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Abstract – The effect of the slit length on the acoustic transfer impedance of micro-slit plates (MSPs) is inves-
tigated in the linear and non-linear regime for a specific slit geometry. This geometry is inspired by slits ob-
tained by cutting and bending the plate. MSPs are plates with arrays of slit-shaped perforations, with the
width of the order of the acoustic viscous boundary layer thickness. Impedance tube measurements on two
accurately manufactured plates are compared to numerical solution of the Linearized Navier-Stokes equations
and to analytical limits. The impedance of the plate is obtained by the impedance of a single slit divided by the
plate porosity. The resistance of a slit is independent on the slit length and on the plate porosity. In the linear
regime the resistance is accurately predicted by a two-dimensional numerical model. In the non-linear regime,
the resistance is strongly dependent on the amplitude of the acoustic waves. The inertance of the slit is weakly
dependent on the slit length and on the plate porosity, for low and moderate amplitudes. For high amplitudes, a
complicated amplitude dependency of the inertia of short slits is found. One expects that most of the conclu-
sions obtained can be generalised to other slit geometries.
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1 Introduction

Micro-slit absorbers and plates (MSAs, MSPs) have
been proposed as sound absorbers at low frequencies, pro-
viding lightweight and compact solutions to substitute con-
ventional materials [1]. MSPs are plates with slit widths in
the sub-millimeter range and low porosity (order of 1%). In
conventional designs, micro-slit plates are backed by a cav-
ity forming micro-slit absorbers (MSAs). One of the advan-
tages of slits with respect to circular perforations is that, for
equal porosity, a single slit replaces a large number of circu-
lar perforations. Furthermore, a slit can be used to delimit
flexible structures whose vibration can contribute to the
sound absorption [2, 3]. However, the manufacturing of slits
is difficult and can be an obstacle in industrial applications.
A possible manufacturing process is to cut the plate, bend-
ing the two portions close to the cut, as displayed in
Figure 1. A slit is created without removing material from
the plate and can lead to new designs. One of the advan-
tages of this geometry is that the edges in contact with
the slits are protected from external agents in harsh envi-
ronments. Another advantage is the possibility to reach
sub-millimeter slit widths. This manufacturing technique

is used to produce �Acustimet plates by Sontech [4, 5]. In
this work, a geometry inspired by the geometry of Figure 1
is studied. Impedance tube measurements are used to inves-
tigate the effect of the slit length in two accurately manu-
factured micro-slit plates. The edges of the slits are kept
as sharp as possible. Both plates have the same porosity
and total slit perforation length. In the linear regime, exper-
imental results are compared to numerical solutions of the
Linearized incompressible Navier-Stokes equations. Micro-
perforated plates (MPPs) and micro-slit plates can be
designed to obtain excellent linear acoustic properties but,
at high amplitudes, the non-linear effects deteriorate the
performance of the absorbers [6–8]. In practical applica-
tions, the acoustic particle velocity in the slits can reach
high amplitudes. For this reason, the change of resistance
and inertance of the slits due to non-linear effects for long
and short slits has been studied in this this work. In litera-
ture, several manufacturing techniques are employed to cre-
ate slits. In classical applications, a slit can be created by
removing material from the plate [2, 3, 9]. Slits can also
be generated by mating two slotted layers [6, 10]. Alterna-
tive designs of MSAs have been reported in the literature [2,
3, 6, 11, 12]. Several publications concern the acoustic impe-
dance of MPPs at high amplitudes in presence of a bias
flow or for sound-excited flows [13–17]. In Section 2, the*Corresponding author: a.aulitto@tue.nl
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theoretical background is presented for the linear and non-
linear regimes. In Section 3, the experimental setup and the
geometry of the plates are discussed. In Section 4, the two-
dimensional numerical model is described. In Section 5, the
comparison between numerical and experimental results is
presented in the linear and non-linear regimes. As explained
by Cummings and Eversman [18], non-linear losses at very
high amplitudes are due to the formation of a quasi-steady
jet flow. This jet displays a contraction after flow separation
from the edges of the slit: the so-called vena contracta. In
Appendix A, the vena contracta factor for a simplified
model of the geometry is calculated. In Appendix B,
the quasi-steady incompressible model is presented. In
Appendix C, a correction of the quasi-steady model for
the viscous boundary layer thickness is discussed.

2 Theoretical background

In the linear regime, dissipation of acoustic energy takes
place in the oscillating boundary layer of thickness
dv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l=xq

p
, where x = 2pf is the angular frequency, q

is the air density (q = 1.18 kg/m3 at 25 �C and atmospheric
pressure) and l is the dynamic viscosity of air (l = 1.85 �
10�5 kg/ms at 25 �C). The ratio between the slit width b
and the thickness of the viscous boundary layer dv is the
Shear number

Shb ¼ b
dv

: ð1Þ

In a micro-slit plate, typical Shear numbers, in the
frequency range of interest, are of order unity. In the non-
linear regime, for moderate excitation amplitudes, vortices
form locally at the edges of the slits. At very high ampli-
tudes, this leads eventually to the formation of jets. Addi-
tional dissipation of acoustic energy is involved. The
behaviour of the plate can be studied as a function of the
Strouhal number (Stb), defined as the ratio between the slit
width b and the amplitude of the oscillating particle dis-
placement at the slits. In formulas,

Stb ¼ xb
Up

; ð2Þ

where Up is the cross-sectional surface averaged acoustic
velocity amplitude at the slit (upðtÞ ¼ Re½ûp expðixtÞ� ¼
Up cosðxtÞ, for harmonic oscillations). For Stb � 1 (linear
regime) the particle displacement is smaller than the slit
width and vortices are not formed. For Stb � 1 (strongly
non-linear), vortices are formed and they move away from
the slit forming a free jet. For Stb � 1 (moderate non-
linear) vortices form at the edges of the slits and they

remain local. Alternatively, one can define a Strouhal
number Stt based on the plate thickness at the slit
(t = tp � td in Fig. 3) in order to compare the vortices dis-
placement with the thickness of the plate at the slit [19].

