
the ratio Ra, whereas the transverse and longitudinal waves are.
The ratio Ra is chosen small (i.e. Ra < 0:02), such that the in-
plane waves have a significantly higher gradient than the bending
waves and waves are decoupled along the contour
1;2# ð0; LÞ; ðL; LÞ. A threshold check is implemented on the gradi-
ent between points to remove the in-plane waves from the data.
Estimates of the bending waves are created with the use of 4th
order polynomial fits. The eigenvalue branches are tracked based
on the difference between the estimates and available points. Fur-
thermore, the fits are iteratively updated to improve accuracy. A
description of the algorithm is provided in C. The algorithm is able
to remove the in-plane waves from the dispersion curves and sort
the remaining eigenvalues of the raw data to obtain the dispersion
curves even when the bending waves are non-smooth.

3. Optimization of the unit cell

For the simulations, the same structural properties as used in
the work of Ruiz et al. (2016) [6] are considered, namely, density
q ¼ 950 kg/m3, Young’s modulus E ¼ 1750 MPa, and Poisson’s ratio
m ¼ 0:3. Furthermore, the unscaled unit cells have the same slit size
s, plate thickness tp, and plate length L, as the DLR design shown in
Fig. 1. A ratio Ra ¼ 0:02 is used for scaling the unit cells. Scaling is
performed by multiplying the length of the unit cell L, the slit size
s, and the design parameters with a scaling factor. The plate thick-
ness tp is unaffected by scaling.

3.1. Genetic algorithms methodology

A genetic algorithm is a search heuristic inspired by the princi-
ple of natural selection [30]. In this work, genetic algorithms are
used to optimize the design of a unit cell design to maximize the
size of the first frequency stop-band. The metric for optimization
is the stop-band factor (SBF), which is defined as the ratio between
the lower bound of a stop-band and its upper bound. Furthermore,
two SBFs are considered: the first SBF (SBF1), and the second SBF
(SBF2). The index refers to the appearance of the stop-band ranked
from low to higher frequencies. In Fig. 4, the dispersion curves and
frequency stop-bands are shown for the DLR design as shown in
Fig. 1. The frequency range of the first stop-band is around
3

5 kHz. Note that this range is obtained by using the same design,
design parameters, and structural properties as used in the work
of Ruiz et al. (2016) [6] and Zieliński et al. (2019) [4]. A lower range
can be realized by choosing a different material with, for instance,
a lower Young’s modulus. In Fig. 4, it can be seen that the first stop-
band is located between the first and second curve, as is also found
in the work of Claeys et al. (2016) [9], and the second stop-band
between the third and fourth curve. SBF1 is then defined as the
ratio between the minimum of the second curve and the maximum
of the first curve. Likewise, SBF2 is then defined as the ratio
between the minimum of the fourth curve and the maximum of
the third curve. SBF1 is chosen as the metric for optimization
because it is located in the frequency range of application of
micro-slit resonant metamaterials.

3.2. Influence unit cell design characteristics

In this subsection, the influence of the unit cell design charac-
teristics on the stop-bands is discussed. The design considered, is
the DLR design shown in Fig. 1. By linearly increasing the variables
d1; d2, and d3, the relative size of the resonator with respect to the
surface of the unit cell increases. An increase in the relative size of
the resonator increases both SBF1 and SBF2. By increasing the rel-
ative size of the resonant structure, the maximum kinetic energy of
the structure increases as well. This leads to a greater fano-type-
like interference, and to larger stop-bands. By choosing d1 and d2

constant, and varying d3, the influence of the resonator mass is
investigated. An increase in resonator mass increases SBF1, albeit
smaller than the increase observed in SBF1 by increasing the res-
onator size. By choosing d1 constant, d2 þ d3 constant, and varying
d2, the influence of the resonator stiffness is investigated. An
increase in resonator stiffness increases SBF1 however decreases
SBF2. Lastly, an increase in slit size has a small negative effect on
SBF1 and SBF2. Note that due to manufacturability and accuracy
constraints, a slit size of 0:3 mm is considered.

