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Abstract  
The ultimate goal of the present research is to establish a methodology using which one can characterize the thermo-
acoustic quality (figure of merit) of a given burner with flame. For this purpose, the probability of a certain 
burner/flame to be in either a stable or unstable regime when it is embedded in a randomly selected acoustic 
environment (similar to a combustor appliance) should be evaluated. An approach presented in this contribution 
consists of performing multiple calculations for the (in)-stability of a system composed of a known burner with flame 
and acoustically passive arbitrary upstream and downstream reflection coefficients. In this paper, a low order 
analytical network model of the acoustic system is used. Properties of strictly positive real functions are used to model 
the random frequency dependence of passive reflections. The implementation and testing of this particular method to 
generate random, frequency dependent acoustic embedding for the burner is the core subject of the present 
contribution. Within this method, initially, the roots of a Hurwitz polynomial are randomly selected and this 
polynomial is taken as the denominator of the impedance function, subsequently, the corresponding numerator 
polynomial coefficients are computed to obtain an impedance function that is strictly positive real. Then, this function 
is transformed to represent a reflection coefficient function in complex variable 𝑠𝑠 and is used as an embedding to 
evaluate the given burner’s flame stability by calculating the system’s complex eigen frequencies for various upstream 
and downstream reflection coefficients.  
 
Introduction 

In domestic and industrial combustion devices, 
thermo-acoustic instability caused by coupling between 
the flame and system acoustics is a major threat as it 
mitigates the safe operating margin of an appliance and 
leads to a decrease in its efficiency. Oscillations in the 
flow field result in fluctuating heat release of the burner 
which produces sound and the resulting acoustic wave 
travels to system boundaries and gets reflected back to 
the flame forming a closed feedback loop. Therefore, to 
determine the stability of a system as shown in Figure 1, 
it becomes imperative to evaluate the stability of a 
burner/flame combined with upstream and downstream 
boundary conditions.  

Combustion system dynamics have been studied 
experimentally, computationally and analytically using 
the acoustic network framework in the last few years. The 
advantage of analytical study comes from its simplicity 
to describe a system, ease of application, low cost and 
accuracy. Generally, a thermo-acoustic network system 
modelling requires knowledge about a) the flame 
response to acoustics and b) acoustics feedback at the 
boundaries in the form of two-port network elements. 
Such a model incorporates various elements of a system 
in terms of their transfer matrices to generate a global 
transfer matrix which has two acoustic inputs and two 
acoustic outputs (often given in terms of Riemann 
invariants, 𝑓𝑓 and 𝑔𝑔) [1].   

Multiple studies have shown that burner/flame 
stability is determined by the system acoustics, however 
recent studies have also shown that in the absence of 
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sound reflection, a burner flame may be intrinsically 
unstable [2].  

In [3], the authors have tried to find a method to 
evaluate the figure of merit for different burners based on 
their stability with randomly varying upstream and 
downstream frequency independent terminations. They 
have also proposed an idea that frequency dependent 
terminations in the form of strictly positive real function 
impedances could be used to determine burner’s figure of 
merit.  

  
Figure 1: Thermo-acoustic system  

 
Based on this suggestion, in this paper we have 

developed a methodology where the upstream and 
downstream boundary conditions are represented by 
passive impedances in terms of strictly positive real 
functions and the burner’s flame response is given by the 
flame Transfer Function. This ensures the flame as a 
unique active element in the system, while the upstream 
and downstream terminations are passive elements. The 
complete system is then modelled using a two-port 
network model and system stability is determined. The 
upstream and downstream travelling acoustic waves are 
described as: 

𝑓𝑓 =
1
2

(𝑣𝑣′ +
𝑝𝑝′

𝜌𝜌0𝑐𝑐
) 
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𝑔𝑔 =
1
2

(𝑣𝑣′ −
𝑝𝑝′

𝜌𝜌0𝑐𝑐
) 

(1) 
Where, 𝑝𝑝′ and 𝑣𝑣′  are acoustic pressure and velocity 

perturbations respectively. And  𝜌𝜌0𝑐𝑐  is the specific 
impedance of the gas. 

