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Abstract

The acoustic behavior of individual slits within microslit absorbers (MSAs) is investigated

to explore the influence of porosity, edge geometry, slit position and plate thickness. MSAs

are plates with arrays of slit-shaped perforations, with the height of the order of the acoustic

viscous boundary layer thickness, for optimized viscous dissipation. Due to hydrodynamic

interaction, each slit behaves as confined in a rectangular channel. The flow within the slit

is assumed to be incompressible. The viscous dissipation and the inertia are quantified by

the resistive and the inertial end-corrections. These are estimated by using analytical results

and numerical solutions of the Linearized Navier-Stokes equations. Expressions for the end-

corrections are provided as functions of the ratio of the slit height to viscous boundary layer

thickness (Shear number) and of the porosity. The inertial end-correction is sensitive to the

far-field behavior of the flow and for low porosities strongly depends on the porosity, unlike

for circular perforations. The resistive end-correction is dominated by the edge geometry of

the perforation. The relative position of the slit with respect to the wall of the channel is

important for distances to the wall of the order of the slit height. The plate thickness does

not have a significant effect on the end-corrections.
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I. INTRODUCTION

Microslit absorbers and plates (MSAs, MSPs) have been proposed by Maa1 as sound1

absorbers at low frequencies, providing light-weight and compact solutions to substitute2

conventional materials, such as absorptive foams and porous structures. In simple MSAs3

the plate, consisting of an array of slit-like perforations, is mounted with a shallow or sub-4

partitioned backing cavity. Alternative designs of MSAs have been recently reported in5

the literature2, 3, 4, 5. MSAs have several advantages with respect to micro-perforated plates6

(MPPs) with circular perforations. Using slits one can easily obtain a relatively large poros-7

ity, resulting in a higher Helmholtz resonance frequency, when needed. For equal porosity, a8

single slit replaces a large number of circular perforations. Furthermore, a slit can be used to9

delimit flexible structures whose vibration can contribute to the sound absorption4, 5. Com-10

pared to the literature for circular perforations, fewer publications investigate the acoustic11

properties of slit-like perforations. Maa1 states that no theory is available to predict inertial12

end-correction. The same viscous dissipation as for circular perforations is assumed. In the13

work of Maa1, radiation to free space is assumed for each slit. The inertial end-correction14

model fails. This failure is solved when taking the confinement into account which is a conse-15

quence of the hydrodynamic interaction between slits. Ingard6 obtained a solution for high16

Shear numbers, assuming a uniform flow in the slit and matching the resulting rigid piston17

oscillation model to a modal expansion of the flow in the confinement channel. Correct ex-18
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pressions for the inertial end-corrections, without typos, are presented by Jaouen et al.7. The19

same model is used by Vigran9. Another model, based on a locally incompressible potential20

flow with a thin boundary layer, is proposed by Morse and Ingard8, for an abrupt transition21

with sharp square edges. This model yields both inertial and resistive end-corrections in the22

limit of high Shear numbers. For a slit in an infinitely thin plate, the same approach does23

predict an inertial end-correction. However, the singularity of the potential flow at the edge24

of an infinitely thin plate results in a divergence of the resistive end-correction. Morse and25

Ingard8 propose to introduce a finite plate thickness to avoid this problem. The divergence26

of the resistive end-correction due to the singularity, at the edge of an infinitely thin plate,27

suggests that the viscous dissipation is a local effect, strongly influenced by the edge geome-28

try. Recent studies on circular perforations by Temiz et al.13 and by Billard et al.10 confirm29

the importance of edges on the viscous dissipation. One concludes that there is a lack of a30

complete model to describe the acoustic behavior of slits. For instance, both Ruiz et al.11
31

and Cobo et al.12 state that all the models proposed in literature do not fit experimental32

absorption curves of MSPs. Therefore, the goal of the present work is to complement the33

theoretical knowledge concerning the acoustical properties of microslits. In particular two34

effects appear to be ignored in the literature for slits: the influence of the position of the slit35

within the confinement channel and the influence of the edge shape. For a circular perfora-36

tion, Temiz et al.13 observed that chamfering the edges reduces the effective plate thickness37
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teff by a length of the order of the total length of the chamfers. A non-symmetric position of38

the slit within the confinement channel can be found when the periodicity of the array is not39

perfect or in the case of a sub-partitioned back cavity. In the present work, a combination40

of analytical models and numerical solutions of the incompressible Linearized-Navier Stokes41

equations is proposed. In Sec. II, two-dimensional analytical models are developed. In42

Sec. III, the numerical models and solutions of the incompressible Linearized Navier-Stokes43

equations (LNSE) using Comsol14 v5.5 are described. In Sec. IV, analytical and numerical44

results are compared. Findings are summarized in Sec. V.45

II. THEORY46

A. Definition of the problem47

Microslit plates (MSPs) are plates with arrays of slit-like perforations with height b48

in the sub-millimeter range and width w >> b. The plate thickness tp is of the order of49

magnitude of the slit height. The acoustic properties of MSPs are defined by the porosity50

Φ = b/a, with a the distance between neighboring slits. The hydrodynamical interaction51

between neighboring slits in the array can be described by considering a single slit of height52

b, confined within a channel of height a of rectangular cross-section aw given by the distance53

a between neighboring slits and the lateral width w of the slit. At the open front side of the54

MSA, the confinement channel represents the hydrodynamic interaction between neighboring55
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slits. The confinement channel on the cavity side is resulting from physical walls in the case56

of a sub-partitioned cavity or is due to hydro-dynamical interactions. As illustrated in Fig.

Figure 1: On the left, frontal view of the microslit plate with slit width w. In the middle,

lateral view of the microslit plate of thickness tp with back cavity. On the right, a single

slit of height b with confinement channel of height a due to hydrodynamic interactions.