3.3. Designs considered during optimization

The DLR design as shown in Fig. 1, is optimized to increase SBF1.
The accompanying dispersion curves are shown in Fig. 4, in which
it can be seen that SBF1 ¼ 1:38 and SBF2 ¼ 1:05. For manufactura-
bility, constraints are applied to the design variables to ensure a
minimum length of 1 mm for each variable and a minimum dis-
tance of 1 mm between the slit and the edges of the plate. The opti-
mized geometry and dispersion curves are shown in Fig. 5. In
Fig. 5b, the dispersion curves of the optimized DLR unit cell design
are plotted over the IBC. It can be seen that SBF1 ¼ 1:61 and SBF2
¼ 1:18, an increase of 16.7% and 12.3%, respectively. It can be seen



Fig. 5. Geometry and dispersion curves of the optimized DLR unit cell design with respect to SBF1.

Fig. 6. Optimized geometries of notable designs considered during optimization.
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that the resulting resonant structure is maximized within the given
constraints. Other notable designs considered during optimization
are shown in Fig. 6. A single-legged resonator design is considered
to compare its performance to the DLR design. Double resonator
designs are explored to see if the interaction between two res-
onators at different frequencies can lead to greater stop-bands.
Lastly, the implementation of internal slits in the resonant struc-
ture is investigated to see how small changes in the mode shapes
can alter the stop-band behavior. Again, for manufacturability,
constraints are applied to the design variables to ensure a mini-
mum length of 1 mm for each variable and a minimum distance
of 1 mm between the slit and the edges of the plate. The resulting
SBFs are shown in Table 1.

In Fig. 6 and Table 1, it can be seen that the geometries converge
to a configuration where the size of the resonator is maximized
4

within the design constraints. The single-leg design, as shown in
Fig. 6a, significantly underperforms the optimized DLR design, as
shown in Fig. 5a. The addition of the second leg increases the max-
imum displacement of the resonant shape, and thereby the maxi-
mum kinetic energy of the resonant structure. In Fig. 6, it can be
seen that the addition of internal slits, Figs. 6d and 6e, significantly
improves SBF2. The stop-bands of these designs are located around
the same frequencies as the DLR designs considered earlier, see
Figs. 4 and 6b. The best performing design is the one with the inter-
nal slit in the top right corner of the cell, as shown in Fig. 6e. The
motivation for this design is further elucidated in Section 3.4. To
improve the manufacturability of the design, a slanted trim (ST)
design is proposed. In Fig. 7, the unit cell design is depicted and
the corresponding dispersion curves are shown. In Fig. 7, it can
be seen that SBF1 ¼ 1:65 and SBF2 ¼ 1:31. All the designs



Table 1
SBF1 and SBF2 of the optimized geometries of notable designs considered during optimization.

Design 6a 6b 6c 6d 6e

SBF1 1.34 1.17 1.23 1.60 1.65
SBF2 1.13 1.14 – 1.31 1.32
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considered during optimization converge to a configurations
where the size of the resonator is maximized within each unit cell.

3.4. ST design results

The implementation of the ST design is motivated by comparing
the mode shapes of the optimized DLR unit cell design (Fig. 6a) to
the ST design (Fig. 7a). In Figs. 8 and 9 the real displacements of the
unit cell at the bounds of the first stop-band are shown for the
optimized DLR and for the trimmed DLR, respectively. In Figs. 8
and 9, it can be seen that there is a difference between the lower
and upper bound mode shapes of the first stop-band. The deflec-
tion for the lower bound gradually increases along the diagonal
of the cell. For the upper bound, this increase is much steeper.
For the design in Fig. 8 and the material properties as shown in
Section 3, the resonance frequencies are 4.4 kHz and 7.1 kHz for
the lower and upper bounds, respectively. For the design in Fig. 9
and the material properties as shown in Section 3, the resonance
frequencies are 4.4 kHz and 7.3 kHz for the lower and upper
bounds, respectively. By reducing the mass of the resonant cell at
the maximum deflection (the top right corner), the mode shape
of the lower bound is not significantly affected. However, the mode
shape of the upper bound becomes stiffer and therefore an increase
in resonance frequency and SBF1 is realized. The ST design has an
increase in SBF1 of 20% and SBF2 of 25% with respect to the DLR
design currently used in literature, see Figs. 1 and 4. A
small increase (< 1%) in SBF1 can be realized by the
implementation of an additional internal and external slit.
However, the small increase does not justify the increase in
manufacturing complexity.