In circuit theory, the notion of passivity is attributed 
to a system which consumes energy but doesn’t generate 
energy [4]. Any function which satisfies the properties of 
a strictly positive real (SPR) function can then be used as 
driving point impedance of a passive element and 
conversely, a passive element has a driving point 
impedance which is SPR. Hence, in this paper, we 
assume upstream and downstream terminations 
impedances as passive elements which are 
represented/modelled by SPR transfer functions. The 
method to automatically generate such a SPR function is 
adopted from literature and is presented in the next 
section [6]. It is important to remember that the network 
itself isn’t passive due to the presence of an active flame 
response. 

 
Reflection Coefficient from Strictly Positive Real 
Function Impedance 

The first step is to automatically generate a strictly 
positive real (SPR) transfer function as an impedance for 
a boundary termination.  

The poles and zeros of such a function are located in 
the left half plane making it stable.  

A rational function 𝐻𝐻(𝑠𝑠) of the complex variable 𝑠𝑠 =
𝜎𝜎 + 𝑗𝑗𝑗𝑗 is SPR if: [5] 

a. 𝐻𝐻(𝑠𝑠) is analytic in 𝑅𝑅𝑅𝑅[𝑠𝑠]  ≥ 0 
b. 𝑅𝑅𝑅𝑅[𝐻𝐻(𝑗𝑗𝑗𝑗)] > 𝜀𝜀  Ɐ𝑗𝑗 ∈ [−∞,∞] 

 
Where 𝜀𝜀 is a positive constant. 

In this paper, we have used the methodology from [6] 
where authors propose an algorithm where, if we have a 
known Hurwitz polynomial 𝑞𝑞(. ), the algorithm provides 
a polynomial 𝑝𝑝(. ) such that 𝐻𝐻(. )  = 𝑝𝑝(. )/𝑞𝑞(. ) is SPR.  

In [6] the following definitions and theorems for SPR 
functions are given: 

Definition 1: Let 𝐻𝐻(𝑠𝑠) be a rational function of form 
𝐻𝐻(𝑠𝑠) = 𝑝𝑝(𝑠𝑠)/𝑞𝑞(𝑠𝑠)  where 𝑝𝑝(𝑠𝑠) ∈ 𝑃𝑃𝑚𝑚  and 𝑞𝑞(𝑠𝑠) ∈ 𝑃𝑃𝑛𝑛  

then 𝐻𝐻(𝑠𝑠) is SPR if it satisfies above mentioned (a) and 
(b). 

Theorem 1[7]: Assuming 𝑞𝑞 and 𝑝𝑝 are polynomials of 
same order, 𝐻𝐻(𝑠𝑠) is SPR if and only if  

a) 𝐻𝐻(0) > 0; 
b) 𝑝𝑝(𝑠𝑠) and 𝑞𝑞(𝑠𝑠) are Hurwitz polynomials; 
c) 𝑞𝑞(𝑠𝑠) + 𝑗𝑗𝑗𝑗𝑝𝑝(𝑠𝑠) is Hurwitz for all 𝑗𝑗 ∈ ℜ+ 

 
To determine the polynomial 𝑝𝑝(𝑠𝑠) , we start by 

considering a polynomial 𝑞𝑞(𝑠𝑠)  which needs to be 
Hurwitz. By definition of Hurwitz polynomial [8]: 

Definition 2: Let   
𝛿𝛿(𝑠𝑠) = 𝛿𝛿0 + 𝛿𝛿1𝑠𝑠 + ⋯+ 𝛿𝛿𝑛𝑛𝑠𝑠𝑛𝑛 

 
be a given real polynomial of degree n, then it can be 
written as  

𝛿𝛿(𝑠𝑠) = 𝛿𝛿𝑒𝑒(𝑠𝑠2) + 𝑠𝑠𝛿𝛿𝑜𝑜(𝑠𝑠2) 

 
where 𝛿𝛿𝑒𝑒(𝑠𝑠2), s𝛿𝛿𝑜𝑜(𝑠𝑠2) are made up of terms with even 
and odd powers of 𝑠𝑠 respectively.  

