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Analysis of the interaction
of thermoacoustic modes with
a Green’s function approach

Alessandra Bigongiari1,2 and Maria Heckl1

Abstract

In this paper, we will present a fast prediction tool based on a one-dimensional Green’s function approach that can be used

to bypass numerically expensive computational fluid dynamics simulations. The Green’s function approach has the advan-

tage of providing a clear picture of the physics behind the generation and evolution of combustion instabilities. In addition,

the method allows us to perform a modal analysis; single acoustic modes can be treated in isolation or in combination with

other modes. In this article, we will investigate the role of higher-order modes in determining the stability of the system. We

will initially produce the stability maps for the first and second mode separately. Then the time history of the perturbation

will be computed, where both the modes are present. The flame will be modelled by a generic Flame Describing Function,

i.e. by an amplitude-dependent Flame Transfer Function. The time-history calculations show the evolution of the two

modes resulting from an initial perturbation; both transient and limit-cycle oscillations are revealed. Our study represents a

first step towards the modelling of nonlinearity and non-normality in combustion processes.
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1. Introduction

Thermoacoustic instabilities are large-amplitude self-sus-
tained oscillations of the acoustic field that are observed
in various combustion systems.1,2 They arise as the result
of thermoacoustic feedback, i.e. positive feedback
between the heat source (typically a flame) and the
acoustic field inside the combustor. What starts as a
small perturbation in the acoustic field amplifies the
rate of heat release, which in turn amplifies the acoustic
field; this process is repeated periodically, and high amp-
litudes are soon reached. Whether the feedback is posi-
tive depends on the system parameters. It may also be
negative, in which case an initial perturbation decays.
Efforts have been made by several research groups to
understand and control this phenomenon. One can get
an overview in the review articles of Candel,3 Lieuwen4

and Huang and Yang,5 in the books by Lieuwen and
Yang6 and Poinsot and Veynante,7 and in Culick.8

Several unstable thermoacoustic modes may appear
simultaneously in a combustion system. Some modes are
more harmful that others, so it is important to predict
their frequency and amplitude, and to understand the

interaction between them. The aim of this paper is to
present a fundamental study of a two-mode combustion
system in order to shed light on the behaviour of the
individual modes and on the interaction between them.

There are only a few fundamental studies of non-
linear modal interactions in the literature.

Moeck et al9 performed a frequency-domain study
of modal interactions by the ‘‘harmonic balance
approach’’. Starting from a nonlinear heat release law
in the time-domain, they constructed a multi-input
FDF. They then incorporated this FDF into a network
model in the frequency domain and derived a set of
dispersion relations. These have the form of coupled
nonlinear algebraic equations for the frequencies and
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amplitudes of the individual modes. Any modes parti-
cipating in a limit cycle were identified from their purely
real eigenfrequencies and corresponding non-zero
amplitudes. The method is suitable for the case where
only two modes are involved in the interaction, but
becomes excessively laborious if there are more than
two modes. Also, it provides information only on
established limit cycles oscillations, but not on any
transient states.

Acharya et al10 studied modal interactions for the
special case, where there are two potentially unstable
modes, which have similar frequencies. Their study is
based on the nonlinear wave equation for the pressure
with a forcing term that is proportional to the rate of
heat release. The heat release rate is assumed to depend
on pressure (not on velocity) and described by a cubic
expression. The Galerkin method is used to formulate
ODEs for the time dependence of the two modes; they
have the form of coupled oscillator equations with non-
linear ‘‘forcing terms’’. Since the frequency difference
between the two modes is assumed to be small, a slow
time-scale occurs in addition to the fast time-scale
related to the oscillation frequencies. The presence of
two time scales allows the use of the ‘‘method of aver-
aging’’, i.e. simplifying the coupled oscillator equations
by neglecting the time averages of the fast variations.
The averaged equations are analysed to predict the
limit cycle amplitudes of the two modes for a range of
parameters. The method is limited to modes with similar
frequencies and cannot be extended to other frequencies.

