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Thermoacoustic instabilities have plagued the operation of lean premixed gas turbine engines for 
decades and significant research is being conducted in detecting and understanding them. In this pa-
per, an output only identification technique is employed for a noise induced dynamical system repre-
senting combustion instability behavior. A system of independent harmonic oscillators, excited by 
random white noise input is used to generate surrogate data representing pressure oscillations in a 
combustor prior to an instability. An autoregressive (AR) model is then used to represent the gener-
ated time series data by a set of coefficients. AR coefficients are estimated by extracting the auto-
correlation of the time series, which is referred as Yule-Walker estimation method. Using the set of 
coefficients, the eigenfrequencies, damping coefficients and the power spectral density (PSD) can be 
calculated directly. The estimated quantities concurred with the input with a good degree of accuracy 
with a concise set of coefficients. The same harmonic model was excited by colored noise and the 
algorithm estimates the spectrum reliably. It is particularly promising considering real combustor data 
is likely to be excited by non-white noise. Further development could enable the use of AR models 
as an output only system identification technique to provide an early warning indicator in industrial 
gas turbines by tracking the rate of damping of dominant eigenmodes. Furthermore, the identification 
method is a viable edge-computing strategy that characterizes the system dynamics using a small set 
of coefficients, which can be beneficial for long term diagnosis, fleet monitoring and condition-based 
maintenance purposes.    

1. Introduction 

Thermoacoustic instability prediction remains a major hurdle in the development of lean premixed 
gas turbine engines despite significant research over the last few decades. Lean premixed combustion is 
particularly susceptible to combustion instabilities, which are pressure and heat release oscillations orig-

inating from the coupling between the combustor acoustics, fluid dynamics and combustion. When in 
phase, these sources cause a feedback loop to occur which ultimately increases the amplitude of pressure 

oscillations in the combustor. At very high amplitudes they can destabilize the flame and significantly 
increase the loads on the combustor. Considering the adverse circumstances, it is paramount that the 
onset of these unstable modes be estimated accurately and in good time.  

Reliable monitoring of combustion instabilities in real time has been sought after and has been re-
searched significantly. Possibly the simplest output only identification would be observing the envelope 

of the signal generated from the combustor. Since then, methods have been proposed to infer holistic 
information about the dynamic behaviour of the engine. Lieuwen [1] proposed a method to extract damp-
ing rates of certain dominant modes as a parameter to monitor instabilities. The damping rates were 

extracted from the auto-correlation of the incoming signal. The same method was extended to monitor 
multiple modes by applying it in the frequency domain. [2] Subsequently, many other identification 

methods were proposed, such as the Hurst exponent and recurrence plots [3,4]. Recently some methods 
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were proposed which used the signal’s noise induced dynamics. The underlying turbulent combustion 
noise contain a wealth of information about the driving mechanisms which can trigger thermoacoustic 
instabilities [5,6]. Much work is being done on output only identification methods since it could be used 

directly on practical systems.  
In this paper, the autoregressive model is used to parametrize the output only data and useful infor-

mation is inferred from the system dynamics. Autoregressive modelling approach has been used spar-
ingly in some previous work. A variant of the AR model (Box-Jenkins) has been used to identify noise 
spectrum to model the flame transfer function (FTF) [7]. It has been used as a reduced order modelling 

approach to define combustion noise and thereby identifying the dominant source of instability in a sys-
tem [8].  

In this paper, the AR model is used to reduce the noise induced data to a set of coefficients in order to 
apply it in a real time identification method whereby the power spectral density and damping rates of a 
system are identified promptly.  

 

2. Description of the autoregressive model 

In this paper, statistical tools are used to define a low order model of the output data through a set of 
coefficients. These coefficients in its collective should represent the dynamical process in question. In 

the case of combustion instabilities, the pressure oscillations in a turbulent combustor are reduced to a 
low order coefficients space which will define the underlying dynamics. In this paper, the data represent-

ing combustion instabilities are modelled by a system of harmonic oscillators excited by stochastic white 
noise and correlated coloured noise.  