It must also satisfy Hermite Biehler Theorem which 
states that any polynomial of the form 𝛿𝛿(𝑠𝑠) is Hurwitz 
stable if and only if all the zeroes of 𝛿𝛿𝑒𝑒(−𝑗𝑗2), 𝛿𝛿𝑜𝑜(−𝑗𝑗2) 
are real and distinct, 𝛿𝛿𝑛𝑛 and 𝛿𝛿𝑛𝑛−1 are of the same sign and 
the non-negative real zeros satisfy the following 
interlacing property: 

0 < 𝑗𝑗𝑒𝑒1 < 𝑗𝑗𝑜𝑜1 < 𝑗𝑗𝑒𝑒2 < 𝑗𝑗𝑜𝑜2 < 𝑗𝑗𝑒𝑒3 … 
(2) 

Such a Hurwitz polynomial should have monotonic 
increasing phase, that is, the phase of 𝛿𝛿(𝑗𝑗𝑗𝑗)  is a 
continuous and strictly increasing function of ω(−∞,∞).  

As mentioned in [6], we begin our search to find 𝑝𝑝(𝑠𝑠)  
by assuming roots of 𝑞𝑞𝑒𝑒(𝑠𝑠)  and 𝑞𝑞𝑜𝑜(𝑠𝑠)  which are 
interlaced and obtain even and odd parts of 𝑞𝑞(𝑠𝑠) =
𝑞𝑞𝑒𝑒(𝑠𝑠) + 𝑞𝑞𝑜𝑜(𝑠𝑠). Let us define 𝑔𝑔(. ) and ℎ(. ) such that 

𝑔𝑔(𝑠𝑠2) = 𝑞𝑞𝑒𝑒(𝑠𝑠) = 𝑞𝑞0 + 𝑞𝑞2𝑠𝑠2 + 𝑞𝑞4𝑠𝑠4 + ⋯ 
ℎ(𝑠𝑠2) = 𝑞𝑞𝑜𝑜(𝑠𝑠)/𝑠𝑠 = 𝑞𝑞1 + 𝑞𝑞3𝑠𝑠2 + 𝑞𝑞5𝑠𝑠4 + ⋯ 

and, 𝑞𝑞(𝑠𝑠) = 𝑔𝑔(𝑠𝑠2) + 𝑠𝑠ℎ(𝑠𝑠2) 
 

Once all the above properties are satisfied by a 
polynomial, we can use it as the denominator 𝑞𝑞(𝑠𝑠)  to 
obtain 𝐻𝐻(𝑠𝑠). To find the numerator 𝑝𝑝(𝑠𝑠), it must also be 
divided in terms of its odd and even part as follows: 

𝑢𝑢(𝑠𝑠2) = 𝑝𝑝𝑒𝑒(𝑠𝑠) = 𝑝𝑝0 + 𝑝𝑝2𝑠𝑠2 + 𝑝𝑝4𝑠𝑠4 + ⋯ 
𝑣𝑣(𝑠𝑠2) = 𝑝𝑝𝑜𝑜(𝑠𝑠)/𝑠𝑠 = 𝑝𝑝1 + 𝑝𝑝3𝑠𝑠2 + 𝑝𝑝5𝑠𝑠4 + ⋯ 

such that, 
 𝑝𝑝(𝑠𝑠) = 𝑢𝑢(𝑠𝑠2) + 𝑠𝑠𝑣𝑣(𝑠𝑠2) 

 
The roots of 𝑢𝑢(−𝑗𝑗2) and 𝑣𝑣(−𝑗𝑗2)  must be chosen 

from 𝑔𝑔(−𝑗𝑗2)  and ℎ(−𝑗𝑗2)  in the following manner 
(when 𝑠𝑠 = 𝑗𝑗𝑗𝑗): 

𝑗𝑗𝑔𝑔𝑔𝑔 < 𝑗𝑗𝑢𝑢𝑔𝑔 < 𝑗𝑗ℎ𝑔𝑔  
𝑗𝑗ℎ𝑔𝑔 < 𝑗𝑗𝑣𝑣𝑔𝑔 < 𝑗𝑗𝑔𝑔(𝑔𝑔+1)                    (3) 

 
𝑢𝑢(−𝑗𝑗2) = 𝐾𝐾(𝑗𝑗𝑢𝑢1

2 −𝑗𝑗2)(𝑗𝑗𝑢𝑢2
2 −𝑗𝑗2) … 

  = 𝐾𝐾𝐾𝐾(−𝑗𝑗2),                             𝐾𝐾 ∈ ℜ+ 
𝑣𝑣(−𝑗𝑗2) = (𝑗𝑗𝑣𝑣1

2 −𝑗𝑗2)(𝑗𝑗𝑣𝑣2
2 −𝑗𝑗2) … 

(4) 
In [6], the authors mention 2 algorithms for obtaining 

𝑝𝑝(𝑠𝑠) from above mentioned equations. Both algorithms 
were tested and it was found that the second algorithm 
was faster and more simplified than the first one, as 
mentioned in [6] and therefore it was used in our paper 
as well.  