4. Absorption

In this section, the absorption curves are compared for the DLR
and the ST design. Furthermore, the absorption curves are also
compared to the numerical and experimental results obtained in
the work of Zieliński et al. (2019) [4]. For the simulations, the same
properties for the plate are considered as described in Section 3.
Fig. 7. Geometry and dispersion cu
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The following properties of air are considered: density qf ¼ 1:225
kg/m3, speed of sound cf ¼ 343 m/s, ambient pressure P ¼ 100:5
kPa, ambient temperature Ta ¼ 22 �C, kinematic viscosity
mf ¼ 1:55� 10�5 m2/s, Prandtl number Nf ¼ 0:71, bulk modulus
Kf ¼ 0:141 MPa, and ratio of specific heats cf ¼ 1:40.

4.1. Methodology

The two-microphones method, as discussed by Bodén et al.
(1986) [31], Jang et al. (1998) [32], and Labašová et al. (2019)
[33], is implemented in a numerical model to compute the absorp-
tion coefficient at normal incidence for the micro-slitted metama-
terial. In Fig. 10, an overview of the numerical model is shown. The
linearized Navier–Stokes module is used to consider the viscous
and thermal effects caused by the slits [34]. The model is composed
of four layers, as shown in Fig. 10; a perfectly matched layer (PML),
a background pressure field (BPF), the plate with the slits, and a
back cavity layer. The PML acts as a perfect absorber, which
ensures that no waves are reflected into the BPF. The BPF is used
to impose an incident pressure wave with a certain frequency.
The structural mechanics module is used to model plate with the
slits as an elastic body [35]. The height of the BPF is empirically
chosen at 30 mm. This height allows the mesh to transition from
small elements at the slits of the plate to larger elements at the
microphones. Furthermore, taller heights increase the number of
total elements in the model but do not significantly improve the
accuracy. Similarly, the height of the PML is chosen at 10 mm.
Tetrahedral elements are used in the BPF, the plate, and the back
cavity layer. A swept mesh is used for the PML and the slits in
the plate. To model an infinite plate, symmetric boundary
conditions are applied in the x and z directions as displayed in
10. Furthermore, a rigid wall boundary condition is applied at
the rightmost plane in Fig. 10. At the microphones, the average
gross pressure is computed. The absorption coefficient is then
given by

A ¼ 1� H12 � e�ikdmic

eikdmic � H12

����
����; ð1Þ
rves of the ST unit cell design.



Fig. 8. Modes shapes displaying the out-of-plane real displacement of the first stop-band of the optimized DLR unit cell design.

Fig. 9. Modes shapes displaying the out-of-plane real displacement of the first stop-band of the ST unit cell design.

Fig. 10. Overview of the numerical model. The curly brackets denote the layers of the model, namely, the perfectly matched layer, the background pressure field, the plate
with slits, and the back cavity. The planes corresponding to microphones 1 and 2 are denoted by m1 and m2, respectively. The distance between the two microphones is
denoted by dmic. Frequency of imposed wave f ¼ 800 Hz. Mesh: 208219 domain elements, 23011 boundary elements, and 2009 edge elements.
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where H12 is the ratio between the average gross pressure at micro-
phone 2 and the average gross pressure at microphone 1 [31]. The
model configuration, as shown in Fig. 10, is 2.5 GB in size, takes
around 3 min to solve on an AMD Ryzen 9 3900X 12-Core
3.97 GHz CPU, and requires around 16 GB of RAM for fast
computation.

The numerical results are compared to an analytical estimation
of the absorption curves based on the Johnson-Champoux-Allard-
Pride-Lafarge (JCAPL) model. The JCAPL model is a semi-
phenomenological model based on the works of Johnsen et al.
(1987) [19], Champoux and Allard (1991) [20](2009) [1], Pride
et al. (1993) [21] and Lafarge et al. (1993) [22](1995–2006) [23]
(2010) [24]. The JCAPL model is used to take into account the vis-
cous and thermal effects of the slits.
6

4.2. Results

The JCAPL model is used to derive an analytical solution for the
absorption curves. The parameters used for the JCAPL model are
shown in Table 2.