57

1, for a periodic array of slits, the confinement channel is placed symmetrically with respect58

to the slit. Assuming a long slit (w >> b) implies that one can consider a two-dimensional59

(2D) acoustical flow through the slit. As the slit forms the neck of a Helmholtz resonator with60

a portion of the back cavity as volume, the flow within the slit can be considered as locally61

incompressible up to the first resonance frequency of the resonator, ωH = c
√

Φ/(dcteff ),62

with c the speed of sound, dc the back cavity depth and teff the effective neck length. In the63

audio range, the square of the Helmholtz number is small,i.e. He2 =
(
ωb
c

)2
< 10−1. Thermal64

effects in the slit are neglected. In the configuration in Fig. 1, thermal effects appear on the65
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solid back wall and the front and back sides of the plate. In the confinement channel, the66

viscous and thermal effects are of the same order of magnitude. The viscous dissipation per67

unit surface in the perforation increases quadratically with the inverse of the porosity because68

the velocity increases as the inverse of the porosity and the dissipation is quadratic in the69

velocity. The temperature fluctuations and thermal dissipation in the perforations are (per70

unit surface) of the same order of magnitude as that in the confinement channel. Therefore71

viscous dissipation is in the perforation a factor (1/Φ)2 larger than thermal dissipation.72

Thermal effects within the perforations are negligible compared to those on the back wall and73

on the surface of the plate, because of the small porosity10. The thermal dissipation on the74

back wall and on the two sides of the perforated plate appears to be negligible compared to the75

viscous dissipation in the pore (for sufficiently small porosities) as demonstrated by Billard et76

al.10. The thermal boundary layer is described by the classical high Shear number model of77

Landau and Lifchitz15. The discussion is limited to the normal incidence of acoustic waves.78

One can describe the transition between the slit and the confinement channel by assuming79

over the plate thickness tp an ideal 2D parallel flow for a long slit of height b extended80

over a so-called end-correction length. The extrapolation of the linear dependency of the81

acoustic pressure as a function of the distance from the slit opening in both the slit and the82

confinement channel is used to define the end-corrections. There is a resistive end-correction83

δres and an inertial end-correction δin corresponding to the pressure components Re[p̂] and84
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Im[p̂], respectively in phase with the volume flow oscillation Ûexp(iωt) and in phase with85

the time derivative of the volume flow oscillation. The inertial end-correction determines the86

Helmholtz resonance frequency, as shown in Zielinski et al.5. Assuming the same geometry87

on the front and backside of the plate, the effective neck length of the perforation is given by88

teff = tp + 2δin. The resistive end-correction takes into account the viscous dissipation and89

influences the quality factor of the Helmholtz resonance. To optimize viscous dissipation, the90

slit height is chosen to be of the order of magnitude of the acoustical viscous boundary layer91

thickness δv =
√

2ν/ω, where ν is the kinematic viscosity of air and ω = 2πf , with f the92

frequency. Hence, for typical applications, the Shear number Shb = b/δv is of order unity.93

The range 0.05 < Shb < 20 is considered. As the plate thickness and end-corrections in94

MSPs are both typically of the order of the slit height, it is important to obtain an accurate95

prediction of end-corrections to design the absorbers.96

B. Parallel flow97

An analytical model for the flow in a long slit of height b is used as a reference to98

define the end-corrections and to define low and high Shear number limits. It is also used to99

assess the accuracy of the numerical solution of the incompressible Linearized Navier-Stokes100

equations. At low Helmholtz numbers (He2 = (ωb/c)2 << 1), in absence of main flow, the101

acoustic field is considered as incompressible and is described by the equation of continuity102

∇ · ~v = 0 (1)
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and the linearized equation of motion103

ρ
∂~v

∂t
= −∇p+ η∇2~v, (2)

where ~v is the velocity, p is the pressure fluctuation, ρ density of the air assumed to be104

uniform and constant and η is the dynamic viscosity. In a long thin slit of height b, width105

w >> b and length tp >> b, for 0 < x < tp and −b/2 < y < b/2, the flow can be106

approximated by a 2D parallel flow ~v = (u(y, t), 0, 0). The continuity equation (Eq. 1)107

implies, in a two-dimensional parallel flow, that ∂u
∂x

= 0. Hence, the derivative with respect108

to x of the x−component of the equation of motion (Eq. 2) implies that ∂2p
∂x2

= 0, i.e. the109

pressure is given by a linear function of the x−coordinate. The y− and z−components of110

the equation of motion reduce to ∂p
∂y

= ∂p
∂z

= 0. This results in a uniform pressure in a cross-111

section of the slit. Consequently one has that ∂p
∂x

= ∆p/tp with ∆p = p(tp, t)− p(0, t). For a112

harmonic oscillation ∆p = ∆p̂eiωt the flow profile satisfying the no-slip boundary condition113

(u, v) = (0, 0) on the slit walls y = ±b/2 is114

u(x, t) = ûeiωt = − i

ρω

∆p̂

tp

1−
cosh

(
(1+i)
δv

y
)

cosh
(

(1+i)
2δv

b
)
 eiωt. (3)

The cross-sectional averaged amplitude of the velocity < û > is

< û >=
1

b

∫ b/2

−b/2
ûdy = − i

ρω

∆p̂

tp

·
[
1− 2

(1 + i)Shb
tanh

(
(1 + i)

2
Shb

)]
eiωt, (4)
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with Shb = b/δv, the Shear number. The slit impedance Zb is defined as by Morse and115

Ingard8:116

Zb =
∆p̂

wb < û >
. (5)

At low Shear numbers Shb < 1, one can use the approximation117

Zb ≈
12ηtp
(wb)b2

+ i
6

5

ρωtp
(wb)

. (6)

One recognizes in the real part of Zb the resistance corresponding to a parabolic flow (quasi-118

steady Poiseuille flow approximation). At high Shear numbers Shb >> 1, one has119

Zb ≈
ρωtp

(wb)Shb
+ i

ρωtp
(wb)

(
1 +

1

Shb

)
. (7)

The first part of the imaginary part corresponds to the inertia of a uniform flow, which is120

a factor 6/5 lower than that of a parabolic flow (see Eq. 6). The time-averaged viscous121

dissipation P̄W in the slit is given by Morse and Ingard8:122

P̄W =
1

2
Re[Zb]| < û > |2(wb)2. (8)

For Shb >> 1 using Eq. 7 one has123

P̄W =
1

2
ρωδv| < û > |2wtp. (9)

This thin boundary layer approximation is used in Sec. II E for channels with non-uniform124

height. In this limit, the flow in the boundary layer is quasi-parallel along the wall. Therefore,125

8
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one can use the dissipation per unit surface found in Eq. 9 when replacing | < û > | by126

the amplitude of the tangential velocity |ûtan| prevailing just outside the viscous boundary127

layer. Integration over the surface yields the total dissipation. This tangential velocity128

corresponds to that of a frictionless potential flow. This will be referred as the high Shear129

number limit or the thin boundary layer limit. Alternative derivations of this thin boundary130

layer equation are provided in literature8, 17, 16, 18. As explained by Morse and Ingard8, this131

approximation fails for infinitely thin orifice plates. While Morse and Ingard8 suggest that132

the approximation is valid for sharp square edges, the numerical integration of the Linearized133

Navier-Stokes equations will allow to verify this assumption.134

C. Impedance and end-corrections135

In this subsection a formal definition of impedance and end-corrections is provided.136

Consider the transition from a slit of height b to a channel of height a > b. In an ideal137

