The published paper may be found at: https://doi.org/10.1115/1.4051989

For citation:

Modelling of Turbulent Premixed CH4/H2/Air Flames Including the Influence of Stretch and Heat Losses

Halit Kutkan, first author
University of Genoa
16145 Genoa, Italy
halit.kutkan@edu.unige.it

Alberto Amato, second author
Ansaldo Energia S.p.A.
16152 Genoa, Italy
alberto.amato@ansaldoenergia.com

Giovanni Campa, third author
Ansaldo Energia S.p.A.
16152 Genoa, Italy
giovanni.campa@ansaldoenergia.com

Giulio Ghirardo, fourth author
Doodle AG
8021 Zürich, Switzerland
giulio.ghirardo@gmail.com

Luis Tay Wo Chong, fifth author
Ansaldo Energia Switzerland AG
5401 Baden, Switzerland
luis.taywochonghilaes@ansaldoenergia.com

Eirik Æsøy, sixth author
Norwegian University of Science and Technology
NO-7491 Trondheim, Norway
eirik.asoy@ntnu.no

1 Corresponding author: Halit Kutkan, halit.kutkan@edu.unige.it
ABSTRACT

This paper presents a RANS turbulent combustion model for CH$_4$/H$_2$/air mixtures which includes the effect of heat losses and flame stretch. This approach extends a previous model concept designed for methane/air mixtures and improves the prediction of flame stabilization when hydrogen is added to the fuel. Heat loss and stretch effects are modelled by tabulating the consumption speed of laminar counter flow flames in a fresh-to-burnt configuration with detailed chemistry at various heat loss and flame stretch values. These computed values are then introduced in the turbulent combustion model by means of a turbulent flame speed expression which is derived as a function of flame stretch, heat loss and H$_2$ addition. The model proposed in this paper is compared to existing models on experimental data of spherical expanding turbulent flame speeds. The performance of the model is further validated by comparing CFD predictions to experimental data of an atmospheric turbulent premixed bluff body stabilized flame fed with CH$_4$/H$_2$/air mixtures ranging from pure methane to pure hydrogen.

1. INTRODUCTION

In view of the global efforts for the decarbonization of the power generation sector, in recent years there is an increased interest in the development of gas turbine engines able to introduce hydrogen blending into the normal natural gas fuel supply. Hydrogen is seen as a promising option to store excess energy produced from renewable sources, such as wind and solar. Gas turbine engines fed by hydrogen/natural gas could in the future complement the intermittent renewable power supply by working as back-up power during periods of scarce wind and daylight [1,2]. However, current lean-premixed combustor technologies are not yet able to handle reliably the full range of 0-100% hydrogen contents blended with natural gas. One challenge in the development of such systems is to control and predict how the flame stabilizes inside the combustor when
hydrogen, which has a higher reactivity than natural gas, is added to the fuel. Flame stabilization in lean-premixed combustors is commonly achieved by recirculating hot gases by means of bluff-bodies and swirlers. Depending on the interplay between hydrogen addition, heat losses and flame stretch in the hot gas recirculation zones, different flame stabilization shapes (such as M-flames, V-flames or detached flames) can be present in a combustor, as for example shown in [3] for a swirl stabilized flame and in [4] for a bluff-body stabilized flame. For CH₄/air flames, past studies [5–7] demonstrate that CFD RANS models can correctly predict flame stabilization in lean-premixed combustors by including the effect of stretch and heat losses in the turbulent combustion model. The objective of the present work is to include the effect of enhanced reactivity due to hydrogen addition into the modelling concept proposed in [5–7], which was previously not considered.

The rest of the paper is organized as follows. Section 2 describes laminar flame calculations in a canonical setup that shows the effect of stretch, heat loss and hydrogen addition on premixed flames. These calculations form the basis of the turbulent premixed combustion model described in section 3. The turbulent combustion model proposed in this paper is compared to both the previous model for CH₄/air [5] and another popular model for CH₄/H₂/air turbulent premixed flames [8]. Then, in section 4 the performance of these three turbulent combustion models is compared with turbulent flame speed data measured in spherically expanding turbulent flame experiments available in the open literature [9–12]. Finally, section 5 further compares the performance of the three turbulent combustion models by illustrating CFD RANS computations of an atmospheric
2. LAMINAR FLAME ANALYSIS

As a first step, the influence of stretch and heat loss on a laminar flame is analyzed numerically in an asymmetric “fresh-to-burnt” counter-flow configuration (see Fig. 1). The calculations presented in this paper were performed using Cantera 2.3.0 [13] with the GRI-Mech 3.0 [14] chemical mechanism. Past studies find that laminar flame speeds for CH$_4$/H$_2$/air mixtures calculated with this mechanism are in reasonable agreement with experimental data [15,16]. A multicomponent formulation is used to model transport properties. In order to simulate different levels of heat loss from the flame, the temperature of the unburnt mixture (T_u) is kept constant while the temperature of the products (T_p) is gradually decreased starting from the adiabatic flame temperature (T_{ad}).

The effect of heat loss is parametrized defining a heat loss coefficient β as:

$$\beta = \frac{T_p - T_u}{T_{ad} - T_u}$$ \hspace{1cm} (1)

Flame stretch, defined by the fractional rate of change of flame surface area, is produced by the combination of strain and curvature. In this work, the influence of curvature is considered small [17,18] and only the contribution from the strain is considered. To simulate the effect of flow strain on the flame, the flow velocities of reactants and products are increased gradually until either flame extinction occurs or a maximum prescribed level of strain is reached. The momentum of reactants and products
is kept always equal to maintain the stagnation plane position approximately constant.