Absorption curves are computed with the rigid numerical
model for two cavity depths: 30 mm and 53 mm. In the rigid
numerical model, the plate itself is not modeled; only the slits
are. Therefore, the structural effects of the plate, such as the reso-
nance of the resonator, are not considered. Given the configura-
tions, the first stop-band is located between 4.2 and 5.8 kHz for
the DLR design, and between 4.4 and 7.3 kHz for the ST design.
Since both stop-bands are outside the frequency range of interest,
a rigid numerical model is used. The absorption curves for the DLR



Table 2
Derived JCAPL parameters for the DLR design and ST design.

Parameter Symbol DLR ST Unit

Porosity / 7.670 6.080 %
Permeabilities k0 ¼ k00 5.552 4.360 10�10 m2

Inertial tortuosity a1 1.105 1.115 –
Static viscous tortuosity a0 1.308 1.322 –
Static thermal tortuosity a00 1.167 1.167 –
Characteristic lengths D ¼ D0 0.295 0.293 mm

Fig. 11. Absorption curves for the DLR design and the ST design. A cavity depth of 30 mm is used. The JCAPL solutions are represented by the solid lines and the rigid
numerical solutions by the circles. The results obtained for the DLR design in the work of Zieliński et al. (2019) [4] are displayed by the dashed lines.
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design and the ST design for a cavity depth of 30 mm and 53 mm
are shown in Figs. 11 and 12, respectively.

In Figs. 11 and 12, it can be seen that for both cavity depths,
the rigid numerical model closely resembles the analytical solu-
tion. Furthermore, it can be seen that the results from the rigid
model and the analytical solution for the DLR design are in agree-
ment with the numerical results and impedance tube measure-
ments done in the work of Zieliński et al. (2019) [4]. It can be
seen that the ST design produces a higher sound absorption peak
at a lower frequency with respect to the DLR design. The ST
design shows a 9% increase in the first peak of absorption coeffi-
cient compared to the DLR design at a cavity depth of 30 mm, and
an increase of 10% at a cavity of size 53 mm. The lower porosity
of the ST design decreases the resonance frequency of the Helm-
holtz resonator, see Table 2. The smaller characteristic lengths of
the ST design lead to a higher sound absorption peak due to the
smaller losses in the slits.

To inspect the influence of a stop-band on the resulting absorp-
tion curves of the ST design, an elastic numerical model is used. To
artificially reduce the frequency bounds of the first stop-band, the
Young’s modulus is reduced from E ¼ 1750 MPa to Ered ¼
26:25 MPa. This brings the first stop-band to lie between 545
and 900 Hz. In Fig. 13, the absorption curves are shown for the
7

ST design for a cavity depth of 30 mm using the elastic numerical
model.

In Fig. 13, it can be seen that there is a negligible difference
between the absorption curves for the two different Young’s
moduli. Also, the difference between the rigid and elastic numer-
ical models is negligible. For the elastic model, it appears that the
stop-band behavior and structural properties of the plate have a
negligible influence on the resulting absorption curves. From
the perspective of the JCAPL model, this is an expected result
since there is no dependency on the structural parameters of
the plate in this model. For both numerical models, the wall at
the back of the cavity is considered to be perfectly rigid, meaning
that the transmitted particle velocity is zero. The only losses
occur due to the viscous and thermal effects of the slits. When
there exists a transmitted pressure wave through the back cavity,
for instance due to an absence of a perfectly rigid back cavity
wall, the structural properties of the plate will affect the reflected
pressure wave and therefore also the absorption coefficient. The
elastic numerical model would have to be extended with an elas-
tic back cavity wall to capture these effects. Similarly, the JCAPL
model would have to be extended to include a dependency on
the effective density and bulk modulus of the plate to capture
its structural effects.



Fig. 12. Absorption curves for the DLR design and the ST design. A cavity depth of 53 mm is used. The JCAPL solutions are represented by the solid lines and the rigid
numerical solutions by the circles. The results obtained for the DLR design in the work of Zieliński et al. (2019) [4] are displayed by the dashed lines.