(reference) configuration the transition from the slit to the channel is abrupt: the flow can138

be described as a piece-wise parallel flow. In the actual flow, the transition from the slit to the139

channel is smooth. Far from the transition one can observe a linear change in the amplitude140

of the pressure as a function of the distance from the slit opening. This corresponds to a141

parallel flow in a slit of height b and in a confinement channel of height a. This far field142

can be extrapolated at each side of the transition towards the plate surface at x = 0 (slit143

opening). The complex pressure amplitude difference ∆p̂t obtained across the transition144

9
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by this extrapolation divided by volume flux amplitude Û =< û > bw is defined as the145

transition impedance Zt. The inertial end-correction δin and the resistive end-correction δres146

are defined by:147

δin =
Im [Zt]

Im
[
dZb

dtp

] , (10)

148

δres =
Re [Zt]

Re
[
dZb

dtp

] . (11)

The value of Zb is calculated by combining Eq. 4 and Eq. 5. The resistive end-correction149

δres is in principle different from the inertial end-correction δin. In this work, the inertial150

and resistance end-correction of Morse and Ingard8 will be used as reference. One has151

Im[Zt,ref ] =
ρω

πw

[
(1− Φ)2

2Φ
ln

(1 + Φ)

(1− Φ)
+ ln

(1 + Φ)2

4Φ

]
, (12)

152

Re[Zt,ref ] =
ρω

2aShbw
(1− Φ)

[
1 +

(1− Φ2)

πΦ
ln

(1 + Φ)

(1− Φ)

]
. (13)

The reference end-corrections, δin,ref and δres,ref , can be calculated by replacing Im[Zt,ref ]153

and Re[Zt,ref ] in Eq.10 and Eq.11. For low porosity, the inertial end-corrections becomes154

δin,limit/b = (1−ln (4Φ))/π. The inertial end-correction becomes infinitely large for vanishing155

porosity. This divergence can be avoided when taking into account the influence of the flow156

compressibility19. The resistive end-correction increases with decreasing porosity but reaches157

an asymptote δres,limit/b = (π+2)/(2π) for Φ→ 0. In Fig. 2 values of the inertial and resistive158

end-corrections obtained from the literature for perforations with sharp edges are shown as159

10
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function of the inverse of the porosity 1/Φ = a/b. Results for circular perforations are also160

displayed. A critical discussion of these data is provided by Kergomand and Garcia20.161

Figure 2: (Color online) Comparison of end-corrections for sharp-edged slit (Lref = b)

and circular perforation (Lref = dp) from the literature. Inertial end-corrections δin for

slits (MSPs): high Shb number limit for a slit in an infinitely thin plate8, Modal

expansion of Ingard6, Thin boundary layer for square edged transition in channel8.

Resistive end-correction δres for square edged transition in channel8. Inertial end-

correction for circular perforations from Fok21. Resistive end-correction for circular perfo-

rations: � from Temiz et al.13 and �4 from Naderyan et al.22.

The reference length Lref , in Fig. 2 refers either to the height b for slits or to the162

perforation diameter dp. It can be noted that the various results at high Shb numbers163

for the inertial end-corrections for slits, including the value for an infinitely thin plate, are164

in close agreement. This indicates that at high Shear numbers the plate thickness has a165

minor effect on the inertial end-correction. For a circular perforation, the finite limit value23
166

11
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δin,Φ→0 = 0.41dp is found. For circular perforation, resistive and inertial end-corrections are167

of the same order of magnitude. It should be noted that for relevant porosities all end-168

corrections are of the order of Lref (either b or dp). For a given plate impedance, the normal169

incidence absorption of a microslit plate backed by a cavity with depth d can be calculated170

as shown, for example, in Zielinski et al.5.171

D. Modal expansion172

In this subsection, the frictionless modal expansion proposed by Ingard6 is used to derive

an expression for the inertial end-correction. Given an arbitrary velocity profile at the end

of the slit, it is possible to derive the inertial end-correction by matching this velocity profile

with an expansion in modes of the confinement channel. Outgoing plane wave and evanescent

transversal modes are considered. Kergomand and Garcia20 discuss the convergence of the

modal expansion. When using the rigid piston approximation in the slit the number of modes

used in the channel should be of the order of the inverse of the porosity18, 1/Φ = a/b. An

expression of the inertial end-correction for low the Shb number is obtained by assuming a

parabolic flow (see Sec. IIB) at the end of the slit. This is used as input for the frictionless

modal expansion of the acoustic pressure in the channel. One finds:

δin =
5

6

∞∑
n=1

3

2nπ

( a

nπb

)3
{

4 cos2 (nπ)

·
[
cos

(
nπb

a

)
− a

bnπ
sin

(
nπb

a

)]
sin

(
nπb

a

)}
. (14)
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A number of modes of the order of Nm = 3(a/b) is sufficient to reach a reasonable173

accuracy.174

For the asymmetric case, the influence of the position of the slit with respect to the wall is175

investigated. In Fig. 3, the transition from an asymmetric slit to a channel is displayed.

Figure 3: Geometry of the asymmetric slit of height b = b1 + b2 emerging in a channel of

height a = a1 + a2.

176

The slit height is b = b1 + b2, the channel height is a = a1 + a2. The geometry is chosen177

such that the (a/b) = (a1/b1) = (a2/b2). In the limit case of a slit sharing the flat wall with178

the channel, one has a2 = 0 or a1 = 0. The vertical positions of the slit edges (at x = 0) are179

y1 = a1(1− b/a) and y2 = a−a2(1− b/a). Assuming at the end of the slit a uniform acoustic180

velocity amplitude and expanding the amplitude of the pressure in frictionless modes in the181

channel one finds:182

δin =
∞∑
n=1

2

nπ

{[
sin
(
nπy
a

)]y2
y1

nπb
a

}
. (15)
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In the symmetric case a1 = a2 one finds the result of Ingard6, where n = 2m. The sum183

is limited to even values of n. The influence of the position of the slit on the inertial end-184

correction is discussed in Sec. IV C.185

E. Thin boundary layer approximation186

For the high Shb range, the viscosity effects are concentrated in a thin boundary layer187

at the wall and do not impact the main, potential flow. The incompressible potential flow188

theory combined with the thin boundary layer approximation proposed by Morse and Ingard8
189

can be used. A generalization of this model is presented by Berggren et al.16. In the present190

work, this approximation is used to investigate the end-corrections for smooth edges and191

asymmetric slit sharing the flat wall with the confinement channel. It is also used to explore192

the effect of viscous friction along the confinement channel walls(for the case of a partitioned193

back cavity). The smooth edge geometry is obtained using the conformal transformation194

introduced by Henrici24 (Appendix A for details). An analytical solution is proposed in195

