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Thermoacoustic instabilities are a major problem in combustion systems. In order to gain physical 

insight into thermoacoustic instabilities and to perform parameter studies, a fast analytical tool is 

invaluable. A Green's function approach provides such a tool. The most important advantage of the 

Green's function approach is the ability to alter boundary conditions, the heat release rate model, 

and also to impose noise from an external source. The Green's function approach can be combined 

with an amplitude-dependent model for the heat release rate, and then it allows us to predict nonlin-

ear phenomena e.g. limit cycle, triggering, or hysteresis. In this paper, we adopt a Green's function 

approach for a specific geometry (Rijke tube). The nonlinear heat release rate model will be defined 

and the time-history of an evolving thermoacoustic instability will be calculated. Furthermore, we 

will investigate the effect of external noise on the time evolution of the acoustic field in the com-

bustion system. We will calculate stability maps, focusing on heat source position as bifurcation pa-

rameter. At first, we will consider just one forcing term (heat release rate). Then, we will extend our 

formulation by adding a second forcing term to simulate the effect of random noise. The effect of 

the noise on the stability behaviour will be discussed. 

 Keywords: Thermoacoustic instabilities, Green’s function, Rijke tube, Random noise 

 

1. Introduction 

Thermoacoustic instabilities can arise in systems consisting of an acoustic resonator and an unsteady 

heat source, e.g. a combustion chamber; they are due to a feedback between the acoustic field the heat 

release rate. Indeed, a small perturbation of the acoustic field can increase the heat release rate, which 

in turn can increase the acoustic field. The Green’s function approach is a powerful mathematical tool 

to study instabilities in combustion systems. This analytical approach is a faster tool to predict the sta-

bility of combustion systems compared to numerical methods  

One of the first to model nonlinear aspects of thermoacoustic instabilities with a Green’s function 

approach was Heckl [1], who simulated  Noiray’s test rig [2]. This is a quarter-wave resonator with a 

matrix flame. Noiray measured the flame transfer function (FTF) of this flame for different excitation 

amplitudes and thus described the heat release rate by a flame describing function (FDF). Heckl mod-

elled this FDF by an extended time-lag law, with amplitude-dependent n (coupling coefficient) and 

amplitude-dependent τ (time-lag). Her stability predictions agreed well with some of Noiray's observa-
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tions, but not with others. The FDF model was improved by Bigongiari and Heckl [3] and incorporated 

again in a Green's function approach. Their study successfully predicted the nonlinear phenomena of 

limit cycle, bistability, hysteresis, and frequency shift. The literature about noise in thermoacoustic 

systems is very limited. Among them, Jegadeesan and Sujith [4] performed an experimental study to 

investigate the effect of noise on stability of thermoacoustic systems. They observed noise induced 

triggering (NIT) which is the phenomenon of inducing an instability by adding noise to a previously 

stable system.  

In this paper, we will use a Green’s function approach to study the effects of random noise on the 

stability of a Rijke tube with length 𝐿 and an interface separating a cold region (with mean temperature 

�̅�1, mean density �̅�1 and speed of sound 𝑐1) and a hot region (with �̅�2, �̅�2 and 𝑐2) using a steady heat 

source located at 𝑥𝑞. 

2. The tailored Green’s function 

Green’s function is defined as an impulsive response of a point source at position 𝑥′ and time 𝑡′ that 

is observed at position 𝑥 and time 𝑡. Its governing equation is 

 
1

𝑐2

𝜕2𝐺

𝜕𝑡2
−

𝜕2𝐺

𝜕𝑥2
= 𝛿(𝑥 − 𝑥′)𝛿(𝑡 − 𝑡′) 

 

(1) 

In this equation, 𝑐 is the speed of sound; the impulsive point source is described by the term 𝛿(𝑥 −
𝑥′)𝛿(𝑡 − 𝑡′), which represents a point source at position 𝑥′, discharging an impulse at time 𝑡′. The 

tailored Green's function is the impulse response in a bounded space, i.e. an acoustic resonator, and it is 

therefore a superposition of resonator modes, which can be written as 

 

𝐺(𝑥, 𝑥′, 𝑡, 𝑡′) = 𝐻(𝑡 − 𝑡′) 𝑅𝑒 ∑ 𝑔𝑛(𝑥, 𝑥′)𝑒−𝑖𝜔𝑛(𝑡−𝑡′)

∞

𝑛=1

 
(2) 

 

𝑔𝑛 𝑎𝑛𝑑 𝜔𝑛 can be calculated analytically for tubes with uncomplicated geometries. Details of such 

calculations can be found in[1]. The set-up considered in this paper is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1: The set up with an interface between cold and hot region. 

