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Abstract

This paper is concerned with the theoretical study of thermo-acoustic instabilities in combustors and focuses upon
recently discovered flame intrinsic modes. Here, a complete analytical description of the salient properties of intrinsic
modes is provided for a linearized one-dimensional model of open—open combustors with temperature and cross-
section jump across the flame taken into account. The standard n — 7 model of heat release is adopted, where n is the
interaction index and 7 is the time lag. We build upon the recent key finding that for a closed—lopen combustor, on the
neutral curve, the intrinsic mode frequencies become completely decoupled from the combustor parameters like cross-
section jump, temperature jump and flame location. Here, we show that this remarkable decoupling phenomenon holds
not only for closed—open combustors but also for all combustors with the ideal boundary conditions (i.e. closed—open,
open—open and closed—closed). Making use of this decoupling phenomenon for the open—open combustors, we derive
explicit analytic expressions for the neutral curve of intrinsic mode instability on the n — t plane as well as for the linear
growth/decay rate near the neutral curve taking into account temperature and cross-section jumps. The instability
domain on the n — 7 plane is shown to be qualitatively different from that of the closed—open combustor; in open—
open combustors it is not confined for large 7. To find the instability domain and growth rate characteristics for non-ideal
open—open boundaries the combustor end boundaries are perturbed and explicit analytical formulae derived and verified
by numerics.
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associated with the non-steady combustion process

I. Introduction .
exceed the losses due to viscous effects, heat transfer,

A major proportion of the energy produced in modern
era comes from the combustion of fossil fuels, which is
also a dominant contributor to air pollution. Due to
stricter pollution norms, combustors are compelled to
reduce NOx by reducing the temperature during com-
bustion. Hence, lean premixed pre-vaporized combus-
tors have been introduced.'> However, it comes at a
cost of increased likelihood of thermo-acoustic combus-
tion instability during the combustion process.>*
Combustion instabilities can be observed in many sys-
tems such as liquid and solid propellant rockets, jet
engines, ramjets and industrial power plants.
Combustion instability comes to the fore if the gains

particle relaxation and radiation damping.’ In general,
the gain processes driving combustion instability are
diverse and complex, because multiple phenomena
should be taken into consideration at once to incorpor-
ate three-way coupling between the flame heat release,
the acoustics of the combustor and the hydrodynamics.
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In engineering practice, it is commonly assumed that the
coupling between flame heat release and one of the
acoustic modes plays a key role in the advent of
thermo-acoustic instabilities in combustors. The present
combustion literature offers abundant coverage of the
role of acoustic modes in combustion instability. The
text books of Lieuwen and Yang,° Poinsot and
Veynante’ as well as theoretical work by Dowling
et al.%? can be referred in this context for more details.

However, recently, Hoeijmakers et al.'® and
Hoeijmakers'' discovered a completely new family of
modes originating from the localized flame subsystem
(flame and air/fuel supply line). These modes are often
referred to as the flame intrinsic thermo-acoustic modes.
Throughout this paper, we call them for brevity just
intrinsic modes. Hoeijmakers et al.'” studied these
modes analytically using the scattering matrix of the
flame itself. The matrix is completely independent of
the acoustic boundary conditions. The governing dis-
persion relation for intrinsic modes was found to be
e+ 1+ 0F(w) =0, where, F(w) is the flame transfer
function, ¢ is the ratio of specific acoustic impedance
and 6 is the jump in temperature across the flame. A
simple explicit expression for intrinsic mode frequencies
was given as (7 £ 2kmw)/t, where, 7 is the time lag and k
is an integer. The critical gain for the intrinsic mode to
become unstable in an anechoic environment was found
to be n, = (¢ + 1)/0, and thus the critical gain depends
on the temperature jump. The analytical study was sup-
plemented by numerical analysis of a resonator model.
In the literature,'® it was also shown that the poles of
the complete system (flame + acoustics) for acoustic
reflections at combustor ends going to zero (i.e. anec-
hoic) are the same as those found for the scattering
matrix of the flame, in-line with our expectations. The
analytical expression of intrinsic modes for flame in an
anechoic environment was also considered in Emmert
et al.,'> where an investigation of the stability features
of intrinsic modes was performed based on the balance
of the acoustic energy across the flame. In a parallel
study, Courtine et al.'® pointed out that the theoretical
predictions of the stability and the frequency of intrin-
sic modes strongly depend on the flame transfer func-
tion. Instability frequencies and spatial structures of the
modes, predicted theoretically, were captured by direct
numerical simulation (DNS) with good accuracy for the
flames with sufficient confinement (small cross-section
ratio between injection duct and combustion chamber).
It was further confirmed that intrinsic thermo-acoustic
modes can be more unstable in confined combustion
chambers and thus highlighted the necessity of con-
sidering acoustic ends of the combustor in the theoret-
ical models.

In Emmert et a it has been shown that acoustic
and intrinsic thermo-acoustic modes constitute the

l.,14

complete set of ecigen-modes of a combustor. They
adopted a numerical approach in identifying intrinsic
and acoustic mode frequencies. Most importantly, they
reported that increase of acoustic losses at the ends of
combustor may destabilize the combustion system
because of intrinsic flame instability. This observation
is supported by the experiments of Hoeijmakers et al.'”
Hoeijmakers et al.'> further point out that the effective-
ness of passive thermo-acoustic damping devices could
be restricted by intrinsic stability properties of flame.
Theoretical work of Bomberg et al.'® also confirms the
presence of intrinsic modes. Previous experimental
observation of thermo-acoustic instability frequencies
made for two different combustors ((a) laminar flame
holder-stabilized and (b) turbulent swirl-stabilized
burner''®) were interpreted as intrinsic modes by
Bomberg et al.'® via an analytical study of the combus-
tor stability wusing the flame transfer matrix.
Independent DNSs by Courtine et al.'” and Silva
et al.?® further confirms the intrinsic thermo-acoustic
feedback to be an authentic physical phenomenon
and not just a spurious by-product of simplistic
models. A possible physical mechanism of flame intrin-
sic modes was pointed out by Hoeijmakers et al.'” as
the creation of localized feedback loop by flame and its
nearby environment (i.e. air/fuel supply line).

Thus, the common assumption that in thermo-
acoustic instabilities flame heat release always locks
onto one of the acoustic modes is not necessarily true.
It needs to be critically reconsidered on a case-by-case
basis.!'®

The literature review in the previous section identi-
fies and firmly establishes the presence of flame intrinsic
modes within combustors. These modes have been neg-
lected for decades in the study of thermo-acoustic
instability. Having said that the study of the literature
on intrinsic modes is predominantly confined within the
computational and experimental domain. The only
analytical studies performed in the field so far considers
an anechoic chamber'® and a closed—open combustor
model.?! For an anechoic boundary condition, it has
been shown'? that intrinsic modes can become unstable
for certain flame parameters. Having said that, what is
the corresponding criterion for intrinsic instability in a
practical combustor, is an open question, which
requires detailed investigation. Courtine et al.'* men-
tion that acoustic reflection from the ends of the com-
bustor can further facilitate the instability. But the
analytical criterion based on which this phenomenon
can be predicted remains to be found yet. In this con-
text, through an analytical and numerical investigation,
Hoeijmakers et al.?*> derived bounds for the acoustic
losses in the flame surroundings based on which the
stability of a thermo-acoustic system can be ensured.
The method was illustrated on a couple of premixed
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multiple Bunsen type burners. The prediction from the
numerical approach was found to be less conservative
than the analytical one. In their numerical approach,
the upper bound of the acoustic losses were provided as
a combination of up and downstream losses, providing
flexibility to incorporate additional losses at either end
of the combustor, based on design convenience.

In the literature,?' the analytic study is based on the
observation that the dispersion relation can be exactly
factorized on the boundary of instability, i.e. the neu-
tral curve.”® This enables one to find analytically
instability domain and the corresponding linear
growth/decay rate near its boundary. However, it
remained unclear whether this analytical approach
can be extended to any other type of combustors and,
if yes, what features of the intrinsic mode instabilities in
the known combustor models persist and what will
change and how. The present work aims to address
these questions. We show that the open—open systems
also have the remarkable property of factorization of
the dispersion relation on the stability boundary, which
enables us to answer the key questions concerned with
the intrinsic mode instabilities in such systems. To
obtain comprehensive picture of stability behaviour of
intrinsic modes in a multi-dimensional parameter space
via numerics is an extremely challenging and time-con-
suming assignment, since the effects of the combustor
properties (e.g. flame location, boundary conditions at
the ends and parameters of the cross-section and tem-
perature jumps) on the intrinsic mode growth rates
need to be studied. The current work addresses this
need for a one-dimensional (1D) model of open—open
combustors with temperature and cross-section jump
across the flame.

Here, we consider a standard 1D acoustic model of
an open—open combustor with a heat source. The heat
release rate is modelled by the linear n — t model.*
Within the framework of this simplified open—open
combustor model, we will provide an overall picture
of the intrinsic modes and explicit analytical expres-
sions for the key parameters of the intrinsic modes
(instability domains in the parameter space, the
growth/decay rates, frequencies of unstable modes)
for the whole range of the system parameters.

The current work is a follow-up of Mukherjee and
Shrira,”! where a comprehensive analytical study of
intrinsic modes has been performed for a 1D quarter
wave resonator (ideal closed—open acoustic ends). The
work?! finds the exact intrinsic instability frequency,
the exact instability domain in the parameter space
and with a good accuracy the corresponding linear
growth rate near the neutral curve. An idealized
open—open or closed—open assumption for acoustic
ends of the combustor is a reasonable first approxima-
tion for the purpose of the analytical study. The closed

end of the combustor implies choked inlet nozzle for
low Mach number,? whereas the open end of the com-
bustor implies that the flow goes into the open atmos-
phere, the reflection coefficient of which is known.?
The work by Mukherjee and Shrira?' is based on the
assumption of idealized closed—open ends of the com-
bustor, which is a reasonable first approximation for
many real combustors. But some real systems could
have their idealized prototype as an open—open com-
bustor. The present work focuses on this specific type of
combustor. Findings of Mukherjee and Shrira®' show
that for a closed—open combustor, on the neutral curve,
the intrinsic mode frequencies become completely
decoupled from the combustor parameters like cross-
section jump, temperature jump and flame location.
This prompts the question on whether this decoupling
holds for any other boundary conditions, as well. In
this paper, we show that this remarkable decoupling
phenomenon occurs only for strictly ideal boundary
conditions (i.e. closed—open, open—open and closed—
closed). In this regard, we must mention that in an
industrial gas turbine combustor there is a compressor
assembly in the upstream and turbine assembly in the
downstream of the combustor, imposing certain limita-
tions on the validity of the perfectly closed or perfectly
open assumption of acoustic ends. A detailed analysis
of impedances at acoustic boundaries can be found in
Lamarque and Poinsot,? Silva et al.?” and Marble and
Candel.®® Once the intrinsic instability features for
combustors with ideal end conditions are known, we
obtain the intrinsic instability features for practical sys-
tems through linear perturbations of the acoustic ends
of an idealized open—open combustor. We find the
neutral curve and growth rate for combustor with
non-ideal open—open boundaries, and also identify the
parameter space where the analytical solution loses its
robustness.

The current paper is organized as follows: In
Section 2, we develop the mathematical model to
derive the acoustic dispersion relation for a combustor
with open—open end conditions, taking into account
cross-section and temperature jumps across the flame.
In Section 3, we examine numerically the behaviour of
acoustic and intrinsic modes on the complex frequency
plane and identify n —t parameter domains where
intrinsic instability might be stronger than the acoustic
instability. In Section 4, we consider decoupling of
intrinsic mode from the combustor parameters for the
case of an open—open combustor. Then, we derive an
analytical expression for the n-threshold for the intrin-
sic mode to become unstable, which leads to neutral
curves on the n — t plane. Further, we arrive at an
expression of linear growth/decay rate for an intrinsic
mode near the neutral curve. In this section, we also
show that the factorization of the dispersion relation on
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the neutral curve holds good only for ideal (closed or
open) boundary conditions. In Section 5, we linearly
perturb the acoustic boundaries of the combustor and
obtain the analytical solution of the neutral curve and
growth rate for combustor with non-ideal boundaries.
In Section 6, we study the effect of various combustor
parameters like flame location, cross-section jump and
temperature jump on the neutral curves and growth
rates. Finally, the concluding comments are given in
Section 7.

2. Mathematical model for a combustor
with open-open end conditions:
Derivation of the dispersion relation

In this paper, we will focus on the analytical study of
flame intrinsic modes in a common 1D model of an
acoustic open—open combustor. Hoeijmakers et al.'®
provided an analytical description of the intrinsic
mode for a flame kept in a tube with anechoic boundary
conditions. The results of the analytical study of intrin-
sic flame modes by Mukherjee et al.*® were produced
for a 1D quarter wave resonator. In the present context,
we will restrict our analysis to the simplest case of a
combustor with ideal open—open end conditions. The
1D analytical formulation based upon n — r model is
capable to generate valuable insight into the stability
behaviour of intrinsic modes in multi-dimensional par-
ameter space.