2.1 Transfer impedance in linear regime

In the linear regime, the concept of transfer impedance
is introduced in the frequency domain (for purely harmonic
oscillations) of frequency f. At a distance large compared to
the slit width b but small compared to the acoustic wave-
length k = c/f, the flow can be described in terms of plane
acoustic waves. As this region is compact, the correspond-
ing complex amplitude û of the acoustic velocity
uðtÞ ¼ Re½û expðixtÞ� ¼ U cosðxtÞ is the same on both sides
of the plate. The transfer impedance of the plate is defined
as the ratio between the complex acoustic pressure differ-
ence �p̂ and the amplitude of the acoustical velocity û in
a cross-section upstream of the plate. The pressure is found
by the extrapolation of the plane wave solutions (on both
sides) to the sample surface (a formal discussion can be
found in Sect. 4). The dimensionless transfer impedance
of the plate is

zplate ¼ �p̂
qcû

; ð3Þ

where q is the density of air and c is the speed of sound in
air. Note that the plate transfer impedance is a complex
quantity. The dimensionless transfer impedance of the
plate zplate is

zplate ¼ Re½zplate� þ iIm½zplate�; ð4Þ
with i2 = �1, Re[zplate] the resistive part of the transfer
impedance of the plate (or resistance of the plate) and
Im[zplate] the reactive part of the transfer impedance of
the plate (or inertance of the plate). The transfer impe-
dance of a slit is defined as the ratio between the complex
pressure difference p̂ and the amplitude of the cross-
sectional acoustical velocity ûp in the slit. In formulas,

zslit ¼ �p̂
qcûp

¼ zplateU; ð5Þ

where ûp ¼ û=U and U the porosity of the plate. There-
fore, in the first order of approximation the transfer impe-
dance of the plate can be obtained by the impedance of a
single slit. In practical applications, the micro-slit plate is
backed by a cavity. As the slit forms the neck of a Helm-
holtz resonator with a portion of the back cavity as vol-
ume, the flow within the slit will be considered as locally
incompressible up to the first resonance frequency of the
resonator. In the audio range, the square of the Helmholtz
number is small, i.e. He2 ¼ xb

c

� �2
< 10�1. Therefore, one

can assume a frictionless flow of the incompressible flow.
Thermal effects in the slit are neglected [20].

2.2 Non-linear regime

In the non-linear regime, the resistance due to vortex
shedding dominates the absorption mechanism, as shown
by Ingard and Ising [21]. Cummings and Eversmann [18]

Figure 1. Representation of a typical geometry obtained with
the process of cutting the plate and bending the extremities.
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assume a quasi-steady flow behaviour to describe the
behaviour of perforations at high Shear numbers and very
high amplitudes of acoustic particle velocity. The model
assumes that the acoustic flow separates at the edges of
the slits and forms a free jet with a cross-section smaller
than the perforation area. The ratio between the cross-sec-
tion of the jet and the cross-section of the perforation is
called the vena contracta factor Cv. In their model, using
the Bernoulli equation one can derive the relationship
between pressure change across the plate and particle veloc-
ity �p̂ � 1

2 qûpjûpj and ûp, with upðtÞ ¼ Re½ûp expðixtÞ� ¼
Up cosðxtÞ. For Stb � 1 one can assume a quasi-steady
incompressible flow with a free jet of vena contracta factor
Cv. Assuming a harmonically oscillating velocity,
uðtÞ ¼ U cosðxtÞ, one can calculate the time-averaged dissi-
pated power and define the (time-averaged) non-linear
dimensionless plate resistance Real[zplate,NL] as

Real½zplate;NL� � Real½zplate;L� ¼ 4
3p

U

C2
vU

2c
; ð6Þ

where Real[zplate,L] is the plate resistance in the linear
regime. Derivation of the theoretical limit can be found in
Appendix B. The vena contracta coefficient for the geome-
try discussed in this study is assumed to be Cv = 0.82. This
value is found in the potential flow limit for small porosity
using the hodographic method [22, 23]. Derivation of the
vena contracta factor Cv can be found in Appendix A.
The theoretical limit can be corrected for the effect of the
quasi-steady viscous boundary layer. This causes a reduc-
tion of the effective porosity that leads to an increase of
the resistance. The correction for the thickness of the vis-
cous boundary layer is in Appendix C. For the inertial part
of the transfer impedance Im[zplate], Ingard and Ising
assume that in the upstream of the flow separation the flow
remains identical to the potential flow prevailing in the lin-
ear case [21]. In the downstream free jet, the inertia is neg-
ligible. Hence, the inertia should be reduced by a factor 2. In
other words, DIm½zplate;NL� ¼ �Im½zplate;L�=2. The factor one-
half is explicitly discussed in Morse and Ingard [24]. This
simple limit will be compared to experimental results in
Section 5.2. To study non-linear effects, the linear contribu-
tion is subtracted from the non-linear resistance and iner-
tance. In order to analyze the effect on a single slit, the
porosity U is introduced. The change in resistance (Real
[zplate,NL] � Real[zplate,L]) is normalized with the non-linear
limit proposed by Ingard and Ising [21] and corrected
by the vena contracta factor as in Temiz et al. [8]. The vena
contracta factor is Cv = 0.82 (see Sect. 3 and Appendix A).
The change in inertance is normalized dividing by the linear
contribution Imag[zplate,L]. The non-dimensional corrected
resistance and inertance changes due to non-linear effects
are:

�RNL ¼ 2C2
vU

ðReal½zplate;NL� � Real½zplate;L�Þ
qUp

; ð7Þ

�INL ¼ U
ðImag½zplate;NL� � Imag½zplate;L�Þ

Imag½zplate;L� : ð8Þ

3 Experiments
3.1 Impedance tube setup

The experimental setup used in this study is an impe-
dance tube with 6 pre-polarized 1/4 inch microphones (type
BWSA, sensitivity 50 mV/Pa). The tube is made of alu-
minium with an inner diameter Di = 50 mm, a wall thick-
ness tw = 10 mm and length lt = 1000 mm. The
excitation system is a 25 W loudspeaker. The six micro-
phones are equally placed at a distance of 175 mm. A rela-
tive calibration is performed on the microphones using the
microphone closest to the end of the tube (sample side) as
the reference microphone. The position of this microphone
with respect to the end of the impedance tube is
xref = 47.7 mm. Details on the setup and the calibration sys-
tem can be found in the works of Temiz et al. [25] and
Kojourimanesh et al. [26]. The micro-slit plates are posi-
tioned at the end of the impedance tube through a sample
holder. For this study two sample holders are used to com-
pare the effects of three-dimensional effects for a plate con-
fined by the impedance tube from two sides and from one
side (Lh1 ¼ 50mm and Lh2 ¼ 9mm). The impedance tube
termination with the sample holders is shown in Figure 2.
Both the sample holders have a groove for an o-ring to guar-
antee air-tightness from both the sides of the sample. A
script built-in NILabView software controls the signal pro-
cessing and data acquisition during the measurements. For
this study, the sampling rate is 20 kHz for the excitation sig-
nal and 10 kHz for recording the input signal. The ampli-
tude of the excitation signal is adjusted automatically
until it satisfies the pre-determined pressure value for the
reference microphone p̂ðxrefÞ within an accuracy of 2%. This
amplitude is also used to derive the acoustic velocity at the
sample. The calculation of the reflection coefficient at the
sample is based on the plane wave assumption. For the
evaluation of the reflection coefficient the method from
Jang and Hi [27] is used. For each frequency, every micro-
phone records the complex pressure amplitude p̂ðxÞ at posi-
tion x,

p̂ðxÞ ¼ p̂þðxÞ expð�ikxÞ þ p̂�ðxÞ expðikxÞ; ð9Þ
with p̂þ and p̂� respectively the amplitudes of the wave
travelling in the positive and in the negative directions
x = 0 corresponds to the end of the impedance tube (sam-
ple side), k is the complex wavenumber. Taking visco-
thermal effects into account as proposed in Peters et al.
[28], the complex wavenumber is

k ¼ x
c0

1þ 1� iffiffiffi
2

p
ShD

1þ c� 1
Pr0:5

� �� �

� x
c0

i
Sh2

D

1þ c� 1
Pr0:5

� 1
2
c
c� 1
Pr

� �� �
; ð10Þ

where i is the imaginary unit, Pr is the Prandtl number
(Pr = 0.72), c is the heat capacity ratio (c = 1.4) and
ShD the Shear number based on the impedance tube
diameter Di defined as the ratio of the tube diameter
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and the viscous boundary layer thickness in the tube
(Shd = Di/dv). The reflection coefficient at the end of
the tube (x = 0) is [27]

R ¼ p̂�
p̂þ

: ð11Þ

Experimentally, the closed pipe termination at x = 0 is used
as a reference for the accuracy of the measurements. For an
amplitude p̂ðxrefÞ ¼ 2 Pa, the maximum deviation from the
theoretical value R = 1.000 is less than 0.3%. The closed-
end measurements are performed for several excitation
amplitudes. It appears that for amplitude p̂ xrefð Þ > 23 Pa
the accuracy of the measurements reduces to 1% up to
f = 400 Hz. For f > 400 Hz this accuracy reduces to around
3%. Hence, the study of the amplitude dependence of the
measurements is restricted to 0.4 Pa < p̂ xrefð Þ < 23 Pa.
For low frequencies (f < 200 Hz), no significant effects are
found increasing the measurement time (number of samples).
For f > 700 Hz the results appear to be less reliable. There-
fore, the frequency range of the measurements is restricted to
20 Hz < f < 700 Hz corresponding to 1 < Sh < 6.

3.1.1 Measuring the transfer impedance of the sample
and acoustic velocity

To measure the transfer impedance of the plate the fol-
lowing procedure is followed. At the impedance tube termi-
nation an additional pipe segment of the same length of the
sample holder is added. The open pipe termination is
located at xopen = x0 +Lh + tp, with x0 = 0 is the right side
of the plate in Figure 2, Lh the length of the holder and tp
the thickness of the sample. The reflection coefficient Ro for
the open pipe termination is measured. The dimensionless
radiation impedance is calculated using zrad ¼ ð1þ RoÞ=
ð1� RoÞ. The tube is then loaded with the sample by the
use of a sample holder. The reflection coefficient of the sam-
ple-loaded termination Rs is measured. The sample-loaded
impedance can be calculated in the same way as the radia-
tion impedance as zs = (1 + Rs)/(1 � Rs). The samples
have relatively low porosity. Therefore, the radiation impe-
dance is expected to be much lower than the impedance of
the plate. Nevertheless, the radiation effects are taken into