The interface at  𝑥𝑞 is described by the reflection and transmission coefficients 𝑅𝐴𝐵, 𝑅𝐵𝐴, 𝑇𝐴𝐵 and 

𝑇𝐵𝐴. 𝑅0 and 𝑅𝐿 are reflection coefficients at inlet and outlet of the tube. The characteristic equation to 

obtain modal frequencies of the Green’s function for this set-up is 𝐹(𝜔) = 0, where 

�̅�1, �̅�1, 𝑐1 �̅�2, �̅�2, 𝑐2 

𝑅𝐴𝐵,  𝑇𝐴𝐵 

𝑅0 𝑅𝐿 

𝑥 = 0 𝑥 = 𝑥𝑞 𝑥 = 𝐿 

𝑅𝐵𝐴,  𝑇𝐵𝐴 
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𝐹(𝜔) = 𝑒−𝑖𝑘1𝑥𝑞  𝑒𝑖𝑘2(𝑥𝑞−𝐿) − 𝑅𝐵𝐴𝑅𝐿𝑒−𝑖𝑘1𝑥𝑞  𝑒−𝑖𝑘2(𝑥𝑞−𝐿) − 𝑅0𝑅𝐴𝐵𝑒𝑖𝑘1𝑥𝑞  𝑒𝑖𝑘2(𝑥𝑞−𝐿)

+ 𝑅0𝑅𝐿𝑒𝑖𝑘1𝑥𝑞  𝑒−𝑖𝑘2(𝑥𝑞−𝐿) (𝑅𝐴𝐵𝑅𝐵𝐴 − 𝑇𝐴𝐵𝑇𝐵𝐴) 

(3) 

In order to solve this, we use root finding methods (e.g. Newton Raphson method).  

The modal amplitudes of the Green’s function are given by  

 

𝑔𝑛(𝑥, 𝑥′) =
 c2 𝑔(𝑥, 𝑥′, 𝜔)

2𝜔𝑛 𝐹′(𝜔𝑛)
 

(4) 

where  

𝑔(𝑥, 𝑥′, 𝜔) = {

𝐴(𝑥, 𝜔)𝐵(𝑥′, 𝜔)     0 < 𝑥 < 𝑥𝑞

𝐵(𝑥′, 𝜔)𝐶(𝑥, 𝜔)     𝑥𝑞 < 𝑥 < 𝑥′

𝐶(𝑥′, 𝜔)𝐵(𝑥, 𝜔)    𝑥′ < 𝑥 < 𝐿

 

(5) 

𝐴(𝑥, 𝜔) = 𝑇𝐵𝐴(𝑅0𝑒𝑖𝑘1𝑥 + 𝑒−𝑖𝑘1𝑥) (6) 

𝐵(𝑥, 𝜔) = 𝑒𝑖𝑘2(𝑥−𝐿) + 𝑅𝐿𝑒−𝑖𝑘2(𝑥−𝐿) (7) 

𝐶(𝑥, 𝜔) = 𝑒𝑖𝑘2(𝑥−𝑥𝑞)(𝑅𝐵𝐴𝑒−𝑖𝑘1𝑥𝑞 + 𝑅0𝑒𝑖𝑘1𝑥𝑞) + 𝑒−𝑖𝑘2(𝑥−𝑥𝑞)(𝑒−𝑖𝑘1𝑥𝑞 − 𝑅𝐴𝐵𝑅0𝑒𝑖𝑘1𝑥𝑞) (8) 

3. Green’s function approach including noise 

We base our Green's function approach on the acoustic analogy equation for the velocity potential 

𝜙(𝑥, 𝑡)  

1

𝑐2

𝜕2𝜙

𝜕𝑡2
−

𝜕2𝜙

𝜕𝑥2
= −

𝛾 − 1

𝑐2
𝑞(𝑥, 𝑡) + 𝐹𝑛(𝑥, 𝑡) 

(9) 

This has two source terms: the first represents the heat source with heat release rate 𝑞(𝑥, 𝑡), and the 

second source term, 𝐹𝑛(𝑥, 𝑡), represents random external noise. For the initial conditions, we assume 

𝜙(𝑥, 0) = 𝜙0𝛿(𝑥 − 𝑥𝑞),
𝜕𝜙(𝑥, 0)

𝜕𝑡
= 𝜙0

′ 𝛿(𝑥 − 𝑥𝑞) 
(10) 