Figure 1 provides a schematic sketch of an open—
open combustor with a compact heat source at
X = x4, with x being the longitudinal coordinate with
the origin at the left open end of the combustor. 4, 4,

=) 32
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Figure 1. Schematic sketch of a combustor with open—open
end conditions. The combustor has a cross-sectional area jump
at the flame location x = x4. Thick arrows (brown online) sym-
bolize the forward/backward travelling waves upstream/down-
stream of the flame. Lightly shaded region (yellow online) marks
the domain of higher temperature after the temperature jump
across the flame.

and By, B, are the pressure amplitudes for the forward/
backward going waves in the upstream and the down-
stream region, respectively. The mean temperature is
assumed to jump from 7 to T, across the flame. The
cross-sectional area jumps across the flame from S to
S>. The current mathematical model is based on the
following assumptions:

(i) We consider a 1D acoustic model and thus the
wave is assumed to propagate only in the axial
direction (x).

(i1) Both of the end conditions of the combustor are
assumed to be ideal open. In practical combus-
tors, reflection coefficients at the boundaries
have a dissipative and a reactive part; the reflec-
tion coefficients are also frequency dependent.
However, we assume the reflection coefficient to
be exactly —1 for all frequencies.

(iii) The flame is assumed to lie on a single hypothet-
ical axial plane. Any distribution of the flame
(heat release rate) in the axial direction is not con-
sidered for the time being.

(iv) The flame heat release rate is modelled by the
linear n — v law.?* In general, the flame response
is larger at the lower frequencies as compared to
the higher frequencies. Consideration of n— <t
flame model, which is based on frequency inde-
pendent gain of the flame transfer function,
hence, does not reflect the true physical reality.
This common assumption is adopted here to sim-
plify the analytical model.

(v) Effect of mean flow and the subsequent hydro-
dynamic instabilities are ignored in this model.
We also neglect the effect of turbulence in the
model.

(vi) We neglect damping or losses of any kind in the
current analytical model.

(vii) In actual combustors, there is a continuous distri-
bution of temperature across the length of the
combustor. Non-uniform temperature gives rise
to entropy waves in the system.*® For simplicity,
we ignore this distribution of temperature and
assume the mean temperature to jump from 7
to T, across the flame. The effect of entropy
waves, therefore, is neglected in our model.

The acoustic pressure and particle velocity at the

upstream region and at the downstream region of the
combustor can be written as”’

(. 1) = [y 4 Bemhix]eior,

- 1 " . )
u(x, 1) = <> [Ale’l"x —Blef’klx]e*”‘”, and
p1C
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The wave numbers k; (i=1,2) upstream and down-
stream of the flame can be presented as k; = w/c; and
ky = w/cy, where w is the complex frequency, c¢i, ¢
represent the speed of sound and p;, p, are the mean
densities upstream and downstream of the flame,
respectively. For open—open combustor, the boundary
conditions at two ends can be represented as follows

atx =0, 41/B; = R;(0) = —1, and (1)
at x = L, Bye /45" = Ry(L) = —1 ®)
The pressure and flow rate balance at x = x, implies™**
ﬁl(xq) =ﬁ2(xq)’ and (3)

Sy (xg) + ((r = D/p1})0 = Saiaxy) — (4)

Here, O(7) is the heat release rate at x = Xy and y
represents the ratio of specific heats of air (c,/c,). It is
assumed that the heat source acts like a monopole with
a volume outflow (y — 1)(Q~/,olc%).9 The linear heat
release law can be assumed to be of the form (see
e.g. Truffin and Poinsot™); O(r) = (p1Sic}/(y — 1)) x
nit) (xg,t — 7). Here, n and 7 are the interaction index
and time lag, respectively. The rate of heat release fluc-
tuations, Q, is assumed to be proportional to the local
velocity upstream of the flame, i, with a time lag, t. In
the frequency domain, this can be written as,
(@) = (p1Sici/(y — D)ne ity (x,, w).

The set of homogeneous equations for A4;, By, A4
and B,, equations (1) to (4) are usually presented in
the matrix form.** However, we arrive at a compact
dispersion relation, which provides the basis for all ana-
lytical derivations in the subsequent sections (refer
Mukherjee and Shrira®")

[(S2/S1)(p1/pa)(c1/e2) + 1] sin((ky — ky)xy — ks L)
+[(S2/S1)(p1/ p2)(er/e2) — 1 sin(ky L — (ky + ka)x,)
+ 2ne™" cos kyx, sinks(x, — L) = 0 (5

We denote the function on the left-hand side of tran-
scendental equation (5) as g(w). Thus, dispersion rela-
tion (5) can be re-written compactly as

g@) =0 (6)

The dispersion relation can be simplified for special
cases, when there is no cross-section and temperature

jumps across the flame, that is S =S, and 7| = 7>,
and thus ¢; = ¢, p1 = p» and ky =k, = k. For these
situations, the dispersion relation (5) reduces to

sinkL — ne'* coskxysink(x, — L) =0 (7

The dispersion relation (7) can be further simplified
when the flame is located exactly in the centre of the
combustor, i.e. at x, = L/2. Specific features for this
case will be explored in Section 3.2.

A solution of the dispersion relations (5) and (7)
generates the eigen-frequencies w of the system.
Equation (5) describes the most general case (an
open—open combustor with a cross-section and tem-
perature jump across the flame), while equation (7) is
the reduced versions of equation (5) for special cases.
The real part of w is the frequency, while the imaginary
part is the growth/decay rate. The particular form of
the dispersion relation (5) and (7) makes them a con-
venient object for an analytical study. It will be shown
in Section 4 that these equations allow factorization (or
decoupling from combustor parameters) on the neutral
curve and on this basis, we can obtain useful analytical
expressions of modal frequency and growth rate near
the neutral curve.

3. Intrinsic modes in the general picture
of the combustor modes

It has been confirmed by the findings of Hoeijmakers
et al.'” and later by Mukherjee and Shrira®' that there is
always an infinite number of intrinsic mode present in
any combustor for any n and 7, whatever might be the
end conditions. In the asymptotic limit of small n, these
modes are strongly decaying for any 1D combustor
with a linear n — v model of flame heat release. These
modes are independent of the acoustic modes and in the
limit of small » these modes are strongly localized and
thus do not feel the combustor boundaries and other
parameters of the system. An explicit solution for the
intrinsic mode frequency for small # for any combustor
with linear n — T model of flame heat release has been
reported by Mukherjee and Shrira®! as follows

w= (2m' 4+ 1)(7/7)

. (8a)
— (i/9) In([(S2/S1)(e1/ p2)(c1/c2) + 1]1/n),
Which can be approximated as,
o~ (2m' +1)(7/7) + (i/7) In(n) (8b)

Here, m' is the mode number of the flame intrinsic
modes. When the cross-section is assumed to be con-
stant, the expression of modal frequency for any com-
bustor in the limit of small n, as given by equation (8a),
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is the same as found from the result provided by
Hoeijmakers et al.'” for an infinite tube with a flame
inside. Note a difference in the notation: in this paper, n
is the same as in Courtine et al.,'* which relates to n in
Hoeijmakers et al.'? (here labelled as ny) as n = Ony,
where 0 = (T,/T7) — 1. Besides, there is another differ-
ence. The expression given by Hoeijmakers et al.'® is
valid for any n (as the effect of combustor boundaries
are neglected), whereas in the current paper, equation
(8a) is valid only for sufficiently small n. The salient
features of equation (8a) are that the intrinsic modes
have their own mode numbers, completely independent
of the mode numbers of the acoustic modes. The real
part of the flame intrinsic mode frequency depends only
on the time lag and mode numbers ('), whereas the
decay rates are independent of the mode numbers and
are inversely proportional to 7. For small but finite n
the decay rates depend on some of the parameters of
the combustor as given explicitly by equation (8a) and
do not depend on the end conditions. In the limit of
small 7, the decay rate depends logarithmically on n.
Intrinsic modes, however, have the potential to
become unstable once the value of n exceeds a certain
threshold, as observed by Mukherjee and Shrira®' for a
closed—open combustor and also, previously, by
Hoeijmakers et al.'” for the case of the flame in an
infinite tube.

3.1. Stability features of intrinsic modes: Contour
plots on the complex frequency plane

Here, we examine the features of the full dispersion
relation (5) numerically. For certainty, we consider as
an example a combustor with the parameters of the test
rig at IIT Madras:*>~° the length L is 0.75m, the cross-
section S is 0.0016m?, the temperature 7 is assumed
constant throughout the duct and equal to 297 K (the
effect of temperature jump will be considered in
Sections 4, 5 and 6). For most of our analysis, we
assume the flame to be located at x, = L/3. The
actual combustor at IIT Madras is closed—open. But
in this study, we only use the physical dimensions of
the setup. However, we stress that the specific param-
eters of the combustor are immaterial for our study and
they are used for illustration only. Our analytical model
is applicable to any open—open combustor (with ideal
open end conditions) as long as 1D model idealization
retains validity.

To facilitate a simultancous study of acoustic and
intrinsic modes, similar to Mukherjee et al.,>> we gen-
erate contour plots of the absolute value of function
g(w) prescribed in the full dispersion relation (5) on
the complex frequency plane. This enables us to
follow the frequencies and the growth/decay rates of
the modes at the same time.

In Figures 2 to 4, acoustic modes are marked with
squares (blue online), while intrinsic modes are shown
by triangles (orange online). The instability domain is
marked in lightly shaded (yellow online). The acoustic
mode frequencies are m“(mwc/L) (for m*=1,2,... and
assuming ¢; =c» =¢)>' and have almost zero growth
rates in Figure 2, because the n selected (n=0.025) is
very close to zero. The innermost closed loops of the
iso-lines of the absolute value of the function g(w) in the
complex w plane indicates the solution region for modal
frequency w. The modal frequencies are discrete points
corresponding to | g(a))’ =0 (represented by squares and
triangles) in these solution regions. In Figures 2 to 4,
we present both dimensional (w in rad/s) and
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Figure 2. Contour plot of |g(a)){ for n = 0.025, r = 3.0 ms and
Xq = L/3 (no temperature and cross-section jump). The param-
eters used for this plot are from the test rig of IT Madras®: the
length L is 0.75m, the cross-section S is 0.0016 m? the tem-
perature T is assumed constant throughout the duct and equal to
297 K. The flame is located at x; = L/3, ¢; =c; =345 m/s. Two
sections are parts of the same contour plot. The domain of
instability is lightly shaded (yellow online). Squares (blue online)
and triangles (orange online) represent the acoustic and intrinsic
modes, respectively. Thin dashed (red online) vertical lines indi-
cate the intrinsic mode frequency in the limit of small n, given by
equation (8b).
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Figure 3. Contour plot of |g(w)| forn= 1.1, t=3.0 ms.

Notations and other parameters are the same as in Figure 2.
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Figure 4. Contour plot of |g(w)| fort=50msand n=1I.I.
Notations and other parameters are the same as in Figure 2.

non-dimensional representation of the real part of fre-
quencies and growth rates of the modes. The real part is
non-dimensionalized based on the fundamental modal
frequency of acoustic mode (we¢/L in rad/s), i.e.
Re(w,) = Re(w)/(me/L). The growth rate is non-
dimensionalized by intrinsic instability frequency of
the lowest intrinsic mode, i.e. Im(w,) = Im(w)/(7/7).
The thin dashed vertical lines indicate the intrinsic
mode frequency in the limit of small n, given by equa-
tion (8a).

Figure 2 is split into two panels to plot the acoustic
and intrinsic modes separately. As the intrinsic modes
strongly decay in this limit (when n=0.025), it is more
convenient to represent the acoustic and intrinsic
modes in two isolated panels. The time lag selected
for this figure is 3 ms. The intrinsic modes in the
lower panel are equally spaced in this limit of » and
their decay rate is too high as predicted by equation

(8b) and also evident from Mukherjee et al.?* When n
is increased from 0.025 to 1.1 (as depicted in Figure 3),
the first intrinsic and the second acoustic mode become
unstable. The decay rates for all other intrinsic modes
reduce significantly. As seen in Figure 3, the number of
frequencies in the system, indeed, exceeds by far the
number of acoustic modes as was also reported by
Emmert et al.'* in their study of a premixed combustor.