Appendix A for a smooth transition, providing a generalization of the results of Morse and196

Ingard8 for sharp edges (Eq. 12-13).197

In Fig. 4, a 2D slit of height b in x < 0 and a 2D channel of height a > b in x > 0

are shown. The end of the uniform slit (point B in Fig. 4) is at (x, y) = (−d, a − b), with

d being the transition length. The uniform confinement channel begins at x = 0. The duct

can be associated to a region in the complex z−plane by z = x + iy,with i2 = −1 and

14
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to the channel in the physical plane z = x + iy to the ζ−plane. Coordinates of the points:

A(−∞; (a+ b)/2), B(−d; (a− b)/2), C(0, 0), D(∞; 0).

spatial coordinates (x, y). Using conformal mapping, the flow region in the duct can be

mapped into the upper half-plane in the complex ζ−plane. The mapping of the contraction

is a modified Schwarz-Christoffel transformation introduced by Henrici24, 25. The differential

form of Henrici’s transformation is

dz

dζ
= ζ−1

[
α(ζ − 1)1/2 + β(ζ −G2)1/2

]
· (ζ −G2)−1/2, (16)

where α, β and G are parameters of the transformation depending on the slit and channel198

heights and on the transition length d. The parameters α and β are functions of the param-199

eter G obtained numerically as the solution of a non-linear equation. Details are discussed200

in Appendix A. The equation for the sharp square edge transition is recovered for d = 0.201

15
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Using the thin boundary layer approximation one can find the real and imaginary part of the202

impedance of the transition Zt and the corresponding inertial and resistive end-corrections.203

Formulas are provided in Appendix B.204

A similar approach can be followed for a fully asymmetric slit, presented in Fig. 3. When205

a2 = 0, the slit and the confinement channel share the flat wall. One has to add the dissipa-206

tion of the flat wall, shared by the slit and the channel. This will be done by modifying the207

limits of integration when calculating the total dissipation along the walls (Appendix B).208

When the confinement channel walls are representing the influence of hydrodynamic inter-209

action, the flow at the channel walls is frictionless. This can also be taken into account by210

simply modifying the integration limit when integrating to calculate the dissipated power.211

Details are in Appendix B. Parameters such as G are obtained numerically by solving a212

non-linear equation. The analytical solution for sharp edges can be used as an initial guess213

for small values of the transition length d. Then the parameter d can be increased using the214

previous value of G as an initial guess in an iteration process. Given G, in the symmetrical215

case, a fully analytical final solution is obtained. In other cases, a numerical integration216

remains to be carried out.217

III. NUMERICAL MODEL218

A. Uniform channel219

16
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Consider a uniform channel of height b and length tp, with tp >> b. The x-axis goes220

from x = 0 to x = tp. The y-axis extends between the walls at y = ±b/2. As stated in Sec.221

II A , the low He number approximation is made. The incompressible Linear Navier-Stokes222

equations for a 2D domain in a dimensionless form in the frequency domain are hereby223

presented:224

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0, (17)

225

iu∗ = −∂p
∗

∂x∗
+

1

2Sh2
b

(
∂2u∗

∂x∗2
+
∂2u∗

∂y∗2

)
, (18)

226

iv∗ = −∂p
∗

∂y∗
+

1

2Sh2
b

(
∂2v∗

∂x∗2
+
∂2v∗

∂y∗2

)
, (19)

with x∗ = x/b and y∗ = y/b. The dimensionless velocity (u∗, v∗) is (u/bω, v/bω) and the227

dimensionless pressure is p∗ = p/(ρ(bω)2). These equations are implemented in Comsol228

Multiphysics as user defined equations (PDE) and solved. At the inlet (x∗ = 0) and at229

the outlet (x∗ = tp/b) of the domain the uniform pressure values are imposed: respectively,230

p∗inlet = 1 and p∗outlet = 0. At the walls (y∗ = y/b = ±1/2) no-slip boundary conditions,231

(u∗, v∗) = (0, 0) prevail. An unstructured mesh of quadratic triangular elements is used,232

with the finest mesh at the walls. The density of elements at the walls depends on the Shb233

number: the element sizes at the wall are 0.2/Shb or less, in order to accurately capture the234

viscous boundary layer. Several checks are performed to gain insight into the accuracy of the235

numerical simulations. Firstly, the computational domain length tp is increased to exclude236

17
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an influence of the channel length on the transition impedance. It appears that the quantity237

UL = Utp/tref , with U being the flux in a cross-section of the channel and tref = 6 ∗ b,238

is constant within a relative deviation of 10−5 for 0.5 < tp/tref < 2. Secondly, a mesh239

convergence study is performed and shows convergence to computer accuracy (10−13). For240

this study, three additional meshes are used: one coarser and two finer meshes respectively241

with half, two, and four times the basic number of elements at the wall. To compare the242

results, the cross-sectional average velocity < û∗ >=
∫ b∗

0
û∗dy∗ is used. Comsol14 performs243

the integration element-wise using numeric quadrature of the 4th order. The cross-sectional244

average velocity in the channel obtained with the numerical simulations shows a deviation of245

10−4 from the analytical solution for the parallel flow in an infinitely long channel, discussed246

in Sec. II B.247

B. Change in cross-section with sharp square edges248

The set of equations 17-19 is used to study the channel in Fig. 5 presenting at x∗ = 0 a249

sharp square edged transition from a uniform height b∗ to a uniform height a∗ > b∗. The250

channel extends from x∗ = −t∗b to x∗ = t∗a, with t∗a = 6a/b and t∗b = t∗a/2.251

The symmetry of the problem allows limiting the numerical domain to half the channel.252

For the inlet segment AF and outlet segment DE constant pressures are imposed, p∗AF = 1253

and p∗DE = 0. At the segments AB and BC the no-slip boundary conditions are applied. At254

the segment EF (symmetry axis) a slip boundary conditions are implemented: ∂u∗/∂y∗ = 0255
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Figure 5: Geometry of a channel with the sudden transition from the slit of height b to the

channel of height a.

and v∗ = 0. The effect of the boundary condition at the walls is investigated. When con-256

sidering a confinement channel due to hydrodynamic interaction, slip boundary condition is257

used on the segment CD. Far from the transition located at x∗ = 0 the acoustic pressure258

is uniform in the cross-section and the amplitude of the pressure depends linearly on the259

position along the duct (parallel flow behavior). Assuming that for −2a < x∗ < −1a :260

p̂ ∗ (x) = Âx∗+ B̂ and for 3a < x∗ < 5a one has: p̂ ∗ (x) = Ĉx∗+ D̂. The complex constants261

can be determined by a linear fit of the pressure data obtained by numerical simulations for262

these regions far from the discontinuity. The linear fit gives a coefficient of determination26
263