In this algorithm, roots of 𝐾𝐾(−𝑗𝑗2) and 𝑣𝑣(−𝑗𝑗2) were 
chosen randomly such that they satisfy Equation (3), then 
an arbitrary value of 𝐾𝐾 was specified and the resulting 
polynomial 𝑝𝑝/𝑞𝑞  was checked to be SPR. If not, then 
another value of 𝐾𝐾 is chosen, and in this way, by iterating 
and sweeping values of 𝐾𝐾, multiple SPR functions were 
obtained. Below is an example for the SPR function 
obtained by following the above steps: 

Example: 
Let the roots of 𝑞𝑞𝑒𝑒(𝑠𝑠) = [1,3,5] and 𝑞𝑞𝑜𝑜(𝑠𝑠) = [2,4] 
Then we get 
𝑞𝑞(𝑠𝑠) = 1𝑠𝑠6 + 1𝑠𝑠5 + 9𝑠𝑠4 + 6𝑠𝑠3  + 23𝑠𝑠2  + 8𝑠𝑠 + 15 
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Figure 2 and Figure 3 show interlacing zeros of even 
and odd polynomials and resulting monotonous 
increasing phase of 𝑞𝑞(𝑠𝑠). 

Therefore, the roots for 𝑗𝑗𝑔𝑔𝑔𝑔  = [1, 1.732, 2.236] and 
𝑗𝑗ℎ𝑔𝑔 = [1.414, 2] 

 
Figure 2: Interlacing zeros of even and odd 

polynomials of 𝒒𝒒(𝒔𝒔) 

 
Figure 3: Monotonous increasing phase of chosen 

𝒒𝒒(𝒔𝒔) 
 

Using above Equation (3) the roots of 𝐾𝐾(−𝑗𝑗2)  are 
obtained as [1.0062    1.7546    2.3175] and roots of  
𝑣𝑣(−𝑗𝑗2) as [1.4224    2.006]. For these set of values, any 
 0.001 ≤ 𝐾𝐾 ≤  25.75 (𝐾𝐾𝑚𝑚𝑔𝑔𝑛𝑛 ≤ 𝐾𝐾 ≤ 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚) will result in 
𝑝𝑝/𝑞𝑞  to be a SPR function. Calculated 𝑝𝑝(𝑠𝑠)  is also 
Hurwitz polynomial as it has interlacing zeros of even 
and odd powers of 𝑠𝑠 and has a monotonously increasing 
phase. 

Once we obtain a SPR function (as 
impedance  𝐻𝐻(𝑠𝑠) = 𝑍𝑍 ), we can transform it into 
Reflection Coefficient (𝑅𝑅𝑅𝑅) by the following equation: 
 

𝑅𝑅𝑅𝑅(𝑠𝑠) =  
𝐻𝐻(𝑠𝑠) − 1
𝐻𝐻(𝑠𝑠) + 1

=
𝑝𝑝(𝑠𝑠) − 𝑞𝑞(𝑠𝑠)
𝑝𝑝(𝑠𝑠) + 𝑞𝑞(𝑠𝑠)

 

 
Figure 4 and Figure 5 represents magnitude and phase of 
𝑅𝑅𝑅𝑅(𝑠𝑠) (polynomial of order ~ 6/6) for the set of 𝑞𝑞(𝑠𝑠) 
roots from the above mentioned example with different 
𝐾𝐾  values. The trend of 𝑅𝑅𝑅𝑅(𝑠𝑠)  magnitude variation 
always remains the same. As observed in Figure 4 and 
Figure 5, when we increase 𝐾𝐾 = 𝐾𝐾𝑚𝑚𝑔𝑔𝑛𝑛  to some  𝐾𝐾 =
𝐾𝐾𝑚𝑚𝑔𝑔𝑚𝑚, the 𝑅𝑅𝑅𝑅(𝑠𝑠) magnitude decreases from 1 to 0, and 
for any further increase in 𝐾𝐾  from 𝐾𝐾𝑚𝑚𝑔𝑔𝑚𝑚  to  𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 , the 
magnitude increases from 0 back to 1. Though we are 
calling this middle value,  𝐾𝐾𝑚𝑚𝑔𝑔𝑚𝑚 , it is not the midpoint 

between the two extremes of 𝐾𝐾, i.e. (𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐾𝐾𝑚𝑚𝑔𝑔𝑛𝑛)/2 ≠
𝐾𝐾𝑚𝑚𝑔𝑔𝑚𝑚 .   

