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The influence of the edge geometry on the viscous dissipation and inertia in microslit absorbers
(MSAs) is investigated. MSAs are plates with arrays of slit-shaped perforations backed by a shal-
low cavity providing a lightweight solution for acoustic liners. To optimize the viscous dissipation,
the slit height and the plate thickness are chosen to be of the order of the acoustic viscous boundary
layer thickness i.e. in the submillimeter range. Because of the manufacturing process, for these per-
forations, the edge shape is not always sharp. The acoustic behavior is investigated assuming a slit
in a rectangular confinement channel, given by actual walls or by hydrodynamical interactions due to
neighboring slits. The flow within the slit is assumed locally incompressible. Viscous dissipation and
inertia of the slit are described in terms of resistive and inertial end-corrections. A combination of
analytical models and numerical solutions of the incompressible Linearized Navier-Stokes equations
is proposed. The effect of the edge geometry is investigated using potential flow theory combined
with a thin viscous boundary layer approximation. The analytical model successfully predicts the
end-corrections for rounded edges, up to a radius of curvature of the order of the slit height. From this
study it emerges that the inertial end-correction of the slit is a global property sensible to the far-field
behavior of the flow and strongly dependent on the porosity, unlike observed for circular perforations.
On the contrary, the resistive end-correction is a localized phenomenon, weakly dependent on the
porosity and dominated by the edge geometry of the perforation.
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1. Introduction

Microslit absorbers (MSPs) and plates (MSPs) have been proposed as efficient sound absorbers, pro-
viding light-weight and compact solutions for acoustic liners at low frequencies [1]. In simple MSAs the
plate is mounted with a shallow backing cavity or a sub-partitioned backing cavity. Alternative designs
of MSAs have been reported in the literature [2][3][4]. MSPs are plates with arrays of slits with height
in the sub-millimeter range. To optimize viscous dissipation, the slit height is chosen to be of the order
of magnitude of a few times the acoustical viscous boundary layer thickness δv =

√
2ν/ω, where ν is

the kinematic viscosity of air and ω = 2πf , with f the frequency. For perforation in the sub-millimeter
range, the accuracy of the manufacturing process can not be guaranteed. In particular, the sharpness of
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the edge is not always achieved. This problem is common to slits and circular perforations. For a circular
perforation, chamfering the edges reduces the effective plate thickness teff by a length of the order of the
total length of the chamfers [5]. This can be also found in [6]. The purpose of this work is to investigate
the influence of the edge geometry on the acoustic end-corrections of slits in MSAs. The discussion is
limited to the normal incidence of acoustic waves. For a sharp edged slit a model for high Shb numbers,
based on an incompressible potential flow with a thin boundary layer, is proposed by Morse and Ingard
[7]. This model yields both inertial and resistive end-corrections in the limit of high Shear numbers.
For a slit in an infinitely thin plate, the same approach does predict an inertial end-correction. However,
the singularity of the potential flow at the edge of an infinitely thin plate results in a divergence of the
resistive end-correction due to the singularity at the edge [7]. This suggests that the viscous dissipation
is a local effect, strongly influenced by the edge geometry. In Section 2, the assumptions are described
with formal definition of the impedance and of the end-corrections. Furthermore, the thin boundary layer
approximation is used to investigate the end-corrections for smooth edges and for sharp square edges. In
Section 3, analytical results are compared to numerical solution of the linearized Navier-Stokes equations
for smooth and rounded edges.

2. Theory

2.1 Assumptions, impedance and end-corrections

In a microslit plate, the hydrodynamical interaction between the perforations can be described by
considering a single slit of height b in a plate, confined within a channel of rectangular cross-section aw,
with a the distance between neighboring slits and w the lateral length of the slit (see Fig.1). The acoustic
properties of MSPs are defined by the porosity Φ = b/a, with b being the slit height and a the distance
between neighboring slits (confinement channel height). The typical porosity of MSPs is Φ = O(1%).

Figure 1: On the left, frontal view of the microslit plate with slit width w. In the middle, lateral view
of the microslit plate of thickness tp with back cavity. On the right, a single single of height b with
confinement channel of height a due to hydrodynamic interactions.