1 − R2 = 10−6. The impedance Zt of the transition is determined by Zt = B̂−D̂
Û∗ with Û∗264

being the flux calculated in a generic section of the slit far from the discontinuity, defined265

as Û∗ = w < û∗ > b. For a height ratio a/b = 10 and Shb = 20, in the proximity of the266

edges the maximum element size is Mel/b = 2× 10−2 and the minimum is mel/b = 7× 10−4.267

The original mesh chosen for the standard calculations has a total of 13324 total elements,268
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of which 804 are edge elements (at the walls). For a porosity Φ = b/a = 1/10 at Shb = 20,269

numerical simulations show that the effect of the boundary condition at the lower wall of270

the channel is negligible. This confirms that the dissipation is mainly concentrated inside271

the slit and around the edges. In the assumption of locally incompressible flow, the volume272

flux along the duct axis is constant. This is verified numerically with a maximum relative273

deviation of 10−4. The coefficients Â and Ĉ of the linear fittings of p̂∗ can be compared to274

the theoretical values of the ∆p̂∗/t∗ for the parallel flow in a long channel, respectively of275

height b and a. The discrepancy is in the order of 10−4. The accuracy in the calculation of276

the volume flux is the limiting factor for the global accuracy of the numerical model.277

278

IV. RESULTS279

A. Symmetrical slit with sharp square edges280

4.1.1 End-corrections at low and high Shb number281

In this subsection, the end-corrections for a sharp square edged transition derived from the282

numerical simulations are compared with the analytical solutions proposed in Sec. II. An283

overview of the behavior of the end-corrections in the range 0.05 < Shb < 20 is shown in284

Fig. 6. In Fig. 6 the behavior of δin/b and δres/b is shown as function of the Shear number285

and for several porosity. The Shear number range is divided into286
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• Low Shb range, Shb < 0.6,287

• High Shb range, 0.6 < Shb < 20.288

The two ranges are discussed separately in the next subsections. For low Shear numbers,289

the inertial end-correction can be calculated using the oscillating parabolic flow approxima-290

tion. For high Shear numbers the modal expansion of Ingard6 and the thin boundary layer291

approximation of Morse and Ingard8 are used. The inertial end-correction calculated by292

means of modal expansion with the parabolic flow approximation is about twice the value293

for uniform flow. In Fig. 7 the comparison between the numerical, the modal expansion, and294

thin boundary layer approximation, are shown as a function of the inverse of the porosity Φ.295

The numerical results are obtained for a Shb = 0.05 and for Shb = 20. At low Shear num-296

bers, the Poiseuille flow approximation is used. At high Shear numbers, the thin boundary297

layer approximation and the plane piston model are compared. It appears that the parabolic298

(Poiseuille) flow approximation captures well the behavior of the inertial end-correction for299

Shb = 0.05, whereas the rigid piston and thin boundary layer models are in good agreement300

with the result for Shb = 20.301

4.1.2 End-corrections at Low Shb number302

For Shb < 0.6, the dimensionless inertial end-correction δin/b and the resistive end-correction

δres/b are functions of the porosity and, to a much lesser degree, of the Shb number. The
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Figure 6: (Color online) Behavior of a) δin/b and b) δres/b from the numerical simulations

as function of the Shb number for several porosities: 1/Φ = 3, 1/Φ = 5, 1/Φ =

10, 1/Φ = 15, 1/Φ = 20, 1/Φ = 30.
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approximation, Uniform flow approximation6. High the Shb number limit8. Stars

refer to the results of numerical calculations for ∗ Shb = 0.05 and ∗ Shb = 20.

dependency of the end-corrections on Shb is therefore neglected for low Shear numbers. The

dependency of δres/b on both porosity and the Shb number is negligible. The following fits

are proposed:

δin,fit
b

= −2.17 + 2.18 ∗
(

1

Φ

)0.13

, (20)

δres,fit
b

= 0.425, (21)

for Shb < 0.6 and 3 < 1/Φ < 30. The coefficient of determination26 1−R2 for δin/b is 0.997.303

The choice of the fit for δres/b results is a maximum underestimation of the actual value304

of 2.5%. The negligible effect of the porosity on δres/b indicates again that the dissipation305

is a local effect at the sharp edges. The comparison of the fits and the numerical data is306

provided27, 28.307
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4.1.3 End-corrections at high Shb number308

In the region 0.6 < Shb < 20 the deviations of δin and δres from the high Shb limits δin,ref309

and δres,ref (described in Sec. IIC and calculated for the same Shear number value as the310

numerical simulation), predicted by Morse and Ingard8, have been obtained (see Appendix311

B). Proposed fits of the numerical results are:312

δin
δin,ref

− 1 =
C1

C2 + Shb
, (22)

313

δres
δres,ref

− 1 =
C3

Shb ∗ (C4 + Shb)
, (23)

314

with Ci = Di,1 +Di,2 · (Φ) . (24)

From Eq. 24 appears that the coefficients Ci are linear functions of the porosity. Table 1315

provides the values of the coefficients Di,j.316

Table 1: Values of the coefficients for the fitting in the range 0.6 < Shb < 20.

C1 C2 C3 C4

First coefficient Di,1 0.52 1.27 5.19 1.69

Second coefficient Di,2 9.34 7.45 28.74 3.97

In Fig. 6a and 6b both the inertial and resistive dimensionless end-corrections show a depen-317

dency on the porosity that becomes less important for decreasing porosity. This behavior is318

more noticeable for δres/δres,ref . In Fig. 8a the linear approximations of the coefficients C1319
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and C2 for the inertial end correction are compared with the actual values. In Fig. 8b the320

results for C3 and C4 for the resistance are presented. The average adjusted coefficients of

(a) (b)

Figure 8: Comparison of the coefficients Ci of the fitting of the inertial and resistive end-

corrections as function of the porosity Φ in the range 0.6 < Shb < 20. In a) C1 and

C2. In b) C3 and C4. In both, asterisks refer to the numerical data and solid lines

are referred to the results of the fitting process.