Another time-domain study was performed by
Noiray et al11 for azimuthal modes in an annular com-
bustion chamber. They considered the interaction
between a pair of azimuthal modes with the same
mode number. As in10, the heat release rate was mod-
elled by a cubic expression in terms of the acoustic
pressure. A pair of coupled ODEs was formulated for
the temporal evolution of the amplitudes of the two
modes. These ODEs turned out to represent a pair of
coupled Van der Pol oscillators. The mode pair was
found to be able to form a limit cycle, and their
nature (rotating, standing, or mixed) was determined
for different azimuthal distributions of the heat release
rate. This method can only be applied to the special
case where two modes with the same frequency interact.

Our approach is primarily in the time-domain and
analytical. It differs from the studies referenced above
in two main aspects:

. We use the tailored Green’s function to describe the
acoustic field in the combustion chamber; we do not
use the Galerkin method, which is commonly used
for analytical studies in thermoacoustics (e.g. in9-14).

. We model the nonlinear flame by a generic analytical
heat release law with amplitude-dependent fitting

parameters that can be adjusted to capture the typical
features of any given flame describing function; we do
not assume a priori that the heat release depends on
the acoustic field in a specific nonlinear fashion, and
we do not impose an a priori saturation amplitude.

The tailored Green’s function is a superposition of
modes of the combustion system without feedback. We
calculate its modal frequencies, growth rates and amp-
litudes in terms of a few key parameters, such as com-
bustor geometry, end conditions, inlet and outlet
temperature. We then use the Green’s function to
derive a governing equation for the combustion
system with feedback. This equation captures the key
physical aspects: the combustor properties and the par-
ameters describing the thermoacoustic feedback.

Our method has a number of advantages over the
earlier methods.

– It is not limited to two modes, but can be extended
to three or more modes in a straightforward way.

– Given that it is a time-domain method, it predicts
the behaviour of the interacting modes not only
during a limit cycle, but also during transient
stages.

– The flame model we use is flexible and can be
matched to flame describing functions that are
typically found by measurement or by combustion
CFD.

– Since our analysis is based on the tailored Green’s
function of the combustion chamber, our repre-
sentation of the thermoacoustic field is an expan-
sion in terms of actual physical modes (as opposed
to the approximate modes of the commonly used
Galerkin method). Thus we have a natural and
tool to study the interaction of such modes.

– It allows one to make stability predictions quickly
and without much numerical effort.

Our method has been described in Bigongiari and
Heckl,15 where the stability of the first acoustic mode
has been analysed for two burner configurations: a

Figure 1. Schematic illustration of the modelled configuration.

R0 and RL are reflection coefficients. �T1; �r1; c1 are the mean

temperature, mean density and speed of sound, respectively in

the cold region; �T2; �r2; c2 are their equivalents in the hot region.

Bigongiari and Heckl 327



Rijke tube and a quarter-wave resonator. In the current
paper, we will investigate the role of higher modes in
determining the stability behaviour of the system.

Since this is a fundamental study, we consider a sim-
plified combustion system with two main components:

1. The combustion chamber is either a Rijke tube or a
quarter-wave resonator. The first two modes are pre-
sent, but higher modes do not exist.

2. The heat release rate is described by a generic flame
describing function (FDF). It is analytical and
includes time-lag distributions with amplitude-
dependent parameters. Despite its generic nature, it
has a realistic basis: it comes from full 3D simula-
tions of a specific laboratory swirl burner (the ‘BRS
(Beschaufelter Ring-Spalt) burner’),16 as reported in
Iurashev et al.17 and Bigongiari and Heckl.18,19

The paper is organized as follows. The tailored
Green’s function is introduced in section 2, and its ana-
lytical form is given in terms of a superposition of
modes. In section 3, we present our model for the
heat release rate, both in the time domain and in the
frequency domain. The stability analysis is performed
in two ways: by calculating the time evolution of an
initial perturbation (section 4) and by a modal stability
analysis (section 5). Results predicted from the two
methods are shown and compared in section 6. The
paper finishes with conclusions in section 7.