Assuming a long slit (w >> b) implies that one can consider a two dimensional (2D) acoustical flow
through the slit. In the audio range, the square of the Helmholtz number is small, i.e. He2 =

(
ωb
c

)2
<

10−1, for slit height b of the order of the millimeter and c the speed of sound. Thermal effects in the
slit are neglected [8]. As the slit forms the neck of a Helmholtz resonator with a portion of the back
cavity as volume, the flow within the slit can be considered as locally incompressible up to the first
resonance frequency of the resonator, ωH = c

√
Φ/(dcteff ), with dc the back cavity depth and teff the

plate thickness plus the inertial end-correction. For typical applications of MSAs, the slit height b is of the
order of the viscous boundary layer thickness, i.e. the Shear number Shb = b/δv is of order unity. Given
the transition from a slit of height b to a channel of height a > b, in an ideal (reference) configuration
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this transition is abrupt: the flow can be described as a piece-wise parallel flow. For a long thin slit of
height b, width w >> b and length tp >> b, one can assume a parallel flow in the slit and define the slit
impedance, Zb, as

Zb =
∆p̂

wb < û >
, (1)

where ∆p̂ is the pressure difference between the sides of the slit [1],[8]. In the actual flow, the transition
from the slit to the confinement channel is not abrupt. However, far from the transition one can observe
the linear change in pressure, corresponding to a parallel flow in a slit of height b and in a confinement
channel of height a. This far field can be extrapolated at each side of the transition towards the plate sur-
face at x = 0. The complex difference in pressure ∆p̂t obtained across the transition by this extrapolation
divided by volume flux amplitude Û =< û > bw is defined as the transition impedance Zt. The inertial
end-correction δin and the resistive end-correction δres are defined by

δin =
Im [Zt]

Im
[
dZb

dtp

] , (2)

δres =
Re [Zt]

Re
[
dZb

dtp

] , (3)

where at the denominator one finds the parallel flow impedance per unit length of the slit dZb/dtp. In
principle, the resistive end-correction δres is different from the inertial end-correction but they are both
of the order of magnitude of the slit height.

2.2 Slit with smooth edges

For the high Shb range, the viscosity effects are concentrated in a thin boundary layer at the wall
and do not impact the main, potential flow. An analytical solution is proposed for a smooth transition,
providing a generalization of the results for sharp edges in [7]. In Fig. 2, a 2D slit of height b in x < 0
and a 2D channel of height a > b in x > 0 are shown. The end of the uniform slit (point B in Fig. 2) is

Figure 2: Henrici’s transformation of half the channel expansion with smooth transition in the physical
plane z = x + iy to the ζ−plane. Coordinates of the points: A(−∞; (a + b)/2), B(−d; (a − b)/2),
C(0, 0), D(∞; 0).

at (x, y) = (−d, a − b), with d being the transition length. The uniform confinement channel begins at
x = 0. The duct can be associated to a region in the complex z−plane by z = x + iy, with i2 = −1 and
coordinates (x, y). Using conformal mapping, the flow region in the duct can be mapped into the upper
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half-plane in the complex ζ−plane. The mapping of the contraction is a modified Schwarz-Christoffel
transformation described in [9],[10]. The integral form of the transformation is

z = α

[
ln

1 + τ

1− τ
− 1

G
ln
G+ τ

G− τ

]
+ βln

[
ζ

G2

]
, (4)

where τ is:

τ =

√
ζ −G2

ζ − 1
. (5)

The parameters of the transformation α, β and G depend on the slit and channel heights and on the
transition length d. The point far downstream of the transition A can be mapped into point A’(ζ = 0), the
end of the slit B corresponds to B’(ζ = 1), the end of the transition C(0, 0) corresponds to C’(ζ = G2).
The equation for the sharp square edge transition is recovered for d = 0. The inertial and resistive end-
corrections can be found comparing the actual configuration to an ideal configuration. The ideal reference
flow has for x > 0 a uniform velocity ua in the channel of height a and for x < 0 a uniform velocity
ub = (a/b)ua. The potential flow far upstream is obtained by placing a volume source at the origin ζ = 0
(far downstream the transition) with potential ϕ = (aua/π) ln(ζ). The local flow velocity is the vector
field ~vwall = (u, v) = ∇ϕ. The linearized form of the frictionless equation of motion is