The flame stretch κ considers only the effects from strain and is evaluated as the maximum velocity gradient at the unburnt side (Eq. (2)):

$$\kappa = \max \left| -\frac{\partial u_x}{\partial x} \right|$$

Fig. 2 shows the computed effect of strain and heat losses on the laminar flame consumption speed S_c of an asymmetric counter-flow flame for different levels of hydrogen addition. The flame consumption speed is defined as:

$$S_c = \frac{1}{\rho_u \Delta H^o_c Y_f} \int_{-\infty}^{\infty} \dot{q} \, dx$$

where ΔH^o_c is the lower heating value of the combustion, ρ_u is the unburnt mixture density, Y_f is the mass fraction of the fuel in the reactants and \dot{q} is the total heat release rate per unit volume.

Calculations show that at high values of stretch and heat losses a high decrement on the consumption speed is observed indicating strong levels of quenching [19]. Increasing hydrogen content decreases the sensitivity of consumption speed to flame stretch and heat losses. For the mixtures with H$_2$ addition (Fig. 2 (b) and (c)), flame stretch increases the consumption speed initially and then decreases. This trend is not observed on the pure CH$_4$ flames as S_c has a monotonic decrease with increasing flame stretch. The increment of S_c from low stretch values is attributed to the high diffusivity (Le number effect) of H$_2$, and this effect increases and becomes more remarkable with the increasing content of the hydrogen in the mixture [20].
For CFD simulations, look-up tables were created for the S_c consumption speeds of 5 different fuel mixtures under experimental conditions listed in Table 1. While forming the consumption speed S_c look-up tables, strain κ points were sampled from 0 to 30000 1/s, and β heat loss coefficient points were sampled from 1 to 0.4. For $\beta \leq 0.4$ flame quenching is observed for all the investigated conditions. Similar approach using look-up tables to introduce effects of stretch and heat loss was used in [21,22]. The concept to introduce effects of stretch and heat loss can be also applied to other models as for example in the FGM context as done by Klarmann et al. [21]. Laminar unstretched flame speed S_{L0} is calculated from Eq. (3) using Cantera “FreeFlame” module. S_{L0} is equivalent to $S_c (\kappa = 0, \beta = 1)$.

3. TURBULENT PREMIXED COMBUSTION MODEL

The Turbulent Flame Closure (TFC) combustion model [23] in the RANS framework involves the solutions of a transport equation for the density-weighted reaction progress variable \tilde{c}:

$$\frac{\partial (\rho \tilde{c})}{\partial t} + \frac{\partial (\rho u_j \tilde{c})}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho v \frac{\partial \tilde{c}}{\partial x_j} \right) + \tilde{\omega} \tag{4}$$

where the reaction rate source term $\tilde{\omega}$ is modelled as:

$$\tilde{\omega} = \rho u S_T |\nabla \tilde{c}| \tag{5}$$

The closure of this term requires a model for the turbulent flame speed S_T. TFC combustion models are relatively simple to implement, but their success in modelling flame propagation relies on the accuracy of the S_T expression. In the following, two
previously proposed models (Sec. 3.1 and 3.2) are presented and then the \(S_T \) model proposed in this paper for CH\(_4\)/H\(_2\)/air flames is described (Sec. 3.3).

3.1. Algebraic Flame Surface Wrinkling (AFSW) Model

In [24,25] a turbulent flame speed expression for CH\(_4\)/H\(_2\)/air flames was proposed building upon previous models for hydrocarbon/air flames:

\[
S_T = S_{L0} + 0.46 e^{0.55} u' S_{L0}^{-0.7} \nu^{-0.25} l_t^{0.25} \left(\frac{P}{1 \text{ atm}} \right)^{0.2} \tag{4}
\]

where \(u' \) is turbulent velocity, \(S_{L0} \) is the unstretched laminar flame speed, \(\nu \) is the laminar kinematic viscosity, \(l_t \) the turbulence length scale and \(P \) is the pressure. In Eq. (6), turbulent velocity \(u' \) and length scale \(l_t \) are calculated as indicated in the original references [24,25]:

\[
u' = \sqrt{\frac{2}{3} k}, \quad l_t = c_\mu^{1/4} \frac{k^{3/2}}{\varepsilon} \tag{5}
\]

where \(k \) and \(\varepsilon \) refer to turbulence kinetic energy and dissipation rate, respectively, and \(c_\mu = 0.09 \). The “effective Lewis number” \(Le^* \) is introduced to model the effect of the different molecular diffusivity of hydrogen and methane on the turbulent flame speed [24,25]. It is well known that different fuel molecular diffusivities can affect burning rates up to very high turbulent intensities [26,27]. \(Le^* \) is defined as:

\[
Le^* = \frac{\alpha}{x_{CH_4} D_{CH_4} + x_{H_2} D_{H_2}} \tag{6}
\]

where \(\alpha \) is the thermal diffusivity, \(x_{CH_4} \) and \(x_{H_2} \) are the volumetric fraction of methane and hydrogen in the fuel, respectively, while \(D_{CH_4} \) and \(D_{H_2} \) represent the binary molecular
mass diffusion coefficients with respect to inert \(N_2 \) gas of methane and hydrogen, respectively. The values of \(\alpha \), \(D_{CH_4} \) and \(D_{H_2} \) in Eq. (8) are evaluated at the temperature, pressure and composition of the reactants.

In [24] it is shown that a RANS TFC model coupled with Eq. (6) was able to fit experimental data of adiabatic turbulent Bunsen-type flames reasonably well up to 30-40\% \(H_2 \) content (volumetric) in the fuel stream.

