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Abstract: Optical forces on microspheres inside hollow core photonic crystal fibers (HC-PCFs)
are often predicted using a ray optics model, which constrains its validity based on wavelength and
microsphere sizes. Here, we introduce a rigorous treatment of the electromagnetic forces based
on the Lorenz-Mie theory, which involves analytical determination of beam shape coefficients for
the optical modes of a HC-PCF. The method is more practicable than numerical approaches and,
in contrast with ray optics models, it is not limited by system size parameters. Time of flight
measurements of microspheres flying through the HC-PCF lead to results consistent with the
Lorenz-Mie predictions.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Hollow optical waveguides offer the possibility to perform light-matter interaction experiments
in a controlled environment, allowing for optical trapping and manipulation of atoms [1] and
microparticles [2]. The first hollow optical waveguides were simple dielectric pipes guiding light
through internal reflection. However, the higher refractive index of the cladding with respect to the
hollow core determines an inherently lossy light propagation that severely limits the range of the
interaction in the near infrared (NIR) and visible spectra; millimeter–sized hollow fibers feature
a minimum loss of 0.17 dB m−1 at the wavelength of 10.6 µm [3]. This limitation was overcome
with the introduction of hollow core photonic crystal fibers (HC-PCFs) as the first low-loss hollow
core optical waveguides [4], which guide light by employing two-dimensional photonic crystals
in the cladding of the fiber. Generally, such microstructures feature either a forbidden photonic
bandgap preventing light from escaping the hollow core (also known as photonic band-gap
fibers [4]) or inhibit coupling of core and cladding modes (as in the case of Kagomé structured
HC-PCFs [5]). This enabled experiments at the NIR and visible wavelengths, using HC-PCFs
with micron-sized cores. Recent designs featuring a hybrid photonic crystal based on Kagomé
and tubular lattices had propagation losses as low as 1.6 dB km−1 at 1050 nm wavelength and
single–mode operation [6]. Thanks to their low losses and small core sizes, HC-PCFs introduced
the possibility of tight optical trapping of micro- and nano-particles in a confined environment.
The mechanism for trapping and controlling these particles is generally provided by optical
forces exerted by laser beams. Single–mode operation allowed for micron-sized particles to
be controlled by balancing the radiation pressure and viscous forces in a liquid–filled HC-PCF
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[7], whereas optical trapping and manipulation of nanoparticles were performed by generating
standing wave traps with counterpropagating beams [8]. Using few-mode HC-PCFs, optical
conveyor belts have been realized by exploiting the interference between co-propagating modes in
the core [9], trapping of microparticle arrays has been also achieved through scattering-induced
intermodal beating [10]. Recently proposed configurations for few-mode polarization maintaining
HC-PCFs also predict the possibility of controlling rotational degrees of freedom of ellipsoidal
microparticles [11]. The position and speed of particles trapped in HC-PCFs can be determined
with high precision by non-invasive techniques, capable of measuring kinematic properties of
the trapped particles: three-dimensional measurements of the particle position can be achieved
with a position sensitive photodetector [8], and the velocity can be inferred through Doppler
velocimetry using part of the light backscattered from the guided particle [12].