When we increase the time lag further from 3 to
Sms, the intrinsic mode frequency reduces as predicted
by equation (8b) (equation (8b) demonstrates 1/t
dependence of intrinsic mode frequency). This is evi-
dent from Figure 4. The first acoustic and the third
intrinsic modes have become unstable for this time
lag. The extensive numerical simulations show that all
the intrinsic modes hold the potential to become
unstable beyond a certain threshold of » and within
certain bands of r. We will shed some light on this
aspect analytically in Section 4. In some cases, the
acoustic mode can also become unstable at one of the
nearby intrinsic mode frequency in the complex fre-
quency plane. For example, in Figure 3, the second
acoustic mode becomes unstable at the second intrinsic
mode frequency, 3140 rad/s (in the limit of small n),
whereas the second intrinsic mode remains decaying.
This is an intrinsic-acoustic mode coupling scenario,
a detailed discussion of which lies beyond the scope
of the current paper. The acoustic and intrinsic modes
are always uncoupled, when 7 is small (intrinsic modes
are very much localized in this limit) and start to feel
each other’s presence only for sufficiently high n. Once
these modes approach the boundary of stability, we
apparently have only system modes (neither ‘clean
acoustic’ nor ‘clean intrinsic’). Then again, one of the
key findings of the paper is that the intrinsic mode (or
the coupled-acoustic mode) becomes unstable at
o' = (2m' + 1)/t + mn/t (Where m=0, +1, —1) (as
will be shown in Section 4.1), whereas the conventional
acoustic mode attains instability at wj = m“(wc/L).
Hence, it is indeed possible to track down the identities
of these modes based on their instability frequencies.

Thus, we have shown a set of contour plots for an
open—open combustor for different time lags which
give a compact visual representation of stable/
unstable modes behaviour on the complex frequency
plane. The increase of n reduces the decay rate of
intrinsic modes, whereas the increase of 1 reduces
the intrinsic mode frequencies. All the intrinsic
modes show a tendency to become unstable beyond
a certain threshold value of n and for some t intrinsic
mode can also couple to one of the acoustic modes in
their close vicinity in the complex frequency plane.
All of these results are consistent with explanations
found from Mukherjee et al.*® and Mukherjee and
Shrira,?' as well.
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3.2. Intrinsic mode as the driver of combustion
instability

Under certain conditions in an open—open combustor,
the intrinsic mode can be unstable, while all the acous-
tic modes decay simultaneously (or do not grow), thus
being the only mechanism of the combustion
instability.

Figure 5(a) and (b) illustrates two such cases using
contour plots of |g(w)|. In Figure 5(a), the flame is at
Xy = L/2. We see that for n=2.1, the first three intrin-
sic modes are unstable, whereas the acoustic modes
remain on the neutral curve of stability, just like they
do when »n=0. Another example is shown in
Figure 5(b), where flame resides at x,=0.20m. We
find that for n = 1.0, the first intrinsic mode is unstable,
whereas all other modes (acoustic/intrinsic) are either
decaying or are on the neutral curve. These two scen-
arios are examples when intrinsic mode, instead of an
acoustic mode, drives the combustion instability. In
general, the intrinsic modes attain dominance in the
context of combustion instability when all the acoustic
modes decay (a) due to negative Rayleigh index or (b)
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Figure 5. Contour plot of |g(w)| for (@) t=3.0ms, n=2.1,
Xq =L/2 and (b) T = 3.0 ms, n = 1.0, x4 =0.20 m. Notation and
other parameters are the same as in Figure 2.

due to increased acoustic losses from the end of the
combustor.'> We can also have a scenario when both
acoustic and intrinsic modes can become unstable
simultaneously.®’

An important aspect can be pointed out in this
regard. Equation (7) (valid for no cross-section and
temperature jumps across the flame) shows decoupling
of intrinsic and acoustic modes at x, = L/2. The acous-
tic modes are given as sin(kL) = 0, whereas the intrinsic
mode follow the governing equation: 2+ ne® = 0.
This decoupling holds if the effect of cross-section
jump is taken into account, as well. Hence, in the
middle of the open—open combustor, acoustic and
intrinsic mode stop influencing each other, when we
neglect temperature jump.

4. Intrinsic flame instability: Neutral
curves and growth rates

In the previous section, we came across the fact that in
the limit of small » the flame intrinsic modes decay
strongly. However, as we increase n, the decay rate
decreases and at some threshold value of » the intrinsic
mode becomes unstable. In this section, we find analyt-
ically the intrinsic mode incipient instability frequency,
the threshold of n for instability and growth rate for
flame intrinsic modes. In Section 4.1, we find out the
intrinsic mode incipient instability frequency at the neu-
tral curve. Then, in Section 4.2, we obtain the exact
threshold value of n for intrinsic mode instability and
find the neutral curve in the n — t parameter space.
Finally, in Section 4.3, we evaluate the linear growth/
decay rates near the neutral curve.

4.1. Decoupling on the neutral curve

Here, we will find the incipient instability frequency, i.e.
the frequency of the intrinsic mode at the threshold of
instability. Let /. be the discrepancy between the eigen-
frequencies ' and wj), the small n prediction given by
the real part of equation (8a). Thus, for any n,
Re(o') = ) + i, where superscript i denotes the
intrinsic modes. For any value of n the intrinsic mode
frequency o can be written as o’ = Re(w') + iIm(o') or
o' = (0} + o) + ilm(w'). We make use of this expres-
sion of ' in the dispersion relation (5), then the com-
plete dispersion relation (5) attains the following form

(o + 1) sin{(w) + o] + ilm(o')) B1}
+(@—1) Sin{(a)f) + a)ﬁ + i]m(a)i))ﬂz}
+ 2neileptelFilm(a))r cos{ (a)f) + a)’c + iIm(coi))xq/cl}
X sin{(wé + o + i[m(wi))(xq - L)/Cz} =0 )

where «, B; and B, are given as
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o= (S—2> <M> Bi = x, (— - —) —— and +(1 = a)(Ry(L) — Ry (0)) cos(a/Ba)
1/ \p2C2 (S| (&) (10) ) .
5 L (1 . 1) cos(w.t){(1 = Ri(0)Rx(L))cos(w'B1)
h=——x(—+— A
o o | HRAL) — Ri0)cos(wipn))
g —n, =0
We make use of the identity, ¢* = —1 based on i —sin(wl7){(1 + Ri(0)R2(L))sin(w'Br)
equation (8a) and simplify equation (9) further. By def- ' L
inition, Im(e') is equal to zero for the threshold value +(Ro(L) + R1(0))sin(w'B2) }
of n, i.e. Im(w') = 0 at n = n,. This specifies the neutral (12a)

curve. By equating the real part of equation (9) to zero,
it can be shown that

2inl), sin(w!.7) cos(kix,) sin(ka(x, — L)) =0 (11)
and thus similar to the case of the closed—open com-
bustor we have decoupling of intrinsic mode frequency
on the neutral curve, that is, on the neutral curve the
intrinsic mode incipient instability frequency is com-
pletely independent of all the parameters of the com-
bustor we take into account in our model (the length,
the flame location, cross-section jump and temperature
jump) except the time lag 7; and thus o) = mx/7, where
m =0, +1. The decoupling phenomenon (or the factor-
ization of the dispersion relation) was first reported by
Mukherjee and Shrira®' for a closed—open combustor.
This prompts an obvious question: For how many dif-
ferent types of end conditions of the combustor, this
kind of decoupling of intrinsic instability frequency
from the combustor parameters on the neutral curve
takes place? The question can be answered with the
help of general dispersion relation when R;(0) and

Ry(L) are retained in the original form in equations
(1) and (2)

(1 + a){eiwﬂl _ Rl(O)Rz(L)e_i‘“ﬁ‘ }
+ (1 — ()[){Rz(L)eiw'B2 — R](O)e_iwﬂz} + neiwr{eimﬂl
+R2(L)eiwﬂz _ Rl(o)efiwﬂz _ R](O)Rz(L)efiwﬁ‘ } -0
(12)
where a, B and B, are given by equation (10). Making

use of o = (o} + ) + ilm(w'), the exponential terms
in equation (12) can be expanded as

P — e[(u){]-&-w{.-ﬁ-ilm(w"))ﬂl
= o~ m(e)B {cos((wf + L) B1)
+isin((a)6 + wé)ﬁl)}

The resultant equation can be further simplified at
the neutral curve. The real part of equation (12) at the
neutral curve can be written as

(I +a)(1— Ri(0)Ry(L))cos(w'By)

And the imaginary part of equation (12) can be writ-
ten as

(1 +a)(1 + Ri(0)Ro(L)) sin(e'B1)
+ (1 —a)(Ra(L) + R1(0))sin(w'B,)
cos(w.t){(14 Ri(0)Rx(L))sin(w'B)

| HRAL) + Ri(0)) sin(w'2) } 0
J— n =
"1 Fsin(wit){(1 = Ri(0)Ry(L))cos(e'B1)

+(Ra(L) — Ri(0))cos(w' ) }
(12b)

At present, there is no general approach allowing us
to solve equations (12a) and (12b) apart from the
numerics. However, under some restrictions on R;(0)
and R,(L) these two equations can be solved analytic-
ally. One of the options, found and used in Mukherjee
and Shrira,”! is the case of a closed—open combustor
(i.e. R1(0) =1 and Ry(L) = —1), where equation (12b)
manifest factorization on the neutral curve

2int), sin(w!7) sin(kyx,) sin(kz(x, — L)) =0

Another option is exploited in the current paper,
where for open—open boundary conditions (R;(0) =
—1 and R>(L) = —1) equation (12a) factorizes on the
neutral curve. The only other case where factorization
occurs is when both ends of the combustor are closed,
that is R;(0) =1 and R,(L) = 1. This particular scen-
ario is of less practical interest for the present design of
combustors, nonetheless, should not be neglected as
there might be possible applications of this case in
other fields of interest. We will, however, refrain from
analytical study of this case in the present work. In
general, for the decoupling to happen, except one
term containing sin(w!t) or cos(wit), other terms
need to vanish, in either equation (12a) or (12b).

Thus, we get only certain special combinations of
R;(0) and Ry(L) for which multiple multipliers contain-
ing R;(0) and R,(L) terms in equation (12a) or (12b)
vanish. These special combinations are:

(i) Ri(0)=1, Ry(L)=—1(or, Ri(0)=—1,Ry(L)=1),
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(i) R1(0) = —1, Ro(L) = —1 and,
(iii) R1(0) =1, Ry(L) = 1

Any other combinations of non-ideal reflection coef-
ficients (including the ones with imaginary parts) pro-
hibit decoupling on the neutral curve. In the current
paper, we concentrate only on the case (ii), i.e. on a
combustor with ideal open—open boundary conditions.

4.2. The threshold in n for intrinsic instability:
Exact solution for the neutral curve

In this section, we derive the exact solution for the
threshold in n (n!,) for the intrinsic mode to become
unstable on the n — 7 plane. For each intrinsic mode,
we find the neutral curves, i.e. the boundaries of the
stability domains on the n — 7 plane.

Making use of the identity, ¢’ = —1 based on
equation (8a), the imaginary part of equation (9) on

the neutral curve immediately yields us the threshold n/,

{ (e + Dsinf (g + ;) A1}
S + (a — D sinf (o)) + @) B2}
th=—1 cos(wit) cos(kixy) sin{ka(x, — L)}

(13)

where «, B and B, are provided by equation (10). First,
we examine a special case: x, = L/2, with uniform
cross-section and temperature, for which expression
(13) can be significantly simplified. For the segment of
the neutral curve corresponding to 't = 0, we find

nih’(o) =2 (14a)

and for the segments of the neutral curve corresponding

to o't =7 and w.tr = —x the expressions for n}, take
the form
My = —2, and (14b)
Moy = =2 (14c)

Thus, it is clear that when the flame is located in the
middle of the open—open combustor with no temperature
and cross-section jump, the threshold of 7 is constant
(n, =2) on the neutral curve segment w.t = 0; the thresh-
old is exactly the same as the one found in Hoeijmakers
et al.'® for an anechoic chamber. At this particular flame
location, the threshold in 7 is negative (and therefore
unphysical) on the neutral curve segments o't = 7 and
w'.T = —m as per equations (14b) and (14c). Equation (13)
stipulates that the threshold of nis 1, when x, = 0 on the
neutral curve segment w.t =0 and —1 on the neutral
curve segments .t = 7 and w't = —x. Thus, the thresh-
old in n increases as the flame is moved from the flame

location x, =0 to x, = L/2. This is indeed a general
trend and it will be shown in the subsequent sections
that as we move the flame location from x, =0 to
x4 = L, the value of the n-threshold increases.