3.2. Extended TFC (ExtTFC) Model

For \(CH_4/air \) flames the following expression was proposed in [5]:

\[
S_T = 0.52u'0.75S_c^{0.5}u_0^{-0.25}l_t^{0.25} \tag{7}
\]

where the turbulent velocity and length scale are calculated as:

\[
u' = \sqrt{\frac{2}{3}k} \quad l_t = 0.37\frac{u'^3}{\varepsilon} \tag{8}\]

Eq. (9) is the same as the classical Zimont turbulent flame speed expression [23,28,29], but in this formulation the unstretched adiabatic laminar flame speed \(S_{L0} \) is replaced by the stretched non-adiabatic laminar flame consumption speed \(S_c \) which is a function of stretch and heat losses \(S_c = f(\kappa, \beta) \) and is computed from laminar 1D calculations as described in section 2. In RANS computations of turbulent flames, the values of \(\kappa \) and \(\beta \) necessary to evaluate \(S_c \) are calculated as explained next.

The heat loss coefficient \(\beta \) defined in Eq. (1) is calculated as in [7]:

\[
\beta = 1 - \frac{h_u - \tilde{h}}{cY_f\Delta H_c^0} \tag{9}
\]
where \(h_u, Y_f \) and \(\Delta H^0_c \) are total unburnt enthalpy (sensible plus the standard formation enthalpy), fuel mixture fraction and lower heating value of the fuel, respectively. The averaged enthalpy \(\tilde{h} \) is obtained by solving an averaged enthalpy transport equation for the turbulent flow.

To evaluate the flame stretch \(\kappa \) the following expression is used:

\[
\kappa = (\delta_{ij} - n_i n_j) \frac{\partial \tilde{u}_i}{\partial x_j} + \Gamma_K \left(\frac{u'}{S_{L0}}, \frac{L}{\delta_{L0}} \right) \frac{\varepsilon}{k} \left[\frac{1}{Le} (1.76 + \tanh(Le - 2)) \right]
\]

(10)

The term, \(\kappa_{mean} \), is the stretch due to the mean flow, \(\delta_{ij} \) is the Kronecker delta and the orientation factors \(n_i n_j \) are calculated as follows [30]:

\[
n_i n_i = \sum_{k \neq i} \frac{\tilde{u}'_k}{4k}, \quad n_i n_{j\neq i} = \frac{\tilde{u}'_i \tilde{u}'_j}{2k}
\]

(11)

where \(\tilde{u}'_i, \tilde{u}'_j \) are the averaged Reynolds stresses, and \(k \) is the turbulent kinetic energy.

The term, \(\kappa_{turb} \), models the average flame stretch due to turbulent eddies. The term \(\Gamma_K \) is the ITNFS (Intermittent Turbulence Net Flame Stretch) efficiency function and is calculated following [31,32]. The resulting turbulent flame stretch is computed by multiplying \(\Gamma_K \) by the inverse of the characteristic eddy time scale \(\varepsilon/k \) [33]. In this paper, improving upon the model used in [5–7], \(\kappa_{turb} \) contains also a term that depends on the Lewis number \(Le \) of the fuel. This term is proposed in [34] to better fit average turbulent flame stretch values computed from direct numerical simulations of CH\(_4\)/H\(_2\)/air and C\(_3\)H\(_8\)/H\(_2\)/air flames. For \(Le = 1 \) this term is equal to 1 thus recovering the \(\kappa_{turb} \) expression used [5–7] for CH\(_4\)/air flames. Following the notation of [31,34], in Eq. (12) the turbulent integral length scale \(L \) is computed as \(L = u'^3/\varepsilon \), \(u' \) is calculated as in Eq. (10), the laminar
flame thickness δ_{L0} is calculated from the maximum temperature gradient of a 1D unstretched laminar flame $\delta_{L0} = (T_{ad} - T_u)/\max(dT/dx)$ and the Lewis number is calculated as $Le = x_{CH_4} \alpha/D_{CH_4} + x_{H_2} \alpha/D_{H_2}$, where the various terms are evaluated as in Eq. (8).

The performance of RANS TFC computations coupled with Eq. (9) is evaluated in [5] and it is shown that this model is able to predict cold wall quenching effects and the correct flame shape for CH$_4$/air turbulent flames in swirl stabilized combustors. Later this approach is also successfully extended to large eddy simulations (LES) [6], where it showed a good match between the calculated and measured flame response to acoustic oscillations.

3.3. Extended TFC for CH$_4$/H$_2$ Mixtures (ExtH$_2$TFC)

In the context of this study, the following turbulent flame speed expression for CH$_4$/H$_2$/air flames is proposed:

$$S_T = S_c + \frac{0.4}{\sqrt{Le^*}} u^{0.8} S_c^{0.45} \alpha_u^{-0.25} l^{0.25}$$ \hspace{1cm} (12)

Eq. (14) draws upon the S_T expressions of Eq. (6) and (9) with the following similarities and differences.

First, in Eq. (14) the effective Lewis number Le^* is included to model the effect of hydrogen molecular diffusion on S_T, mimicking the approach that led to the development of Eq. (6). However, here S_T is considered that it varies proportionally to $Le^{* - 0.5}$ and not $e^{1 - Le^*}$. This different exponent was proposed in the recent study described in [11] where
it was found that $Le^{*-0.5}$ was able to best fit turbulent flame speed experimental data of pure hydrogen, propane and isooctane flames. Furthermore, Le^* in Eq. (14) is calculated as in Eq. (8) but the transport properties, α, D_{CH_4} and D_{H_2} are computed at the temperature corresponding to the location of maximum heat release rate in a 1D unstretched laminar flame. This different evaluation method of Le^* was proposed in [24] because the diffusivity of hydrogen in the reaction zone of the flame is considered more meaningful for the description of the interaction between flame molecular diffusion processes and turbulent eddies.