In this framework, interesting technological applications have emerged. The temperature and
pressure–dependent drag forces given by fluids in the hollow core can be used for temperature
sensors based on flying micro-particles [13], other sensing schemes involve rotating nanoparticle
sensors of power, particle size and pressure [14] and pollution monitoring [15]. In the Mie regime
of particle sizes, the interaction with the trapping laser has a strong size dependence, known as
Mie resonance (also known as morphology-dependent resonance or MDR) [16,17], which has
been proposed for hollow waveguide-based particle sorting or "optical chromatography" [18].
The Mie resonance can also be described in terms of the laser excitation of whispering galley
modes [19,20] through which a temperature sensor application has been demonstrated using
dye–doped microparticles [21]. For all these applications, determining the optical forces acting
on particles trapped or flying in HC-PCFs, and understanding the role played by the particle size,
is critically important. One simple approximation is based on comparing the size of the trapped
particle (d) with the laser wavelength (λ). When d/λ ≪ 1, the interaction is well described by
Rayleigh scattering, in which the electromagnetic (EM) fields of the radiation are considered
uniform across the object, whereas when d/λ ≫ 1 the wavelike nature of light is neglected and
the ray optics (also known as geometrical optics) approximation is applied [22]. However, for
optical trapping in HC-PCF, an upper size limit for the particle diameter should be accounted for,
due to the hollow core radius (order of tens of microns). Considering that the trapped particles
are generally one order of magnitude smaller than the hollow core, in most cases their size falls
in an intermediate regime between the two approximations (d/λ ≪ 1 and d/λ ≫ 1) above. It is
well known that the ray optics model is inaccurate when d and λ are comparable [23]. Moreover,
optical forces are more difficult to estimate in a waveguide geometry, where it is not clear that the
assumptions of the standard ray-optics approach are valid [7]. Therefore, to calculate the optical
forces with high accuracy, a complete treatment of the electromagnetic interactions needs to be
used.

Here, the full electromagnetic calculation is performed using the generalized Lorenz-Mie
theory method [24], to determine the optical forces [18,25] for dielectric particles in HC-PCFs.
This approach involves finding the field expansion coefficients known as beam shape coefficients
(BSCs) for the electromagnetic modes that propagate within the hollow core. This method
is powerful because it allows detailed force analysis to be performed at a low computational
cost, and it predicts the Mie resonances, which are expected to have a significant impact on
experiments. Indeed, time-of-flight measurements using a Nd:YAG laser source (λ = 1064 nm)
and polydisperse silica microspheres with 3.17 µm mean diameter in a HC-PCF, show a better
agreement with Lorenz-Mie models than with ray-optics predictions.
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2. Theoretical treatment of optical forces

2.1. Optical forces on a dielectric microsphere

The optical force exerted on a dielectric, non-absorbing microsphere, can be calculated through
[26]

F = lim
r→∞

[︃
−

r2

4

∫
(εm |E|2 + µm |H|2)r̂dΩ

]︃
, (1)

where E and H indicate the electric and magnetic fields, and εm and µm indicate the dielectric
permittivity and magnetic permeability of the medium surrounding the microsphere. In
generalized Lorenz-Mie scattering theories (GLMTs), the electromagnetic fields in Eq. (1) are
expressed in terms of partial wave expansions (PWEs) as follows [27]:

Einc(r) = E0

∞∑︂
p=1

p∑︂
q=−p

(︂
GTE

pq M(1)
pq (r) + GTM

pq N(1)
pq (r)

)︂
Hinc(r) = H0

∞∑︂
p=1

p∑︂
q=−p

(︂
GTM

pq M(1)
pq (r) − GTE

pq N(1)
pq (r)

)︂
,

Esca(r) = E0

∞∑︂
p=1

p∑︂
q=−p

(︂
bpqM(3)

pq (r) + apqN(3)
pq (r)

)︂
Hsca(r) = H0

∞∑︂
p=1

p∑︂
q=−p

(︂
apqM(3)

pq (r) − bpqN(3)
pq (r)

)︂
,

(2)

where "inc" and "sca" indicate the incident and scattered electric and magnetic fields, E0 and H0
are the respective amplitudes, apq, bpq, GTE

pq and GTM
pq are expansion coefficients and N and M are

vector functions, defined through the relations

kmM(n)
pq (r) = i∇ × N(n)

pq (r)

N(n)
pq (r) = z(n)p (kr)Xpq(r̂)

Xpq(r̂) = L
Yq

p (r̂)√︁
p(p + 1)

L = ir × ∇,

(3)

where km is the wavenumber in the medium, Yq
p is spherical harmonic function and z(n)p is an

appropriate spherical Bessel function, chosen to either be regular at the origin for the incident
fields (n = 1), or at infinity for the scattered fields (n = 3).