−∇p = ρ0
∂~v

∂t
. (6)

In order to compare the actual and the reference configurations two points in the transformed ζ−plane
are necessary. Choosing ζ1 → ∞ and ζ2 = 0 corresponds to z1 and z2 respectively far upstream and far
downstream the transition. Integrating Eq. 6 between z1 = (x1; y1) and z2 = (x2; y2) with x1 > 0 and
x2 < 0, one has for a harmonic oscillating acoustic field:

iρω(ϕ2 − ϕ1) = p1 − p2, (7)

with ϕ =
∫
~v · d~z. If the flow velocity would remain uniform (ua, 0) for x > 0 and jump to (ub, 0) with

ub = uaa/b for x < 0, we would have:

(ϕ2 − ϕ1)ideal = ua
a

b
x2 − uax1. (8)

The inertial end-correction δin is given by

δin =
uaa

b∆ϕ
, (9)

where ∆ϕ = (ϕ2 − ϕ1)actual − (ϕ2 − ϕ1)ideal. Choosing real values ζ1 and ζ2, so that the values of z1
and z2 are far from the origin of the axis, one has:

δin =
b

π
ln

(
ζ2
ζ1

)
−Re(z2) +

b

a
Re(z1). (10)

For ζ1 → ∞ and ζ2 → 0 in Eqs. 4-5, one can expand τ to the first order and obtain an expression for z1
and z2 to substitute in Eq. 10, leading to

δin =
1

π

{
(a− b)2

2ab
ln

(
1 +G

1−G

)
+

a− b
b(G− 1)

[
Gb+ a

2a
ln

(
(1 +G)2

4G2

)]
+ lnG

}
. (11)
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For d = 0 one recovers the result for sharp edges [7]. In the thin boundary layer approximation the flow
in the boundary layer is quasi-parallel along the wall. The additional dissipation due to the transition
can be derived integrating along the wall the dissipation per unit surface for the actual and the reference
configuration [7]. It should be noted that the actual configuration and the ideal configuration should be
combined to obtain converging integrals. In terms of potential the velocity at the wall is

|ûtan|2 =

∣∣∣∣dϕdz
∣∣∣∣2 =

∣∣∣∣dϕdζ
∣∣∣∣2 ∣∣∣∣dζdz

∣∣∣∣2 . (12)

The power dissipated at the junction compared to an ideal configuration is [7]

2~P =
1

δv
ηw

[∫ ζ0

ζ2

(∣∣∣∣dϕdζ
∣∣∣∣2 dζdz − u2a ∗ (ab)2Re

[
dz

dζ

])
dζ +

∫ ζ1

ζ0

(∣∣∣∣dϕdζ
∣∣∣∣2 dζdz − u2aRe

[
dz

dζ

])
dζ

]
,

(13)
where for a symmetric slit ζ1 → ∞, ζ2 → 0 and ζ0 corresponds to z = 0 and it is found from ζ0 = G2.
It is interesting to note that, in Eq. 13, the first integral contains the effect of the dissipation in the slit
and near the edge, whereas the second integral refers to the walls of the confinement channel. For a slip
boundary condition prevailing in a confinement channel resulting from hydrodynamic interactions, one
can take ζ1 → ζ0 and calculate the dissipation using only the first integral. The resistive end-correction
of the discontinuity can be defined as [7]:

δres =
2~P

(2awua)2
. (14)

Solving the integrals for the smooth-edged configuration with friction at the channel walls leads to

δres =
(G− 1)

2G(a− b)

{
(G− 1)

[
(G+ 1

π(G− 1)

(
(a− b)2

b2(G+ 1)
− 1

)
ln

(
G+ 1

G− 1

)
+ 1

]
− 2DG2

π
ln (G)

}
,

(15)
with D = Gb−a

G(a−b) . Again for d = 0 one recovers the result of [7], with G = a/b and D = 0.