The coefficients ultimately defining the data is modelled by an autoregressive (AR) model. An AR 

model is a linear system identification technique where the current data value is modelled entirely on its 
preceding values in time. 

𝑋𝑡 = ∑ 𝜙𝑖𝑋𝑡−𝑖 + 𝜖𝑡

𝑝

𝑖=1

 

 
The above is a representation of an autoregressive process. 𝑋𝑡 is the current data value, 𝜙𝑖 are the AR 

coefficients, subscript 𝑖 is the lags or predecessors from the current data point and 𝜖𝑡 is a white noise or 

residual error with zero mean and unit variance. The summation extends to an order p, which defines the 
number of lags/ predecessors to be considered while fitting the data with AR coefficients.            

Estimating the coefficients 𝜙𝑖 can be done using a few methods such as, Maximum likelihood esti-

mation, Yule walker method (auto-correlation based least square solver) and Burg’s method (Maximum 

entropy estimation method) [9]. In this paper, the Yule Walker method of estimation is employed for it’s 
ease and relative computational ease.  

     

2.1 Yule Walker method of parametric estimation 

 

The Yule Walker method uses the autocorrelation of noise induced data to compute the AR coeffi-
cients. It tries to fit an AR model to the input data by minimizing the forward prediction error, thus 

leading to a set of equations expressing their autocorrelation at preceding lags in time. During an insta-
bility, the combustor experiences resonant pressure fluctuations at a modal frequency which will exhibit 
high correlation with its predecessors when compared to non-excited data.  

 

(1) 
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By estimating the auto-correlation (𝛾) for p lags, the AR coefficients 𝜙𝑝 can be estimated by simple 

matrix inversion. The number of lags p define the nature of the estimation and it’s to be chosen with 

caution.  
 
Ultimately, modal frequencies of the dynamical system are to be estimated for the data through the 

AR coefficients. The estimated coefficients are constructed into a system matrix which is Toeplitz with 
the first row being AR coefficients. The construction of the state matrix is explained in detail in [10].   

 
 

  

 

   

 
Autoregressive model is an all-pole model whose roots are the eigen frequencies of the state matrix 

developed. Therefore, an eigen decomposition of the state matrix 𝐴𝑠𝑡𝑎𝑡𝑒  gives the modal frequencies of 

the noise induced data. It is now directly possible to extract the damping ratio of these estimated 

modes. Notably, the number of coefficients directly correlate the number of eigen modes estimated. 
Frequency response of the data can also be directly estimated by using the AR parameters. Z-trans-

form of the autoregressive model (eq. (1)) gives,  

𝑋(𝑧)(1 + ∑(𝜙𝑘𝑧−𝑘

𝑝

𝑘=1

) = 𝜖𝑧 

 
Taking 𝑧 = exp(𝑖𝜔𝑇), where 𝜔 is the frequency and  𝑇 is the sampling time period, we can estimate 

the frequency response,  

 

𝑃(𝜔) =
𝜎𝜖

2

|1 − ∑ 𝜙𝑘 exp(−𝑖𝑘𝜔𝑇)𝑝

𝑘=1
|

2
 

 
Where P (𝜔) is the total power of the frequency spectrum. The formulation in turn is the representa-

tion of an infinite impulse response digital filter. Hence, by computing the AR parameters through Yule 
Walker method, it is directly possible to find the eigen frequency, its corresponding damping coeffi-

cient and the integrated spectral power. The damping coefficients corresponding to the eigen frequen-
cies of the excited mode was identified by picking the peak from the estimated power spectrum.  
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2.2 Generating surrogate data 

In order to model pressure fluctuations from a combustor, a harmonic oscillator model is used to 
generate surrogate data. The harmonic oscillator is excited by white noise initially and then the cases 

with coloured noise are considered.    
 