The goal to represent a termination in terms of a SPR 
transfer function impedance is achieved. This method 
provides us with the freedom to choose polynomial of 
any order to obtain our transfer function impedance, we 
can randomly select the roots of the denominator 𝑞𝑞(𝑠𝑠) 
and obtain a range of SPR functions by 𝐾𝐾  variation. 
𝑅𝑅𝑅𝑅(𝑠𝑠)  can be used to represent upstream and 
downstream terminations. 

 
Figure 4: 𝑹𝑹𝑹𝑹(𝒔𝒔) with 4 different values of K 

(𝑲𝑲𝒎𝒎𝒎𝒎𝒎𝒎 < 𝑲𝑲𝟏𝟏 < 𝑲𝑲𝟐𝟐 < 𝑲𝑲𝟑𝟑 < 𝑲𝑲𝟒𝟒)  

 
Figure 5: 𝑹𝑹𝑹𝑹(𝒔𝒔) with 4 different values of K 

(𝑲𝑲𝒎𝒎𝒎𝒎𝒎𝒎 < 𝑲𝑲𝟒𝟒 < 𝑲𝑲𝟓𝟓 < 𝑲𝑲𝟔𝟔 < 𝑲𝑲𝒎𝒎𝒎𝒎𝒎𝒎)  
 
Calculation of probability of instability as measure of 
the burner figure of merit. 

The described method to generate a passive acoustic 
embedding can be used to evaluate the thermo-acoustic 
quality factor of the specified burner/flame. For this 
purpose, the burner, described by its transfer matrix, 
should be terminated by multiple passive terminations 
and for each of the embedding cases, the complex eigen 
frequencies should be evaluated. The probability to 
encounter an unstable operation may then serve as the 
thermo-acoustic figure of merit of the given flame. 
Below we follow this idea and show an example of the 
implementation of the proposed research program. The 
systematic application of the developed methodology is 
the subject of future research.    
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Flame transfer function and flame properties  
In the linear limit, the response of a flame of a burner 

to acoustic oscillations can be represented by flame 
Transfer Function (TF). In the case of an acoustic 
velocity sensitive flame, the TF is often defined as 

𝐺𝐺(𝑓𝑓) =
𝑄𝑄′(𝑓𝑓)

𝑄𝑄0�

𝑢𝑢′(𝑓𝑓)
𝐾𝐾0�

  , 

where, 
𝑄𝑄′(𝑓𝑓): unsteady heat release as a function of 

frequency 
𝑢𝑢′(𝑓𝑓): acoustic oscillations as a function of frequency 
𝑄𝑄0: mean heat release, and 
𝐾𝐾0: mean velocity 
This TF can be obtained experimentally or via CFD. 

In this paper, for the purpose of demonstrating the 
method to calculate the figure of merit of a burner, we 
use an analytical expression for a TF represented by the 
time delayed second order system with overshoot and 
damping factor to mimic a TF having similar 
characteristics as typically observed for an 
experimentally obtained TF, [3] 

𝐺𝐺(𝑠𝑠) =
1

(𝐴𝐴2𝑠𝑠2 + 2𝜉𝜉𝐴𝐴𝑠𝑠 + 1) ∙ exp(−𝑠𝑠 ∙ 𝜏𝜏0), 

(5) 

𝐴𝐴 =
1

2𝜋𝜋𝐹𝐹𝑚𝑚
�1 − 𝜉𝜉2. 

𝐹𝐹𝑚𝑚: Frequency for maximum overshoot  
𝜉𝜉: Damping factor  
Such a flame transfer function can then be plotted in 

terms of its gain and phase as shown in Figure 6(a). We 
have fixed the parameters: 𝜏𝜏0 = 0.025 sec, 𝐹𝐹𝑚𝑚 =
100 Hz and 𝜉𝜉 = 0.55.  
 