account and the dimensionless transfer impedance of the
plate zplate is calculated as the difference between the sam-
ple-loaded impedance and the radiation impedance, in for-
mula zplate = zs � zrad. The radiation of the room is close
to that of a free field. Deviations due to unwanted changes
in room acoustics are taken into account repeating the open
pipe termination experiments before each set of measure-
ments. One does observe some systematic deviation from
free-space radiation as a result of room resonances. Assum-
ing the radiation impedance is in series with the plate impe-
dance, the room effect is corrected for by measuring the
radiation impedance. In this open pipe radiation impedance
measurement, the sample is replaced by a ring in the sample
holder so that the geometry (pipe length, position in the
room) is exactly the same as when measuring with a
sample. The analysis for non-linear studies is performed
for f � 200 Hz. In this analysis of non-linear effects the
amplitude jûj of the flow velocity is a key parameter. The
magnitude of the acoustic velocity at the plate is calculated
as jûj ¼ p̂ðxrefÞ=jzplatej. Hence, it is assumed that p̂ðx ¼ 0Þ �
p̂ðxrefÞ. This is certainly accurate at low frequencies
(f < 340 Hz) given xref � 50 mm.

3.2 Specifications of the samples

The acoustical behaviour of short and long slits in
micro-slit plates is compared by considering two samples.
The geometry of the plates is inspired to the plate in
Figure 1. The plates are realized in brass with milling pro-
cess [29]. Sketches of the plates showing the main parame-
ters are shown in Figure 3. The plates are shown in
Figure 4. The external diameter of the plates is
Dp = 70 mm, allowing hosting the plates in the holder.

The effective diameter of the portion of the plate where
the slits are located is Di = 50 mm, with Di the internal
diameter of the impedance tube. The total plate thickness
is tp = 5 mm and the nominal slit width is b = 0.5 mm.
The external width of the ditch is wd,e = 5 mm, the internal
width of the ditch is wd,i = 2.25 mm. The ditch thickness is
td = 2.75 mm. The thickness of the plate at the slit is
t = tp � td = 2.25 mm. The slit length is ls,short = 15 mm
for short slits and ls,long = 35 mm for long slits. The angle
between the internal ditch and the outside ditch is 45�.
The plates are realized in such a way that the total length
of the slits P is the same. The total slit length is P = 7 � ls,
short = 3 � ls,long � 105 mm. The porosity (of the portion of
the plate in the impedance tube) is U = 2.7%. In order to
provide access to the rotary cutter, the ditch length is
longer than the slit length, ld = ls + 2 mm. The actual
widths of the single slits are measured experimentally by
means of a digimatic indicator. Maximum deviations from
the prescribed dimensions are of the order of 2%
(± 1 lm) for the plate with short slits and 4% (± 1 lm)
for the plate with long slits. The measured average of b over
the slit length has been used b = 0.505 mm for short slits
and b = 0.520 mm for long slits. Therefore, the porosity is
Ushort = 2.7%, for the plate with short slits and and
Ulong = 2.78%, for the plate with long slits. The edges in
contact with the slits are kept as sharp as possible to

Figure 2. Impedance tube termination with a) short sample
holder of length Lh = 9 mm and b) long sample holder of length
Lh = 50 mm.
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remove effects due to the rounding of the edges. Observa-
tions under microscope (magnification 50�) did not show
any significant deviation from sharp edges.

4 Numerical model

In this section, a two-dimensional numerical model is
proposed. Solution of the linearized Navier-Stokes equa-
tions for an incompressible flow is considered. Consider
the cross-section of the plates shown in Figure 3. A single
slit of width b in a confinement channel of width a is consid-
ered. The confinement channel width is chosen such as the
porosity of the two-dimensional model U2D is equal to the
actual porosity of the plate U. The plate of thickness tp is
enclosed between an upstream and a downstream channel
of lengths Lu and Ld. The computational domain is shown
in Figure 5. The domain is divided into three sub-domains
for meshing purposes. Continuity of pressure and velocity is
assumed at the boundaries between the calculation
domains. All the lengths are made dimensionless with the
slit width b. The dimensionless plate thickness is t	p ¼ tp=
b ¼ 5mm=0:5mm ¼ 10 (Distance BC in Fig. 5). The con-
finement channel width is a* = a/b = 18 mm/
0.5 mm = 36 (Segment AH in Fig. 5). The lengths of the
channels upstream (Segment AB in Fig. 5) and downstream
the channel (Segment CD in Fig. 5) are chosen to have
L	
u ¼ L	

d ¼ 2a	. The upstream face of the plate is located
at x	BG ¼ �4:5 and the slit opening at x* = 0. The down-
stream face of the plate is located at x	CF ¼ 5:5 and the
end of the slit at x* = 1. The upstream side of domain
AH is located at x	AH ¼ �L	

u � x	BG ¼ �72� 4:5 ¼ �76:5.

The downstream side of domain DE is located at x	DE ¼
x	CF þ L	

d ¼ 4:5þ 1þ 72 ¼ 77:5. Therefore, the domain
extends between x	 ¼ x=b ¼ ½x	AH; x	DE� ¼ ½�76:5; 77:5� and
y	 ¼ y=b ¼ ½0; 36�.