321

determination26 1 − R2 are 0.987 for the inertial term and 0.998 for the resistive term. It322

appears that both δin/δin,ref and δres/δres,ref are converging to the unit value for high Shb323

numbers. For higher Shb numbers, some additional calculations are carried out for a typical324

porosity 1/Φ = 10. At Shb = 100, one has δin/δin,ref = 1.0116 and δres/δres,ref = 0.9465.325

At Shb = 200, δin/δin,ref = 1.0061 and δres/δres,ref = 0.996. This confirms the validity of326

the thin boundary layer approximation for sharp square edges. The effect of the boundary327

condition (slip or no-slip) on the channel walls is investigated for a typical porosity 1/Φ = 10328

with Shb = 2 and Shb = 20. Numerical simulations for 1/Φ = 10 show that the introduction329
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of a no-slip boundary condition at the walls of the confinement channel has a negligible effect330

on the results. For Shb = 2, one finds a ratio δres,no−slip/δres,slip = 1.032. For Shb = 20,331

δres,no−slip/δres,slip = 1.044. Using the thin boundary layer theory, for high Shb one finds332

δres,no−slip/δres,slip = 1.041, in agreement with numerical results. One expects that this ratio333

increases for increasing porosity. For an extremely large porosity 1/Φ = 3, one finds a ratio334

δres,no−slip/δres,slip = 1.185. One can conclude that the inertial end-correction is determined335

by the porosity. The porosity has a modest effect on the resistive end-correction. The neg-336

ligible effect of the no-slip boundary condition in the channel suggests that, for Φ = 0.1,337

dissipation is mainly concentrated around the edges. The comparison of the fits and the338

numerical data is provided29, 30.339

B. Symmetric slit with smooth edges340

Consider a slit of height b with rounded edges of radius r placed symmetrically with respect341

to a channel of height a. The results of incompressible LNS simulations are compared to342

the high Shear numbers approximation for a smooth transition discussed in Sec. II E with343

the shape determined by the transformation of Henrici24. Experimental and numerical data344

for a circular perforation obtained for a 45◦ chamfered circular perforation by Temiz et al.13
345

are also displayed. The reference length Lref is introduced. For the round edges Lref = r346

is the radius of curvature of the rounded edge. For Henrici’s transformation, Lref = d is347

the transition length. For chamfered, Lref = cch is the chamfer length. It appears that348
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the transition length d well approximates the radius r of an equivalent rounded edge for349

d/b < 1. In Fig. 9, δin,round/δin,sharp and δres,round/δres,sharp are displayed as function of350

Lref/b. Numerical results for a slit with a height ratio of a/b = 10 are shown for: 1)351

rounded edges at several Shb numbers (Shb = 0.2, 2, 20), 2) chamfered edges for cch = 0.5b352

at Shb = 20, 3) Henrici’s geometry for Shb = 20, 200. The analytical potential solution353

for smooth edges is validated by the LNSE numerical simulations for Henrici’s geometry354

at high Shear numbers. In Fig. 9a, for the inertial end-correction the analytical solution355

well approximates the numerical results for a rounded edge. The 2D planar result for the356

45° chamfered edge is relatively far from the analytical and numerical results for a smooth357

transition. In Fig. 9b, for the resistive end-correction the analytical solution provides a good358

approximation for high Shb numbers, both for a round edge and for a chamfered edge. It359

is interesting to note that the resistive end-correction becomes negative for Lref/b of order360

unity. For comparison, the influence of chamfer on circular perforations13 is also displayed361

in Fig. 9. In Fig. 10a and 10b, δin,round/δin,sharp and δres,round/δres,sharp are shown for362

height ratios a/b relevant in MSPs. The inertial end-correction shows a dependency on a/b363

that increases with the increase of the ratio Lref/b. The resistive end-correction shows a364

much more modest dependency on the porosity than the inertial end-correction, as already365

observed for sharp edges. Rounded edges and chamfered edges have a similar effect on366

the end-correction, for a small radius of curvature of the edge compared to the slit height367
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b. The effect of rounded edges on a slit is similar to the effect of a chamfered edge for368

circular perforations. In conclusion, it appears that a fair estimation of the edge geometry is369

necessary to obtain meaningful estimations of the end-correction for both slits and circular370

perforations.371

(a) (b)

Figure 9: (Color online) Comparison of the high Shb number approximation for a smooth

transition with numerical results for several ratios Lref/b for a)δin,round/δin,sharp and

b)δres,round/δres,sharp for several Shb numbers: Slit with smooth transition, ∗ Slit with

rounded edges for Shb = 0.2, + Slit with rounded edges for Shb = 2, × Slit with rounded

edges for Shb = 20, 5 Slit with Henrici’s transition for Shb = 20, 4 Henrici’s transition

for Shb = 200, © Chamfered edge for Shb = 20, Fit of numerical results and � Experi-

mental result for circular perforations of Temiz et al.13.

372

C. Asymmetric slit373
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(a) (b)

Figure 10: (Color online) Behavior of a) δin,round/δin,sharp and b) δres,round/δres,sharp as func-

tion of the edge rounding Lref/b for several 1/Φ = a/b: 1/Φ = 3, 1/Φ = 5,

1/Φ = 10, 1/Φ = 15, 1/Φ = 20, 1/Φ = 30.

In this section results for asymmetric slits are discussed. The position of the slit is374

determined using the distances a1 and a2 defined in Fig. 3. The inertial end-correction is375

calculated for high Shb numbers, using the modal expansion method of Ingard6 presented in376

Sec. II D. In the extreme case that a2 = 0, the high Shb number limit of Morse and Ingard8
377

can be used to calculate both the inertial and the resistive end-corrections.378

In Fig. 11 the ratio of the inertial end-corrections for the asymmetric case (δin,asym)379

and the symmetric case (δin,sym) is displayed as function of a2/a1 for several height ratios380

a/b, with a = a1 + a2. The value of a2/a1 where the effect of the position has a significant381

effect decreases with the increase of a/b. It appears that for a slit positioned at the wall382

(a2 = 0), the inertial end-correction is, as expected, double the value for the symmetric383
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means of modal expansion for an asymmetric slit for several 1/Φ: 1/Φ = 3,

1/Φ = 5, 1/Φ = 10, 1/Φ = 15, 1/Φ = 20, 1/Φ = 30.