Second, the use of S_c instead of S_{L0} is retained from Eq. (9) to model stretch and heat loss effects. This is particularly important to reflect the quenching effects at the outer shear layer. The exponent of u' and S_c are adjusted compared to Eq. (9) primarily to achieve a better fit with the turbulent flame speed experimental data described in the next section. For the same reason the pre-factor value is changed to 0.4 compared to the original value 0.52 also to compensate for the fact that in Eq. (14) for the definition of u' and l_t Eq. (7) is used instead of Eq. (10). Note that the original exponents in the Zimont S_T expression (Eq. (9)) were derived by means of theoretical arguments based on the dimensional analysis of the propagation of 1D turbulent flame [28]. Here the small adjustment is reasonable because in S_c there is already a built in dependence on u' through the stretch factor κ which was not present in [28].

Third, compared to Eq. (9), in Eq. (14) the S_c term was added to S_T in order to recover the laminar flame propagation speed at $u' = 0$. In fact, for high hydrogen content S_c values can become a significant contribution to the turbulent flame propagation.
Finally, we remark that Eq. (14) in this paper is validated for lean and stoichiometric equivalence ratios under atmospheric pressure. The validity of this formulation for high pressure and rich mixture conditions will be subject of future studies. In particular, the inclusion of an explicit dependence of S_T on pressure as in Eq. (6) was not investigated.

4. TURBULENT FLAME SPEED RESULTS

In this section the performance of the S_T expressions of the AFSW, ExtTFC and ExtH$_2$TFC models is compared with the turbulent flame speeds values measured in the fan stirred bomb experiments of refs. [9–12]. In these experiments the flame is propagating in isotropic turbulence with zero mean velocity, which results in $\kappa_{\text{mean}} = 0$ and $\kappa = \kappa_{\text{turb}}$ in Eq. (12). It is also assumed that in these experiments heat losses are negligible (i.e. $\beta = 1$). The values of turbulent velocity u' and turbulent integral length scale L are taken as specified in the original references for each measurement and, the different definitions of turbulent length scale l_t in Eq. (7) and (10) are computed from the linear relation between L and l_t. The experimental turbulent flame data in [9–12] were all measured by reconstructing the average flame radius R_{sch} from Schlieren photography as it evolves in time. Since different references use different turbulent flame speed definitions, in this paper the turbulent flame speed data are always extracted from the following definition by manipulating the data of the original references:

$$S_{T,c=0.5} = \left(\frac{1}{1.11 \rho_u} \frac{R_{c=0.1}}{R_{c=0.5}}\right)^2 \frac{dR_{sch}}{dt}$$ \hspace{1cm} (13)$$

where dR_{sch}/dt is the time derivative of the mean flame radius, while ρ_b and ρ_u are the burnt and unburnt gas density, respectively. The factor $1/1.11$ is an empirical constant
proposed in [9] which is needed to convert the displacement speed dR_{sch}/dt measured from Schlieren photography to turbulent mass burning rate. Additionally, the coefficient $R_{c=0.1}/R_{c=0.5} = 1.4$ was suggested in [10] as a converting factor to obtain the turbulent flame speed at $\bar{c} = 0.5$. For each experiment the average dR_{sch}/dt value in the interval $25 \text{ mm} < R_{sch} < 45 \text{ mm}$ and the repeated measurements at the same conditions were arithmetically averaged.

Fig. 3 and Fig. 4 show the comparison of the different turbulent flame speed expressions with experimental data. For the AFSW the agreement between the model and the data is good, except for the 80% H$_2$-20% CH$_4$ fuel mixture in Fig. 4. On the contrary, as expected, the ExtTFC model matches well the 100% CH$_4$ turbulent flame speed data but underpredicts them when H$_2$ is added to the fuel. The ExtH$_2$TFC model instead matches well all the experimental data investigated in this paper. Especially the $Le^{*--0.5}$ factor in the ExtH$_2$TFC model is fundamental to correctly match the turbulent flame speed experimental data in adiabatic isotropic turbulence conditions. In the next section, the performance of the models is further tested in 3D CFD simulations.

5. CFD MODELLING

In this section, the experimental setup, numerical details, cold flow and reacting CFD results are presented.
5.1. Experimental Setup

Fig. 5 shows the atmospheric rig experimental setup. Cylindrical combustion chamber has the inner diameter of \(d_q = 44 \) mm with 3 mm thick quartz walls, and has the length of \(L_q = 75 \) mm. The combustor has been operated with 5 different mixtures of \(\text{CH}_4/\text{H}_2/\text{air} \) premixed gas, from 0% \(\text{H}_2 \) to 100% \(\text{H}_2 \) content in the fuel. The mixture properties and inlet conditions are presented in the Table 1. The flow rates are adjusted by Alicat mass flow controllers and the bulk flow velocity is calculated from the volumetric flow rate. Air and fuel are mixed a meter before the plenum entrance in order to provide the fully premixed condition. The mixture enters a pipe section with \(d_p = 19 \) mm. The flame is stabilized by a bluff-body \((d_b = 13 \) mm) producing a blockage ratio of 47% and supported by a center rod \((d_r = 5 \) mm).

The rod is held by 3 grub screws \((d_g = 4 \) mm) at 45 mm upstream from the dump plane as sketched in Fig. 5. PIV measurements of the cold flow were carried out using Phantom V2012 (LaVision IRO) camera and a Photonics DM100 dual head laser, by ensemble averaging of 5000 vector fields. \(\text{OH}^* \) Chemiluminescence imaging was captured using the same camera setup with a Cerco 2178 UV 100F/2.8 lens equipped with 310 ± 10-nanometer band pass filter and the planar view was obtained using a 3 point Abel deconvolution. Further information on the experimental set-up are available in [4].
5.2. Numerical Methods and Boundary Conditions

CFD studies were carried out in Ansys Fluent 2019 R3 on the 3D geometry. The combustion chamber length has been doubled in the computational domain to increase the distance between the outlet boundary condition and the flame in order to provide flow continuity.