The low He number approximation is made. The incom-
pressible Linear Navier-Stokes equations for a 2D domain in
a dimensionless form in the frequency domain are hereby
presented for a radial frequency x:

oû	

ox	
þ ov̂	

oy	
¼ 0; ð12Þ

iû	 ¼ � op̂	

ox	
þ 1
2Sh2

b

o2û	

ox	2
þ o2û	

oy	2

� �
; ð13Þ

iv̂	 ¼ � op̂	

oy	
þ 1
2Sh2

b

o2v̂	

ox	2
þ o2v̂	

oy	2

� �
; ð14Þ

with x* = x/b and y* = y/b. The dimensionless velocity
ðû	; v̂	Þ is ðû=bx; v̂=bxÞ and the dimensionless pressure is
p̂	 ¼ p̂=ðq bxð Þ2). These equations are implemented in
COMSOL Multiphysics as user defined equations (PDE)
and solved. For the inlet segment AH and outlet segment
DE uniform pressures are imposed, p	AH ¼ 1 and p	DE ¼ 0.
At the segments BC and FG (walls) no-slip boundary con-
ditions are applied, i.e. (u*, v*) = (0, 0). At the segments
AB, CD, FE, GH slip boundary conditions are imple-
mented to simulate the hydro-dynamical interaction
between neighbouring slits in micro-slit plate with
multiple slits. In the present case, the slits are very thin
(b/a � 1) therefore a slip boundary condition is used
instead of a periodic boundary condition. A slip condition
implies an equality of the velocities at the corresponding
boundaries. Due to the dimensions of the slits, the devia-
tion from a symmetric case is small. An unstructured
mesh of quadratic triangular elements is used, with a finer
mesh at the walls with no-slip conditions. The mesh inside
the plate domain (Domain 2) is finer with the maximum
element size is Mel/b = 5 � 10�2 and the minimum is
mel/b = 1 � 10�4. A mesh convergence study shows a
quadratic convergence of the results using the average
velocity in a cross-section (line) calculated at a location
x* = �1.7a*. Far from the slit, the acoustic pressure is
uniform in the cross-section and the amplitude of the
pressure depends linearly on the position along the duct

Figure 4. Picture of the samples: a) plate with short slits and
b) plate with long slits.

Figure 3. Sketches of the plate and of the cross-section of a single slit with parameters.
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(parallel flow behaviour described in Aulitto et al. [20]).
For �1.7a* < x* < �1.1a*, one has p̂ 	 x	ð Þ ¼ âx	 þ b̂.
For 1.1a* < x* < 1.7a*, one has p̂ 	 x	ð Þ ¼ ĉx	 þ d̂. The
complex constants can be determined by a linear fit of
the pressure data obtained by numerical simulations for
these regions far from the discontinuity. For a Shb = 2.5
(corresponding to f = 120 Hz for a slit width
b = 0.5 mm), the linear fit gives a coefficient of determina-
tion 1 � R2 = 10�6 [30]. The transfer impedance of the slit
Z 	

slit is determined by Z 	
slit ¼ b̂�d̂

Û	 with Û 	 being the flux cal-
culated in a generic section of the channel upstream the
slit, defined as Û 	 ¼ w	 < û	 > b*, with w* = 1. From
Z 	

slit one can derive the dimensionless transfer impedance
of the slit zslit as

zslit ¼ 2mSh2
b

bc
Z	
slit; ð15Þ

with Shb the Shear number based on the slit width. Tests
for several channel widths a are performed. It appears
that the resistance of the slit is independent of the poros-
ity of the plate. Reducing of a factor 7 the porosity, the
resistance increases by less than 0.7%. The inertia of the
plate changes with changing the porosity. For a drastic
reduction of the porosity, by a factor 7, the inertia
increases by 30%. For small changes of the porosity
around the nominal value, as the difference found between
the two samples, the change is negligible. One can con-
clude that the transfer impedance of the slit appears to
be only weakly dependent on the porosity U.

5 Results
5.1 Results in linear regime

In Figure 6, the resistive and the reactive part of the
impedance are shown for long and short slits in the range
2.5 < Shb < 6 corresponding to 120 Hz < f < 700 Hz.
The slit impedance of a single slit is displayed,
zslit = zplateU, calculated using Ushort and Ulong for the short
slits and long slits, respectively. The amplitude of the acous-
tic waves is p̂ðxrefÞ ¼ 2Pa. Frequencies below 120 Hz are
excluded because of the presence of non-linear effects that
will be discussed in Section 5.2. Frequencies above 700 Hz
are ignored due to uncertainties in the measurements.
The results are presented for a sample holder Lh = 9 mm.

It appears that the maximum deviation between the
resistance of long and short slits is of the order of 4%. This

deviation is most probably due to the difference in slit width
between the two plates and could be due to differences in
edge sharpness. At low Shb the resistance scales with 1/b2.
An uncertainty of 2% in b explains a difference of the order
of 4%. The influence of the length of the slits is negligible.
The difference between the inertance of short and long slits
is of the order of 10%. The inertance of short slits is lower
than the inertance of long slits. This is due to three-dimen-
sional effects due to the geometry of the slits. Three-dimen-
sional effects do not change significantly for the plate
confined from both sides (holder with Lh = 50 mm) or for
a free plate (holder with Lh = 9 mm). The effect of the sam-
ple holder length is negligible for f < 500 Hz. At higher fre-
quencies the data with the long holder show oscillating
frequency dependency. This is to expected to be connected
to the presence of a table in the measurement room. There-
fore, the small holder is chosen to display the results. In Fig-
ure 6, the two-dimensional numerical model for a single slit
is compared to the experimental results. It appears that the
2D numerical model of a single slit predicts (within few per-
centage of accuracy) the impedance (both resistive and
reactive part) of long slits and the resistance of short slits.
In the same figure, the semi-analytical model for high Shear
numbers of Aulitto et al. [20] for a plate with square sharp
edges with thickness tp = 0.5 mm is shown. For the semi-
analytical model, the plate thickness is assumed to be the
same as the slit width. It appears that the model predicts
reasonably well the resistance of the plate with the geome-
try proposed in this work. This confirms that the resistance
of micro-slit plate is a local effect, strongly affected by the
geometry of the edge and less sensitive to the global geom-
etry of the plates [20]. The inertance obtained when assum-
ing b = tp = 0.5 mm, on the other hand, is much lower than
that of the plates used in this study. In conclusion, in the
linear regime (Shb > 2.5), the difference between the resis-
tance (or resistive part of the impedance) for short and long
slits is small. The inertance (or reactive part) of short slits is
smaller (within 10%) than long slits due to three-dimen-
sional effects. Experiments with two sample holders exclude
a dependence on the confinement of the plate. It appears
that the two-dimensional numerical model well predicts
the resistance of long and short slits.

