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Abstract

Combustion systems are prone to thermo-acoustic instabilities. The flame response to acoustic
waves is an important mechanism that controls instabilities. The estimation of the flame re-
sponse is a crucial step in state-of-art modeling approaches. In industrial application, e.g. gas
turbines, technically premixed swirl stabilized flames are commonly employed. For such sys-
tems, two different mechanisms, namely inertial waves and equivalence ratio waves, have a
strong impact on the flame response besides direct contribution of acoustic waves. This work
focuses on the accurate estimation and the physical interpretation of relevant time scales of
these two mechanisms.

Inertial waves are generated by acoustic waves crossing the swirler. These waves are also rec-
ognized as swirl waves in literature, which are commonly assumed to propagate with the bulk
flow velocity. In this thesis, the dispersive nature of inertial waves in rotating flows is shown
to cause a deviation in propagation speed around 40-50% from the bulk velocity. The wave
propagation speed is derived from the dispersion relation by employing a linear hydrodynamic
stability analysis formalism. The step response solution is obtained by posing an initial value
problem. This serves as an accurate time lag model for inertial waves in thermo-acoustic net-
work models. Moreover, a novel contribution to the list of flame interaction mechanisms caused
by tangential velocity fluctuations is identified using inertial wave dynamics.

Equivalence ratio waves are generated by acoustic waves crossing the fuel injector. The flame
frequency response to equivalence ratio fluctuations has been extensively studied in the litera-
ture. Three major contributions that cause heat release rate fluctuations were identified. Fluc-
tuations in the heat of reaction and the burning speed acts on the flame directly, whereas fluc-
tuations in the flame surface area are caused indirectly by the burning speed perturbations. In
this thesis, physical interpretation to these contributions is given by employing a time domain
approach. The level set G-equation flame model is used to derive the relevant time scales, and
their contribution to the flame response is discussed. Similar to inertial waves, the step response
solution is derived to quantify the propagation of equivalence ratio waves. For technically pre-
mixed flames, the analytical flame response model is further improved by including molecular
diffusion.
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Kurzfassung

Verbrennungssysteme sind anfällig für thermoakustische Instabilitäten. Die Flammenantwort
auf akustische Wellen ist ein wichtiger Mechanismus der auf Instabilitäten wirkt. Die Ab-
schätzung der Flammenantwort ist ein kritischer Punkt für aktuelle thermoakustische Modelle.
In industriellen Anwendungen von z.B. Gasturbinen werden häufig drallstabilisierte, technisch-
vorgemischte Flammen verwendet. Für solche Systeme haben, neben akustischen Wellen,
Trägheitswellen und Äquivalenzverhaltniswellen einen starken Einfluss auf die Flammenant-
wort. Die präzise Abschätzung und die physikalische Interpretation der charakteristischen Zeit-
skalen dieser Wellen bilden den Schwerpunkt der vorliegenden Dissertation.

Akustische Wellen, die auf einen Drallerzeuger treffen, generieren Trägheitswellen. In der Liter-
atur werden diese Wellen auch als Drallwellen bezeichnet, fr deren Ausbreitung die konvektive
Geschwindigkeit angenommen wird. In dieser Arbeit wird gezeigt, dass die dispersive Ausbre-
itung der Trägheitswellen eine Abweichung von ca. 40-50% in der Konvektionsgeschwindigkeit
verursacht. Die Wellengeschwindigkeit ist aus der linearen hydrodynamischer Stabilitätsanalyse
mit Hilfe der Dispersionsrelation abgeleitet. Ein präzises Zeitverzugsmodell für thermoakustis-
che Netzwerkmodelle wird als Anfangswertproblem aufgestellt und mittels einer Sprungant-
wort gelöst. Es wird gezeigt, dass Trägheitswellen eine neue Interpretation der Flammenant-
wort liefern: tangentiale Geschwindigkeitsstörungen, die im Falle einer symmetrischen Flamme
keine fluktuierende Wärmefreisetzung hervorrufen, erzeugen axiale Geschwindigkeitsfluktua-
tionen, die durch Trägheitswellen verursacht werden, und diese schließlich Fluktuationen der
Wärmefreisetzungsrate generieren.