Fig. 6 shows the geometry dimensions and boundary names of the computational domain. Table 2 lists the implemented boundary conditions. The mesh was created using BetaCAE ANSA 20 software, having around 5 million cells in total and its section is shown in Fig. 7. The average y^+ value in the domain is below 2 ($y^+ \leq 2$) having $y^+ \approx 3$ in the inlet pipe section and $y^+ \leq 1$ in the combustion chamber section.

A solid bluff-body zone (CZC 2 in Table 2) is included with conjugate heat transfer calculations (BC 6 in Fig. 6). Reynolds stress (RSM) and k-ε realizable turbulence models with the Non-equilibrium wall function (NEWF) were compared with experiments in cold flow simulations. RSM model was selected for the reacting flow calculations (see section Error! Reference source not found.). The coupled scheme was used for pressure-velocity coupling. For spatial discretization, second order upwind was selected for Reynolds stresses, and the QUICK scheme was selected for all other equations. Calculations and experiments have been performed at atmospheric pressure. Mixture thermal conductivities and viscosities were calculated across the flame in Cantera for all fuel blends and introduced as temperature dependent polynomial coefficients in the CFD solver.
Bluff-body has been modelled as solid cell zone from $z = 0$ m to $z = -0.035$ m where $z = 0$ m is at the dump plane in Fig. 5 and 6. The combustion chamber back and side walls (BC 7 and 8 in Table 2) were modelled as shell conduction walls with thickness of 0.01 m and 0.003 m, respectively. Inconel material properties have been assigned to the bluff-body solid cell zone and combustion chamber back wall (CZC 2 and BC 7) and Quartz material properties have been assigned to the combustion chamber side walls (BC 8). Solid cell zone and wall thermal conductivities and specific heats were introduced as temperature dependent polynomials and obtained from [35,36] for Quartz and from [37] for Inconel.

5.3. Cold Flow Results

Reynolds stress (RSM) and k-ε realizable turbulence models were compared with cold flow PIV experiments in terms of z (axial) and x-velocity at different axial locations ($z = 0.002$ m, and $z = 0.011$ m). In Fig. 8, RSM model shows a better agreement with experiments than k-ε realizable model on both velocity components. Similar agreement was seen at other plane locations. Based on this, the RSM was selected as turbulence model of the reacting flow calculations.
5.4. Reacting Flow Results

The progress variable \tilde{c} equation was solved using the non-adiabatic partially premixed combustion setup with chemical equilibrium chemistry model. Since the cases are perfectly premixed, equations of mixture fraction and its variance were disabled in the solution process. The combustion models were introduced via user defined functions (UDFs). The 3 turbulent flame speed approaches indicated in section 3 were evaluated. Look-up consumption speed tables ($S_c = f(\kappa, \beta)$) were calculated for the 5 different mixtures in Table 1. These tabulations were used for the ExtTFC and ExtH$_2$TFC models. Both extended models were evaluated using the same definition of stretch as in Eq. (12) which includes Le number effects. Keeping the same definition of stretch in both models allows a direct comparison of the turbulent flame speed definitions.

To take into account heat transfer effects, the combustor back and side walls (BC 7 and BC 8) were simulated considering heat transfer coefficient values indicated in Table 2. For the back wall, Yang’s natural convection relation [38] was used. For the side wall, there is uncertainty on the induced velocity affecting the surface, as the experimental setup was placed under a big extracting flow diffuser for ventilation purposes. Wall temperature measurements in the evaluated experimental setup were not carried out. Nevertheless, to estimate the average values on the combustor side wall, temperature measurements taken for a similar setup (square combustion chamber operated with an ethylene flame) was used. For these measurements, the average temperature was in the range of 593 K – 833 K (at different locations from $z = 0.01$ m to $z = 0.03$ m) on the outside
surface of the combustor wall. To find a proper HTC for the side surface, a parametric study was conducted (not presented in the paper) by assigning different HTCs. HTC = 150 W/m²K produced reasonable agreement on wall temperatures and flame shapes, as discussed in more detail at the end of this section.

In Fig. 10, heat release rate contours from the 3 different turbulent flame speed models are compared with the Abel deconvoluted \(\text{OH}^* \) chemiluminescence images from experiments. Heat release rate is computed as:

\[
\text{HRR} = \rho Y_f \Delta H_c^0 \text{PFR}
\]

where \(\rho \) is the local density, PFR is the product formation rate, \(Y_f \) is the mixture fraction (which is constant along the whole domain in these fully premixed cases), and \(\Delta H_c^0 \) is the lower heating value of the fuel blends. For 0% H\(_2\) (first row of Fig. 10), the ExtTFC and ExtH\(_2\)TFC models can correctly capture the mean flame shape producing a V-flame (stabilization mainly in inner shear layer) as in the experiment due to quenching effects in the outer shear layer. Flame stretch combined with heat losses are present in the outer shear layer (see Fig. 10 (b) and (c)), inducing quenching effects. The AFSW model produced the M-flame shape (strong reaction in the inner and outer shear layers) even under non-adiabatic conditions. The quenching in the outer layer seen in experiments is not captured (see Fig. 10 (a)) because the AFSW model does not consider the combined quenching effect of stretch and heat losses. The angle (with respect to the axial axis) of the inner flame with AFSW model is smaller than in experiments and extended models. Axial velocity contours in Fig. 9 show strong variations in the flow field between the M-
flame with AFSW model and the V-flame with ExtH$_2$TFC model. This indicates that the prediction of flame topology has a strong impact on the flow field prediction.