2. Green’s function for the combustion
system

We consider the configuration shown in Figure 1. A 1D
tube of length L has boundary conditions described by
pressure reflection coefficients R0 and RL. A steady heat
source at xq creates a mean temperature jump from �T1

to �T2, and associated jumps in the mean density �� and
speed of sound c. Conditions are uniform within the
cold region 05 x5 xq (denoted by subscript 1) and
the hot region xq 5 x5L (denoted by subscript 2).

The Green’s function is the acoustic field generated
in the tube at location x and time t by an impulsive
point source located at x’ and firing at t’. We denote
it by G(x, x’, t, t’) and describe it in terms of the velocity
potential. Its governing equation is the non-homoge-
neous wave equation

1

c2
@2G

@t2
�
@2G

@x2
¼ � x� x0ð Þ� t� t0ð Þ ð1Þ

together with boundary conditions described by reflec-
tion coefficients R0 and RL. The Green’s function is a
superposition of modes, with modal amplitudes gn and
modal frequencies !n

G x, x0, t, t0ð Þ ¼ H t� t0ð Þ<
X1

n¼1
gn x, x0ð Þe�i!n t�t0ð Þ ð2Þ

H t� t0ð Þ denotes the Heaviside function; it guaran-
tees causality. The quantities gn and !n have been cal-
culated analytically for the combustion system shown
in Figure 1 (see Bigongiari and Heckl15 for details on
the derivation); the results are

gn x,x0ð Þ ¼ i
ĝ x, x0,!nð Þ

!nF !nð Þ
ð3Þ

with

ĝ x, x0,!ð Þ ¼
D x,!ð ÞC x0,!ð Þ for xq 5 x5 x0

C x,!ð ÞD x0,!ð Þ for x05 x5L

�
ð4Þ
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ð6Þ

F(!) is the function appearing in the characteristic
equation, F(!)¼ 0, which determines the modal fre-
quencies !n in the Green’s function.

3. Model for the heat release rate

3.1 Heat release law in the time domain

We construct a heat release law for a compact heat
source, which is an extension of the well-known n�-
law. It features distributions around two central time-
lag values �1 and �2, two coupling coefficients n1 and n2,
as well as the parameters �1 and �2, which specify the
width of the distributions20

Q tð Þ

�Q
¼ n1

Z 1
�¼0

uq t� �ð Þ

�U
D1 � � �1ð Þd�

� n2

Z 1
�¼0

uq t� �ð Þ

�U
D2 � � �2ð Þd�

ð7Þ

Q is the fluctuation of the heat release rate, uq is the
velocity perturbation at the heat source, and �Q and �U
are the corresponding mean quantities. The
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distributions are assumed to be Gaussian with standard
deviations �1 and �2

Di �ð Þ ¼
2

�i
ffiffiffiffiffiffi
2�
p e

�
���ið Þ

2

2�2
i , i ¼ 1, 2 ð8Þ

The heat release law described by equation (7)
includes the n�-law as special case (n2 ¼ 0,
D1 � � �1ð Þ ¼ � � � �1ð Þ), but it is much more versatile
and able to capture a variety of physical effects:

1. Heat release fluctuations may be induced by different
physical effects, such as fluctuations in equivalence
ratio, or vortex shedding at the flame holder. Such
perturbations may travel with different speeds or
over different distances, giving rise to two distinct
time-lags in the flame response.

2. Neighbouring fluid particles may travel over slightly
different distances and reach the flame front with
slightly different travel times. This is included in
our model by incorporating the distributions D1

and D2.

Based on equation (7) the local heat release rate (per
unit mass) can be written as

q tð Þ ¼ K n1

Z 1
�¼0

uq t� �ð ÞD1 � � �1ð Þd�

	

�n2

Z 1
�¼0

uq t� �ð ÞD2 � � �2ð Þd�

� ð9Þ

where

K ¼
�Q

S �U2 ��2
ð10Þ

is the heater power per mass flow, having units Wskg�1;
S is the cross-sectional area of the tube.

The time-lags �1, �2, the coupling constants n1, n2,
and the distribution widths �1, �2, are all amplitude-
dependent. The inclusion of the amplitude-dependence
is fundamental to the modelling of non-linear effects,
such as the formation of limit cycles. In order to deter-
mine the amplitude-dependence, we are going to move
from the time-domain to the frequency-domain.