4.2.1. The neutral curve for a single intrinsic mode on the
n — t plane. Figure 6(a) shows a sample neutral curve
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Figure 6. (a) Neutral curve and instability domain (marked in
yellow online) on the n — 7 plane for the second intrinsic mode
(m' = 1) of an open—open combustor when x, = L/3 and there is
no temperature and cross-section jump (¢; = ¢; = ¢ = 345m/s).
As per equation (10), o, 8y and y areta = |, ) = —L/c =
—2.17 x 1073 s and B = L/3c = 0.72 x 1073 5. The segments
wit =0, wlt = 7 and wit = —7x of the neutral curve are indi-
cated by arrows (blue, red and green online), respectively. (b) is
the same as (a), but extended to show more of the domains with
multiple instability islands narrowing with decrease of 7. The
dashed lines show their continuations which are also exact
solutions of equation (13). We interpret them as neutral curves
for acoustic modes coupled to the intrinsic mode. Hatched area
indicates the domain with multiple instability islands narrowing
with the decrease of t. The dashed (purple online) horizontal line
shows the threshold for an infinite tube: ni, = (S/51)(01/p2)
(c1/c2) + 1.'° Other parameters are the same as in Figure 2.
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(for the second intrinsic mode) of an open—open com-
bustor, when the flame is situated at x, = L/3. The
temperature and cross-section are assumed to be uni-
form and thus ¢; =c¢; =¢=345m/s. In all subsequent
plots of the neutral curves, in parallel with the dimen-
sional time lag 7, we also use a non-dimensional time
lag, 7, = t¢/L, employing the natural acoustic mode
timescale L/c, where ¢ is the sound speed in the absence
of temperature jump. When the fundamental frequen-
cies of acoustic mode and the intrinsic mode are the
same, i.e. 7w/t = mc/L, this will correspond to 7, = 1.
The solid lines indicate intrinsic modes and we interpret
the dashed lines as the coupled-acoustic modes. The
lightly shaded area (yellow online) represents the
instability domain for the chosen (second) intrinsic
mode. Hatched area indicates the domain with multiple
instability islands narrowing with the decrease of .

Each neutral loop is a combination of neutral seg-
ments w't = 0, w'.t = 7 and wl.T = —7, except the loop
on the extreme right, which is created by a combination
of w'.t =0 and 't = 7 (the segment corresponding to
o't = —m does not feature in this loop). Note that the
n-threshold saturates for higher time lags, making
intrinsic instability possible for any mode for large .
Indeed, in the case of open—open end conditions, the
saturated values of n-threshold can be obtained from
equation (13) under the assumption of large time lag.
With the assumption that sin(y) ~ y and cos(y) ~ 1,
for small y, the saturated value of n-threshold comes
out to be

i e+ DB+ (a— D]
ny, = 2(xq _ L) (15)

It can be further shown from equation (15) that the
saturated value of n-threshold increases as x, increases.
In other words, the boundary of stability moves up, as
we increase x,, indicating that the lower values of x, are
critical from intrinsic instability perspective.

Figure 6(b) is an extension of Figure 6(a) showing
that the neutral loops on the left of the neutral curve
are a repetitive structure, indeed. In Figure 6(a), we
have shown only two neutral loops, whereas in
Figure 6(b) we have shown three neutral loops. It is
obvious that there are an infinite number of smaller
neutral loops on the left of these three loops in
Figure 6(b). This infinite number of closely spaced
loops is hidden by hatched lines. All the subsequent
discussions will be mainly focused on the neutral loop
existing on the extreme right. The dashed horizontal
line (purple online) in Figure 6 shows the threshold
for an infinite tube according to Hoeijmakers et al.'
For an infinite tube, the threshold in 7 can be obtained
by equating the growth/decay rate to zero in equation
(8a). In our notations, the expression for the threshold

can be expressed as nl, = (S2/S1)(p1/p2)(c1/c2) + 1. In
Figure 6, ni, =2 for the uniform tube, i.e. for
S>/S1=1, pi/pa=1 and ¢;/c; = 1. The figure illus-
trates that for an open—open combustor n, can be sub-
stantially smaller, as compared to an infinite tube,
meaning that in an open—open combustor, the intrinsic
modes can become unstable at a much lower value of n.
This observation is in line with the similar one made by
Mukherjee and Shrira®' for closed—open combustors.
The analytical solution (13) for neutral curve is exact,
a numerical validation of which can be found in
Mukherjee®® and also in Mukherjee and Shrira®' for
closed—open combustors (with and without tempera-
ture and cross-section jump).

We note that every small or large loop on the neutral
curve is a result of intrinsic—acoustic mode coupling.
Indeed, the neutral curve segments w't =7 and
o't = —m originate due to this coupling. Figure 6(a)
and (b) makes it evident that near the intersection of
neutral curve segments .t =0, o't =m, and also
w't =0, o't = —m, we observe two solutions for the
same time lag. The first solution corresponds to intrin-
sic mode, whereas the second solution (which is also a
solution of equation (13)) represents a coupled-acoustic
mode. We refer this as the domain of coupling on the
neutral curve. We witness single uncoupled solution for
the intrinsic mode corresponding to w't = 0, between
these two intersection points. The coupled modes
invariably tend to change their identity in the vicinity
of intersections of the neutral curve segments, an obser-
vation reported by Mukherjee and Shrira.?' In the
absence of coupling, intrinsic mode attains instability
at a frequency corresponding to w't = 0, whereas the
coupling induces a frequency shift of 7/7 to one of the
nearby acoustic modes. A detailed discussion of cou-
pling will be reported elsewhere.

4.2.2. The neutral curve for multiple intrinsic modes on the
n — 1 plane. Figure 7 shows a multi-mode instability
map where we can just overlap the stability plots for
multiple intrinsic modes and get an idea about the over-
all instability domain.

We indicate the first (m’=0), second (m'=1) and
third (m’=2) intrinsic modes using arrows (red, blue
and magenta online, respectively). The figure illustrates
that as the mode number m' increases, (a) the neutral
curve main loop shifts to the right; (b) the span of the
islands of instability on the left increases; (c) the seg-
ments corresponding to w't = 7 and w't = —7 become
less steep for higher modes. Another important aspect
is the domain marked by (vii) (light yellow online) in
the asymptotic limit of large t. This domain represents
the common instability domain for the first three intrin-
sic modes. For an open—open combustor, the intrinsic
modes are potentially unstable even for the large
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Figure 7. The neutral curves and instability domain on the
n — 7 plane for the first (m'=0), second (m'= 1) and third
(m' =2) intrinsic modes of an open—open combustor when
xq = L/3 and there is no temperature and cross-section jump
(ci = =c=345m/s). (1) (red online), (2) (blue online) and
(3) (magenta online) represents neutral curves for first, second
and third intrinsic modes, respectively. The common domain of
instability for the first and second modes is (iv) (yellow online),
for the second and third intrinsic modes, it is (v) (brown online)
and for first and third intrinsic modes is (vi) (gold online). (vii)
(light yellow online) indicates the domain where all three modes
are unstable. (i) (lime online), (ii) (light turquoise online) and (iii)
(lavender online) indicate the non-overlapping domains of
instability for the first, second and third intrinsic modes,
respectively. The notation and parameters are the same as in
Figure 6.

time lag. The threshold of 7 also tends to go down for
higher order modes in the asymptotic limit of large
and the corresponding n!, can be calculated using for-
mula (15). Moreover, Figures 6 and 7 suggest that the
characteristic values of n!, are smaller, as compared to
the threshold values of n as reported by Hoeijmakers
et al.'"” derived based on the scattering matrix of the
flame alone, completely independent of the acoustic
boundary conditions. Hence, the intrinsic modes can
become unstable at a much lower value of » than the
theoretical prediction for an infinite tube. Figure 7 also
confirms that beyond certain time lag, the first intrinsic
mode is always unstable. The same is true for other
intrinsic modes, as well. Crucially, the first intrinsic
mode provides the upper bound of the stability
domain. In other words, any point on the n — t plane
that is above this upper bound is guaranteed to be
unstable for at least one or multiple intrinsic modes.
For a closed—open combustor, the geometry of the
instability domain is very different, a detailed discus-
sion on the upper and lower bound of intrinsic mode
stability envelope can be found in Mukherjee and
Shrira.”' Indeed, the domain of instabilities shown
here proves to be qualitatively different from that of
closed—open combustors: there is a threshold in t
above which many intrinsic modes are unstable

provided n exceeds a certain threshold (given by equa-
tion (15)). This is in sharp contrast with closed—open
systems where for large t the instability domain due to
large neutral loop can overlap only for maximum two
intrinsic modes. Having said that we have not noticed
any discernible difference between the small neutral
loops on the left for an open—open system and that of
a closed—open system. A detailed investigation of these
small neutral loops should be a subject of a dedicated
study.

4.2.3. Numerical explanation of modal stability/instability of
intrinsic modes on the complex frequency plane. A number
of obvious questions regarding intrinsic mode instabil-
ity arise while studying Figures 6 and 7 of the current
paper and also, Figure 9 of Mukherjee and Shrira.?'
The first obvious question is the ‘evolution’/visualiza-
tion of n/, on the complex frequency plane per se, which
was briefly touched in Section 3 and will be discussed in
more detail here. Few numerical examples will be con-
sidered where by gradually varying n at a fixed z, we
will elucidate the trajectory of the frequencies and
growth/decay rate of intrinsic modes on the complex
frequency plane. The next natural question is related
to the scenario when, for certain 7, an intrinsic mode
manifests coupling/no-coupling due to alteration of the
acoustic boundary condition from closed to open and
vice versa. The features of two solutions co-existing at
the point of intersection of the neutral curve segments
will be discussed here, as well. Also, it is a matter of
interest — the stability features of the intrinsic modes
within the domain of n — t plane where no n/, exists as
per Figure 6. All of these points will be scrutinized
using Figures 8 to 10.

Figure 8 illustrates the loci of the intrinsic and the
coupled-acoustic modes for the closed—open and open—
open combustors for two different time lags, T =11 ms
and 11.5ms. Panels (b) and (d) are mere reproduction
of panels (a) and (c) in order to elucidate the fact that
intrinsic mode frequencies are independent of the com-
bustor environment variables (excluding 7) in the limit
of small n. The figure presents the stability features of
the second intrinsic mode (m’=1). It can be seen that
due to gradual increase of n, the modes (both coupled-
acoustic and intrinsic) tends to cross the neutral line for
this case. However, there are two major differences in
the features of the coupled-acoustic and intrinsic modes
(for closed—open combustor);

(i) The coupled-acoustic mode, in both panels (a)
and (c), initially decays as »n increases and then
after some n (this » is not a topic of investigation
of this paper) the loci change their trajectory to
make the coupled-acoustic mode unstable. In con-
trast, the intrinsic mode decay rate monotonically
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Figure 8. Loci of the intrinsic and coupled-acoustic modes on the complex frequency plane for closed—open and open—open

combustors with uniform temperature and cross-section. The triangle (orange online) and square (blue online) dots represent

numerical solution (equation (10) from Mukherjee and Shrira') of the intrinsic and coupled-acoustic modes for closed—open system
(for x;=0.375m, m* =0, m' = 1). The star (green online) dots indicate the numerical solution (5) of the intrinsic mode for open—open
system (for xq =0.25m, m' = 1). The loci have been marked by thin dotted black line to facilitate easy comprehension. Panels (a) and
(c) indicate solutions for T= 1| | ms and | 1.5 ms, respectively, when n is varied from 0.001 to I.5. Panels (b) and (d) are reproduction of
the diagram in panels (a) and (c), however, on a different scale capturing frequencies/growth rates at small n (n changes from 10 ~'* to
1.5), to establish the fact that the intrinsic mode frequencies are independent of the combustor environment variables (barring 7) in
the limit of small n. Lightly shaded region (yellow online) is the domain of instability. The arrow indicates the frequency of acoustic
mode (w§ = (2m? + 1)(;rc/2L), m* = 0,1,2,3,. . .) of the closed—open combustor in the absence of flame. Thick dashed (red online) and
thin dashed (magenta online) vertical lines indicate the modal frequencies corresponding to wit = 0 and wit = —7 neutral segments,
respectively.

(ii)

reduces as n gets ramped up, till the mode crosses
the neutral line of instability.

The coupled-acoustic and intrinsic modes do not
get unstable at the same frequency. Panel (a) (also
panel (b)) suggests that the intrinsic mode
attains instability at a frequency corresponding
to wit =0, whereas the coupled-acoustic mode
attains instability at a frequency corresponding
to w.t = —x. Exactly opposite trend is visible in
panel (¢) (and also panel (d)), where the coupled-
acoustic mode attains instability at a frequency

corresponding to w't =0, whereas the intrinsic
mode attains instability at a frequency corres-
ponding to w't = —.