(a) (b)

Figure 12: Comparison of the numerical simulations (∗) for Shb = 20 and potential flow

theory ( ) results as function of a/b for a) δin,asym/δin,sym and b)δres,asym/δres,sym.

case, for all the ratios a/b. Numerical calculations are performed for a slit positioned at the384

wall and compared to the analytical results. In Fig. 12, for Shb = 20 the end-corrections385

for an asymmetric slit (a2 = 0) as function of the height ratio a/b are plotted using the386

corresponding values (same Shb number) for a symmetric slit as a reference. The inertial387
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end-correction is double the value for the symmetric slit. The resistive end correction instead388

increases for decreasing porosity Φ = b/a. It approaches the asymptotic value of δres,asym =389

2.3δres,sym. This asymptotic value reduces for increasing Shb approaching the analytical value390

for very high Shear numbers. Considering the common wall as a mirror, the flow corresponds391

to that in a slit with double width 2b placed symmetrically with respect to a channel of width392

2a. This explains the behavior of the inertial end-correction. For the resistive end-correction,393

the dissipation occurs in a small region around the edge. This region can be addressed as394

the dissipation region. When keeping the flow velocity in the slit constant, but doubling395

the slit and channel height, one increases the dissipation region length by a factor 2. The396

resulting resistive end-correction doubles. In practice, the end-correction increase is larger397

(15%) than the factor 2 because one has to account for an additional dissipation along the398

flat wall common to the slit and the channel. The deviation at a/b = 30 for the resistive end-399

correction indicates that the thin boundary layer limit is not yet reached for Shb = 20. This400

was also observed for the symmetrical case. In conclusion, it appears that the influence of401

the position on the end-corrections cannot be neglected for positions of the slit with respect402

to the channel of the order of magnitude of the slit height.403

D. Finite thickness plate with sharp square edges404

In Fig. 13a and 13b the deviations of the inertial and resistive end-correction for a fi-405

nite thickness are compared with the transition between a very long slit and the confinement406
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channel discussed in the previous sections. In the range of interest, the deviation lays within407

10% and 5% accuracy, respectively for the inertial and the resistive end-correction. δres,plate408

shows a negligible dependency on tp/b with respect to the dependency on the Shb number.409

From this study, one can state that for practical purposes the influence of the thickness of410

the plate on the end-corrections can be neglected.411

412

(a) (b)

Figure 13: Deviation of a) (δin,plate and b)(δres,plate from the semi-infinite slit as function of

the ratio t/b for: Shb = 0.2, Shb = 2 and Shb = 20.

V. CONCLUSIONS413

In typical microslit plates (MSPs) the acoustic end-corrections and the plate thickness are414

both of the order of the slit width. Hence an accurate prediction of the end-corrections415

is needed for the design of MSPs. This study combines two-dimensional analytical and416

numerical solutions of the incompressible Linearized Navier-Stokes equations to investigate417
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the acoustic behavior of microslit absorbers (MSAs and MSPs). A single slit of height b418

is studied as confined in a rectangular channel of height a determined by the porosity of419

the plate Φ = b/a. The flow within the slit is assumed to be locally incompressible (low420

He numbers). Thermal effects are neglected. Focus is given to the frequency range of ap-421

plication for MSAs and resonant metamaterials. For sharp edges, numerical simulations422

demonstrate that for low Shb numbers a parabolic flow approximation provides a good ap-423

proximation of the inertial end-correction, whereas the thin boundary layer approximation424

predicts both the end-corrections at high Shb numbers. The inertial end-correction of slits425

is strongly dependent on the porosity, showing a very different behavior compared to that426

of circular perforations. A striking result is that the ratio of the resistive end-correction427

and the slit height is weakly dependent on the porosity, independently of the Shear number.428

This indicates that viscous friction is a local phenomenon occurring near the edges. This is429

confirmed by the negligible influence of the no-slip boundary condition at the walls of the430

confinement channel, for Φ < 0.1. The final prove is gathered in Sec. IV B where the effect431

of the edge geometry is discussed. The analytical model for a smooth transition provides432

a reasonable prediction for rounded and chamfered edges at high Shb numbers. These re-433

sults demonstrate that, without information on the edge shape, an accurate prediction of434

the end-corrections is not possible. In Sec. IV C it is shown that the position of the slit435

becomes an important effect for distance from the wall in the order of the slit height b.436
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For the limit case of a slit sharing the wall with the channel, the inertial and resistive end-437

corrections are both approximately twice the values for a symmetrical slit. In Sec. IV D it is438

shown that, for tp > 0.1b, the effect of the plate thickness on the end-corrections is negligible.439

440
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APPENDIX A: TRANSFORMATION OF HENRICI446

447

In this appendix the high Shb limit theory is described for the smooth and asymmetric448

transitions presented in Sec. II E. The duct can be associated to a region in the complex449

z−plane by z = x+ iy, with i2 = −1 where (x, y) are the coordinates in the physical plane.450

Using conformal mapping, the flow region in the duct in the complex z−plane is mapped451

into the upper half-plane in the complex ζ−plane The transformation of Henrici24 is used452

to derive the results for a smooth transition from a slit of height b to a channel of height a.453

The geometry is presented in Fig. 4. The integral form of the transformation proposed by454

Henrici24 is:455

34



Prep
rin

t
z = α

[
ln

1 + τ

1− τ
− 1

G
ln

(
G+ τ

G− τ

)]
+ βln

[
ζ

G2

]
25, (25)

where τ is:456

τ =

√
ζ −G2

ζ − 1
. (26)

The point far downstream of the transition A((−∞, a) can be mapped into point A’(ζ = 0),457

the start of the transition B(−d, a− b/2) corresponds to B’(ζ = 1), the end of the transition458

C(0, 0) corresponds to C’(ζ = G2). The coefficients are related to parameter G by:459

α =
a− b
π

[
G

G− 1

]
(27)

and460

β =
G b− a
π(G− 1)

. (28)

The parameter G is found by solving the non-linear equation:461

G =
a

b

[
1 +

π d

2 alnG
(G− 1)

]
. (29)

This equation can be solved by successive substitution for πd (2b) < 2 using G0 = a/b462

as initial guess. For πd (2b) > 2 the successive substitutions should be applied to:463

G = exp

[
πd

2b

(
G− 1

G− a
b

)]
, (30)

using G0 = exp
(
πd
2b

)
. For sharp edges d = 0 and G = a/b. For an asymmetric slit positioned464

at the wall it is necessary to identify the point ζ0 on the ζ-axes that corresponds to z0 = ia on465

the flat wall in the z-plane. ζ0 is found by solving numerically the equation z0 = z(ζ0) = ia.466

35



Prep
rin

t

This can be done for any value of the transition length d. Here, only the sharp edge (d = 0)467

is considered for the fully asymmetric slit position (a2 = 0).468

469

APPENDIX B: THIN BOUNDARY LAYER APPROXIMATION470

The thin boundary layer method of Morse and Ingard8 for the transition from a slit of471

height b to a channel a with sharp edges is extended to a smooth transition and to a fully472

asymmetric slit positioned at the wall (a2 = 0). The inertial and resistive end-corrections473

can be found comparing the actual configuration with an ideal configuration. The ideal474

reference flow, used to define the end-corrections, has for x > 0 a uniform velocity ua in475

the channel of height a and for x < 0 a uniform velocity ub = (a/b)ua. The potential flow476

far upstream is obtained by placing a volume source at the origin ζ = 0 (far downstream477

the transition) with potential ϕ = (aua/π) ln(ζ). The local flow velocity is the vector field478