3.2 Heat release law in the frequency domain

We denote the Fourier transform by F ½ � and Fourier-
transformed quantities by ^, e.g.

F Q tð Þ½ � ¼
1

2�

Z 1
t¼�1

Q tð Þei!tdt ¼ Q̂ !ð Þ ð11Þ

Assuming that the distribution is zero for negative
time-lags, i.e. Dið� � �iÞ ¼ 0 for � � 0, we can extend

the range of integration from [0, 1] to [�1, 1] and
calculate the Fourier transform of equation (7)

Q̂ !ð Þ

Q
¼ n1

ûq
�U
ei!�1e��

2
1
!2=2 � n2

ûq
�U
e
i!�2

e��
2
1
!2=2 ð12Þ

This gives the flame transfer function

FTF !ð Þ ¼
Q̂ !ð Þ= �Q

ûq !ð Þ= �U
¼ n1e

i!�1e��
2
1
!2=2 � n2e

i!�2e��
2
2
!2=2

ð13Þ

where Q̂ and ûq are the fluctuations in the frequency
domain of the heat release rate and velocity, respectively.
The FTF in equation (13) shows the same key features
that are generally observed in FTF measurements of pre-
mixed flames, as shown in Bigongiari and Heckl,19 in
particular the excess gain and the low-pass behaviour.

Since we assume that the parameters n1, n2, �1, �2, �1,
�2 are amplitude-dependent, the FTF in equation (13)
is amplitude-dependent. In other words, it is a ‘flame
describing function’, which is commonly defined by

FDF A,!ð Þ ¼
Q̂ A,!ð Þ= �Q

ûq A,!ð Þ= �U
ð14Þ

the letter A denotes the velocity amplitude (at the heat
source).

The FDF can be determined experimentally by
applying a harmonic perturbation at the inlet (usually
through a loudspeaker or a siren) and recording the
time histories of the acoustic velocity and heat release
rate fluctuations. Spectral analysis then allows the cal-
culation of the gain and phase of the FTF as a function
of frequency and perturbation amplitude (see Noiray
et al.21). This experimental procedure can be mimicked
by full CFD simulations, as shown in Iurashev et al.17

In order to work with realistic values for n1, n2, �1, �2,
�1, �2, we are going to choose them by treating them as
fitting parameters and matching equation (13) to the
FTF in Iurashev et al.,17 which comes from CFD simu-
lations of the BRS burner. This is done for four ampli-
tude values in the range [0, 0.31] and leads to amplitude-
dependent fitting parameters n1, n2, �1, �2, �1, �2. We
describe the amplitude-dependence analytically by the
following linear expressions (for details see Bigongiari
and Heckl19)

n1 ¼ 7:4� 14:94
A

�U
, n2 ¼ 4:7� 14:94

A

�U
ð15Þ

�1 ¼ 4:13� 6:56
A

�U
, ms½ �, �2 ¼ 6:31� 1:89

A

�U
, ms½ �

ð16Þ

�1 ¼ 1:94� 3:16
A

�U
, ms½ �, �2 ¼ 1:21� 1:54

A

�U
, ms½ �

ð17Þ
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This approach to modelling amplitude-dependent
heat release laws represents an advance over early non-
linear models, where an artificial saturation amplitude
was imposed in order to ‘predict’ limit cycles.22 Further
details about nonlinear analytical flame models of the
sort described in this section can be found in20, where
they were first published.

4. Time evolution

4.1 The integral governing equation

In this section, we derive a time-domain expression for
the acoustic field in the burner in terms of its Green’s
function and the heat release rate.

The velocity potential � x, tð Þ of a sound field gener-
ated by a heat source with heat release rate q x, tð Þ (per
unit mass) can be described by the acoustic analogy
equation

1

c2
@2�

@t2
�
@2�

@x2
¼ �

� � 1

c2
q x, tð Þ ð18Þ

together with the initial conditions

� x, tð Þ



t¼o
¼ ’0� x� xq

� �
and

@� x, tð Þ

@t






t¼o

¼ ’00� x� xq
� �

ð19Þ

’0 is the initial value of the velocity potential, and ’00 is
the initial value of its time derivative.