Network Model and Scattering Matrix 

Within the limit of so-called “compact flames”, when 
the flame/burner size δ≪ 𝜆𝜆, where 𝜆𝜆 is the wavelength of 
the acoustic wave, the burner can be treated as an 
acoustically compact lumped element. Accordingly, the 
burner with flame can be represented in terms of its 
Transfer Matrix (TM) [2]. Using linearized momentum 
equation and jump condition across the flame, the link 
between the flame TF and TM becomes [2]: 

𝑇𝑇(𝑠𝑠) =
1
2
�𝜀𝜀 + 1 + 𝜃𝜃𝐺𝐺(𝑠𝑠) 𝜀𝜀 − 1 − 𝜃𝜃𝐺𝐺(𝑠𝑠)
𝜀𝜀 − 1 − 𝜃𝜃𝐺𝐺(𝑠𝑠) 𝜀𝜀 + 1 + 𝜃𝜃𝐺𝐺(𝑠𝑠)�, 

where,  
𝜀𝜀 =  𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐

𝜌𝜌ℎ𝑐𝑐ℎ
  is the ratio of specific impedances in the 

cold side and hot sides of the flame and 𝜃𝜃 =  𝑇𝑇ℎ
𝑇𝑇𝑐𝑐
− 1 is the 

ratio of temperatures on the hot and cold sides. 
Combining the TM and reflections at the boundaries (the 
upstream and downstream side) of the burner, the 
relations between travelling waves (f and g) form the 
following system of equations: 

𝑓𝑓1 = 𝑅𝑅𝑅𝑅𝑢𝑢𝑢𝑢(𝑠𝑠) ∙  𝑔𝑔1 
𝑓𝑓2 = 𝑇𝑇(𝑠𝑠)11 ∙  𝑓𝑓1 + 𝑇𝑇(𝑠𝑠)12 ∙  𝑔𝑔1 
𝑔𝑔2 = 𝑇𝑇(𝑠𝑠)21 ∙  𝑓𝑓1 + 𝑇𝑇(𝑠𝑠)22 ∙  𝑔𝑔1 

𝑔𝑔2 = 𝑅𝑅𝑅𝑅𝑚𝑚𝑛𝑛(𝑠𝑠) ∙  𝑓𝑓2. 
Or, in matrix form: 

�

1 −𝑅𝑅𝑅𝑅𝑢𝑢𝑢𝑢 0 0
0 0 −𝑅𝑅𝑅𝑅𝑚𝑚𝑛𝑛 1
𝑇𝑇11 𝑇𝑇12 −1 0
𝑇𝑇21 𝑇𝑇22 0 −1

� �

𝑓𝑓1
𝑔𝑔1
𝑓𝑓2
𝑔𝑔2

� = 0.      

             (6) 
Equation (6) will have non-trivial solution for 𝑓𝑓 and 𝑔𝑔 
when the determinant of the first system matrix becomes 
0. Hence, the dispersion relation will take the following 
form 

𝑇𝑇22 − 𝑅𝑅𝑅𝑅𝑚𝑚𝑛𝑛𝑇𝑇12 + 𝑅𝑅𝑅𝑅𝑢𝑢𝑢𝑢𝑇𝑇21 − 𝑅𝑅𝑅𝑅𝑚𝑚𝑛𝑛𝑅𝑅𝑅𝑅𝑚𝑚𝑛𝑛𝑇𝑇22 = 0 
(7) 

In this equation all terms may depend on the complex 
frequency 𝑠𝑠. By solving the Equation (7), we obtain the 
eigen frequencies 𝑠𝑠𝑒𝑒𝑔𝑔𝑔𝑔𝑒𝑒𝑛𝑛 = 𝜎𝜎 + 𝑗𝑗𝑗𝑗, where σ is the 
growth rate (rad/sec) and ω is the angular eigen frequency 
of the system. Positive (negative) value of σ represents 
an unstable (stable) dynamics. 

 
Demonstration of Eigen frequency and growth rate 
calculations and corresponding results 

This section is devoted to illustrating an example of 
statistical (Monte-Carlo) calculations where we have 
used different, randomly generated SPR functions as 
impedances for upstream and downstream terminations 
and obtained the dataset of eigen frequencies and growth 
rates for a system with fixed burner/flame given by its 
particular TF. The systematic investigation of the 
obtained dataset and the development of the 
corresponding analysis procedures are the subjects of 
future research. Here we will demonstrate a few 
examples of the possible methods of analysis and 
research questions that may allow this approach. 