Needless to say that for the open—open combustor,

at these two time lags, only intrinsic mode becomes
unstable (see panels (a) to (d)) at a frequency corres-
ponding to 't = 0 and hence on the neutral curve we
find only one solution (see Figure 6). For the closed—
open combustor, on the contrary, at these two time lags
both intrinsic and coupled-acoustic mode becomes
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Figure 9. Loci of the intrinsic and coupled-acoustic modes on the complex frequency plane for closed—open and open—open
combustors with uniform temperature and cross-section at ==8ms (also shown to be the point of intersection of neutral curve
segments /.t = 0 and |t = 7 as per Figure 6). The triangle (orange online) and square (blue online) dots represent numerical
solution (5) of the intrinsic and coupled-acoustic modes for open—open system (for x, =0.25m, m? =1, m' = 1). The star (green
online) dots indicate the numerical solution (equation (10) from Mukherjee and Shrira®') of the intrinsic mode for closed—open system
(for xg=0.375m, m' = I). Panel (a) indicates solutions when n is varied from 0.05 to I.1. Panel (b) is the same as panel (a), however, on
a different scale, as n is varied from 1077 to |.1. The arrow indicates the frequency of acoustic mode (w§ = m(mc/L), m* = 1,2,3,...)
of the open—open combustor in the absence of flame. Thick dashed (red online) and thin dashed (magenta online) vertical lines indicate
the modal frequencies corresponding to w.t = 0 and wit = 7 neutral segments, respectively. Other notations are the same as in

Figure 8.
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Figure 10. Loci of the intrinsic mode on the complex fre-
quency plane for open—open combustors with uniform tem-
perature and cross-section at t=5.5ms (also shown to be the
point on the neutral curve where no nj, exists as per Figure 6),
while n varies from 107 to 10°. The star (green online) dots
indicate the numerical solution (equation (5)) of the intrinsic
mode (for x;=0.25m, m’ = I). Thick dashed (red online) and thin
dashed (cyan online) vertical lines indicate the modal frequencies
corresponding to |t = 0 and cos(k|xq) = 0 as per equation
(I'1), respectively. Other notations are the same as in Figure 8.

unstable (see panels (a) to (d)) and hence on the neutral
curve we witness two solutions (see Figure 9 in the lit-
erature®'). Moreover, we can see in panels (a) to (d)
that when two solutions exist for the same time lag

on the neutral curve (in this case for closed—open com-
bustor), the intrinsic mode frequency drifts significantly
from the frequency prescribed by the o't =0 line, in
particular, near the boundary of instability. This drift is
marginal when we have only one solution for intrinsic
mode for a time lag on the neutral curve (in this case for
open—open combustor). The n!, corresponding to the
mode on the neutral curve segment 't =0 is much
lower than that on the neutral curve segment
o't = —m (as can be seen from Figure 6 for t=11 ms
and 11.5ms), which is also evident from the panels (a)
to (d), indicating much higher growth rate of the mode
corresponding to segment w.t=0 than that of
o't = —mx, for the same n.

Another example provided by Figure 9 illustrates the
case when we have two solutions (coupled-acoustic and
intrinsic) for the same time lag on the neutral curve at
the point where the neutral curve segments intersect,
that is t=8ms for second intrinsic mode in open—
open combustor (as shown in Figure 6). Qualitatively,
this figure is not different from Figure 8, as we have two
solutions for open—open combustor: (i) the intrinsic
mode attaining instability at a frequency corresponding
to @'t = 0 and (ii) the coupled-acoustic mode attaining
instability at a frequency corresponding to wit = 7.
However, there is still a salient difference between
Figures 8 and 9. Unlike Figure 8, in Figure 9, both
the coupled-acoustic and intrinsic modes cross the neu-
tral line at the same n (n=0.85), implying the same n',
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for two modes; this is the main significance of the neu-
tral curve intersection points. At the same instance, the
intrinsic mode for closed—open combustor attains
instability at a frequency corresponding to wit =0,
and hence we find single solution for t=8ms on the
neutral curve (see Figure 9 in the literature®').

A case study as shown in Figure 10 intends to
explain what happens in the domain of the neutral
curve where no solution exists. In Section 3, we claimed
that the intrinsic modes remain linearly stable for really
large n. Figure 10 validates and illustrates this claim.
The figure shows that for t=15.5ms, as we increase # to
a really large value (n = 1000), the intrinsic mode tends
to touch the neutral line of stability, but does not cross
it. Interestingly, the intrinsic mode stabilizes at a fre-
quency corresponding to cos(klxq) = 0 as per equation
(11). We can see that although we claimed that the
feasible solution for the neutral curve follows
from sin(w!t) = 0, as per equation (11), we have two
more potential solutions, i.e. cos(kjx,) =0 and
sin(k>(x, — L)) = 0, each of them indicating ni, — oo
as per equation (13). Thus, whenever an intrinsic
mode stabilizes at a frequency corresponding to
cos(kyx,) = 0 or sin(kz(x, — L)) = 0, we have an infin-
ite ny,, implying no solution on the neutral curve and
thus stability of this mode in the chosen range of
parameters.

4.2.4. The reason for the qualitative difference between the
neutral curves of the closed-open and open—open
combustors. At this point, we can try to delve into the
reason why the closed—open and open—open neutral
curves have different geometries. From Figure 6 it is
easy to see that the neutral curve attains a loop shape
in the domain of two solutions (o't = 0 and &'t = 7 or
o't = 0and .t = —m), which is the result of the intrin-
sic mode’s existence in a close proximity to one of the
acoustic modes in the complex frequency plane, which
eventually results in intrinsic-acoustic mode coupling.
In a system devoid of coupling (anechoic systems), we
have a straight line on the n — t plane as shown by
Hoeijmakers et al.'® and also shown in Figures 6 and
7. Each neutral loop is a manifestation of coupling with
particular acoustic modes, but the extreme right (the
main) neutral curve loop always finds coupling with
the lowest (or first) acoustic mode (because the extreme
right neutral loop contains lower intrinsic mode fre-
quencies that can come close to the lowest acoustic
mode frequencies only, on the complex frequency
plane) and the loops on the subsequent left side finds
coupling with the higher order acoustic modes. Let us
take two examples to elucidate this aspect further:

(i) In Figure 9 of Mukherjee and Shrira,?' the
extreme right portion of the extreme right neutral

loop (@it = 0) couples with the m*=0 acoustic
mode, in this case (7wc¢/2L) (we know that in the
closed—open system the acoustic modes are
(2m“ 4+ 1)(;rec/2L)). The loops on the left couple
with the m%=1,2,3,... acoustic modes.

(i1) In contrast, in Figure 6 of the current paper, the
extreme right portion of the extreme right neutral
loop (w't =0) tries to couple with the m*=0
acoustic mode, which is in this case zero (we
know that in the open—open system the acoustic
modes are m“(wc/L)). Because the m® =0 acoustic
mode is non-existent in open—open systems, the
corresponding coupling also does not exist, imply-
ing that the extreme right w.t = 0 neutral loop
fails to bend on the right side and remains
open. Hence, we have uncoupled intrinsic mode
solution only.

This explains that the observed qualitative difference
in closed—open and open—open neutral loop geometries
are related to the coupling with m“ = 0 acoustic mode
frequency, which is boundary condition dependent.

Thus, we have arrived at an explicit analytical
expression (13) for the neutral curves on the n—1
plane for an open—open combustor. For an open—
open combustor, the neutral curves for flame intrinsic
modes have two qualitatively different regions. The
region on the left, i.e. towards smaller values of 7, com-
prises loops of diminishing (towards smaller) t widths
made of strongly coupled acoustic—intrinsic modes and
the region on the right exhibits a single large loop which
stretches to infinity in 7. For open—open combustor, the
neutral curve has three distinct segments corresponding
to wit =0, wit =7 and w.T = —7 in the n — v space
except the first intrinsic mode, where the neutral curve
segments due to w't = — do not exist, since it predicts
zero frequency and infinite n/, as per equation (13). The
o't =m and w'.t = —7 segments predict higher values
of n, compared to w't =0 segments. These segments
become less steep as the mode number m2' increases. For
an open—open combustor, we have a domain in the
asymptotic limit of large t on the n — t plane, where
a really large number of intrinsic modes become lin-
early unstable. We can also find analytically the loca-
tions of the intersection points of the neutral curve
segments + .t = 7 and 't =0. But this aspect will
not be discussed here.

4.3. Growth rate of intrinsic and coupled-acoustic
modes

The growth rate is the next key element that we need to
explore in combustion instability. We concentrate on
the growth/decay rates near the neutral curve, only.
For large deviations away from the neutral curve, the
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intrinsic modes either strongly decay and, hence, do not
play any role in the dynamics of the system or have too
high growth rates, which implies that the adopted linear
theory becomes invalid at that point.

We consider a point (#, t) on the n — t plane located
close to the neutral curve for a specific mode m’. The
deviation from the neutral curve is denoted by n{, hence
n—n, =n} < n,. The eigen-frequency in the chosen
point (n, 7) differs from its value on the neutral curve o'
(where o' = w{ + ') for the same 7. This deviation is
denoted as o}. As per numerical observation, close to
the neutral curve the real frequency shifts only margin-
ally. Thus, we assume that the real part of w} is negli-
gibly small compared to its imaginary part and of little
interest near the neutral curve. The imaginary part of
o}, on the other hand, represents the growth/decay
rate. For any frequency perturbation o due to devi-
ation n} near the neutral curve, we can write
n=n,+n, o=0+o

For simplicity, we only consider the first-order term
in n}. Higher order corrections in 7} can be dealt with in
similar manner. We refrain from that task for the time
being. Substituting these expressions for n and w into
the original dispersion relation (5) and subtracting the
dispersion relation (5) for w = ' from the resultant
equation, while neglecting higher order terms in o} in
sin and cos function expansion, we obtain a perturbed
form of the dispersion relation (5). This perturbed form
instantly yields an explicit analytical expression for the
growth/decay rate o

2nie”™ cos(w'x,/c1) sin(w'(x, — L)/c2)

[(e + 1)1 cos(w'Br) + (a — 1) B2 cos(w'B) + X]
(16)

[
(1)1—_

where > is

> = 2ule ' {ircos(w'xy /1) sin(w (x, — L) /c2)
— (x4/c1) sin(w'x4/c1) sin(w'(xg — L) /c2)
+((xq = L) /¢2) cos(w'xy/cr) cos(w(x, — L) /c2)}

while «, 81 and B; are given by equation (10). Through a
numerical examination of multiple examples, it has been
observed that the real part of o} is indeed insignificant
as was assumed in the beginning of this derivation.
Thus, o} ~ Im(w}) and represents the growth/decay
rate. Equation (16) shows dependence on combustor
parameters. Note that equation (16) offers growth/
decay rate expressions not only for the modes lying on
the neutral curve segment w't =0 but also for the
modes lying on the neutral curve segments o't = £7.
Thus, we have found an explicit formula for the
intrinsic mode growth/decay rates in the vicinity of

the neutral curve on the n — 7 plane, while on the neu-
tral curve we found decoupling of the combustor char-
acteristics and flame location, the growth rate formula
has retained dependence on various combustor param-
eters. For simplicity, we only consider the first-order
term in n}. Higher order corrections in n} are straight-
forward analytical extensions. The range where this
growth rate formula is applicable is to be established
numerically. Here, we examine the full dispersion rela-
tion (5) numerically. We consider the parameters of the
test rig at IIT Madras®: the length L is 0.75m, the
cross-section S is 0.0016 m? (The actual combustor at
IIT Madras is closed—open. However, here we use the
physical dimensions of the combustor only.). The flame
is assumed to be located at x, = L/3. The same param-
eters were used for plotting all the stability diagrams.
Figure 11 shows a comparison of the analytical pre-
diction of the growth rates given by equation (16) with
that of the numerical results for mi=1, Xq=1L/3,
7="7ms, and the cross-section and temperature jump
(S2/S1=1.5, To/T) =2.25). Near n',, that is near the
boundary of stability, analytical and numerical predic-
tions match up quite nicely. However, as we move away
from the neutral curve, analytical predictions start to
deviate from the numerical results. Beyond this range,
modes are either stable or linear theory is not applic-
able anymore (the linear theory is based on the small
growth/decay rate assumption). All these observations
hold if the effect of cross-section and temperature jump
is taken into consideration. We can, therefore, conclude
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Figure 1. Growth rate for m'=1, x; = L/3, 7=7ms, and the
cross-section and temperature jump (S2/S, = 1.5, To/T, =2.25):

comparison of the analytical result (16) and numerical solution of
the original dispersion relation (5). The solid line and circles
show the analytical and numerical solution, respectively. The
instability domain is lightly shaded (yellow online). Dimensional
(rad/s), as well as, non-dimensional (Im(w,) = Im(w)/(7/7))
scales are used for the growth rate. The other parameters of the
system are the same as in Figure 6(a).
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that the analytical prediction for the growth rate is in
good agreement with the numerical solution in the
moderate proximity of n!,, where it is of most interest.
Our approximate solution (16) considers only the lead-
ing order term of expansion in n} (the departure of n
from n',). This expansion provides a good level of
accuracy near the neutral curve for all the cases we
have studied so far. If we look for higher accuracy, it
is straightforward to consider higher order expansion in
n’ in our perturbation equation. Equation (16) has been
checked for accuracy for various other time lag values
on the neutral curve including the vicinity of intersec-
tions of different neutral segments and has been found
to work with a good accuracy near the neutral curve.®

Hence, we have confirmed that the compact analytical
prediction of the linear growth rate (16) works very well
for all 7. The growth/decay rate depends on various com-
bustor parameters. A parametric study of the growth rate
and neutral curves will be performed in Section 6.