Aquivalenzverhältniswellen werden durch akustische Wellen generiert, die auf die Brennstof-
feindüsung treffen. Die Flammenantwort verursacht durch Aquivalenzverhältniswellen im Fre-
quenzbereich wurde bereits eingehend in der Literatur diskutiert. Drei wesentliche Beiträge, die
Fluktuationen der Wärmefreisetzung verursachen, sind beschrieben. Fluktuationen der Reak-
tionswärme und der Flammengeschwindigkeit wirken direkt auf die Flamme, während Fluktu-
ationen der Flammenoberfläche durch die Flammengeschwindigkeitstörung indirekt verursacht
wird. In dieser Dissertation wird die physikalische Interpretation dieser Beiträge im Zeitbereich
vorgestellt. Die charakteristischen Zeitskalen sind anhand des Level-Set G-Gleichung Flam-
menmodels hergeleitet und ihr Einfluss auf die Flammenantwort wird diskutiert. Die Sprung-
antwort wird analog zu den bereits erwähnten Trägheitswellen hergeleitet, um die Ausbreitung
der Aquivalenzverhältniswellen zu quantifizieren. Für technisch-vorgemischte Flammen wird
das analytische Flammenantwortmodell weiter durch Einbeziehung der molekularen Diffusion
verbessert.
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1 Introduction

Over last decades, the gas turbine combustion design shifted to lean premixtures in response
to stricter emission regulations. However, lean premixed flames are prone to thermo-acoustic
instabilities, which might reduce the lifespan of the combustor or even cause structural damage.
Thermo-acoustic instabilities are understood as a coupling between acoustics and flame dynam-
ics: Acoustic waves feed energy into the flame and cause unsteady heat release rate. The latter
causes acoustic oscillations in return so that a feedback loop is formed. In the 1800s, Rayleigh
[1] introduced a famous criterion to explain the nature of this instability. According to this cri-
terion, the instability is encouraged if fluctuations of the heat release and the acoustic pressure
are in phase. This introduced a fundamental point of view to thermo-acoustics and formed a
basis for the further research on the subject.

Thermo-acoustics is a multiscale phenomenon comprised of large acoustic and small turbulent
combustion scales. The state of art modeling approach to predict thermo-acoustic instabilities is
to employ low order network models [2] for acoustic elements, e.g. ducts, area jumps and swirl
generators, and to couple them with a flame transfer function. The flame transfer function, F (ω)
is the frequency response of the unsteady heat release rate, Q̇′, to upstream acoustic velocity
perturbations, u′, and defined as

ˆ̇Q
¯̇Q

= F (ω)
û

ū
, (1.1)

where ω indicates the angular frequency. The Fourier transformed perturbed quantities are in-
dicated by (̂·) and the normalization is achieved by dividing the quantities by mean values,
(̄·).

For perfectly premixed flames, the major mechanism of the flame response is the flame front
kinematics. The top part of Fig. 1.1 illustrates this mechanism schematically. Acoustic waves
across the dump plane generate kinematic waves, which modulate the flame front and thus cause
unsteady heat release rate. This mechanism is extensively studied in the literature (see [3–6])
and is not the focus of this thesis. In industrial combustion applications, the flame response
depends also on two other mechanisms that are caused by acoustic waves, i.e. equivalence
ratio waves and inertial waves. These mechanisms are illustrated schematically in Fig. 1.1. The
reader may refer to Polifke [7], Lieuwen [8] for an introductory level description of the subject.
The overall flame response is the superposition of three contributions represented in Fig. 1.1.
In the presence of multiple mechanisms, corresponding time delays affect the flame response
strongly due to the constructive/destructive superposition in the unsteady heat release depending
on the frequency.

To elucidate the importance of the superposition principle on an introductory level, a pedagogic
toy model example is presented here. An idealized premixed flame that is acoustically forced
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Acoustic wave

f

Unsteady heat release

Inertial wave

u′θ

Kinematic wave

u′
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air flow
φ′

swirler blade

combustion chamber

fuel injector

Figure 1.1: Schematic illustration of major flame response mechanisms in technically premixed
swirl stabilized flames. Incident plane acoustic waves that propagate downstream
(f -wave) are shown in the left image. The flame image on the right part indi-
cates the unsteady heat release rate. Mode conversion processes stemming from
acoustic waves are sketched in the middle column. A combustion chamber dump
plane is shown in the top image. Via mode conversion, kinematic waves are gener-
ated, which modulates the flame surface area. A fuel injector is shown in the cen-
ter, which illustrates the generation of equivalence ratio waves. The corresponding
flame response mechanism is discussed in Chapter 6. In the bottom image, swirler
blades are drawn to demonstrate the generation of inertial waves. Inertial waves
modulate the flame surface area similar to kinematic waves.