The expansion coefficients for the incident field, GTE
pq and GTM

pq , are also known as BSCs,
and those for the scattered field, apq and bpq, are called scattering coefficients. By solving
the boundary conditions for the EM fields at the surface of a microsphere with radius rp and
wavenumber kp, the BSCs and the scattering coefficients are found to be related through the Mie
coefficients, ap and bp, as follows [28]:

apq = −GTM
pq
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p(Ms)
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]︃
= −GTE

pq bp,
(4)

where ψ and ξ are Riccati-Bessel functions, s = kmrp is the size parameter, M = kp/km indicates
the ratio between the wavenumber inside the microsphere and in the surrounding medium. The
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BSCs for the incident beam can be obtained through various techniques: one possible way is to
manipulate the incident field expressions in Eqs. (2) to get implicit formulae for the BSCs [25]:

GTM
pq = −

kmr
jp(kmr)

1
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p(p + 1)

∫
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1
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∫
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(5)

where jp = z(1)p is a spherical Bessel function. These expressions can be determined analytically
for complete solutions to Maxwell’s equations, for which the apparent radial dependency cancels
out [29]. By then substituting the BSC expressions in Eq. (11), we get the expansion coefficients
for the scattered electromagnetic field. The force can now be calculated using Eq. (1), leading to
the following expressions for the Cartesian components of the optical force, Fx, Fy, Fz:⎡⎢⎢⎢⎢⎣
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Ap = ap+1 + a∗p − 2ap+1ap

Bp = bp+1 + b∗p − 2bp+1bp

Cp = ap + b∗p − 2apb∗p.
(6)

2.2. Optical modes of a HC-PCF

The exact optical modes guided in a HC-PCF can only be solved numerically, i.e. through finite
element methods (FEM). However, analytical approaches are possible by employing cylindrically
symmetric solutions as an approximation. The modes in HC-PCFs exhibit similar qualitative and
quantitative behavior as the linearly polarized (LP) modes of an equivalent conventional solid
core step-index fiber, even though the underlying physical principles are distinct [30]. Several
works with PCFs use this approximation, supported by the observation of higher–order modes,
such as LP31, which indicates that the modal field patterns in HC-PCFs are similar to those seen
in hollow capillary waveguides [31]. In addition, the cross–sectional intensity profile of the
fundamental mode well fits to a Bessel squared function, which is used to describe the LP01 mode
[32]. Another useful example in this respect is provided by measurements of the intermodal
beating in HC-PCFs, where a hollow cylindrical core surrounded by a dielectric medium is
considered to obtain the intermodal beat-length [9]. Given this strong evidence, we adopt the
hollow cylindrical dielectric waveguide modes as the modes for our HC-PCF.

The general solutions to Maxwell’s equations in cylindrical coordinates (ρ, ϕ, z), with the
z–axis oriented as in Fig. 1, comprise transverse electric (TE), transverse magnetic (TM) and
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hybrid (EH/HE) modes. Defining the two vector functions

Amn(ρ) = iJ ′m(χmnρ)ρ̂ −
mJp(χmnρ)

χmnρ
ϕ̂

Bmn(ρ) =
mJm(χmnρ)

χmnρ
ρ̂ + iJ ′m(χmnρ)ϕ̂,

(7)

where Jm is the cylindrical Bessel function and χmn indicates the transverse component of km, we
can write the expressions for TMmn modes as [23]

E+TM
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km
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(8)

and the expressions for TEmn modes as

E+TE
mn = −E0

km
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H+TE
mn = H0

[︃
βmn

χmn
Amn(ρ) + Jm(χmnρ)ẑ

]︃
ei(mφ+βmnz),

(9)

where the + sign is used to indicate a dependency on e+imφ, and βmn indicates the longitudinal
component of km (also known as the propagation constant of the mode). The expressions for
the hybrid modes are obtained through a superposition of the TM and TE fields in Eqs. (8) and
(9), the intensity and polarization profiles of the first four cylindrical vector modes are shown in
Fig. 2.

Fig. 1. Scheme of a HC-PCF with a microsphere trapped inside it (yellow sphere).