Fig. 13. Absorption curves the ST design. A cavity depth of 30 mm is used. The JCAPL solution is represented by the solid line, the rigid numerical solutions by the circles, and
the elastic numerical solutions by the dotted lines.
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5. Conclusion

An optimized unit cell design of a micro-slit resonant metama-
terial is proposed to increase the size of the frequency stop-bands
and to enhance the sound absorption at normal incidence. The
design is referred to as the ST design. A FEMmodel is used to derive
the dispersion curves of various unit cell designs. To post-process
the output of the FEM model, an algorithm is proposed. The algo-
rithm removes the in-plane waves from the dispersion curves
8

and sorts the remaining eigenvalues of the raw data to obtain
the dispersion curves even when the bending waves are non-
smooth. The proposed algorithm does not utilize the stiffness
and mass matrices, allowing for fast computations. Unit cell
designs are optimized to maximize the size of the frequency
stop-bands. The first stop-band factor is chosen as the metric for
optimization since it is located in the frequency range of applica-
tion of micro-slit resonant metamaterials. Optimized designs
converge to a configuration where the relative size of the resonant



Fig. 14. Definition of the source and destination planes for the unit cell. The blue
line depicts the source plane and the green line the destination plane.
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structure with respect to the surface of the unit cell is maximal. By
increasing the relative size of the resonant structure, the maximum
kinetic energy of the structure increases as well. In turn, this leads
to a greater fano-type-like interference, and to larger stop-bands.
The ST design reduces the mass of the resonant cell at the maxi-
mum deflection. The resonance frequencies of both the lower
and upper bound of the mode shapes increase; however, the ratio
between the resonance frequencies increases as well. The ST design
has an increase in SBF1 of 20% and SBF2 of 25% with respect to the
DLR design currently used in literature. A small increase (< 1%) in
SBF1 can be realized by the implementation of an additional inter-
nal and external slit. However, the small increase does not justify
the increase in manufacturing complexity. The ST design shows a
9% increase in the first peak of absorption coefficient compared
to the DLR design at a cavity depth of 30 mm, and an increase of
10% at a cavity of size 53 mm. The smaller characteristic lengths
of the ST design lead to a higher sound absorption peak due to
the smaller losses in the slits. Furthermore, the lower porosity of
the ST design reduces the frequency of the first peak. Stop-band
behavior does not influence sound absorption at normal incidence
of acoustic waves in the frequency range of interest. To capture the
structural effects of the unit cell, the elastic numerical model
would have to be extended with an elastic back cavity wall. Simi-
larly, the JCAPL model would have to be extended to include a
dependency on the effective density and bulk modulus of the plate
to capture its structural effects.
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Appendix A. Dispersion curves numerical model

For this model the solid mechanics module in COMSOL Multi-
physics is used [35]. A 3D geometry is made of the smallest repeat-
able unit cell. Floquet boundary conditions are used to model the
periodicity of the unit cells, as discussed in Section 2.1. The Floquet
wavenumber kF in 3D is given by

kF ¼
kx
ky
kz

2
64

3
75; ðA:1Þ

where z denotes the direction in the thickness of the plate. Since
there is no periodicity in the z direction, kz ¼ 0. To compute the dis-
persion curves along the IBC, an auxiliary variable j 2 ½0;3� is
defined that spans the IBC 0;1;2;3# ð0; 0Þ; ð0; LÞ; ðL; LÞ; ð0;0Þ. kx is
given by

kx ¼
j p

L if j 2 ½0;1Þ
p
L if j 2 ½1;2Þ

ð3� jÞ pL if j 2 ½2;3�

8><
>: ; ðA:2Þ

and ky is given by
9

ky ¼
0 if j 2 ½0;1Þ

ðj� 1Þ pL if j 2 ½1;2Þ
ð3� jÞ pL if j 2 ½2;3�

8><
>: : ðA:3Þ

The Floquet wavenumber is imposed on the unit cell by defining
the source and destination planes as shown in Fig. 14.

Next, a mesh with tetrahedral elements is applied to the unit
cell. Lastly, j is swept from 0 to 3, and for each iteration, the first
few eigenfrequencies are computed by solving the eigenvalue
problem. In this work, the first 8 eigenfrequencies are computed.
The data is post-processed with the decoupling wave types algo-
rithm, as discussed in C.

Appendix B. Validation dispersion curves numerical model

To validate the numerical approach for deriving dispersion
curves, an infinite plate consisting of periodic square unit cell ele-
ments is considered. First, the dispersion curves are analytically
derived. Next, the results are compared to the solutions obtained
by the model discussed in A.