This set of equations can be converted into an inte-
gral equation for the acoustic velocity u with the use of
the Green’s function. For a compact heat source at
x¼ xq, described by

q x, tð Þ ¼ q tð Þ� x� xq
� �

ð20Þ

we obtain the following integral equation (for details of
the derivation see Heckl and Howe19)

uq tð Þ ¼
@�

@x






x¼xq

¼ �
� � 1

c2

Z t

t0¼0

@G x, x0, t, t0ð Þ

@x





x¼xq
x0¼xq

q t0ð Þdt0

�
’0
c2

@G

@x@t0





x¼xq
x0¼xq
t0¼0

þ
’
0

0

c2
@G

@x





x¼xq
x0¼xq
t0¼0

ð21Þ

It is worth noting that equation (21) is equivalent to
the set of governing equations comprising equations
(18) and (19), and the boundary conditions described
by R0 and RL. In order to close the problem, an expres-
sion for q(t) in terms of uq is required. The equation can

then be integrated numerically to obtain the time evo-
lution of the perturbation.

4.2 Numerical solution by iteration

In order to solve equation (21) by iteration, we define
the integral

In tð Þ ¼

Z t0¼t

t0¼0

ei!nt
0

q t0ð Þdt0 ð22Þ

and split it into two parts (one over the slightly reduced
time interval t0 ¼ 0, . . . t��t and one over the small
time interval t0 ¼ t��t, . . . t)

In tð Þ ¼

Z t��t

t0¼0

ei!nt
0

q t0ð Þdt0 þ

Z t

t0¼t��t

ei!nt
0

q t0ð Þdt0 ð23Þ

We use this, and the modal form of G x, x0, t, t0ð Þ in
equation (2), to rewrite the integral equation (10) as

uq tð Þ ¼ �
� � 1

c2
Re

X1
n¼1

Gne
�i!ntIn tð Þ

�
1

c2
Re
X1
n¼1

i!n’0 þ ’
0
0

� �
Gne

�i!nt

ð24Þ

where the abbreviation

Gn ¼
@gn x, x0ð Þ

@x





x¼xq
x0¼xq

ð25Þ

has been introduced. With the assumption that q t0ð Þ is
constant during the small time interval �t, the integral
In can be approximated as

In tð Þ ¼ In t��tð Þ þ q t��tð Þ
1� e�i!n�t

i!n
ei!nt ð26Þ

The modal frequencies !n are obtained by numerical
solution (e.g. by the Newton–Raphson method) of the
characteristic equation F(!)¼ 0, with F(!) defined in
equation (6). In each iteration step, In(t) is updated by
equation (26), then uq(t) by equation (24), and finally
q(t) by the heat release law equation (9).

5. Modal analysis

The integral equation (21) governs the evolution of the
acoustic field in the presence of thermoacoustic feedback.
From this equation it is possible to perform a modal
analysis resembling an eigenvalue calculation that gives
the frequencies of the acoustic modes driven by thermo-
acoustic feedback. The eigenmodes are determined by
using a modal expression for the acoustic velocity with
complex amplitudes um and complex frequencies �m
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uq tð Þ ¼
X1
m¼1

ume
�i�mt þ u�me

i��mt
� �

ð27Þ

Equations for um and �m are derived by combining
equation (27) with the integral equation (21), the local
heat release rate q(t) in equation (9), and the modal
expression for the Green’s function in equation (2).
We report here the equations for �m obtained in

Figure 4. Comparative maps for = �1ð Þ and = �2ð Þ. Green areas indicate = �1ð Þ>= �2ð Þ. (a) Rijke tube. (b) Quarter-wave resonator.

The other parameters are as in figures 2 and 3.

Figure 3. Stability maps in the L� A= �U plane for a quarter-wave resonator with heat source at xq ¼ 0:20m. The mean temperature

jumps from 300K to 1400K. (a) Mode 1 in isolation. (b) Mode 2 in isolation.