2.3. Optical forces in HC-PCF: Lorenz-Mie model

By substituting the expressions in Eqs. (8) and (9) into the integral formulae for the BSCs in
Eq. (13), we can explicitly calculate GTE

pq and GTM
pq for both TEmn and TMmn modes. To avoid

confusion, we will indicate the cylindrical modes in square brackets, with the plus sign indicating
the dependency on e+imφ and the minus sign the dependency on e−imφ in the field expressions. In
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Fig. 2. The spatial profile of the electric field of the first few cylindrical vector modes
propagating in a dielectric waveguide. The normalized amplitude of the electric field,
E/Emax, is represented in pseudo-colors, whereas the arrows indicate the polarization profile.
The condition of null field at the core boundary is applied.

the reference frame of a sphere centered in coordinates (ρ0, ϕ0, z0) with respect to the fiber axis,
the beam shape coefficients for +TMmn cylindrical modes are

GTM
pq [+TM] =

√
4πip−q+1 ∂Yq∗

p (α, ϕ0)

∂ cosα
Jq−m(χmnρ0)eimφ0e−iβmnz0
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√
4πip−q qk2

m

χ2
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p (α, ϕ0)Jq−m(χmnρ0)eimφ0e−iβmnz0 ,

(10)

in which cosα = βmn
km

is the ratio between the propagation constant and the wavenumber inside
the core. The beam shape coefficients for the −TMmn modes are obtained through the relation

GTE/TM
pq [−TM] = (−1)mGTE/TM

pq [+TM]. (11)

By directly comparing the electric and magnetic fields for the TE modes to the TM modes in
Eqs. (8) and (9), we can deduce the beam shape coefficients for the TEmn modes as

GTM
pq [±TE] = GTE

pq [±TM]

GTE
pq [±TE] = −GTM

pq [±TM].
(12)

The beam shape coefficients for hybrid modes can be obtained through linear combinations of
the TE and TM expressions. Once the BSCs have been determined, the scattering coefficients
can also be obtained through Eq. (11), and the resulting force on the sphere can be calculated
using Eq. (1).
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2.4. Optical forces in HC-PCF: ray optics model

Ray optics generally works when particle sizes are a lot larger than the wavelength of light used.
The optical force F exerted on a microsphere is given by [22,33]

F =nmP
c

η

η =
1
P

∫
S

q(x, y)I(x, y, z)dxdy,
(13)

where nm is the refractive index of the medium, the beam has power P and intensity profile I(x, y, z),
η is the total momentum transfer efficiency, integrated over the microsphere cross-section (S), and
q(x, y) is the local momentum transfer efficiency. The transverse and longitudinal components of
q, denoted as qρ and qz respectively, are a function of the incident angle θi and refracted angle θr
at the medium-microsphere interface, as well as the Fresnel coefficients R and T: [22]

qρ = R sin(2θi) − T2 sin(2θi − 2θr) + R sin(2θi)

1 + R2 + 2R cos(2θr)

qz = R cos(2θi) + 1 − T2 cos(2θi − 2θr) + R cos(2θi)

1 + R2 + 2R cos(2θr)
.

(14)

This method has been used in other studies [9] to describe the optical forces on a microsphere
inside a HC-PCF.

2.5. Mie resonances

When compared to Rayleigh scattering or the ray optics regime, one feature of Mie scattering
is strikingly different: a strong dependency of the interaction on the size parameter (s), as well
as on the refractive index of the scatterer np. Mie resonances can be characterized through the
scattering efficiency parameter, Qsca, which is related to the Mie coefficients ap and bp through
the equation [28]

Qsca =
2
s2

∞∑︂
p=1

(2p + 1)(|ap |
2 + |bp |

2). (15)

Another important parameter in Mie scattering is the extinction efficiency, Qext, defined as

Qext =
2
s2

∞∑︂
p=1

(2p + 1)Re(ap + bp), (16)

which indicates how much of the beam intensity is lost after the scattering. If the scatterer is
absorbing, the absorption efficiency is then defined as Qabs = Qext − Qsca. Upon determining
analytically the BSCs of cylindrical waveguide modes, it is possible to efficiently calculate the
Mie resonances excited by such modes on a dielectric microsphere. The scattering efficiency in
Eq. (15) can be computed from ap and bp separately, as the two coefficients describe the multipole
expansion of orthogonal vector spherical harmonics: those are the TM and TE spherical modes,
respectively. While the Mie resonances are determined by the size parameter and the refractive
index contrast, the amplitude and polarization profiles of the beams are important to determine
which of these resonances are excited in a specific configuration.