The normalized axial heat release distribution is shown in the right column of Fig. 10 (normalized considering that the area of the distribution should be same for all cases as the same amount of heat release is produced in experiments and simulations). The AFSW model shows high values close to the dump plane producing a shorter flame than experiments and extended models. Extended models show a better agreement to experiments due to the similar flame shape. Results with 0% H$_2$ using the ExtTFC and ExtH$_2$TFC models are similar as Lewis number is close to 1.

The impact of H$_2$ addition into the mixture is shown in Fig. 10. The 100% H$_2$ case has higher inlet velocity and leaner mixture than the other cases (Table 1). Reactivity and turbulent flame speed increase with H$_2$ addition, producing a decrease in flame length and a change in flame topology after a certain % of H$_2$ content. In experiments, flame stabilization in the outer shear layer starts to develop with 25.2% H$_2$, leading to M-flame with 56.6% H$_2$. This transition effect is also captured by the ExtTFC and ExtH$_2$TFC models (see the second row of Fig. 10 (b) and (c)). Calculations with AFSW model show the M-flame shape for all H$_2$ contents with similar heat release intensity in both inner and outer layers (Fig. 10 (a)). M-flames with extended models show a lower reaction in the outer flame compared to the inner flame due to quenching effects.

Comparing extended models with experiments (Fig. 10 (b), (c) and (d)), the heat release contours with the ExtH$_2$TFC model show good agreement in the flame shape for all the H$_2$ contents. For cases with H$_2 > 50\%$, both extended models (see Fig. 10 (b) and
(c)) overpredict the flame quenching in the outer shear layer region close to the dump plane which is highly affected by heat losses. Experiments show certain level of reaction on that area. As shown in Fig. 11 (a), quenching occurs with $\beta \leq 0.5$, producing overprediction of quenching on that region. Further developments are ongoing to improve this prediction.

In addition, the ExtTFC model for the 56.6%, 67% and 100% H$_2$ cases show that, the model predicts the same flame length for all three cases (see red lines belonging 56.6%, 67% and 100% H$_2$ cases in Fig. 10 (e), all three reach to zero intensity at $z = 0.05$ m) while both AFSW and ExtH$_2$TFC models predict decreasing flame lengths as H$_2$ percentage is increasing due to the inclusion of the Le^* number term in the expressions. The ExtH$_2$TFC model has an improvement compared to the AFSW and ExtTFC models as it includes together the quenching effects due to stretch and heat losses and the increase in flame reactivity due to Lewis number effects by H$_2$ addition.

With 100% H$_2$, the AFSW model shows a longer flame than experiments and extended models, which is opposite to all other %H$_2$ cases shown in the results. The reason of this low reactivity is associated with the fact that with high H$_2$ content, the consumption speed S_c increases with stretch until a certain level and then decreases as seen in Fig. 11 (a). These values even under heat loss effects are higher than the unstretched adiabatic laminar flame speed S_{L0} (Fig. 11 (a) and (b)), leading to lower laminar flame speed values in AFSW model than with extended models. The AFSW 100% H$_2$ case is longer than the AFSW 67% H$_2$ case because it has a lower equivalence ratio with higher inlet velocity (Table 1).
The impact of H$_2$ addition on stretch and heat losses is shown in Fig. 12 with a comparison of the cases with 0% H$_2$ and 56.6% H$_2$. Total stretch values are higher with H$_2$ addition (Fig. 12 (a)) as the Le number term in Eq. (12) produces an increase in the efficiency function, and κ_{mean} also increases in some regions due to the different flow and flame shapes. Similarly, different flow and flame structures affect heat losses too (Fig. 12 (b)).

For improvements in the model, it is observed that close to the dump plane ($z = 0$ in Fig. 10 (e) column, Axial HRR distribution plots) there are stronger heat release values in CFD models than experiments and that the flame brush from current RANS calculations is thinner than the one in experiments. As mentioned previously, ongoing work is in progress to improve the model considering the mentioned points.

Finally, the influence of uncertainty in the thermal boundary conditions in the combustor side wall was analyzed evaluating different HTC values. While $HTC = 70$-150 W/m2K were producing flame shapes similar to the experiment for 0% H$_2$ case, for the 25.2% H$_2$ case different HTCs produced different flame shapes. As seen in the experiments (see Fig. 10 (d)), the case with 25.2% H$_2$ is a transition between the V-flame with 0% H$_2$ and the M-flame with 56.6% H$_2$. A reduction of the HTC to the range of 70-100 W/m2K led to a marked increase of the reaction in the outer shear layer for the 25.2% H$_2$ case leading to a flame shape close to the M-flame seen for the case with 56.6% H$_2$. $HTC = 150$ W/m2K provided the correct flame shape for all cases. Values of HTCs higher than 150 W/m2K were not evaluated, since that value produced reasonable agreement on both wall temperatures and flame shapes with the ExtH$_2$TFC model.
6. CONCLUSION

A new turbulent flame speed correlation is proposed for CH\textsubscript{4}/H\textsubscript{2}/air mixtures that accounts for flame stretch, heat losses and effective Lewis number. It is derived based on two other turbulent flame speed approaches and calibrated against atmospheric lean and stoichiometric CH\textsubscript{4}/H\textsubscript{2}/air mixtures in spherical expanding turbulent flame experiments available in the literature, and further implemented in CFD RANS calculations.