5. Intrinsic instability for combustors with
non-ideal open-open boundaries

In reality, it is not necessarily a good approximation to
say that the reflection coefficients are equal to £1, as it has
been assumed so far here and also in the literature.”!
Reflection coefficients are complex, meaning the reflec-
tion coefficient has a dissipative and a reactive part asso-
ciated with it. The energy losses at the ends of the
combustor account for the dissipative component in the
reflection coefficient. A perfectly rigid or closed end will
reflect the incident waves totally, without acoustic
losses,?® meaning the assumption made in Mukherjee
and Shrira*' for the closed end reflection coefficient
being+ 1 is a valid one. However, this assumption is
not so accurate for the open end. Acoustic radiations
from the end of a duct will be impeded by the atmosphere,
a phenomenon represented by a parameter called the
radiation impedance, which is a complex number for
any open duct.?® For cylindrical ducts and normal acous-
tic modes, the exact solution for the radiation impedance
has been provided by Levine and Schwinger.* The exact
expression for reflection coefficient of the open end of a
circular duct with radius rg is given as>®

R = (1—0.5k%r5) exp{i(m — 1.2 tan"" (krg))}

Clearly, the reflection coefficient for an open end is
nearly unity and the phase angle is slightly less than 7,
meaning that the coefficient is not exactly —1 as we
assumed so far. This assumption is valid only when the
non-dimensional number Helmholtz number kry is
small. This is, indeed, a low-frequency assumption.
The reflection coefficient is a frequency dependent par-
ameter in most of the cases. Besides, it was mentioned in

the Introduction that in industrial gas turbine combus-
tors there is a compressor assembly in the upstream and
turbine assembly in the downstream, imposing limita-
tions on the ideal open/closed assumption. In this sec-
tion, we address this issue.

5.1. Instability frequencies and neutral curves

When R(0) and R,(L) are retained in the original form
in equations (1) and (2), we derive the general disper-
sion relation as shown in equation (12). The real and
imaginary parts of equation (12) are written as (12a)
and (12b) on the neutral curve. Now, we consider a case
when the end conditions of the combustor are not per-
fectly open—open and in that case, we can write the
reflection coefficients for the ends as

Ri(0) = —1+4¢r;, and (17a)

Ry(L)=—1+ e, (17b)
where ¢; and &, are two small parameters characterizing
smallness of the deviation from the ideal open—open
end condition, r; and r, are order one complex quan-
tities specified by the experimental data. r; and r, can
be written as r; = Re(r;) + ilm(r;) and r, = Re(r2) +
iIm(ry). Replacing R;(0) and R,(L) as per equations
(17a) and (17b) and neglecting the higher order terms,
equations (12a) and (12b) reduce to the following form
on the neutral curve

(1 +a)[(e1Re(r1) + £2Re(r2)) cos(w'By)
+(e1Im(ry) + e2Im(r2)) sin(w'By) |
+ (1 — a)[(e2Re(r2) — &1 Re(r1)) cos (' Ba)
—(e1Im(r1) + e2Im(r2)) sin (o' B2) |
i (e1Re(r) 4+ &2 Re(r)) Cos(a)’ﬂl)
+ (e1Im(r1) + &2Im(r2)) sin(w'B1 )

cos(w7) .
+ (e2Re(r2) — &1 Re(r1)) cos(w'B2)

— (e1Im(r1) + e21m(r2)) sin (')

! —2sin(w'B1) — (e1Im(ry)
' +&2Im(ry)) Cos(a)’fﬁ)
+ sin(w!7) A
+ 2sin(w'Ba) — (e20m(r>)
i —e1Im(ry))cos(w'Ba) i
=0

(18a)
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(1 +a)[—2 sin (w[ﬂl) —(e1Im(ry) +e2Im(r>))
x cos(w'Br)]— (1 —a)[—2sin(w'B2) + (e2Im(r>)
—e1Im(ry))cos(w'B2) ]

r —2sin(w'B1) — (e1Im(r+)

A +&2Im(r2))cos(w'Bi)
cos(w, 1) '
+2sin (a)lﬂz) — (Szlm(l”z)

—&1Im(ry))cos(w'Ba)
(s1Re(r1) + &2 Re(r2))cos(w'Br)

- nlt-h
| () +e2dm(ry))sin(w'B)
—sin(w]T) A
+ (e2Re(ry) — &1 Re(ry)) cos(w' a)

L — (e1Im(r1) +&2Im(ry))sin(w'Bs) |
=0
(18b)

Equations (18a) and (18b) provide explicit expres-
sions for n!,. Equating n!, from equations (18a) and
(18b) leads to the following equation

[ 2(sin(e'B1) — sin(w'p)) ]
{1+ @)sin(0’B)) — (1 — @) sin(w'B))

+ erIm(r){(1 + «) sin(20'B)

| | sin(of)
+(1 — @) sin(20'Bs) — 2sin(w'(B1 + o))}
+ 821]’)’[(7‘2){(1 + @) sin(2cuiﬂ1)
L +(1 — )sin(20'B,) + 2sin(e/(B) — )}
|:81R€(l‘1) sin(w'(82 — B1)) j| :
=2a S cos(w}7)
+eaRe(r2) sin(w'(B1 + £2)
(19)

The o) in equation (19) has two parts: first part is
wi,ﬂo, the deviation of instability frequency on neutral
curve from the frequency in the limit of small n, for
the case of perfect open—open boundary conditions (as
given by ‘010 = mr/t, where m=0, +1) and the second
part is @', due to the imperfections present in the bound-
ary conditions (that is e and &,r;). Therefore, a)' can
be given as o, = o, + @'. The 1nstab1hty frequency for
combustor with non- -ideal boundaries, ' = w;, + @, can
also be restructured as o' = wf, + @', where j, is the
instability frequency on the neutral curves for a com-
bustor with perfectly open—open end conditions,
o _w0+wco Making use of o' =), +@', and
also assuming smallness of &', in equation (19),

we arrive at an explicit expression for &'
e1Re(r) sin o, (B2 — A1)
+ e2Re(ry) sin{ o} (81 + o)
o[(1 +aysin(wf, 1) = (1 = @sin(w) 6 )

x {sin(a)é’,ﬂl) - Sin(%,,ﬂz)}

Making use of «, B, and B, as given by equation
(10), equation (20) can be rewritten in a more conveni-
ent form which provides dependence on all combustor
parameters (flame location, cross-section jump and

temperature jump)
2w (x,— L
— 81R€(V1) sin (M)
&)

~ 2wh X
— & Re(r)sin (W
C1

o

(20)

Spia
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(&) C1 (&)
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€2y

It is clear from equation (21) that linear perturbation &,
and &, at the ends of the combustor perturbs o/, linearly
(as @ comes out to be small). Inclusion of the cross-sec-
tion jump into the equation does not change the scenario.
However, the effect of temperature jump across flame
introduces intricate effects of ¢; and ¢, into trigonometric
expressions of equation (21), making it difficult to analyse
this equation further. As a matter of simplification, equa-
tion (21) can be visualized in a compact form if we assume
Si=8and Ty =Ty, and thus ¢c; = ¢, = ¢, p1 = P2

20h (x, — L
— &1 Re(ry) sin (%)

2 i
— &2 Re(r) sin (wo—‘x">
& = ¢ (22)

1
. wOJL
sin[ ——
; c
. wh L
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The corresponding n!, based on equation (20) can be
obtained from equation (18b) as follows

2[(1+@)sin('B) — (1 = @)sin(eBy) ]
+e1G1 + &Gy

Min = 2 cos(wit){sin(w/B)) — sin(w'Bs)}

(23)

where

Gy = (1 +a)Im(r)cos(w'By)
— (1 =) Im(ry)cos(w'Ba)
Im(ry)(cos(w'Bi) — cos(w'Ba)) cos(wit)
— iy +HIm(r)(sin(w'B1) —sin(w'B,)) sin(wit) §,
+Re(ry)(cos(w'B1) — cos(w'Bs)) sin(w'7)

and

G = (1 +a)Im(r;)cos(w'By)
+ (1 — &) Im(ry)cos(w'B2)
Im(r2)(cos(w'B1) + cos(w'Ba)) cos(wit)
— i1 +Im(ry)(sin(w By ) — sin(w'p2)) sin(w!7)
+Re(r2)(cos(w'B1) + cos(w'B2)) sin(w! 1)

ny, o is the threshold of » for ideal open—open end con-
ditions. Equations (20) to (22) suggest that the deviation
of instability frequency (&) due to imperfections in the
boundary conditions depends linearly on the perturb-
ation parameters ¢; and &;. Thus, the 1D analytical solu-
tions for combustors with open—open end conditions are
quite robust, in general. However, from equation (22)
we can see that there exists few situations where the ana-
lytical solutions might lose their robustness:

(a) When  sin(w L/c) = sin(w),(2x, — L)/c),  the
flame lies close to x, = L. As per equation (23),
the correqunding ni, goes to infinity. We can say

that when 7}, goes to infinity, the aspect of robust-
ness will be irrelevant, as the system is expected to
behave as linearly stable for large n. Thus, this case
can be treated as not important for practical com-
bustors. The analytical solutions retain their
robustness when flame situates close to x, = 0. It
can be easily shown that when the flame lies close
to either ends for a closed—open combustor, the
analytical solution given by Mukherjee and
Shrira®! will lose its robustness.

(b) When 7 — 0, this is the region with numerous
small neutral loops of reducing scale, on the left-
hand side of the neutral curve. However, we must
mention that for this case, as long as w!t retains
its smallness, in spite of large o', the solution
will retain robustness. Thus, for that case the

robustness of n!, will not be affected, as can be
seen from equation (23).

(c) When sin(wf)’tL/c) = 0. This case represents the
acoustic mode solution for an open—open combus-
tor with uniform temperature.

The corresponding situations can also be seen from
equation (21) for general combustor parameters. These
cases when the solutions might lose their robustness
need to be studied separately in greater details.

5.1.1. Sensitivity of the neutral curves to complex perturbation
of combustor end boundaries. A detailed explanation of
the effect of the perturbation on the acoustic end con-
ditions of the open—open combustor on the neutral
curves of the intrinsic modes can be provided with the
help of Figures 12 and 13. In these figures, the solid line
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Figure 12. Neutral curves (23) on the n — t plane for the
second intrinsic mode (m’ = 1) of an open—open combustor with
uniform temperature and cross-section. Solid lines (blue online)
represent the neutral curves for ¢ =0.0 and &; =0.0. Dashed-
dotted lines (green online) represent the neutral curves for (a)
g =0.1,r=1.0,=0.0; (b) &, =0.0, &,=0.1, ,=1.0 and (c)
g1 =0.1,r=1.0, &2=0.1, , = 1.0, respectively. Elliptical dots
represent the areas on the neutral curves, where analytical
solutions (23) cease to be robust. The parameters are the same
as in Figure 2.



306

International Journal of Spray and Combustion Dynamics 10(4)

)&
w0

-

05f

Interaction index (n

05

Interaction index (n) &

6 7 8 9 10 1 12 13

05

Interaction index (n) &

6 7 8 9 10 1" 12 13
Time lag T (ms)

Figure 13. Neutral curves (23) on the n — 7 plane for the
second intrinsic mode (m’ = |) of an open—open combustor. Light
dashed-dotted lines (green online) represent the neutral curves
for (a) &y =0.1, ry =*1.0, &, =0.0; (b) ¢, =0.0, &, =0.1,

r, =1.0 and (c) ¢, =0.1, r, =*1.0, &, =0.1, r, =*1.0 respect-
ively. Dark dashed-dotted lines (red online) represent the neutral
curves for (a) & =0.1, ry =—*1.0, &, =0.0; (b) & =0.0,
&,=0.1, ,=—7*1.0 and (c) &, =0.1, ry =—7*1.0, &, =0.1,

r, = —i*1.0, respectively. Notations and other parameters are the
same as in Figure 12.

(blue online) represents the neutral curve for the second
intrinsic mode with ideal open—open end conditions.
The elliptical dots indicate the area of the neutral
curve when the robustness of the analytical solution
(23) does not hold anymore. Panels (a), (b) and (c) in
each figure present three different cases when the linear
perturbation is assumed for the acoustic end condition
of the open end on the left (upstream) to the flame,
open end on the right (downstream) to the flame and
both the ends, respectively. Thus, for panel (a) &, =0,
for panel (b) ¢, =0 and for panel (c) both ¢, &, are
non-zero.