3. Radiation pressure from a fundamental mode beam

The simplest configuration one can consider is that of a single beam propagating in the core of a
single mode HC-PCF, pushing a flying dielectric microsphere along the fiber axis. The resulting
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mode profile can be faithfully represented by HE11 in Fig. 2. A comparison between the expected
radiation pressure force, Fz, obtained from Mie scattering and the ray optics approximation is
shown in Fig. 3(a), for a silica microsphere (np = 1.45) pushed along an air-filled HC-PCF of
core radius a = 4.7 µm by a 50 mW laser at 1064 nm wavelength: results from the two models
get closer at high microsphere sizes, though Mie scattering reveals a complex dependency of the
force on the size of the scatterer.

Fig. 3. (a) Calculated radiation pressure force, Fz, exerted on silica microspheres of
different radii as computed through the ray optics approximation (red curve) and through Mie
scattering (blue curve). (b) Fz, represented in pseudo colors, exerted on a silica microspheres
of different sizes in a medium of varying refractive index, nm. P = 50 mW, λ = 1064 nm,
a = 4.7 µm, np = 1.45.

Upon analyzing this system for varying refractive indexes of the medium inside the hollow core,
nm, we find that as nm increases the radiation pressure on the microsphere generally decreases,
due to the reduction of the refractive index contrast np/nm, with the pattern of maxima shifting
towards smaller particle sizes (Fig. 3(b)).

By investigating systems with higher size parameters and a HC-PCF with larger core diameter,
we find that the resonant peaks become more narrow; this behavior has been predicted for plane
wave scattering in [34]. Highlighting the narrowest peaks in these complex patterns require a
very high resolution for the size parameter: an example is reported in Fig. 4, in which a system
of size parameter s>60 is analyzed with different resolutions, showing that increments in the
particle radius as fine as ∆rp = 2 × 10−2 nm (∆s ≈ 10−4) are necessary to unveil very narrow
features in the radiation pressure profile. It is worth noting that these computations can also be
performed for non-spherical particles through T-Matrix formalism [35]: in the case of oblate
or prolate spheroids, the high Q resonances such as the ones reported in Fig. 4 split due to the
breaking of spherical symmetry [36].
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Fig. 4. Calculated radiation pressure, Fz, on silica (np = 1.45) microspheres of high size
parameters (s>60), optically trapped in a HC-PCF of core radius a = 28 µm. (a) Data
calculated with increments of the particle radius ∆rp = 2 nm. This resolution is not sufficient
to highlight the narrowest resonance peaks: as an example, the region in the red rectangle
has been further analyzed using increments of ∆rp = 2 × 10−2 nm revealing the presence of
a narrow peak, reported in (b). P = 50 mW, λ = 1064 nm, nm = 1, np = 1.45.

4. Time of flight experiments

To demonstrate the validity of our results, time of flight (tTOF) measurements are performed on
microspheres flying through the core of a HC-PCF at ambient temperature and atmospheric
pressure, similarly to the work performed in [15]. The setup is schematized in Fig. 5(a). A 1064
nm laser beam is coupled into a HC-PCF (HC-1060-02 by NKT Photonics) with fiber length,
L = 70.4 mm using a λ/2 waveplate to optimize coupling: this is necessary due to the slight
birefringence of our HC-PCF, which has been reported to be ∆n = 1.65 × 10−4 [37]. The output
is directed through a pinhole, to isolate the signal corresponding to the fundamental mode, and
the resulting beam is focused on a photodiode after filtering. Microparticles are dispersed into
distilled water and sprayed in front of the fiber end using a medical nebulizer, as in [38]. The
concentration is chosen such that the average number of microparticles per droplet is less than
one [10]. The recorded photodiode signal, VPD, is proportional to the power in the fundamental
mode, P. When a particle enters the fiber, the intensity recorded at the photodiode drops, after the
particle exits it returns to its previous value, (Fig. 5(b)). The observed low frequency modulation
when the particle is inside the fiber is attributed to noise, since it is not observed for all launch
events; the higher frequency modulation is attributed to involuntary higher mode coupling as
noted in other studies [15]. The laser power before the fiber is kept constant but the measured
signal amplitude changes after each spray, due to possible contamination of optics and fiber by
the aerosol, making the times of flight difficult to compare: this is mitigated by considering
that the time of flight is inversely proportional to P, tTOF ∝ 1