Simulations are validated with atmospheric bluff-body stabilized CH\textsubscript{4}/H\textsubscript{2}/air turbulent premixed flame experiments from pure methane to pure hydrogen under lean mixture conditions. The proposed model is compared with two other combustion models and good agreement with experiments is obtained, presenting improvements with respect to existing state of the art models. Introduction of Lewis number effects are important for prediction of flame length especially at high H\textsubscript{2} contents in the mixture. The model predicts the correct flame stabilization topology attributed to the quenching effects produced by the combined effects of flame stretch and heat losses.

As further steps, extension of the model validation range to high pressure and rich conditions will be investigated. The use of a more recent chemical mechanisms as Aramco-Mech 1.3 [39], implementation of model improvements for a better prediction in RANS of the flame brush and reactions close to the anchoring location, and turbulent Schmidt number dependency in the model are also planned. Furthermore, the extension of the model to LES, similar to what done for CH\textsubscript{4}/air mixture in ref. [6] may also be subject of study.
All these improvements look forward to improving the prediction of the flame shape and spatial distribution of heat release rate in order to better predict the flame dynamic response (flame transfer function) in turbulent flames with H\textsubscript{2} content.

ACKNOWLEDGMENT

This work is part of the Marie Skłodowska-Curie Initial Training Network Pollution Know-How and Abatement (POLKA). The authors gratefully acknowledge the financial support from the European Commission under call H2020-MSCA-ITN-2018 (project number: 813367).

FUNDING

Pollution Know-How and Abatement (POLKA) project is funded by the European Commission under call H2020-MSCA-ITN-2018 (project number: 813367).
NOMENCLATURE

Subscripts

\(u \) unburnt mixture (i.e. reactants)

\(p \) burnt mixture (i.e. products)

\(t \) turbulent

\(ad \) adiabatic

Superscripts

\(' \) turbulent fluctuation

\(\overline{\cdot} \) Reynolds averaged

\(\overline{\sim} \) Favre averaged (density weighted Reynolds averaging)

Scripts

\(\alpha \) thermal diffusivity

\(\beta \) heat loss coefficient

\(\Gamma_k \) ITNFS efficiency function

\(\delta_{Lo} \) Laminar unstretched adiabatic flame thickness

\(\varepsilon \) turbulence dissipation rate

\(\kappa \) flame stretch

\(\nu \) kinematic viscosity

\(\dot{q} \) total heat release rate per volume
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>density</td>
</tr>
<tr>
<td>Φ</td>
<td>equivalence ratio</td>
</tr>
<tr>
<td>$\dot{\omega}$</td>
<td>reaction rate</td>
</tr>
<tr>
<td>c</td>
<td>progress variable (0 in the reactants, 1 in the products)</td>
</tr>
<tr>
<td>D</td>
<td>diffusion coefficient</td>
</tr>
<tr>
<td>h</td>
<td>enthalpy</td>
</tr>
<tr>
<td>k</td>
<td>turbulence kinetic energy</td>
</tr>
<tr>
<td>l</td>
<td>turbulent length scale</td>
</tr>
<tr>
<td>L</td>
<td>turbulent integral length scale</td>
</tr>
<tr>
<td>P</td>
<td>pressure</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>u</td>
<td>velocity</td>
</tr>
<tr>
<td>x</td>
<td>volumetric (or molar) fraction</td>
</tr>
<tr>
<td>HTC</td>
<td>heat transfer coefficient</td>
</tr>
<tr>
<td>Δh_{loss}</td>
<td>total enthalpy loss (i.e. heat loss)</td>
</tr>
<tr>
<td>ΔH^o_c</td>
<td>lower heating value</td>
</tr>
<tr>
<td>Le^*</td>
<td>effective Lewis number</td>
</tr>
<tr>
<td>Le</td>
<td>Lewis number</td>
</tr>
</tbody>
</table>
PFR product formation rate
S_c laminar flame consumption speed
Sc_t turbulent Schmidt number
S_{L0} laminar unstretched adiabatic flame speed
S_T turbulent flame speed

496
497
REFERENCES

Table Captions List

Table 1 Operating conditions in terms of thermal power, volume fraction of H_2 in the fuel, equivalence ratio and inlet bulk velocity.

Table 2 Boundary conditions for the domain in Fig. 6
Table 1 Operating conditions in terms of thermal power, volume fraction of H$_2$ in the fuel, equivalence ratio and inlet bulk velocity.

<table>
<thead>
<tr>
<th>P [kW]</th>
<th>V_{H_2} [%]</th>
<th>Φ [-]</th>
<th>u_{inlet} [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0</td>
<td>0.7</td>
<td>11.8</td>
</tr>
<tr>
<td>7</td>
<td>25.2</td>
<td>0.7</td>
<td>11.8</td>
</tr>
<tr>
<td>7</td>
<td>56.6</td>
<td>0.7</td>
<td>11.5</td>
</tr>
<tr>
<td>7</td>
<td>67</td>
<td>0.7</td>
<td>11.4</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>0.4</td>
<td>17.1</td>
</tr>
</tbody>
</table>
Table 2 Boundary conditions for the domain in Fig. 6

<table>
<thead>
<tr>
<th>Boundary</th>
<th>Boundary condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1</td>
<td>Velocity inlet BC, $I = 5%$, $d_{byd} = 0.014, m$, $T = 296, K$</td>
</tr>
<tr>
<td>BC2</td>
<td>Pressure outlet (atmospheric pressure)</td>
</tr>
<tr>
<td>BC3, BC4, BC5</td>
<td>Wall, zero heat flux</td>
</tr>
<tr>
<td>BC6</td>
<td>Thermal coupled wall, Inconel material</td>
</tr>
<tr>
<td>BC7</td>
<td>Wall, Inconel with shell conduction, $HTC = 8.6, W/m^2K$, $t = 10, mm$, $T_{\infty} = 296, K$</td>
</tr>
<tr>
<td>BC8</td>
<td>Wall, Quartz wall shell conduction, $HTC = 150, W/m^2K$, $t = 3, mm$, $T_{\infty} = 296, K$</td>
</tr>
<tr>
<td>CZC1</td>
<td>Fluid zone</td>
</tr>
<tr>
<td>CZC2</td>
<td>Solid zone, Inconel material</td>
</tr>
</tbody>
</table>
Figure Captions List

Fig. 1 Fresh-to-burnt counter flow flame configuration.