2.3 Slit with sharp square edges

For a slit with sharp edges (d = 0), at low porosity Φ = b/a the inertial end-correction is propor-
tional to ln (1/Φ). Hence, it becomes infinitely large for vanishing porosity. This behaviour is different
from the behaviour of inertia for circular perforations found in [11]. The divergence of the inertial end-
correction for a slit is due to the failure of the incompressible flow approximation at low He number in
2D unconfined flows. Compressibility effects have been discussed in [12]. However, the inertial end-
correction for a slit of height b, for low porosity, will be much larger than for a circular perforation of
diameter b. The resistive end-correction increases with decreasing porosity but reaching an asymptotic
value of the order b for Φ → 0. This behaviour is similar to the resistive end-correction for circular
perforations found in [13]. The effect of the boundary condition (slip or no-slip) on the channel walls
is investigated for a typical porosity 1/Φ = 10 with Shb = 2 and Shb = 20. Numerical simulations
for 1/Φ = 10 show that the introduction of a no-slip boundary condition at the walls of the confine-
ment channel has a negligible effect on the results. Using the thin boundary layer theory, for high Shb
one finds δres,no−slip/δres,slip = 1.041, in agreement with numerical results for Shb = 2 and Shb = 20.
One expects that this ratio increases for increasing porosity. For an extremely large porosity 1/Φ = 3,
one finds a ratio δres,no−slip/δres,slip = 1.185. This study confirms that the viscous dissipation is mainly
concentrated around the edge.
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3. Results

In this section the results of the thin boundary layer approximation for smooth transitions are com-
pared with the results for sharp edges. The reference length Lref is introduced. For Henrici’s trans-
formation, Lref = d is the transition length. For round edges Lref = r, the radius of curvature of
the rounded edge. In Fig. 3, δin,round/δin,sharp calculated using the high Shb number limit, is shown
for height ratios a/b relevant in MSPs. The inertial end-correction shows a strong dependency on the
porosity that increases with the increase of the ratio Lref/b. The resistive end-correction, in Fig. 4 as
δres,round/δres,sharp, shows a much more modest dependency on the porosity. For decreasing porosity the
resistive end-correction becomes independent on the porosity.

Figure 3: Behavior of δin,round/δin,sharp as function of the edge rounding Lref/b.

Figure 4: Behavior of δres,round/δres,sharp as function of the edge rounding Lref/b.

The analytical solution with thin boundary layer for smooth edges is validated by the numerical solutions
of the Linearized Navier-Stokes equations (LNSE) for Henrici’s geometry at high Shb number.
In Fig. 5-6, the end-corrections derived by the analytical model are compared with the numerical results
for smooth edges and round edges at Shb = 20 for 1/Φ = 10. Both for the resistive and the inertial
end-correction, the analytical solution well approximates the numerical results for a rounded edge when
assuming d = r at high Shb numbers. The resistive end-correction for a round edge becomes negative for
Lref/b of order unity. As a result, one can conclude that the inertial end-correction is affected by the edge
geometry but is dominated by the porosity whereas the resistive end-correction strongly depends on the
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Figure 5: Behavior of δin,round/δin,sharp as function of the edge rounding Lref/b for 1/Φ = 10.

Figure 6: Behavior of δres,round/δres,sharp as function of the edge rounding Lref/b for 1/Φ = 10.

geometry of the edge. In conclusion, it appears that a fair estimation of the edge geometry is necessary
to obtain meaningful estimations of the end-correction for slits.

4. Conclusions

This study uses an analytical solution to investigate the influence of the edge geometry on the acoustic
behavior of microslit absorbers (MSAs and MSPs). This solution is assessed by the means of numerical
solution of the Linearized Navier-Stokes equations[8]. The influence of the edge geometry is investigated
by replacing the sharp square edge transition from the slit to the confinement channel by a smooth tran-
sition. For high Shb numbers, potential flow theory is used in combination with a thin viscous boundary
layer approximation. Numerical solutions of the LNSE demonstrate that the analytical model based on
the thin boundary layer approximation predicts rounded edges behavior for r < b. From this study it
emerges that the inertia of the slit is strongly dependent on the porosity. On the contrary, the resistance is
weakly dependent on the porosity, indicating that the viscous friction is a local phenomenon, dominated
by the edge geometry of the perforation. This is confirmed by the negligible influence of the friction at
the walls of the confinement channel, for Φ < 0.1. For sub-millimeter perforations, the manufacturing
process will strongly determine the edge geometry. Without taking this edge geometry into account, it is
meaningless to use end-corrections for the prediction of the acoustic properties of MSAs.
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