In Figure 12, a real perturbation (¢, and/or &;) of 0.1
is assumed. The light dashed-dotted line (green online)
depicts the perturbed solution. In this case, the neutral
curve segment corresponding to o't = 0 is very robust.
The non-ideal segments almost exactly overlap with the
neutral segments w't = 0 for an open—open combustor

with ideal end conditions. Analysis of higher values of
perturbations (e; and &) has further proved (shown in
Section 5.1.3) that the neutral segments o't = £ are
less robust. In all these figures, panel (c) demonstrates
more sensitivity to end boundary perturbations, as
compared to panels (a) and (b). In Figure 13, an
imaginary perturbation (¢; and/or &;) of +i*0.1 is
assumed. The light dashed-dotted lines (green online)
correspond to the neutral curves due to +i*0.1 perturb-
ation, whereas the dark dashed-dotted lines (red online)
correspond to the neutral curves due to —i*0.1 perturb-
ation. Due to +i*0.1 perturbation the neutral curve
segments shift to the left, whereas to —i*0.1 perturb-
ation the same segments shift to the right, relative to the
neutral curve for ideal end conditions. Note that in this
case the imaginary perturbation has a more significant
impact on all neutral segments than the real perturb-
ation of end conditions.

In general, the assumption of complex perturbation
on the acoustic ends of an open—open combustor shows
that the neutral segment w.t=0 is very robust,
whereas the neutral segments o't = £ are sensitive
to small perturbations (will be shown in the next two
sections).

5.1.2. Numerical validation of the neutral curves for non-ideal
end boundaries. We present numerical validation of the
analytical solutions of Section 5.1.1 considering com-
plex perturbation of the end boundaries. Figure 14
shows two cases: (a) without and (b) with temperature
and cross-section jump (75/7) =2.25, S»/S; = 1.5) with
€1 ZOI, r = 10+l*10, &2 :01, ry = 1.0+ i*1.0 for
the second intrinsic mode. We validate numerically
(based on equation (5)) the main neutral loop and the
small loop to its nearest left for both cases. The numer-
ical solutions do not take into consideration the switch
of mode identities.

Clearly, equation (23) captures the neutral segment
o't = 0 quite accurately; however, it fails to capture the
neutral curve segment w't=m with a comparable
accuracy. This is found to be a general limitation of
the present perturbation method, which does not pre-
dict the neutral segments w.7 = % with high level of
accuracy. For the neutral loops on the left, it fails to
capture the neutral segments 't = 7 at all. The main
reason for this deviation can be seen from equations
(20) to (22). The basic assumption of the perturbation
method is that small perturbations &, & in the end
boundaries result in small deviation, &', of the instabil-
ity frequency. This assumption is too restrictive for the
neutral curve segments .t = . Our numerical simu-
lations performed so far (not shown here) show that on
the neutral segments 't = +m, @' is indeed large, inva-
lidating the basic assumption of the perturbation
method implemented here. This calls for an improved
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Figure 14. Neutral curves (23) on the n — 7 plane for the second intrinsic mode (m' = 1) of an open—open combustor with &, = 0.1,
ry=1.0+*1.0, &, =0.1, , = [.041.0: (a) without and (b) with temperature and cross-section jump (T,/T; =2.25, S/S; = |.5).

Circles (green online) and squares (red online) indicate the numerical solution of intrinsic and acoustic modes, respectively, based on
(5). Elliptical dots represent the areas on the neutral curves, where analytical solutions (23) cease to be robust. Notations and other

parameters are the same as in Figure 12.

method enabling us to capture the neutral curve seg-
ments o't = £ with higher accuracy. This task, how-
ever, goes beyond the scope of the present work.

Nonetheless, we can claim that perturbation method
does capture .t = 0 segments properly (even for com-
plex perturbation of boundaries). The analytical solu-
tions (equations (20) to (23)) loose robustness when on
the n — t plane we find two solutions for single time lag
(one for w't = £ and another for .t = 0).

5.1.3. Effect on the neutral curve due to transition from open
end to anechoic end. Here, we attempt to find out what
happens with the neutral curves, when we gradually
vary the acoustic end boundaries of a combustor
from perfectly reflecting to non-reflecting (or anechoic).

Figure 15 shows the neutral curve for the second
intrinsic mode taking into account temperature and
cross-section jump (7,/7T,=2.25, S,/S;=1.5) and
ry = 1.0, r, = 1.0 for six different levels of perturbations
of the acoustic end boundaries: (a) e; =0.1, &, =0.1; (b)
e1=0.2, £&=0.2; (c) 6,=0.3, &=0.3; (d) £ =0.5,
& 205, (e) €1 =07, &2 =0.7 and (f) €1 209, &2 =0.9.
Here, we refrain from considering complex perturb-
ations and stick to real perturbations only. As evident
from panels (a) to (d), the neutral curves for w't = 0 are
captured with a high level of accuracy almost every-
where. However, the prediction accuracy is not so
good for the w!.t = 7 segments, for reasons explained
in the previous section. As we perturb the boundaries
further by 70% and 90% as seen from panels (e) and
(f), the analytical prediction deviates significantly from
its numerical counterpart. However, in this range of
perturbation, the present method is not expected to

work at all. For 100% perturbation (perfectly anechoic
end), the neutral curve becomes a straight line (i.e. con-
stant n!,) parallel to T axis (as shown in Figures 6 and
7). Nevertheless, the analytical solution captures
o't = 0 with remarkable accuracy for reflection coeffi-
cients R;(0) and R,(L) varying from —1 to —0.5. We
anticipate that an equally good prediction can be
obtained for R;(0) and R,(L) varying from —0.5 to 0,
when we implement the same perturbation method for
the neutral curves predicted by Hoeijmakers et al.'® for
non-reflecting boundaries. In that process, we can cap-
ture the neutral segment 't = 0 with good accuracy
for R;(0) and R,(L) varying from —1 to 0 (and in the
same way from +1 to 0, when we migrate from closed
end to anechoic end). A better method has to be devel-
oped to capture the neutral curves in the domain of two
solutions for single time lag on the n — 7 plane. We also
observe from Figure 15 that above a certain threshold
of perturbation, the neutral segment it = +n dis-
appears from the window of consideration. What hap-
pens is yet to be investigated.

We can certainly claim from our current observa-
tions that even for a significant 50% perturbation of
the real part of the reflection coefficients of either end of
the combustor, the neutral curve segment correspond-
ing to o't =0 is well captured by the analytical solu-
tion (23).

5.2. Growth rate

The instability frequencies and the neutral curve seg-
ments w,t =0 for intrinsic modes are found to be
quite robust, except a few situations mentioned in the
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Figure 15. Neutral curves (23) on the n — 7 plane for the second intrinsic mode (m' = 1) of an open—open combustor with
temperature and cross-section jump (T,/T} =2.25, S;/S;=1.5) and ry = 1.0, , = 1.0 for: (a) &; =0.1, &=0.1; (b) &1 =0.2, £, =0.2;
(c) £ =03, 6,=0.3; (d) £, =0.5, £2=0.5; (e) £, =0.7, £2=0.7 and (f) &, =0.9, £, =0.9. Circles (green online) and squares (red
online) represent the numerical solution of intrinsic and acoustic modes, respectively, based on equation (5). The numerical solutions
do not consider the switch of mode identities on the neutral curve. Notations and other parameters are the same as in Figure 12.
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previous section. The robustness of the growth rate can
be checked, as well. For general boundary conditions
R;(0) and R,(L), the growth rate expression can be
obtained in a similar manner as prescribed in Section 4.3

i
nye

(,()1:

- |: (1 = Ri(0)Rx(L)) cos(e'B1) + (Ra(L) — Ry (0)) cos(w'po)
+ i{(1 + Ri(0)Ry(L)) sin(w'B1) + (Ro(L) + Ry (0)) sin(w'2)} |

“)li,o represents the growth rate of a combustor with
ideal open—open end conditions. Clearly, equation
(25) tells us that any small perturbation ¢; and &, will
only perturb the growth rate expressions linearly.

i iw't
- nth,Oe

[ (1 + a)Bi{(1 — Ri(0)Ro(L)) sin(w'B1) — i(1 + Ri(0)Ry(L)) cos(w'B1)} ]
+ (1 = )B2{(Ra(L) — R1(0)) sin(w'B2) — i(Ra(L) + Ry(0)) cos(w'B2) }
(1 = Ri(0)Ro(L)) (it cos(w'Br) — By sin(w'B1))
+ (Ry(L) — R1(0)) (it cos(w'Ba) — B2 sin(w'B,))
+i(1 + Ry (0)Ry(L)) (i sin(w'B1) + Bi cos(w'B1))

+ i(Ro(L) + Ri(0))(it sin(w'B2) + B2 cos(w'B2))

For obtaining the specific expression for the growth
rate of intrinsic modes in an open—open combustor
with non-ideal end conditions (17a) and (17b), we
plug the expressions of R;(0) and R,(L) as per equa-
tions (17a) and (17b) in equation (24) and arrive at the
following expression

o 2n’iei‘“[’(sin(wiﬂ1) —sin(w'Ba)) + &1 Hy + &2 H>
[ =+ )i cos(@'Br) + (1 — a)pa cos(w'fo)
2 . e,-wfr{ ir(sin(wiﬂl) — sin(w'fs)) A }
h0 +(B1 cos(w'Bi) — B2 cos(w'B2))
(25)

where

Hy = i(Re(ry) + ilm(r))
—nije”'" (cos(w'B1) — cos(w'py))
(1 +a)Bisin(w/'Br) — (1 — a)Basin(w'ps)
i e T(cos(a/Br) —cos(w'Ba)) —
—nie o A
Bisin(w'By) + B2 sin(w'Ba)

i
T

and

Hy = i(Re(ra) + ilm(r2))
—nie®(cos(w'Bi) +cos(w'Br))
(14 a)Bi sin(w'B1) 4 (1 — o)y sin(w'B2)
i e | iT(cOs(B1) +cos (e B2))—
— the . . . .
Bisin(w'B1) — B2 sin(e'B2)

+wi

24)

However, the only restriction to this statement appears
due to the lack of robustness of n, under certain con-
ditions, as can be seen from expression (25). The
robustness of growth rate expression (25) can further
be proved using Figure 16 for m'=1 at t=9ms. The
solid line (blue online) shows the growth rate for a
combustor with the ideal end conditions and the light
dashed-dotted line (green online) represents the growth
rate for complex perturbations of acoustic boundaries
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Figure 16. Growth rate for m' =1 at =9 ms for an open—

open combustor with uniform temperature and cross-section.
The solid line (blue online) represents the growth rate for

&1 =0.0 and &, =0.0. Light dashed-dotted line (green online)
represents the growth rate for ¢y =0.4, r; = 1.0 +i*1.0, e, = 0.4,
ry = 1.0+ *1.0. The overlapping nature of these two solutions
proves the robustness of equation (25) for this case. The
instability domain is lightly shaded (yellow online). The param-
eters of the system are the same as in Figure 2.
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given by =04, r,=1.04+7*1.0, &,=0.4, r,=1.0+
i*1.0. The two lines almost overlap with each other
(even for 40% perturbation of the boundary condi-
tions), verifying that in this case, solution (25) of the
growth rate is indeed robust. However, this is not true
for all the cases. Figure 12 shows that for T=9ms, we
have solution for the intrinsic mode corresponding to
o't =0 and this neutral segment is also found to be
very robust, as explained in Section 5.1.2. Thus, in this
case, the robustness of the neutral curve ensures the
robustness of the growth rate. However, when the neu-
tral curves are not robust, particularly near and within
the domain of two solutions for single time lag, equa-
tion (25) will lose robustness.

In this section, we have checked the robustness of
our analytical solutions for intrinsic flame instability
for an open—open combustor. We found that the solu-
tions are generally quite robust for all but two cases,
when considering all the flame and combustor param-
eters: the first case is when the flame is located near
X, =L and the second case is when, on the neutral
curve, we attain a condition of sin(wf)JL/c) =0.
Furthermore, the neutral curve segment 't =0 is
very robust, whereas the robustness study of the seg-
ments .t = £ requires more attention in future.

6. Effect of parameters (flame location,

cross-section jump, temperature jump)

on stability behaviour of intrinsic modes
in open—open combustors

As per equations (13) and (16), the threshold in » and
growth rate depend on various combustor parameters.
In this section, we try to find how n!, and growth rate
depend on the three main parameters of an open—open
combustor model: (i) cross-section jump, (ii) tempera-
ture jump and (iii) flame location. It is also a matter of
prime interest to find out whether for certain parameter
domain the n-threshold decreases or growth rate
increases.