P . Hence we create a histogram
of tPD = tTOF × ⟨VPD⟩, where ⟨VPD⟩ is the average photodiode reading in a 0.7 second interval
before each launch event (Fig. 5(b)).

We calculated the time of flight as a function of particle radius, g(r), by solving the equation
of motion for a spherical particle in a viscous fluid:

Fz − 6πKrµairż(t) = mz̈(t), (17)

where z(t) is the distance travelled by the sphere as a function of time, Fz is the radiation pressure
and the second term comes from Stokes drag, in which K is the Faxén correction factor [13,39],
which takes into account the additional drag force arising from confinement in a cylindrical
channel, µair is the viscosity of air at ambient temperature and atmospheric pressure, and m is the
mass of the sphere. The time of flight is then obtained by solving the equation of motion for
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Fig. 5. (a) Schematics of the set-up used for time of flight measurements. Light from
a Nd:YAG laser is directed through a λ

2 waveplate to optimise the orientation of linear
polarisation, and it is then coupled into a fiber with a lens of focal length f = 40 mm.
Particles are dispersed in a water solution and introduced in front of the fiber using a medical
nebulizer. The light that exits the fiber is focused through a pinhole and directed to a
photodiode. When a particle enters the fiber, a dip in transmitted intensity is recorded and
used to measure the time of flight. (b) Example of the laser intensity signal measured by the
photodiode as a function of time showing a particle launch event, occuring at t = 1.19 s. The
width of the intensity dip is used to recover tTOF , represented by the red arrow, the average
photodiode reading over 0.7 s before the launch, ⟨VPD⟩, is represented by the green line.

z(tTOF) = L for a range of radii to build g(r), (Fig. 6(a), (c)) where the Lorenz-Mie and ray optics
models were used respectively to compute the time of flight.

From Eq. (17), we see that as the particle size increases, the drag force increases proportionally,
therefore increasing the time-of-flight. However, the increasing overlap of the propagating mode
with the particle cross section increases the radiation pressure, decreasing the time-of-flight.
In our configuration, we see that for particle radii below 1.1 micron, the radiation pressure
contribution is dominant, whereas for particle sizes above 1.1 micron in radius the drag force
becomes dominant.

Given the mean, 3.17 µm, and standard deviation, 0.323 µm, of the diameter of the used
particles (Bangs Laboratories), we predict the distribution of tTOF obtained by statistical analysis
of the probability density function (PDF). Since in our case the time of flight is a non-monotonic
function of the particle radius due to Mie resonances, the PDF of the time of flight is given by
[40]

ftTOF (tTOF) =
∑︂

r∈g−1(tTOF)

fR(r)
|g′(r)|

, (18)
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Fig. 6. Time of flight, g(r), as a function of microparticle radius rp for Lorenz-Mie (a) and
ray optics (c) models, respectively, for an 8σ range around the mean value. In this range, the
drag force is dominant over the radiation pressure contribution, resulting in longer times
of flight for increasing particle sizes for both models. Calculations are for a 50 mW laser
beam at 1064 wavelength pushing silica microspheres in a HC-PCF of core radius a = 4.7
µm, length 70.4 mm. Histograms of time of flight multiplied by average voltage reading
on the photodiode before the launch event for 3.17 µm particles. 26 data points, 8 bins.
Experimental data in pink with the theoretical probability distribution function overlayed in
blue for (b) Lorenz-Mie and (d) ray optics models.