Three wave types propagate in an infinite plate: longitudinal,
transverse, and bending waves. To derive the dispersion diagram,

the wave vector k is composed of two components: k = ½kx ky�T .
By use of superposition, the longitudinal, transverse, and first
bending wave, respectively, can be written as functions of kx and
ky and are given by

f L ¼
kx þ ky
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

qð1� m2Þ

s
; ðB:1Þ

f T ¼ kx þ ky
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2qð1þ mÞð1� m2Þ

s
; ðB:2Þ

f B1 ¼ k2x þ k2y
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et2p

12qð1� m2Þ

s
; ðB:3Þ

where E is the Young’s modulus, q the density, m Poisson’s ratio, and
tp the thickness of the plate. The first frequency stop-band is
designed around the maximum value of the first bending wave
mode (f B1 ), therefore bending wave modes up to order 3 are consid-
ered and are given by

f B2;x ¼
kxL
p

� 2
� �2

þ kyL
p

� �2
 !

p
2L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et2p

12qð1� m2Þ

s
; ðB:4Þ

f B2;y ¼
kxL
p

� �2

þ kyL
p

� 2
� �2

 !
p
2L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et2p

12qð1� m2Þ

s
; ðB:5Þ
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f B3 ¼
kxL
p

� 2
� �2

þ kyL
p

� 2
� �2

 !
p
2L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et2p

12qð1� m2Þ

s
; ðB:6Þ

where L is the length of the square unit cell. For the dispersion dia-
gram, the frequency is made dimensionless by dividing the wave
frequency by

f k=2 ¼ p
2L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ED2

12qð1� m2Þ

s
; ðB:7Þ

which corresponds to the frequency of the first bending wave mode
when the applied wavelength is equal to twice the length of the
infinite plate k ¼ 2L.

The dispersion curves for the analytically and numerically
derived wave types for a ratio Ra ¼ 0:002 along the IBC
0;1;2;3# ð0;0Þ; ð0; LÞ; ðL; LÞ; ð0; 0Þ, are shown in Fig. 15. In
Fig. 15, it can be seen that the numerical solutions converge to
the analytical solution. Furthermore, it can also be seen that the
numerical solutions jump between wave types. To clarify, near
the point ð0;0Þ on the IBC, the numerical solution jumps from
the bending wave to the transverse wave. This effect occurs due
to the way the points that make up the curves are connected and
is strictly numerical. As a remedy, the decoupling wave types algo-
rithm, as discussed in C, is used. It can be concluded that the used
numerical modeling approach to derive dispersion diagrams for
square unit cell type plates is valid for the ratio Ra ¼ 0:002.

Appendix C. Decoupling wave types algorithm

The Matlab implementation of this algorithm is released and
can be found on [36]. The algorithm derives a matrix F that con-
tains the first nc 2 Z>0 decoupled bending waves, in which Z>0

denotes the integer numbers greater than zero. The input data w
of the algorithm contains the computed eigenvalues along the
IBC, as discussed in A, and the corresponding wavenumbers j
spanning the IBC. The number of points in j is given by nk 2 Z>0.
As a constraint, the following relation must hold: nf P nc þ 2, in
which nf 2 Z>0 is the number of eigenvalues computed at each
point along the IBC. This constraint is set in place to have sufficient
data present in the input data: there exist three eigenvalues at
j ¼ 0 (the point (0,0) of the IBC), where the real part of the eigen-
values is zero. These solutions correspond to a single bending and
both in-plane waves. Therefore, to include enough information in
Fig. 15. Comparison between analytically and numerically derived dispersion
curves for the plate with ratio Ra ¼ 0:002, along the IBC
0;1;2;3 # ð0;0Þ; ð0; LÞ; ðL; LÞ; ð0;0Þ. Frequency is normalized by dividing by the
expression shown in Eq. B.7. The solid black lines correspond to the numerical
solutions. The markers represent the analytic solutions: ‘�’ corresponds to f B1 , ‘�’ to
f B2;x , ‘�’ to f B2;y , ‘+’ to f B3 , ‘�’ to f L , and ‘4’ to f T .

10
the input data, the number of eigenvalues computed must be at
least 2 higher than the desired number of decoupled bending
waves. The assumptions for the algorithm are:

� Ra is sufficiently small, such that the low-frequency presence of
the longitudinal and transverse waves is only visible for
j 2 ½0; 12� [ ½2 1

2 ;3�.
� In the input data, the first nc bending waves are decoupled in
the range j 2 ½1;2�.