Fig. 2 Laminar consumption speeds $S_c(\kappa, \beta)$ as function of flame stretch κ and heat loss coefficient β for (a) 0% H$_2$ + 100% CH$_4$, (b) 50% H$_2$ + 50% CH$_4$ and (c) 100% H$_2$ + 0% CH$_4$ under $P = 1 \text{ atm}$, $T_u = 300 \text{ K}$, $\Phi = 0.6$ conditions. Evaluated with GRI-mech 3.0 in cantera 2.3.0 with fresh-to-burnt counter flow flame configuration.

Fig. 3 Turbulent flame speed S_T vs turbulence velocity u' under atmospheric pressure with different H$_2$ contents in CH$_4$ (0%, 10%, 20% and 50% volumetric): symbols refer to the experimental data of Fairweather et al. [9], lines refer to the S_T models described in section 3.

Fig. 4 Turbulent flame speed S_T vs turbulence velocity u' under atmospheric pressure with different H$_2$ contents in CH$_4$ (0%, 80% and 100% volumetric): symbols refer to the experimental data of Jiang et al. [10], Nguyen et al. [11] and Cai et al. [12], lines refer to the S_T models described in section 3.

Fig. 5 Single sector atmospheric test rig schematical view.

Fig. 6 Measurements (in mm) of burner CAD geometry and boundary names of computational domain.

Fig. 7 Computational grid section view.

Fig. 8 Cold-flow z (axial) and x (transversal) velocities at different axial positions with different turbulence models ($u_{inlet} = 11.8 \text{ m/s}$).
Fig. 9 Axial velocity for (a) AFSW and (b) ExtH2TFC with 0% H2 reacting flow.

Fig. 10 Heat release rate distributions from 3 different turbulent flame speed models: (a) AFSW, (b) ExtTFC, (c) ExtH2TFC and (d) Abel deconvoluted OH* chemiluminescence images from experiments. (e) Normalized axial heat release distributions are shown in the right column. values are normalized with the maximum local intensity.

Fig. 11 (a) Laminar consumption speed $S_c(\kappa, \beta)$ as function of flame stretch κ and heat loss coefficient β, (b) ratio of consumption speed $S_c(\kappa, \beta)$ to unstretched laminar flame speed S_{L0} contours (from ExtH2TFC model) for 100% H2 + 0% CH4 CFD case.

Fig. 12 (a) Total stretch κ, (b) heat loss coefficient β contours from the case with 0% and 56.6% H2 contents (obtained with ExtH2TFC model).
Fig. 1 Fresh-to-burnt counter flow flame configuration.

\[T_p \leq T_{ad} \]

\[T_u \]
Fig. 2 Laminar consumption speeds $S_c(\kappa, \beta)$ as function of flame stretch κ and heat loss coefficient β for (a) 0% H$_2$ + 100% CH$_4$, (b) 50% H$_2$ + 50% CH$_4$ and (c) 100% H$_2$ + 0% CH$_4$ under $P = 1$ atm, $T_u = 300$ K, $\phi = 0.6$ conditions. Evaluated with GRI-mech 3.0 in cantera 2.3.0 with fresh-to-burnt counter flow flame configuration.
Fig. 3 Turbulent flame speed S_T vs turbulence velocity u' under atmospheric pressure with different H_2 contents in CH_4 (0%, 10%, 20% and 50% volumetric): symbols refer to the experimental data of Fairweather et al. [9], lines refer to the S_T models described in section 3.
Fig. 4 Turbulent flame speed S_T vs turbulence velocity u' under atmospheric pressure with different H$_2$ contents in CH$_4$ (0%, 80% and 100% volumetric): symbols refer to the experimental data of Jiang et al. [10], Nguyen et al. [11] and Cai et al. [12], lines refer to the S_T models described in section 3.
Fig. 5 Single sector atmospheric test rig schematic view.
Fig. 6 Measurements (in mm) of burner CAD geometry and boundary names of computational domain.
Fig. 7 Computational grid section view.
Fig. 8 Cold-flow z (axial) and x (transversal) velocities at different axial positions with different turbulence models ($u_{inlet} = 11.8 \text{ m/s}$).
Fig. 9 Axial velocity for (a) AFSW and (b) ExtH$_2$TFC with 0% H$_2$ reacting flow.
Fig. 10 Heat release rate distributions from 3 different turbulent flame speed models: (a) AFSW, (b) ExtTFC, (c) ExtH₂TFC and (d) Abel deconvoluted OH* chemiluminescence images from experiments. (e) Normalized axial heat release distributions are shown in the right column. Values are normalized with the maximum local intensity.
Fig. 11 (a) Laminar consumption speed $S_c(\kappa, \beta)$ as function of flame stretch κ and heat loss coefficient β, (b) ratio of consumption speed $S_c(\kappa, \beta)$ to unstretched laminar flame speed S_{L0} contours (from ExtH$_2$TFC model) for 100% H$_2$ + 0% CH$_4$ CFD case.
Fig. 12 (a) Total stretch κ, (b) heat loss coefficient β contours from the case with 0% and 56.6% H$_2$ contents (obtained with ExtH$_2$TFC model).