5.2 Results in non-linear regime

For Shear numbers (Shb < 2.5) deviations from the
numerical model for both short and long slits appear. These
deviations depend on the amplitude of the acoustic waves.

Figure 5. Two-dimensional computational domain for the plate of thickness tp and slit width b enclosed between an upstream and a
downstream channel. Three sub-domains (1-2-3) are defined for meshing purposes.
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This is shown for long slits for several amplitudes in
Figure 7. These deviations at low frequencies are due to
non-linear effects and decrease for increasing Shear num-
bers. At Shb < 2.5 for p̂ xrefð Þ ¼ 2Pa one has Stb < 0.4.
Non-linear effects impact both the inertance and the resis-
tance of the slit. In particular, at the lowest frequency,
the resistance for the highest amplitude (p̂ xrefð Þ ¼ 23Pa)
is 7 times higher than the resistance at the lowest amplitude
(p̂ xrefð Þ ¼ 0:4Pa). The inertance is reduced by almost a fac-
tor 2, as expected from the model of Ingard and Ising [21].

In this study, sound generation as higher harmonics due
to non-linearity is not considered. For long slits, the plots of
DRNL and DINL are provided as function of the Strouhal
number for several amplitudes of the acoustic waves. On
the lower horizontal scale, the Strouhal number based on
the slit width Stb is used. On the upper horizontal scale,
the Strouhal number based on the plate thickness at the slit
Stt appears. In Figure 8, results are shown for high ampli-
tudes of the acoustic waves (p̂ðxrefÞ 
 10 Pa). Both the
change in resistance and inertance due to non-linearity
increase (in absolute value), as expected, for decreasing
Strouhal number (Stb ¼ xb=Up). For 1/Stb � 1 the change
in resistance DRNL is approaching the theoretical quasi-
steady potential flow limit with correction for the viscous
boundary layer for Stb ? 0. The change in inertance
approaches the value DINL = �0.5. The correction in the
inertance due to non-linear effects is almost half the iner-
tance in the linear case. Figure 9 compares the non-linear

resistance and inertance for long slits to that of short slits
for high amplitudes (p̂ xrefð Þ 
 10Pa). In Figure 10, the
results are shown for low and moderate amplitudes for short
and long slits (p̂ xrefð Þ � 6Pa). These results display some
Shear number dependency, which is less pronounced at
higher amplitudes.

It can be seen that the resistance changes due to non-
linearity are almost identical for long and short slits, both
for high and moderate amplitudes. Non-linear effects on
the inertance of short slits are, in absolute value, smaller
than for long slits. At moderate amplitudes (1/Stb < 20)
one observes a weak non-linear behaviour reported by
Ingard and Labate [19]. The vortices are formed at the
edges, but they remain close to the slit. For 1/Stb > 20
and for higher amplitudes, the vortices start moving away
from the slits. One observes in this region differences
between long and short slits. For very high amplitudes
1/Stb > 50 the behaviour of the inertia of short and long
slits is completely different. The flow for the short slits
becomes essentially three-dimensional while it remains
approximately two-dimensional for the long slits because
of the confinement in the impedance pipe and hydro-
dynamical interactions between slits. Differences for high
amplitudes are most probably due to different behaviour
of the synthetic jet (zero net mass flow) in 3D depending
on the length of the aperture [31]. Difference in the slits
(such as small surface perturbations in the edges) can
generate different behaviour of the jet and different spatial

Figure 6. Comparison of the a) slit resistance and b) slit inertance for short (––) and long (- - -) slits as a function of Shear number in
linear regime. The numerical model (&) and the semi-analytical model for a plate with square sharp edges (. . . .) are shown [20].

Figure 7. Comparison of the a) slit resistance and b) slit inertance for long slits compared to 2D model (&) as function of
Shear number for several amplitudes at the reference microphone. Low amplitudes: (––) 0.4 Pa, (. . . .) 1 Pa, (- - -) 2 Pa. High
amplitudes: (––) 17 Pa, (. . . .) 20 Pa, (- - -)23 Pa.
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evolution of three-dimensional vortices. Examples of
complex three-dimensional behaviour of jet formed by a slit
are the axis switching and forking [32, 33]. The behaviour of
short and long slits for low Stb is different. In axis switching,
the lateral ends of the jet will curve towards the symmetry
axis, so that, within a distance comparable to the jet width,
a almost plane jet will be formed in a direction normal to
the original jet. In forking, the planar jet breaks down into
separate jets. These observations confirm that while the

resistance is determined locally, the inertance is a more
global flow effect.

6 Discussion and conclusions

In this work, the effect of slit length on the linear and
the non-linear acoustic transfer impedance of two accu-
rately manufactured micro-slit plates has been investigated.

Figure 8. Change in a) slit resistance and b) slit inertance due to non-linearity for long slits as function of Stb and Stt for several
amplitudes at the reference microphone: 10 Pa (4), 15 Pa (h), 17 Pa (}), 20 Pa (4), 23 Pa (H). In a) quasi-steady potential flow
theory (––) and quasi-steady potential flow theory corrected for the effect of quasi-steady viscous boundary layer (- - - -); in b) Limit
proposed by Ingard and Ising [21] (––).