The initial guess for F is the input data w. Note that only the first
nc curves of w are taken for the initial guess of F: dim(F)– dim(w).
The first part of the algorithm (lines 2 to 10) deals with the in-
plane waves present in the data. For each point in
j 2 ½0; 12� [ ½2 1

2 ;3�, the bending curves intertwined with in-plane
waves can be found by looking at the gradient. The in-plane waves
have a significantly greater gradient than the bending waves when
Ra is sufficiently small. Therefore, when the gradient exceeds a cer-
tain threshold b 2 R>0, in which R>0 denotes the real numbers
greater than zero, it is most likely that the curve at that j value
is an in-plane wave or is intertwined with it and the corresponding
entry in F is set to Not a Number (NaN) (lines 2 to 5). The branches
that contain NaN gaps, as a result of this threshold check, are then
pruned in two directions (lines 6 to 10): backwards for j 2 ½0; 12�
(i.e. j ¼ 1

2 ! 0) and forwards for j 2 ½2 1
2 ;3� (i.e. j ¼ 2 1

2 ! 3). The
matrix F now contains an initial estimate of the decoupled waves
as well as empty entries. The second part (lines 11 to 20) allocates
points from w into the right position in F for j 2 ½0;1� and fills in
the empty entries. A fit is made for each iteration over j that is
extrapolated to create an estimated value for Fj;j. This estimated
value is compared to all points in w for the same j and is stored
in a matrix M. By looking at the minimum of M, the sorting of
points in F for w is solved (line 18). Furthermore, to prevent dupli-
cation of points in F, used points are immediately replaced by NaN
values in M (lines 19 and 20). The third part (lines 21 to 28) allo-
cates points from w into the right position in F for j 2 ½2;3�. An esti-
mate C is made for F with j 2 ½2;3� by means of superposition of F
with j 2 ½1;2� and F with j 2 ½0;1� : C ¼ F1!0 þ F2!1. Again, a
matrix M is made and the same concept applies as discussed in
part two of the algorithm. The output of the algorithm is matrix
F which contains the first nc nf 2 Z>0 decoupled bending waves.

Parameters: Number of eigenvalues computed at each point
along the IBC: nf 2 Z>0, threshold for in-plane waves: b 2 R>0, fit-
ting order: Of 2 Z>0, number of desired curves: nc 2 Z>0.
Algorithm1:Decoupling wave types
Input: w
nk�nf

, j
nk�1

, b, nc , Of
1: F
nk�nc

¼ wj;1!nc
2: for q ¼ 0 ! 1
2 and q ¼ 2 1

2 ! 3 do

3: for j ¼ 1 ! nc do� �

4: if @wq;j

@kq
> bmin @wq;j

@kq
5: Fq;j ¼ NaN

6: end if

7: end for

8: end for

9: for j ¼ 1 ! nc do

10: Find qmax: the greatest q 2 ½0; 12� in which Fq;j ¼NaN

11: Replace all entries in Fqmax!1;j with NaN
12: Find qmin: the smallest q 2 ½2 1
2 ;3� in which

Fq;j ¼NaN
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13: Replace all entries in Fqmin!3;j with NaN

14: end for

15: for q ¼ 1 ! 0 do

16: for j ¼ 1 ! nc do

17: Create a fit of order Of on Fj;j where j 2 ½0;1�

18: Compute frequency estimates based on the fit,

and store results in vector Jj
nc�1
19: end for

20: Compute a matrix M

nf�nc
that contains the

absolute difference between J1!nc
and wq;1!nf
21: for j ¼ 1 ! nc do

22: Find the x and y indexes of the minimum of M:

minðMÞ ¼ Mx;y
23: Fq;x ¼ wq;y
24: My;1!nc ¼ NaN

25: M1!nf ;x ¼NaN

26: end for

27: end for

28: Create an estimate C

nk�nc
for F
29: for q ¼ 2 ! 3 do

30: Compute a matrix M

nf�nc
that contains the absolute

difference between the Cq;1!nc and wq;1!nf
31: for j ¼ 1 ! nc do

32: Find the x and y indexes of the minimum of M:

minðMÞ ¼ Mx;y
33: Fq;x ¼ wq;y
34: My;1!nc ¼ NaN

35: M1!nf ;x ¼NaN

36: end for

37: end for

Output F

nk�nc
Appendix D. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.apacoust.2021.
108552.
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