Figure 2. Stability maps in the L� A= �U plane for a Rijke tube with heat source at xq ¼ 0:20m. The mean temperature jumps from

300K to 1400K. (a) Mode 1 in isolation. (b) Mode 2 in isolation.
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Bigongiari and Heckl15 and extended to include the
time-lag distribution

Z 1
�¼0

ei�mt n1D1 �ð Þ � n2D2 �ð Þ½ �d�

�
X1
n¼1

Gn

i !n ��mð Þ
�

G�n
i !�n þ�m

� �
" #

¼ �
2c2

K � � 1ð Þ

ð28Þ

with Gn given by equation (25).
By solving equation (27) for �m and then determin-

ing the sign of = �mð Þ, the stability behaviour of mode m
can be predicted directly. We will perform this kind of
stability analysis for different control parameters and
perturbation amplitudes, and then represent our predic-
tions in the form of stability maps. This has been done
in Bigongiari and Heckl,15 where the dependence on
heater power, heat source position and length of the
pipe were analysed for the first acoustic mode in
isolation.

In this paper, we are going to extend our analysis
and concentrate on the effects of higher-order modes on

stability, as well as on the interaction between the first
and second acoustic mode.

6. Results

In order to study the stability behaviour of the system,
we use the two approaches described earlier: we calcu-
late stability maps from a modal analysis as described
in section 5, and we calculate perturbation time his-
tories as described in section 4.2. Modes 1 and 2 will
be taken into account. The calculations will be per-
formed for two sets of boundary conditions without
acoustic losses:

1. R0 ¼ 1 (rigid end at x¼ 0) and RL ¼ �1 (open end
at x¼L), i.e. for a quarter-wave resonator.

2. R0 ¼ �1 (open end at x¼ 0) and RL ¼ �1 (open end
at x¼L), i.e. for a Rijke tube.

The heater position is kept constant, xq¼ 0.20 m.
The heater power per mass flow is assumed to be
J ¼ 1.41�106Wskg�1. The corresponding temperature

Figure 6. Fourier transform of the time history uq tð Þ shown in Figure 5. (a) Time-window [0, 1 s]. (b) Time-window [9 s, 10 s].

Figure 7. Time history of uq(t) in a quarter-wave resonator

with L¼ 2 m and initial condition uq t ¼ 0ð Þ= �U ¼ 0:01. The

Green’s function includes the first two modes. xq ¼ 0:20m;
�T1 ¼ 300K; �T2 ¼ 1400K.

Figure 5. Time history of uq(t) in a Rijke tube with L¼ 1.2 m

and initial condition uq t ¼ 0ð Þ= �U ¼ 0:01. The Green’s function

includes the first two modes. xq ¼ 0:20m; �T1 ¼ 300K;
�T2 ¼ 1400K.
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jump is �T ¼ 1400K; the inlet temperature is
�T1 ¼ 300K, and the outlet temperature is
�T2 ¼ �T1 þ�T.
The Green’s function is assumed to have only two

non-zero modes, i.e. g3¼ g4¼ . . . ¼ 0 in equation (2).

6.1 Stability maps

We show the behaviour of modes 1 and 2, based on
= �1ð Þ and = �2ð Þ (with �1 and �2 calculated from equa-
tion (28)) and in the form of stability maps in the
L� A= �U plane (see Figures 2 and 3). We will consider
a single control parameter, the burner length L, which
ranges from 0.36 to 2.26 m; the amplitude A= �U ranges
from 0 to 0.31.

Figure 2 shows the case of the Rijke tube; on the left
is the stability map of mode 1 in isolation, and on the
right is that of mode 2 in isolation. Green areas indicate
regions of instability: if the combustion system is such
that the pair of values (L, A= �U) lie in an instability
region, the mode will grow until (L, A= �U) reaches
the border with the neighbouring stable region.

White areas are regions of stability: if the point
(L, A= �U) lies in such a region, the mode will decay in
amplitude until the border with the next unstable region
is reached. Interfaces between stable and unstable
regions correspond to limit cycles: the growth rate of
the mode is zero for values of (L, A= �U) along the inter-
faces (see also Bigongiari and Heckl12). Figure 3 shows
equivalent stability maps for the quarter-wave resonator.