Figure 9. Change in a) slit resistance and b) slit inertance due to non-linearity for long ( ) and short ( ) slits as function of Stb and
Stt for several amplitudes at the reference microphone (p̂ xrefð Þ 
 10Pa). Lines are defined as in Figure 8.

Figure 10. Change in a) slit resistance and b) slit inertance due to non-linearity for long ( ) and short ( ) slits as function of Stb and
Stt for several amplitudes at the reference microphone (p̂ xrefð Þ 
 6Pa). Lines are defined as in Figure 8.
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The study is limited to sharp edges. Experimental data are
obtained by impedance tube measurements. The frequency
range of interest is 20 Hz < f < 700 Hz corresponding to
Shear numbers in the range 1 < Shb < 6. As for circular
micro-perforations, the dissipation of sound occurs mainly
at the edges of the micro-slits [20, 25]. Both in the linear
and non-linear regime, the resistance of a single slit is inde-
pendent of the porosity of the plate and on the slit length.
Therefore, by dividing the transfer impedance of a slit by
the porosity of the plate, one obtains an accurate prediction
of the plate resistance for micro-slit plates. In the linear
regime, an accurate prediction of the resistance of the plate
is obtained using a two-dimensional numerical solution of
the linearized Navier-Stokes equations in a single slit. In
the non-linear regime, the plate resistance is strongly depen-
dent on the amplitude of the acoustic waves. A simple
quasi-steady model provides an order of magnitude for
the asymptotic value of the non-linear resistance. Combin-
ing the results obtained in the present work for a specific
geometry with the earlier studies on linear acoustical prop-
erties of micro-slits (see Aulitto et al. [20] and Temiz et al.
[25]) one can conclude that the independence of resistance
on the slit length is due to the fact that the resistance is
mainly determined by the local acoustic flow around the
edges. Therefore, this observation is independent of the
exact slit geometry. The inertance of slits is sensitive to
the acoustic flow outside the perforations. This explains
the strong difference between the behaviour of slits and cir-
cular micro-perforations [20]. Also, one observes a small but
yet significant reduction of the inertance of short slits with
respect to long slits. The linear inertance of long slits is
accurately predicted by the locally two-dimensional incom-
pressible numerical model. For moderate amplitudes, the
non-linear inertance is not strongly affected by the slit
length. For high amplitudes, one observes a strong devia-
tion between the inertance of short and long slits. For long
slits, the inertance at very high amplitudes is reduced by a
factor two with respect to the linear case, as predicted by
the intuitive model of Ingard and Ising [21]. For short slits,
the amplitude dependency of the inertance is more complex
due to three-dimensional effects. The weak dependency of
the inertia on the slit length is also expected to be indepen-
dent of the exact geometry of the slits. The non-linear beha-
viour depends on the vena contracta factor, which is
dependent on the details of the slit geometry [8, 34]. How-
ever, the fact that the slit length influences more the non-
linear effects on the inertia than the resistance is expected
to be independent of details of the slit geometry. Hence,
most conclusions drawn from the present study are
expected to be quite general.
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Appendix A

A.1 Vena contracta factor for potential flow

At high amplitudes the flow detaches at the edges and
then forms a free jet that contracts. The computation of
jet flow is difficult, but in plane potential flow the problem
of free jet can be solved by conformal mapping. The con-
traction factor of the jet (vena contracta factor) can be

calculated for several geometries following approaches
found in literature [22, 23]. In Figure A.1 the geometry of
a single slit is compared with a simplified model that will
be used to calculate the vena contracta factor using the
method of Spurk and Aksel [22]. As defined in Section 4,
the porosity of the two-dimensional model is U2D = b/a.
The simplified geometry is connected to the idea that, for
low b/a, the main parameter is the 45� angle between the
two sides of the slit, because the interaction of the jet with
the walls can be neglected.

The emerging jet contracts from the cross-section B – B 0

of width b to the cross-section C – C 0 of width Cvb, with Cv

the vena contracta factor. At section C – C 0 the pressure
inside the jet is equal to the ambient pressure, since the cur-
vature of the streamlines vanishes. From the Bernoulli’s
equation, the velocity on the boundary of the jet is

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
q
ðp1 � p0Þ

s
; ðA:1Þ

where p1 and p0 are the pressure before the slit and after
the slit, respectively. The duct can be associated to a
region in the complex z-plane by z = x + iy, with
i2 = �1 and spatial coordinates (x, y). In order to deter-
mine the shape of the free jet, a mapping resulting from
the definition of the complex conjugate velocity can be
used

f ¼ f ðzÞ ¼ dF
dz

¼ u� iv ¼ w: ðA:2Þ

Using conformal mapping, the flow region in the duct can
be mapped into a velocity plane, the so-called hodograph
plate. For small porosity (b/a � 1) the flow can be gener-
ated from the superposition of a source of strength 4Cvbu0
at w = (u � iv) = 0 and sinks of 2Cvbu0 at w = �1, +1,
�i, +i, with u0 the velocity at the edge of the jet. The com-
plex potential is

F ¼ Cvbu0
p

2 ln wð Þ � lnðwþ u0Þ � lnðw� u0Þ � lnðwþ iu0Þ½
� lnðw� iu0Þ�: ðA:3Þ

Figure A.1. Schematic representation of the slit and zoomed
simplified model for the contraction of the free jet after the plate.
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In the present work the limit for b/a � 1 is considered. The
mapping function z = z(f) has to be calculated to deter-
mine the free surface in the z-plane. From equation
(A.2) follows that

z ¼
Z

dF
f

¼
Z

dF
df

df
f
: ðA:4Þ

The solution to this integral is

z ¼ Cvbu0
p

� 2
w
þ 1
u0

ln
wþ u0
w� u0

� �
� i
u0

ln
wþ iu0
w� iu0

� �� �
þ constant:

ðA:5Þ
The integration constant can be found assuming w ¼
ð1þ iÞu0=

ffiffiffi
2

p
at z = 0 + ib and w = u0 at z = 1 + iCvb/2.