Figure 17 plotted on the basis of equation (13) illus-
trates the effect of cross-section jump on the neutral
curve main loop. The temperature jump across the
flame is neglected and the flame is assumed to lie at
x, = L/3. The figure shows two different cases of
cross-section jump: (1) S»/S;1=1 and (2) S»/S;1=2.
Region (i) (lavender online) indicates the instability
domain for S,/S; = 1. The common domain of instabil-
ity (ii) is lightly shaded (yellow online). In all subse-
quent figures, the common instability domain is also
lightly shaded (yellow online). It can be seen from
the figure that inclusion of cross-section jump lifts
the overall neutral curve and shifts it slightly to the
right. This means that the n-threshold of intrinsic
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3 4 5 6 7 8 9
— 1. Neutral curve for S,/5,=1
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Figure 17. Effect of cross-section jump on the stability domain
for m =1, x, = L/3 and uniform temperature. The plot is based
on equation (I3) and shows stability domain (1) with no jump
(S2/S1=1) and stability domain (2) with (S;/S| = 2) cross-section
jump. Region (i) (lavender online) marks the instability domains
for the case S;/S; = 1. The common instability domain (ii) for
these two cases is lightly shaded (yellow online). Other param-
eters are the same as in Figure 6(a).
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Figure 18. Effect of temperature jump on stability domain for
m=I, Xq = L/3 and uniform cross-section. The plot is based on
equation (13) and shows configurations: (1) with no jump, i.e.
To/Ti =1 (or c;/c; = 1)) and (2) with T,/T; =2.25 (or

¢ /c; = 1.5)) temperature jump. Regions (i) (lavender online) and
(i) (brown online) indicate the instability domains for the cases
¢/ci =1 and ¢;/c; = 1.5, respectively, with the common

instability domain being lightly shaded (yellow online) (iii). Other
parameters are the same as in Figure 6(a).

instability gets lifted due to cross-section jump, at
least in this case.

The effect of temperature jump on 7!, (t) is somewhat
different. Figure 18, plotted on the basis of equation
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(13), compares two different cases of temperature jump:
(1) for To/Ty =1 (or ¢a/cy =1) and (2) T>/T; =2.25 (or
¢2/c; = 1.5). The cross-section jump is neglected and the
flame is assumed to lie at x, = L/3. The temperature
jump lifts the neutral curve in general and also stretches
the span of the neutral loop to the left. Hence, the inclu-
sion of temperature jump in the system increases the n',

Non-dimensional time lag T,, =T*(c/L)
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Figure 19. Effect of flame location on stability domain for

m' = |. The temperature and cross-section are uniform. The plot
is based on equation (I3) and shows two flame locations: (1)
Xg=0.25m and (2) x; =0.35m. The instability domains for
xq=0.25m is marked by (i) (lavender online). The common
instability domain for these two cases, (ii), is lightly shaded
(yellow online). Other parameters are the same as in Figure 6(a).

for all time lags in this case. Note that in Figure 18 there
is a vertical neutral curve segment corresponding to
a)i,t = for the case 7>/7T;=2.25 on the left side.
Hence, in contrast to Figure 6(a), in this figure we see
two neutral segments corresponding to w'.t = 7 for the
case T»/T; =2.25. This phenomenon is due to intrinsic—
acoustic mode coupling. On the immediate right-hand
side of this vertical wi,t = 7 segment, we have two solu-
tions (i.e. two neutral segments) for a specific r. On the
immediate left side, we have only one solution for a spe-
cific 7. Further details of this aspect will be reported
elsewhere.

Figure 19, plotted on the basis of equation (13),
demonstrates the effect of flame location on n/,(7).
The figure is drawn for two different flame locations:
(1) x,=0.25m and (2) x,=0.35m, under the assump-
tion of no temperature and cross-section jumps. Region
(1) (lavender online) represents the instability domain
for x,=0.25m. The neutral curve shifts slightly up as
the flame is shifted from x;,=0.25m to x,=0.35m. In
other words, the n-threshold increases as the flame is
moved from x, =0.25m to x, =0.35m. Further analyt-
ical studies (not reported here) confirm that this is
indeed a general trend: an increase of x, always
increases n-threshold.

A similar parametric study can be performed for the
growth rates of the intrinsic modes, as well. Figure 20(a)
and (b) shows the effect of cross-section jump and tem-
perature jump, respectively, on the growth rate.
The flame is assumed to be located at x, = L/3.
Growth rates are calculated using the explicit analytical

(a) 80 - . T . (b) s0 - T T
= 1. T=8 ms, §,/8,=1 — 1. T=9 ms, T/ T,=1
60| e 2. T=8'ms, S5/S,=2 a0l — 2, T=9ms, T,/T,=2.25 ||
— = 3.T=12ms, S/S,=1 —

a0 — 4, T=12ms, $4S=2|]
3 ' 3 - 5 20} i
B 20f ’ s ®
= " =
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Figure 20. Effect of cross-section jump and temperature jump on growth rates for m'= 1, x, = L/3 (based on equation (16)). (a)
Two different time lags (8 and 12 ms) are indicated by solid and dashed lines. Two values of cross-section jumps (S;/S; =1 and

S2/S1 =2) are marked in dark (blue online) and light (green online). The temperature is assumed to be uniform for this case. (b) Two
values of temperature jump T,/T; = | (or c;/c; = I)and T, /T, =2.25 (or ¢; /c| = |.5) are marked in dark (1) (blue online) and light (2)
(green online) for time lag =9 ms. The cross-section is assumed uniform for this case. Other parameters and notation are the same as
in Figure 6(a). Lightly shaded region (yellow online) marks the domain of instability.
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solution (16). Figure 20(a) shows two different cases for
the time lag (8 ms and 12 ms), where cross-section jumps
of S,/S1 =1 and S,/S| =2 are considered for each case
(assuming uniform temperature). The growth rate
decreases due to cross-section jump both for the time
lag of 8 ms and 12 ms. Dependence of the growth rates
on the temperature jumps is illustrated by Figure 20(b):
for a single time lag (t =9ms) and uniform cross-sec-
tion. The figure compares the effect of a moderate tem-
perature jump (7>/7;=2.25 or ¢;/c; =1.5) with the
configuration of no temperature jump (75/7)=1).
The introduction of temperature jump reduces the
growth rate (at least for the chosen 7). A similar analysis
can be carried out to describe the effect of flame loca-
tion, as well.

Thus, by manipulating the system parameters like
cross-section jump, temperature jump and flame loca-
tion, we can increase/decrease the n!, and decrease/
increase the growth rate, and hence dampen/instigate
the intrinsic mode instability. The flame location for
small x, is found to be most critical for intrinsic flame
instability.

7. Conclusions

In the current work, we have analytically studied the
features of flame intrinsic modes within a 1D open—
open combustor with a linear n — t model of heat
release. Previous studies by Hoeijmakers et al.'® and
by Mukherjee and Shrira®' have shown that there is
always an infinite number of intrinsic modes present
in combustors. Mukherjee and Shrira?' have shown
that for small » these modes are strongly damped for
any combustor (i.e. they are very much localized and do
not feel combustor boundaries). However, their work
on closed—open combustors shows that these modes
have the potential to become unstable beyond a certain
threshold in n. In this paper, we extend the analysis of
Mukherjee and Shrira®! to open—open combustors with
ideal and non-ideal end boundaries and make these
salient observations:

(1) We have shown that the phenomenon of ‘decou-
pling’, or factorization of the dispersion relation
on the neutral curve, found by Mukherjee and
Shrira®! for the ideal closed—open combustors,
also occurs for only two other combinations of
boundary conditions, (a) ideal open—open and
(b) ideal closed—closed. Due to the decoupling of
the dispersion relation on the neutral curve, the
intrinsic mode incipient instability frequency, for
these cases, is found to be independent of the
flame location and the combustor parameters.
Based on this observation, we have performed a
comprehensive study of intrinsic instability of an

important common model of combustor, the ideal
open—open. However, it is noteworthy that once
the non-ideal boundaries of the combustors are
considered, this decoupling phenomenon ceases
to exist.

(ii) Similar to the findings of Mukherjee and Shrira®!
for closed—open combustors, we have shown here
for open—open combustors that for certain bands
of t each intrinsic mode becomes unstable above a
certain threshold of n. The threshold depends on
the combustor parameters and is explicitly given by
equation (13). The neutral curve for each intrinsic
mode is qualitatively similar to that of the closed—
open model. It consists of combinations of neutral
curve segments o't =0, wit =7 and ol = —7,
where o/, is the discrepancy between the real part
of the frequency on the neutral curve and the real
part of the frequency in the limit of small n. The
neutral curve has two principal segments: one large
loop on the extreme right (for larger time lag) and a
series of smaller loops of reducing t scale for the
smaller time lag. The large neutral loop on the
extreme right consists of neutral segments
o't =0 and o't = 7 only. The neutral curve seg-
ment w7 = —7 does not feature there. This aspect
is qualitatively different to closed—open combus-
tors as reported by Mukherjee and Shrira,*!
where the large neutral loop on the extreme right
consists of all the neutral segments wit =0,
.t =7 and .t = —m, while the main neutral
curve loops for each mode are confined to a certain
interval in 7 for closed—open combustors, the loops
and, hence, the instability domains for the open—
open systems are not bounded on the large t side.
Thus, beyond a certain time lag, the intrinsic mode
is always unstable for open—open combustors. The
first intrinsic mode is found to provide the upper
bound of the stability domain. Any point on the
n — t plane that is above this upper bound is guar-
anteed to be unstable for at least one or multiple
intrinsic modes. Most importantly, the intrinsic
modes (and also the acoustic modes that get
coupled to them) can become unstable at a much
lower n-threshold than for a flame in an infinite
tube.!© Moreover, some evidence has been
reported in this work to claim that in certain
n — T parameter space, intrinsic instability might
be stronger than the acoustic instability. We have
also derived an explicit analytical formula to pre-
dict the growth rates for each intrinsic mode. The
neutral curves and the growth rate predictions
have been validated by numerics.

(ii1) The intrinsic flame instabilities as a function of
combustor parameters like the flame location,
the cross-section and temperature jump across
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the flame have been described analytically. By
manipulating the system parameters like cross-
section jump, temperature jump and flame loca-
tion, and employing these formulae, combustor
designers can increase the n!, and decrease the
growth rate and hence prevent/control the intrin-
sic mode instability.

(iv) We have analysed the effect of imperfect end con-
ditions on the analytical results of instability fre-
quency, n-threshold and the growth rate of flame
intrinsic modes for an open—open combustor. The
analytical results described for ideal open—open
end boundaries have been found to be generally
quite robust, except for the following two cases
(for uniform temperature and cross-section):

(a) The flame lies near the downstream end (x, = L)
for an open—open combustor. When the flame
resides near the upstream end (x, = 0), the ana-
lytical solutions retain their robustness.

(b) When on the neutral curve sin(wg’,L/c) =0 for
an open—open combustor (and cos(a)f)th/ c)=0
for a closed—open combustor), where a)f),, is the
instability frequency on the neutral curves for a
combustor with perfect end conditions.

The domain on the n — t plane with two solutions
for a single time lag is found to be not so robust: slight
perturbations of the end conditions significantly per-
turb the neutral segments w't = +x (and also those
corresponding to .t = 0). The reason for this is that
the robustness analysis performed here is based on a
perturbation method, which in turn is based on the
assumption of small deviation, &', of the instability fre-
quency, for small perturbation of combustor bound-
aries €1, €. This assumption is not always valid in the
domain of two solutions for single time lag on the n —
plane. Remarkably, the neutral segment corresponding
to w.t =0 and the corresponding growth rate are
found to be very robust between the points of intersec-
tions of the neutral curve segments. We managed to
capture the neutral segment w.7 =0 quite accurately
even for a significant 50% perturbation of the real
part of the reflection coefficients of ecither end of the
combustor. It will require a dedicated effort to derive
analytical corrections to the ‘ideal’ solutions for the
cases when the solutions are not robust. The effect of
temperature jump on the robustness of the analytical
solution is found to be an intricate matter to analyse.
This aspect also needs to be dealt with in future studies.

The above conclusions were obtained within the
framework of the n — v model. Its degree of validity
in the range of large (or even moderate) n is not a
core matter of investigation here and goes beyond the
scope of the current paper. Here, we assume large 7 to
be of O(1). We hope that the obtained results capture at

least qualitatively the dependence of intrinsic instabil-
ities on the set of combustor parameters. We also stress
that here we have found intrinsic instabilities in the
range of relatively small n. At least this subset of the
results is expected to survive in more accurate models.

The present work is focused on the analytical study
of an open—open combustor with ideal and non-ideal
boundary conditions. The coexistence of intrinsic and
acoustic modes within a combustor and, hence, a pos-
sible coupling between these modes opens a new
research topic in combustion instability. It is known
from the literature®® that in a Rijke tube (open—open
thermo-acoustic system) there is an audible sound
which is a manifestation of thermo-acoustic instability,
when the heat source is at the lower half of the tube.
This observation implies that the dominant acoustic
mode instabilities are subdued for the heat sources
(e.g. flame) located in the upper half of the tube.
(However, please note that the classical Rijke tube is
not a premixed flame configuration.) This gives the
flame intrinsic modes of the system a chance to drive
the combustion instability, an aspect which calls for
further investigation. Once we have established basic
properties of intrinsic modes in the open—open combus-
tors, a study of the nonlinear dynamics of the intrinsic
modes and their nonlinear interactions with the acous-
tic modes in an open—open combustor is a logical next
step. The mean flow could be also introduced into our
analysis without the need to radically change the math-
ematical framework. The interaction between intrinsic
modes of really low frequency and hydrodynamic
modes should also be a topic of interest.
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