We describe the heat release rate distribution by 𝑞(𝑥, 𝑡) = 𝑞(𝑡)𝛿(𝑥 − 𝑥𝑞), which represents a compact 

heat source at 𝑥 = 𝑥𝑞. For q(t), we use (see [2]) 

𝑞(𝑡) = 𝐾[𝑛1𝑢𝑞(𝑡 − 𝜏) − 𝑛0𝑢𝑞(𝑡)] (11) 

where 𝐾, 𝑛1, 𝑛0 and 𝜏 are defined as  

𝐾 =
�̅�

�̅�𝑠�̅�
 

(12) 

𝑛1 =
𝑔𝑚𝑎𝑥(𝐴) + 1

2
, 𝑛0 =

𝑔𝑚𝑎𝑥(𝐴) − 1

2
 

(13) 

𝑔𝑚𝑎𝑥 = 𝑔0 − 𝑔1 (
𝐴

�̅�
) 

(14) 

𝜏 = 𝜏0 + 𝜏2 (
𝐴

�̅�
)

2

 
(15) 
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The Green's function approach involves a series of mathematical steps, where the acoustic analogy 

equation (9) is combined with the governing PDE (1) for the Green's function, to give an integral equa-

tion for the acoustic velocity at the heat source (for details, see [1]). The end result is  

 

𝑢𝑞(𝑡) =
𝜕𝜙

𝜕𝑥 𝑥=𝑥𝑞

= −
𝛾 − 1

𝑐2
 ∫

𝜕𝐺(𝑥, 𝑥′, 𝑡, 𝑡′)

𝜕𝑥
𝑥=𝑥𝑞

𝑥′=𝑥𝑞

𝑞(𝑡′) 𝑑𝑡′ + ∫ 𝐹𝑛(𝑡′)
𝜕𝐺(𝑥, 𝑥′, 𝑡, 𝑡′)

𝜕𝑥
𝑥=𝑥𝑞

𝑥′=𝑥𝑞

𝑑𝑡′
𝑡

𝑡′=0

𝑡

𝑡′=0

−
𝜙0

𝑐2

𝜕𝐺

𝜕𝑥𝜕𝑡′
𝑥=𝑥𝑞

𝑥′=𝑥𝑞

𝑡′=0

+
𝜙0

′

𝑐2
 
𝜕𝐺

𝜕𝑥
𝑥=𝑥𝑞

𝑥′=𝑥𝑞

𝑡′=0

 

(16) 

3.1 Time evolution 

In order to calculate the time history of the system based on equation (16), a numerical iteration pro-

cedure is performed. To this end, we define the following integrals 

𝐼𝑛
𝑞(𝑡) = ∫ 𝑒𝑖𝜔𝑛𝑡′

𝑞(𝑡′)𝑑𝑡′
𝑡′=𝑡

𝑡′=0

, 𝐼𝑛
𝑁(𝑡) = ∫ 𝑒𝑖𝜔𝑛𝑡′

𝐹𝑛(𝑡′)𝑑𝑡′
𝑡′=𝑡

𝑡′=0

 
(17) 

Splitting the integral interval into two parts (𝑡′ = 0, … 𝑡 − Δ𝑡 and 𝑡′ = 𝑡 − Δ𝑡, … , 𝑡) turns the inte-

grals in equation (17) to 

𝐼𝑛
𝑞(𝑡) = ∫ 𝑒𝑖𝜔𝑛𝑡′

𝑞(𝑡′) 𝑑𝑡′ +
𝑡′=𝑡−Δ𝑡

𝑡′=0

∫ 𝑒𝑖𝜔𝑛𝑡′
𝑞(𝑡′) 𝑑𝑡′

𝑡′=𝑡

𝑡′=t−Δt

   
(18) 

𝐼𝑛
𝑁(𝑡) = ∫ 𝑒𝑖𝜔𝑛𝑡′

𝐹𝑛(𝑡′) 𝑑𝑡′ +
𝑡′=𝑡−Δ𝑡

𝑡′=0

∫ 𝑒𝑖𝜔𝑛𝑡′
𝐹𝑛(𝑡′) 𝑑𝑡′

𝑡′=𝑡

𝑡′=t−Δt

   
(19) 

Substituting equations (17-19) and 𝐺(𝑥, 𝑥′, 𝑡, 𝑡′) from equation (2) into equation (16) leads to 