It follows that the vena contracta factor in the limit
b/a � 1 is Cv = 0.82.

Appendix B
B.1 Quasi-steady incompressible flow

Assuming a quasi-steady incompressible flow with a free
jet of vena contracta factor Cv, the pressure difference Dp(t)
across the plate resulting from the oscillating flow velocity
upðtÞ ¼ Up cosðxtÞ is:

�pðtÞ ¼ 1
2
quj uj

		 		; ðB:1Þ

where q is the air density and uj is the free jet velocity.
For the continuity of the velocity one has that
ûj ¼ up=Cv and up ¼ u=U where upðtÞ ¼ Up cosðxtÞ is
the cross-sectional averaged acoustical velocity in the per-
foration, uðtÞ ¼ U cosðxtÞ is the cross-sectional averaged
acoustical velocity in the pipe upstream the plate and U
is the porosity. Hence, the pressure difference across the
plate is

�p ¼ 1
2
q uj uj

		 		 ¼ 1
2
q
upjupj
C2

v

¼ 1
2
q

ujuj
C2

vU
2 : ðB:2Þ

The instantaneous power dissipated Pw is given by

Pw ¼ �p uAi; ðB:3Þ
where Ai ¼ p Di

2

� �2
is the pipe cross-section. Assuming a

harmonically oscillating velocity in the pipe up, one finds
for the time-averaged dissipated power

�Pw ¼ Ai
4
T

Z T=4

0
�p u dt ¼ Ai

qUU 3
p

2C2
v

4
T

Z T=4

0
cos3ðxtÞ dt;

ðB:4Þ
where T is the period of the harmonic oscillation. Substi-
tuting equations (B.1) and (B.2), this becomes

�Pw ¼ Aiq
U 3

pC2
vU

2

Z 1

0
ð1� y2Þ dy ¼ Aiq

2U 3

3pC2
vU

2 : ðB:5Þ

One can define the time-averaged non-linear plate resis-
tance as Rplate,NL,t using the expression

�Pw ¼ 1
2
AiRplate;NL;tU 2: ðB:6Þ

This implies that

Rplate;NL;t ¼ 4qU
3pC2

vU
2 : ðB:7Þ

Using as reference the expression in Temiz et al. [8]
(Rref ¼ ðqUÞ=ð2C2

vU
2Þ) one finds the theoretical asymptote:

Rplate;NL;t

Rref
¼ 8

3p
¼ 0:849: ðB:8Þ

The value of Rplate,NL,t is used to derive the analytical
asymptote in Figures 8–10. This value is fairly close to
the asymptote 0.7 < Rplate,NL,t/Rref < 0.8 found in Temiz
et al. [6] and Auriemma [8]. Temiz et al. [8] is considering
circular perforations with sharp square edges. Auriemma
is considering slit shaped perforations with right angled
edges. In the geometry proposed in this work, the channel
length is zero.

Appendix C
C.1 Correction for boundary layer thickness

For p̂ðxrefÞ ¼ 40 Pa (really high amplitude) and Cv =

0.82, we have jûpj ¼ Cv

ffiffiffiffiffiffi
2�p̂
q

q
¼ 6:7m=s. For b = 0.5 mm,

the Reynolds number Reb ¼ qUpb=l ¼ 223. The steady
viscous boundary layer has a thickness of the order of

dv=b �
ffiffiffiffiffi
1

Reb

q
� 0:1. Therefore, one can expect the friction-

less theory to have an accuracy of the order of 10%. For
very high amplitudes, using the Twaites solution [35] of
the integral boundary layer equation of Von Karman one
can obtain an estimation of the viscous boundary layer
thickness. One has

h2 U 6
p � 0:45m

Z 0

�t
½UðxÞ�5 dx; ðC:1Þ

with h ¼
Z dv

0

y
dv

1� y
dv

� �
dy is the momentum thickness

of the viscous boundary layer of thickness dv and x ¼ 0
is at the slit neck. Neglecting the boundary layer thickness
and assuming a uniform velocity UðxÞ the mass conserva-
tion law becomes

UðxÞðb� 2xÞ � Upb ðC:2Þ
because the slit angle is p/2 (Fig. A.1) and for t � b

h2

b2
� 0:45m

Upb
2

Z 0

�t

1

ð1� 2 x
b Þ5

dx � 1
8
0:45m
Upb

: ðC:3Þ

A. Aulitto et al.: Acta Acustica 2022, 6, 6 11



Assuming a linear velocity profile in the boundary layer of
thickness dv, one has a displacement thickness d	v ¼ dv=2
and a momentum thickness h ¼ dv=6. This implies:

d	v
b
¼� 3h

b
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
8
0:45m
Upb

s
: ðC:4Þ

Given Reb ¼ qbUp=l � 223 one has d	v � 0:05b. This
implies a reduction of the power because of the reduction
of the porosity Ueff ¼ Uð1� 2d	v=bÞ so that

Rplate;NL;t

Rref
¼ U2

U2
eff

8
3p

� 1:05: ðC:5Þ

Cite this article as: Aulitto A. Hirschberg A. Arteaga I.L. & Buijssen E.L.R.H. 2022. Effect of slit length on linear and non-linear
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