 
 
 

 The above harmonic oscillator model is solved for the displacement for a defined exciting frequency 

𝜔 and a damping coefficient 𝜒. To generate the necessary data, three harmonic oscillators superimposed 

with three unique eigen frequencies and damping coefficients were excited by white noise. For represen-
tation, a system with three frequencies 100Hz, 250Hz and 450Hz were excited uniformly with the same 
stochastic input and the modes were damped by 2.5% which produces the spectrum as seen in Fig (1). 

Throughout, a range of different damping coefficients and noise characteristics were chosen and will be 
discussed in upcoming sections. To generate the data, a sampling frequency of 10kHz was considered 

and the time series is generated up to 6s. For the frequencies, a sampling rate of 10kHz was chosen to 
minimize numerical errors in data generation. During an instability, the unstable modes approach zero 
damping and hence we limited the range of damping from 0 to 10%, beyond which the mode may be too 

damped for a high amplitude instability to sustain.  
 

  

Figure 1: Frequency response of the generated surrogate data (in the subplot) with three unique eigen frequencies 
100Hz, 250Hz and 450Hz, with 2.5% damping uniformly. 

3. Results and discussion 

The Yule Walker method is applied to the generated surrogate data and its estimation behaviour is 
discussed in this section. A comparison of the model generated spectrum and the FFT spectrum shows 

good agreement as shown in Fig 2. A model order with 64 coefficients with long time series is chosen to 
show the effectiveness of the model.  Throughout the paper, the estimated spectrum is an average over 

10 windows with each having 0.6s of data.  
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Figure 2: Estimated PSD with AR method (64 coefficients) and the FFT.    

As expressed earlier, the estimation depends heavily on the model order. Fewer coefficients will mean 
the dynamics of the model is not captured at all and a model with relatively large coefficients will over-
estimate the behaviour. The effects are captured well in Fig.3, where order 32 severely underpredicts the 

dynamics and order 100 overestimates by exciting random peaks which might get falsely identified. The 
optimal model order can be estimated by using the Akaike information criterion [11].  

 

Figure 3: AR estimation of spectrum with 32,64 and 100 coefficients.  

 
With closer observation in the model estimation, the critical step is the calculation of autocorrelation 

(𝛾). Longer autocorrelation will ensure the most important features of the timeseries are captured well. 

In order to ensure this, the autocorrelation lags are extended to capture the features of the lowest fre-

quency of interest. By extending the autocorrelation however, the corresponding number of coefficients 
exceed and cause overfitting. An understanding of the region of interest enables sampling the autocorre-
lation at the required sampling rate. Sampling frequency can be twice the maximum frequency of interest 

to maintain Nyquist criterion. As a standard, throughout this paper, every fifth lag in autocorrelation is  
sampled (as shown in Fig.4) limiting the range of interest to 1kHz. This sampling technique enables the 

capture of information from the autocorrelation and reduces the number of coefficients required to define 
the system. Henceforth, the number of coefficients is the actual order by number of points skipped (in 
this paper,5).   

(d
B

/H
z)

 
P

SD
 (

d
B

/H
z)

 
PS

D
 (

dB
/H

z)
 



 

 

ICSV27, Annual Congress of International Institute of Acoustics and Vibration (IIAV), 11-16 July 2021 
 

 

Figure 4: Autocorrelation for 100 lags (0.01s) depicting the down-sampled points chosen.  

 

For a range of damping coefficients (upto 𝜒=10%) and number of coefficients (no.of lags/5), the data 

was processed again using Yule Walker method. It can be seen even for high lag, there are no artefacts 
visible providing a very good estimate of the spectrum. (seen in Fig:5) The estimation of damping was 

averaged over 5 iterations to verify its reliability. It can be clearly seen that for ten coefficients, the 
estimation of the spectrum and damping are inaccurate. This implies the autocorrelation is insufficiently 

extended, since it only captures half (0.005s) the cycle of the lowest eigen frequency (100Hz). With 20 
coefficients, the model captures at least one oscillation at 100Hz and captures enough to model it. With 
more coefficients, the damping estimates get significantly better, especially when the damping of the 

system approaches 0. This is promising since in real time, a system approaching an instability can be 
immediately identified from its damping rates reliably.  