𝑢𝑞(𝑡) = −
𝛾 − 1 

𝑐2
𝑅𝑒 ∑ 𝐺𝑛𝑒−𝑖𝜔𝑛𝑡𝐼𝑛

𝑞(𝑡) + ∑ 𝐺𝑛𝑒−𝑖𝜔𝑛𝑡

∞

𝑛=1

𝐼𝑛
𝑁(𝑡) −

1

𝑐2
𝑅𝑒 ∑(𝑖𝜔𝑛𝜑0 + 𝜑0

′ )𝐺𝑛𝑒−𝑖𝜔𝑛𝑡

∞

𝑛=1

∞

𝑛=1

 
(20) 

where  

𝐺𝑛 =
𝜕𝑔𝑛(𝑥, 𝑥′)

𝜕𝑥
 

(21) 

𝐼𝑛
𝑞(𝑡) = 𝐼𝑛

𝑞(𝑡 − Δ𝑡) + 𝑞(𝑡 − Δ𝑡)
1 − 𝑒𝑖𝜔𝑛Δ𝑡

𝑖𝜔𝑛
𝑒𝑖𝜔𝑛𝑡 

(22) 

𝐼𝑛
𝑁(𝑡) = 𝐼𝑛

𝑁(𝑡 − Δ𝑡) + 𝐹𝑛(𝑡 − Δ𝑡)
1 − 𝑒𝑖𝜔𝑛Δ𝑡

𝑖𝜔𝑛
𝑒𝑖𝜔𝑛𝑡 

(23) 

4. Validation 

In order to validate equation (19), we assume that there is no random noise in the system, i.e. 

𝐹𝑛(𝑡) = 0), and use the stability predictions in [2] as a benchmark. These are reproduced in Figure 2 in 
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the form of a stability map with heat source position 𝑥𝑞 as bifurcation parameter; 𝐴/�̅� is defined as 

non-dimensional velocity amplitude of the acoustic field. 

 

 
Figure 2: Stability map for a Rijke tube with temperature jump; white regions indicate stability, while 

black regions indicate instability. The following parameter values were used:  

𝑔0 = 1.4, 𝑔1 = 0.3, 𝜏0 = 5 × 10−3s,  𝜏2 = 4.4 × 10−3s, 𝑇1̅ = 304 𝐾,  �̅�2 = 460 𝐾, 𝐿 = 2 𝑚, 𝐾 = 3 ×
105 𝑊 𝑠 𝑘𝑔−1 

 

The black regions show the unstable regions and white regions are stable regions. The amplitude-

dependent time-lag is the reason for the appearance of stable and unstable region with increasing 𝐴/�̅�.  

We calculated the time histories for four points in this stability map as described in section 3.1. The 

results are shown in Figure 3. The values of 𝑔0, 𝑔1, 𝜏0 and 𝜏2 in the heat release rate model are con-

stant, and their values are given by 𝑔0 = 1.4, 𝑔1 = 0.3, 𝜏0 = 5 × 10−3s and 𝜏2 = 4.4 × 10−3s. The 

temperature jump is from 𝑇1̅ = 304 𝐾 to �̅�2 = 460 𝐾. The length of tube and heater power are 𝐿 =
2 𝑚 and 𝐾 = 3 × 105 𝑊 𝑠 𝑘𝑔−1, respectively. All these parameters correspond to those for Figure 2.  

Point (𝑥𝑞 = 0.4m, 𝐴/�̅� = 0.01) is unstable in the stability map, so we expect to observe an expo-

nential growth, followed by a limit cycle with an amplitude around 0.44. Figure 3a shows an exponen-

tial growth until about 𝑥𝑞=0.12m, and a limit cycle with amplitude 0.44 beyond about 𝑥𝑞=0.17m; this 

is in complete agreement with the stability map in Figure 2. Point (𝑥𝑞 = 0.4m, 𝐴/�̅� = 0.6) which is in 

the stable region in the stability map shows an initial decay in amplitude, and quickly reaches a stable 

limit cycle, again with amplitude 0.44; this is shown in Figure 3b. Again, this is fully in line with the 

results in the stability map.  

For point (𝑥𝑞 = 1.5m, 𝐴/�̅� = 0.01), which is in the unstable region but in the downstream side of the 

tube, the time history in Figure 3c shows a an initial growth, followed by a limit cycle with amplitude 

around 1.2. The stability map for this point confirms the result. Finally, for a point in stable region 

(𝑥𝑞 = 1.8m, 𝐴/�̅� = 0.01) we expect the amplitude to decay to zero. Figure 3d validates the result in 

the stability map. Now that we have successfully validated our approach, we will perform the same 

calculations, but include random noise, and study effect of the noise on the stability of the system. 