The above-described method allows us to randomly 
choose roots of 𝑞𝑞(𝑠𝑠) and 𝑝𝑝(𝑠𝑠) and obtain a range of SPR 
functions for each such set of roots. One may also vary 
the degree of polynomial to add additional randomness 
to the frequency dependent 𝑅𝑅𝑅𝑅(𝑠𝑠)  upstream and 
downstream. This will help in capturing and “probing” 
an even wider range of different possible boundary 
conditions that a burner with flame may experience when 
placed in a real combustion device.  

To take into consideration a possibly large phase 
delay, appropriate to reflecting terminations, the rational 
function representing  𝑅𝑅𝑅𝑅(𝑠𝑠)  can be multiplied by a 
factor of time delay. It allows to mimic the additional 
effect of upstream and downstream duct lengths 
incorporated into the reflection coefficients in the 
following manner: 

𝑅𝑅𝑅𝑅𝑢𝑢𝑢𝑢(𝑠𝑠) = 𝑅𝑅𝑅𝑅𝑢𝑢𝑢𝑢(𝑠𝑠) ∙ exp �−𝑠𝑠 ∙ 2𝐿𝐿𝑐𝑐 𝑐𝑐𝑐𝑐� � 

𝑅𝑅𝑅𝑅𝑚𝑚𝑛𝑛(𝑠𝑠) = 𝑅𝑅𝑅𝑅𝑚𝑚𝑛𝑛(𝑠𝑠) ∙ exp �−𝑠𝑠 ∙ 2𝐿𝐿ℎ 𝑐𝑐ℎ� � 
 In the present example the values of additional 

“transport time delays” are also randomly selected from 
the range limited by the predefined maximum and 
minimum values for 𝐿𝐿𝑐𝑐 and 𝐿𝐿ℎ as shown in Table 1. 

In the example below, we have assumed the following 
upstream and downstream conditions: 
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Table 1: Operating Conditions 
Section Length 

of Duct 
𝐿𝐿𝑠𝑠𝑒𝑒𝑐𝑐𝑠𝑠𝑔𝑔𝑜𝑜𝑛𝑛 

Temperature Density Speed 
of 
sound 

 (m) (K) (kg/m3) (m/sec) 
Cold 
(c) 

0.1-2.0 293 1.204 343.24 

Hot (h) 0.1-1.0 1600 0.2207 774.38 
To summarize, we are fixing the flame TF in the form 

of  𝐺𝐺(𝑠𝑠) , with which we have calculated our transfer 
matrix given by  𝑇𝑇(𝑠𝑠) . The form of  𝐺𝐺(𝑠𝑠)  is given by 
Equation (5) and shown in Figure 6 (a). We have 
upstream and downstream reflection coefficients which 
we obtained from the SPR functions in the form 
of  𝑅𝑅𝑅𝑅𝑢𝑢𝑢𝑢/𝑚𝑚𝑛𝑛(𝑠𝑠) . With all this information we can now 
calculate the eigen frequency and growth rate by solving 
Equation (6) for non-trivial solutions.  

To obtain the probability of instability and other 
statistically valuable information about the given flame, 
we have randomly selected values for roots of 𝑞𝑞(𝑠𝑠), roots 
of 𝐾𝐾(𝑠𝑠)  and 𝑣𝑣(𝑠𝑠) , 𝐾𝐾 , upstream duct length (𝐿𝐿𝑐𝑐 ) and 
downstream duct length ( 𝐿𝐿ℎ ). Obtaining the eigen 
frequencies for a large number (in this case it is 46,030) 
of such randomly selected cases, we generated a database 
which can be used for further analysis.  

 
(a) 

 
(b) 

Figure 6: (a) Gain and phase of analytically 
determined flame Transfer Function and (b) Eigen 

frequency and positive growth rate obtained.  

Figure 6(b) represents an example of possible 
analysis of data by plotting all eigen frequencies with 
positive grow rates (12647). From this plot, one can 
judge about the most probable instability frequencies of 
the given burner/flame. In this example, the highest 
concentration of cases with positive growth rate occur 
around 100 − 150 Hz. By comparing this plot with the 
flame TF, one sees that it is around this frequency the 
phase passes through π, gain of the TF is high and 
therefore the role of the burner intrinsic instability mode 
can be significant.  