where fR(r) represents the Gaussian PDF of the microsphere radii, g′(r) is the derivative of the
time of flight with respect to r and g−1(tTOF) = {r : g(r) = tTOF}. The tp = tTOF × P parameter
is analysed and compared with tPD. Since the predicted g(r) is non monotonic, particles of
different radii will have the same times of flight. However, it is still possible to infer the different
particle sizes by looking at the depth of the transmitted intensity, as in [15]. If the time of flight
was a monotonic function, the statistical analysis would be simplified. The sum in Eq. (18)
would be removed and we would be left with the standard formula to transform probability
density functions. The predicted distributions are strongly dependent on the type of model used
to describe the optical forces, and the ray optics model generally predicts longer tTOF. From
Eq. (18), for some values the PDFs diverge due to turning points in the g(r) function (g′(r) = 0),
which is the reason for the sharp peaks in the distributions. Although the PDF itself diverges, the
probability of measuring a time of flight within a certain range, represented by the area underneath
the PDF over that range, does not. Due to the oscillations present in the Lorenz-Mie time of
flight function, there are several values of radii for which g′(r) = 0, this creates a multi-peak
distribution in the Lorenz-Mie PDF (Fig. 6(b)). To overlay the PDFs with the data and to provide
a comparison of fitting quality, a minimizing algorithm is employed which first discretizes a
modified PDF distribution, given by f overlay

tTOF
(tp) = ftTOF (Atp − B) where the parameters A and B

govern the stretch and translation of the PDF along the tP axis, respectively. The discretization
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of f overlay
tTOF

(tp) is performed by generating a large number of simulated data points and using a
binning equivalent to that performed on experimental data. To compare each model with the
data, we minimise the parameter ∆ through the optimization of A and B:

∆(A, B) =
N∑︂

i=1

(︁
hexp(i) − hPDF(i; A, B)

)︁2
hPDF(i; A, B)

, (19)

with N = 8 the number of bins considered according to Sturge’s rule [41], hexp(i) indicating the
number of events falling in the i − th bin and hPDF(i; A, B) being the predicted number of events
in the same bin. From this analysis, ∆ro = 10.5 counts for the ray optics treatment and ∆Mie = 5.7
counts for the Lorenz-Mie theory, which shows that the Lorenz-Mie model predicts a distribution
shape that is more consistent with our data. The PDF distributions in Fig. 6(b) and (d) are plotted
in blue using the optimized values of A and B, with the experimental data overlayed in pink.

One limitation here is due to the assumption that the coupling to the fundamental mode of the
HC-PCF is perfect. It is actually expected that around 10% of power couples to higher order
modes [8]. This means that instead of following a straight-line trajectory, the particle follows a
sine-like trajectory, caused by the intermodal beating pattern inside the fiber. Small oscillations
in the transverse direction have 1.35 µm predicted amplitude, leading to a corresponding error
which might affect the translation of the predicted distribution along the tp axis.

5. Conclusion

In conclusion, a method for optical force calculation has been developed and applied for
microspheres in HC-PCFs, which is not limited to specific system dimension ranges. It is
particularly useful at the edge of the ray optics regime, which is frequently used in HC-PCF-
microparticle experiments. Measurements of the time of flight of silica microspheres launched
along HC-PCFs evidence that this method is more suitable than ray optics for describing the
optical forces with typical experimental parameters. The model offers an accurate and practicable
way to predict force behaviour in these systems, and it can also be applied to a variety of optical
configurations, such as dual beam standing wave traps, suitable for nanospheres, or intermodal
beating traps [8,9]. As the excitation of Mie resonances depends both on the size parameter of
the microspheres and on the polarization and amplitude profiles of the beams propagating in the
HC-PCF, features predicted by our analysis would allow for the possibility of finely tuning optical
trap parameters, with relevant applications including particle sorting and inspection, pollution
monitoring, and remote temperature sensing architectures.
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