~vwall = (u, v) = ∇ϕ. The linearized form of the frictionless equation of motion is479

−∇p = ρ
∂~v

∂t
. (31)

To compare the actual and the reference configurations two points in the transformed480

ζ−plane are necessary. Choosing ζ1 → ∞ and ζ2 = 0 corresponds to z1 and z2 respectively481

far upstream and far downstream the transition. Integrating Eq. 31 between z1 = (x1; y1)482

and z2 = (x2; y2) with x1 > 0 and x2 < 0, one has for a harmonic oscillating acoustic field:483

iρω(ϕ2 − ϕ1) = p1 − p2, (32)
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with ϕ =
∫
~v · d~z. If the flow velocity would remain uniform (ua, 0) for x > 0 and jump to484

(ub, 0) with ub = uaa/b for x < 0, we would have:485

(ϕ2 − ϕ1)ideal = ua
a

b
x2 − uax1. (33)

The inertia Im[Zt] is given by:486

Im[Zt] =
ρω∆ϕ

awua
, (34)

Where ∆ϕ is defined as the difference (ϕ2 − ϕ1)actual − (ϕ2 − ϕ1)ideal. Choosing real values487

ζ1 and ζ2, so that the values of z1 and z2 are far from the origin of the axis, one has:488

Im[Zt] =
ρω

wb

[
b

π
ln

(
ζ2

ζ1

)
−Re(z2) +

b

a
Re(z1)

]
. (35)

For ζ1 →∞ and ζ2 → 0 in Eq. 25 and Eq. 26 we can expand at the first order τ and obtain

an expression for z1 and z2 to substitute in Eq. 35. One arrives at Eq. 36. For d = 0 this

expression recovers the result of Morse and Ingard8.

Im[Zt] =
ρω

πw

{
(a− b)2

2ab
ln

(
G+ 1

G− 1

)
+

a− b
b(G− 1)

·

[
Gb+ a

2a
ln

(
(1 +G)2

4G2

)]
+ lnG

}
. (36)

Using Eq. 10 one can find the inertial end-correction. The additional dissipation due to the489

transition can be derived integrating along the wall the dissipation per unit surface presented490

in Sec. II B for the actual and the reference configuration. It should be noted that the actual491

configuration and the ideal configuration should be combined to obtain converging integrals.492
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In terms of potential the velocity at the wall is:493

|ûtan|2 =

∣∣∣∣dϕdz
∣∣∣∣2 =

∣∣∣∣dϕdζ
∣∣∣∣2 ∣∣∣∣dζdz

∣∣∣∣2 . (37)

The power dissipated at the junction compared to an ideal configuration is:

P̄W =
1

2δv
ηw

[ ∫ ζ0

ζ2

(∣∣∣∣dϕdζ
∣∣∣∣2 dζdz − u2

a ∗
(a
b

)2

Re

[
dz

dζ

])
dζ

+

∫ ζ1

ζ0

(∣∣∣∣dϕdζ
∣∣∣∣2 dζdz − u2

aRe

[
dz

dζ

])
dζ

]
, (38)

where for a symmetric slit ζ1 → ∞, ζ2 → 0 and ζ0 corresponds to z = 0 and it is found494

from ζ0 = G2. The second integral in Eq. 38 contains the effect of the dissipation in the495

channel. For a slip boundary condition prevailing in a confinement channel resulting from496

hydrodynamic interactions, one can take ζ1 → ζ0 and calculate the dissipation using only497

the first integral. These integrals can be solved by numerical integration with standard498

numerical solvers. The resistance of the discontinuity can be defined as Morse and Ingard8:499

Re[Zt] =
2P̄W

(aw|ua|)2
. (39)

Solving analytically the integrals for the symmetric smooth-edged configuration with friction

at the channel walls leads to an approximated expression for Re[Zt],

Re[Zt] =
ρω

2Shbw

(G− 1)

G(a− b)

{
(G− 1)

[
(G+ 1)

π(G− 1)

(
G2(a− b)2

b2(G+ 1)(G− 1)2
− 1

)

· ln
(
G+ 1

G− 1

)
+ 1

]
− 2DG2

π
ln (G)

}
, (40)

with D = Gb−a
G(a−b) . This formula is valid for Φ > 1/2. For d = 0 one recovers D = 0 and500

G = 1/Φ and one obtains an approximation of the result of Morse and Ingard8, with an error501
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of the order of 10−4 for a porosity Φ = 1/10. This error decreases for decreasing porosities.502

Using Eq. 11 one can find the resistive end-correction.503

For an asymmetric slit, the dissipation of the transition, in this case, is the sum of the504

dissipation of the wall with an edge and the dissipation at the opposite flat wall. The same505

integrals can be solved by changing the integration to ζ1 → ∞, ζ2 → −∞ and ζ0 can506

be found solving numerically the equation z0 = z(ζ0) = ia, using Henrici’s transformation507

formula (Eq. 25).508
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5. Zieliński, T. G., Chevillotte, F., and Deckers, E. (2019). “Sound absorption of plates518

39



Prep
rin

t

with micro-slits backed with air cavities: Analytical estimations, numerical calculations519

and experimental validations,” Applied Acoustics 146, 261–279.520

6. Ingard, U. (1953). “On the theory and design of acoustic resonators,” The Journal of521

the acoustical society of America 25(6), 1037–1061.522

7. Jaouen, L., and Chevillotte, F. (2018). “Length correction of 2d discontinuities or523

perforations at large wavelengths and for linear acoustics,” Acta Acustica united with524

Acustica 104(2), 243–250.525

8. Morse, P. M., and Ingard, K. U. (1986). Theoretical acoustics (Princeton University526

press).527

9. Vigran, T. (2014). “The acoustic properties of panels with rectangular apertures,”528

The Journal of the Acoustical Society of America 135(5), 2777–2784.529

10. Billard, R., Tissot, G., Gabard, G., and Versaevel, M. (2021). “Numerical simulations530

of perforated plate liners: Analysis of the visco-thermal dissipation mechanisms,” The531

Journal of the Acoustical Society of America 149(1), 16–27.532

11. Ruiz, H., Cobo, P., and Jacobsen, F. (2011). “Optimization of multiple-layer microp-533

erforated panels by simulated annealing,” Applied Acoustics 72(10), 772–776.534

40



Prep
rin

t

12. Cobo, P., de la Colina, C., and Simón, F. (2020). “On the modelling of microslit panel535

absorbers,” Applied Acoustics 159, 107118.536

13. Temiz, M. A., Lopez Arteaga, I., Efraimsson, G., Åbom, M., and Hirschberg, A.537
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