  

Figure 5: (Left) AR estimation of the spectrum with the down-sampled number of coefficients 10,20,40 and 60. 

(Right) The damping estimation error ( 𝒂𝒃𝒔 (
𝝌𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆−𝝌𝒊𝒏𝒑𝒖𝒕

𝝌𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆
) ∗ 𝟏𝟎𝟎) of an eigen mode for a range of damping 

coefficients.    

 
With as few as 20 coefficients, the dynamics of a system could be identified well, but amongst them 

the model with 40 coefficients was the most accurate identification. The system until now is excited by 

white noise but most combustors during operation don’t have white noise excitation. Combustor noise 
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generated by turbulence generally has non-white spectrum. A coloured noise model is applied to the 
oscillator assembly and its response is shown in Fig.6. 

 

Figure 6: (Left) AR estimation of the spectrum of the signal excited by coloured noise with 10% damped oscilla-
tor data (Transparent line-FFT generated spectrum; Solid Line-Estimated model) and (right) its damping estima-

tion error with 40 coefficients  

 

     The bias in the stochastic forcing is generated using inverse frequency coloured noise depicting pink 
(𝑓−1) and brown noise (𝑓−2), where the power spectrum is constantly decreasing. The FFT spectrum 

generated as seen in Fig 6 (transparent line) shows how the spectrum power decreases. The Yule Walker 
method efficiently captures the power spectrum (solid line) quite efficiently. Decreasing power spectrum 

is much more representative of turbulent forcing in a gas turbine combustion system. The damping co-
efficient estimates at low system damping was reliable and bodes well for an identification model.  

     Identification of an oscillator system with coloured noise excitation with as few as 40 coefficients is 
promising.  
 

4. Conclusion 

    In this paper, a method to identify the system parameters of a linear time invariant (LTI) system which 
represents combustion instability. The data was generated from a series of harmonic oscillators individ-
ually damped and excited by either broadband white noise or coloured noise. An autoregressive model 

was attempted to fit the data and reduce it to a set of coefficients. Amongst the different estimation 
models, the Yule Walker method was chosen, which regresses on the autocorrelation of the data. The  

Yule Walker equations were developed to directly infer eigen frequencies, damping and the power spec-
tral density. Comparing with Fourier transform, the Yule Walker method successfully fit the estimation 
model, accurately identifying the excited frequencies. It was observed that the number of model coeffi-

cients influenced the identification significantly and the right order must be chosen for the best fit, as in 
any other estimation model. To maximize the information collected and to preserve this in a condensed 

set, the autocorrelation of the signal was extended to acquire characteristics of the lowest eigen frequency 
and sampled at least twice the largest frequency of interest and these are considered for making the Yule 
Walker model estimates. This implies, fewer coefficients are required to define this system and the down-

sampling also meant the model could be flexibly used to define the limits of the identification. 
    The results reflect the fact that few coefficients are sufficient to define the system dynamics by reliably 

predicting the power spectral density and the system damping. This method could be used to track the 
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damping coefficient of multiple eigen modes. The model’s precision also improves as the system ap-
proaches an instability which bodes well.  
    In reality, however the combustion process is not excited by broadband white noise. This is because 

turbulence in general is random and stochastic which cannot be generalized as white noise. A coloured 
noise model is used as the stochastic forcing of the oscillator system and the Yule walker estimation 

predicts the system dynamics reliably, where the estimation error of damping when approaching an in-
stability is <5%.  
    Autoregressive method for parametric estimation reduces the system to a concise set of coefficients 

which define the system dynamics. This set of parameters become easier to store in memory and use for 
long term system monitoring. This could be also be used as an early warning system identification if the 

model overcomes the constraints in real time processing systems.  
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