Each of the maps in Figures 2 and 3 represents the
stability of a single mode in isolation. The overall sta-
bility of the combustion system is the result of the con-
tribution of each mode and of the interaction between
them, which is characterized by non-normality and
nonlinearity.24,25 The first step towards investigating
the interaction between the first two modes of the com-
bustor is to compare the growth rate of the two modes,
so as to determine the dominant mode. This is shown in
Figure 4: the green areas in the map indicate the regions
where = �1ð Þ4= �2ð Þ.

From the maps in Figures 2 to 4, it is possible to
deduce the nonlinear stability behaviour of the combus-
tor. We illustrate this with two examples.

Figure 8. Fourier transform of the time history uq tð Þ shown in Figure 7. (a) Time-window [0, 1 s]. (b) Time-window [9 s, 10 s].

Figure 9. Amplitude of the perturbation after 1s, as a function of the combustor length L. The increment is �L=0.01m. xq ¼ 0:20m;
�T1 ¼ 300K; �T2 ¼ 1400K. (a) Rijke tube. (b) Quarter-wave resonator.
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First, let us consider the Rijke tube of length L¼ 1.2
m. According to Figure 2, mode 2 is unstable at very
low amplitudes, while mode 1 is stable. Hence we
expect mode 2 to grow until its amplitude reaches the
value A= �U ¼ 0:09, which lies at the upper boundary of
its unstable region (Figure 2(b)). At the point (L¼ 1.2
m, A= �U ¼ 0:09), mode 1 is unstable (Figure 2(a)). We
can therefore expect that mode 1 will now grow until it
reaches the border of its unstable zone.

As a second example, let us consider a quarter-wave
resonator of length L¼ 2.0 m. According to Figure 3,
both modes are unstable at that point throughout the
whole amplitude range. The comparative map in
Figure 4(b) shows that mode 2 is the dominant one,
and we therefore expect that an initial perturbation
grows, with the dominant spectral component corres-
ponding to mode 2.

In order to explore the nonlinear features of the two-
mode interaction more rigorously, we will investigate
the stability behaviour from the evolution of the overall
acoustic velocity of the system.

6.2 Perturbation time histories

Following the numerical iteration method described
in section 4.2, we calculate the time history of the
perturbation uq(t) from its governing integral equa-
tion (21), combined with the local heat release rate
(9) and amplitude-dependent parameters given by
equations (15) to (17). The Green’s function in the
integral equation is evaluated from equation (2),
where the sum includes the first two Green’s function
modes, n¼ 1, 2, but no higher modes. We present time
histories for the two examples considered in the pre-
vious section.

The time history for the Rijke tube of length L¼ 1.2
m is displayed in Figure 5. It has been calculated by
imposing the initial condition uq t ¼ 0ð Þ= �U ¼ 0:01.

The amplitude increases exponentially at first, then
grows less rapidly; beyond about t¼ 2 s, a limit cycle is
established with final amplitude A= �U ’ 0:1. In order to
check whether this time history is in line with the
expectations based on the stability maps in Figure 2,
we calculate the frequency spectrum for two time win-
dows of the evolution: for [0, 1 s], i.e. for the early stage
when the amplitude grows, and for [9 s, 10 s], i.e. after
the limit cycle has established. The results are shown in
Figure 6(a) and (b).

These spectra reveal that mode 1 is dominant during
the growth stage of the evolution (small amplitudes),
and that mode 2 takes over at the limit cycle stage
(large amplitudes). This is not in agreement with the
expectations based on the comparative map of
Figure 4(a), in fact the opposite behaviour is predicted
from the perturbation time history.

The time history for the quarter-wave resonator of
length L¼ 2 m is displayed in Figure 7. Again, the ini-
tial condition was uq t ¼ 0ð Þ= �U ¼ 0:01.