 

 

 

 

 

 

b) 

c) d) a) 



 

 

ICSV27, Annual Congress of International Institute of Acoustics and Vibration (IIAV), 11-16 July 2021 

a)  

 

b)  

 
c) 

 

d) 

 

Figure 3: Time history of the Rijke tube. (a) Point (xq = 0.4m, A/U̅ = 0.01)  (b) Point (xq = 0.4m, A/U̅ = 0.6)  

(c) Point (xq = 1.5m, A/U̅ = 0.01)  (d) Point (xq = 1.8m, A/U̅ = 0.01) 

5. Time evolution results in the presence of noise 

We will now calculate the time history for the two points in Figure 3a and 3c, with noise present. 

The level of the noise is described by the parameter β, which can take values 1 (small), 2 (medium) and 

4 (high). The blue curves in Figure 4a,b,c show the time evolution for point (𝑥𝑞 = 0.4m, A/U̅ = 0.01), 

which is in the unstable region, for β=1,2,4. For comparison, the equivalent curves for the noiseless 

case have been added in red. Figure 4a shows that a low level of noise (𝛽 = 1) has a small effect on 

the stability behaviour. If the noise level is increased, the time it takes for the limit cycle to develop 

becomes shorter (see Figures 4b,c). Figures 5a,b,c show the same behaviour for the point (𝑥𝑞 =

1.5𝑚, 𝐴/�̅� = 0.01). This phenomenon is already known from experimental observations [4]. Both 

Figures 4 and 5 show that the amplitude of the limit cycle does not change significantly with increasing 

noise level. This is partly, but not fully, in agreement with the predictions by Waugh and Juniper [6]. 

 

a) 

 

b) 

 

c) 

 

Figure 4: Time evolution for point (𝑥𝑞 = 0.4, A/U̅ = 0.01) for different levels of noise 
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a) 

 

b) 

 

c) 

 

Figure 5: Time evolution for point (𝑥𝑞 = 1.5, 𝐴/�̅� = 0.01) for different levels of noise 

In addition, we have chosen the point (𝑥𝑞 = 1.8, 𝐴/�̅� = 0.2) to investigate the effects of noise. This 

point is located in the stable region, but close to its upper boundary. In this case, an increase in the 

noise level leads to a dramatic change in the stability behaviour (see Fig. 6). For β=1 (Fig. 6a), the os-

cillation amplitude decreases fairly steadily; after that the noise becomes noticeable, but has no effect 

on the stability behaviour. A similar trend can be seen for β=2, 4 (Fig. 6b,c), except that the amplitude 

decay is more irregular. Figure 6d, which is for β=8, shows a very different scenario: the amplitude 

decay has been replaced by an amplitude increase, which continues until about t=0.4s, and then a limit 

cycle develops. The amplitude of this limit cycle is about 1.2, which is close to the upper edge of the 

region of instability above the point 𝑥𝑞 = 1.8.  This phenomenon is known as triggering [4]     

 

a) 

 
 

b) 

 

c) 

 
 

d) 

 
 

Figure 6: Time evolution for point (𝑥𝑞 = 1.8, 𝐴/�̅� = 0.2)  for different levels of noise 
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6. Conclusion 

In this paper, we investigated the effects of noise on a thermoacoustic system. An extended Green’s 

function approach was established; this includes two forcing terms: one to describe the heat release rate 

(this is coupled nonlinearly to the acoustic field), and one to describe the noise (this has a variable level 

and is independent of the acoustic field). We validated our method by comparing our predictions for 

the noiseless case with earlier results obtained from a modal analysis approach. There was excellent 

agreement for the stability behaviour as well as for the limit cycle amplitudes. Next, we performed cal-

culations of the time evolution including random noise, and we made the following predictions. (1) 

Increasing the level of noise can change the stability behaviour of the system. This means that the noise 

can trigger an instability in a thermoacoustic system that would be stable if noise was absent. Indeed, 

the level of the noise plays an important role in the stability behaviour. (2) The noise can make the 

transient time, i.e. the time it takes for a limit cycle to establish, faster. Once a limit cycle is estab-

lished, its amplitude is barely affected by the noise; in fact, it is almost the same for the system with or 

without noise. All our predictions are in line with experimental observations. 

Our Green's function approach gives fast predictions and is very versatile. We will use it to shed fur-

ther light on nonlinear thermoacoustic systems; in particular, we will perform a comprehensive investi-

gation of the influence of noise.   
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