The other possible route of the Monte-Carlo dataset 
analysis is by plotting the unstable eigen frequencies vs 
some system parameter. For instance, when we plot the 
unstable eigen frequencies with respect to upstream duct 
length (𝐿𝐿𝑐𝑐) as shown in Figure 7, the plot reveals that the 
maximum number of cases where the system is unstable 
occurs for 𝐿𝐿𝑐𝑐  ranging from 1 𝑚𝑚  to  2 𝑚𝑚 . Thus, to get 
another perspective of the effect of 𝐿𝐿𝑐𝑐 on the probability 
of instability, we have compared all the cases of 
randomly selected upstream lengths with those cases 
where the system in unstable (growth rate is positive) as 
shown in Figure 8. The trend in upstream length shows 
that if 𝐿𝐿𝑐𝑐  is kept less than 0.7 𝑚𝑚, then the system will 
have higher probability of stability than cases when the 
upstream duct is more than 1 𝑚𝑚 . For example, if the 
range for length of upstream duct is fixed at  0.46 −
0.51 𝑚𝑚, then out of 1183 random cases, only 14 cases 
were unstable giving the probability of instability 
as 14/1183 =  0.012. These 14 cases depend on sound 
reflection at the downstream termination. Whereas if the 
upstream length is fixed around 1.76 − 1.81 𝑚𝑚 , then 
from 1177 tested configurations, 998 cases had positive 
growth rate, therefore the probability of instability 
becomes 0.85. Clearly, if we were to design an appliance 
having flame TF similar to the one given by Figure 6(a), 
we should aim to have the upstream duct length less than 
0.5 𝑚𝑚 to decrease the possibility of system instability.  

This kind of analysis with respect to 𝐾𝐾  and 
downstream length can help us determine which flame 
TF (experimentally obtained for different burners) is 
more stable in all configurations of upstream and 
downstream boundary conditions.  

 
Figure 7: Eigen frequency plotted with respect to 
upstream length for cases with positive growth rate. 
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Figure 8: Randomly chosen upstream length 
compared with results for which the growth rate was 
positive. 

 
Conclusion 

The present contribution is a constituting part of the 
research program with the ultimate goal to develop a 
methodology to characterize thermo-acoustic properties 
of burners with flame in terms of their thermo-acoustic 
figure of merit. Within the present research line, the idea 
to perform a Monte-Carlo type of simulation of a generic 
combustion appliance is followed. The focus of the 
present contribution is to generate random acoustic 
embeddings for an active flame that satisfy the 
requirement of acoustic passivity and statistically 
represent typical combustion appliances. The acoustic 
embeddings with impedances described by the strictly 
positive real functions in terms of complex frequencies 
are known to fulfil requirements of passivity.  

Using the network modeling approach the statistically 
representative dataset of complex eigen frequencies of a 
system consisting of a fixed burner/flame and random, 
frequency dependent acoustic embeddings is produced. 
Several possible methods of statistical analysis of the 
generated dataset are proposed and demonstrated. 
Namely, the probability of instability can be estimated 
and may serve as the measure of the burner figure of 
merit. Furthermore, the obtained data can be used to 
elucidate the effect of specific parameters of burner 
transfer function or acoustic embedding on the 
probability of instability.   

Based on the conducted study, the following can be 
concluded.   

• The method to generate SPR functions proposed 
in [6] effectively produces a wide range of acoustic 
embeddings with properties required for the elucidation 
of statistically relevant features of acoustic instability of 
given burner with flame;  

• The dataset of eigen frequencies produced by 
using Monte-Carlo simulation of acoustic network with 
burner and random reflections may serve for evaluation 
of many practically relevant parameters of the burner, 
namely its figure of merit.   

• The detailed analysis of the dataset provides 
new inside into the role of different system parameters on 
the thermo-acoustic instability of the combustion system.   

Next steps in the direction of the present research will 
include the evaluation of figure of merit for 
experimentally characterized burners with flames, 
elucidation of different burner parameters on their 
thermo-acoustic quality factor. Furthermore, the range of 
possible analysis method of the (in)-stability statistics 
will be extended. 
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