The system is clearly stable, given that the initial
perturbation decays to a smaller value. This is at vari-
ance with the predictions shown in the stability maps of
Figure 3. Again, we investigate the evolution in
more detail by calculating its frequency spectrum for
two time windows: for the initial stage [0, 1 s], and
for the later stage [9 s, 10 s]. The results are shown in
Figure 8(a) and (b).

Mode 2 is dominant during the initial stage [0, 1 s] of
the evolution (see Figure 8(a)). The amplitude of the
perturbation decreases until saturation occurs for
A= �U ’ 5� 10�4. This threshold, which is not visible
in the comparative map of Figure 4(b), corresponds
to the point where the first mode becomes dominant.
The Fourier analysis of the acoustic velocity in the later
time interval [9 s, 10 s] (see Figure 8(b)) confirms that
the first mode is dominant after saturation.

These two examples show that a stability analysis in
the frequency-domain cannot predict which of the
modes will dominate the evolution, nor can it predict
the final amplitude of the perturbation and the overall
stability. In order to obtain this kind of information, it
is necessary to calculate the time evolution of a perturb-
ation and to examine its Fourier transform at different
stages (or use other methods of time series analysis).
This is in line with Moeck el al [9] who concluded
from their frequency-domain analysis that the full
dynamical picture can only be obtained from a time-
domain analysis.

The failure of the modal stability analysis is not
unexpected, given that non-normality and nonlinearity
have been observed in the evolution of thermoacoustic
instabilities (see e.g. Balasubramanian and Sujith,24

Sujith et al.,25 and Mariappan et al.26). In fact, the
acoustic modes are modified by the thermoacoustic
feedback; this has been demonstrated theoretically in
Bigongiari and Heckl.15 It has also been demonstrated
experimentally in Mariappan et al.26 that non-normal-
ity becomes more pronounced for increasing heater
power.

In order to better illustrate the consequences of non-
normal and nonlinear effects in the interaction between
the modes, we perform a systematic investigation and
calculate 1 s of time evolution for different values of L.
The largest amplitude of uq observed in this time-inter-
val is plotted in Figure 9 as a function of L, spanning
the range [0.36 m, 2.26 m] (the same as in section 6.1),
with increment �L¼ 0.01 m.

We observe that within certain ranges of L the per-
turbation amplitude grows to very large values.
Juxtaposition with the comparative stability maps in
Figure 4 reveals that these L-ranges correspond to the
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L-ranges in which mode 2 is dominant (white regions in
Figures 4(a) and (b)) for a large range of A= �U values.

These results demonstrate that higher-order modes
can play an important role in determining the overall
stability behaviour. Having said that, we do not expect
that a large number of modes are required for reliable
stability predictions. This is because the contribution of
higher-order modes becomes progressively negligible
due to loss mechanisms (e.g. sound radiation from the
combustor outlet) becoming more pronounced at
higher frequencies.27 Nevertheless this study highlights
the nonlinear nature of the interaction between heat
driven modes, and it shows that the role of higher-
order modes cannot be neglected a priori.

7. Conclusions

In this paper, we have presented a fundamental study of
the role of modal interaction in the occurrence and evo-
lution of thermoacoustic instabilities. Our study is based
on a Green’s function approach, a method which is able
to provide rapid stability predictions, while allowing an
analysis of the key physical processes. We have analysed
the interaction between the first and second acoustic
mode in two ways: by calculating the time history of
the perturbation where both modes are present, and by
analysing the stability of each mode in isolation.

The time history of the perturbation has been calcu-
lated from an integral governing equation based on the
Green’s function of the system combined with a feed-
back model for the heat release law. This calculation
shows the evolution of the perturbation resulting from
the presence of two acoustic modes simultaneously.

A by-product of our Green’s function approach is a
frequency-domain method, where the stability beha-
viour of the individual modes is considered. This
method is less powerful than our time-domain
method (i.e. solving the integral governing equation):
it cannot predict transient effects due to the nonlinear
interaction between thermoacoustic modes.

This study represents a first step towards the model-
ling of nonlinearity and non-normality in combustion
processes, based on a model which is able to describe
the effects of thermoacoustic feedback on the acoustic
modes as a function of key parameters.
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