from upstream is considered. As illustrated in Fig. 1.2, three different operating conditions
are studied, i.e. 1) perfectly premixed condition, 2) technically premixed condition with fuel
injection close to the flame and 3) technically premixed condition with fuel injection far from
the flame. In the first configuration, only the flame response due to flame front kinematics is
active. The well-known n − τ model by Crocco and Cheng [9] is employed to describe the
flame transfer function, which reads as

F (ω) = N exp(−iωτf ) , (1.2)

where N is the amplification factor and τf is the flame time scale, i.e. the delay between the
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unsteady heat release rate and the acoustic velocity. For simplicity, the flame time scale is nor-
malized, hence τf = 1. Similarly, a unity amplification N = 1 is considered. Note that, the
acoustic time delay from the source to the flame is not introduced, since it is negligible for
acoustically compact elements. For the second and third cases, the flame response to equiv-
alence ratio waves needs to be considered. This is achieved by employing combined n − τ
model, i.e.

F (ω) = N exp(−iωτf ) +Nφ exp(−iω(τφ + τf )) (1.3)

where Nφ is the amplification factor caused by equivalence ratio waves and τφ is the convective
time delay from the fuel injector to the flame. Again, for simplicity, a unity amplification factor
Nφ = −1 is assumed. The negative sign is due to the mode conversion process, i.e. φ′ = −u′.
This is explained in Sec. 6.1 in more detail. Moreover, τf is assumed to be the same for both
types of perturbation. The distance between the fuel injector to the flame base is decisive for τφ.
In the second case, the length is chosen such that τφ = 1. For the third case, it is τφ = 2. The
flame transfer functions are shown in Fig. 1.2 as Bode plots. For the first case, a constant gain of
unity and a linearly decaying phase are observed. For the other two cases, the oscillatory gain
pattern is observed. This is explained by the superposition between different flame response
mechanisms. For the second case, at even multiples of π the superposition of two contributions
is destructive, and thus low gain values appear. At these frequencies, phase jumps by π are
observed. Conversely, at odd multiples of π the constructive superposition is observed, which
results in high gain values around 2. For the third case, similar behavior is observed. However,
the frequencies are shifted, since the time delay, τφ, is doubled. An erroneous or inaccurate
estimation of time scales may cause a very different flame transfer function behavior. Thus,
the correct estimation of time scales is very important for thermo-acoustics. For inertial waves,
analogous analysis may be developed by moving the swirler.
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Figure 1.2: Left: Toy model flame configurations (top: perfectly premixed, center: technically
premixed with shorter distance, and bottom: technically premixed with longer dis-
tance). Right: Corresponding flame transfer functions as Bode plots.
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Introduction

Usually, high fidelity numeric approaches are employed to achieve a quantitative agreement in
the flame response (see for example [10, 11]). However, these numeric simulations are compu-
tationally expensive and therefore low order flame transfer function models are devised. These
models aim at qualitative agreement, but also physical interpretation of relevant flame dynam-
ics. This thesis focuses on low order models, particularly on identifying relevant time delays
of perturbation mechanisms and how they affect the flame response. Contributions are made to
both mechanisms, i.e. inertial and equivalence ratio waves. In this introduction, corresponding
wave mechanisms are very briefly mentioned in the following paragraphs. For better readability,
more complete discussions with relevant literature survey are presented in the beginning of the
corresponding chapters (see Chapter 5 for inertial waves and Chapter 6 for equivalence ratio
waves).

Inertial waves are commonly known as swirl waves in the thermo-acoustic community. How-
ever, in this thesis, the former designation is preferred and the reason is clarified in the following
discussion. To the author’s knowledge, Richards and co-workers [12, 13] were the first to men-
tion tangential velocity fluctuations emitted from the swirler that modulate the heat release rate.
By varying the swirler position, considerable changes in combustor pressure levels were ob-
served. The generation of these waves was modeled via actuator disk theory by Cumpsty and
Marble [14], Palies et al. [15]. This is illustrated in the lower part of Fig. 1.1 by blades of an axial
swirler. The stream-wise propagation of these perturbations is commonly assumed to be convec-
tive. However, recent experimental and numerical studies from different research groups [16–
18] suggested that these waves propagate around 40-50% faster than the mean flow speed. This
puzzling result causes strong mismatches in the estimation of flame transfer functions unless
ad-hoc corrections are provided. In this thesis, by employing linearized Euler equations for a
rotating flow as pioneered by Kelvin [19], these waves are designated as inertial waves. Ow-
ing to the dispersive nature of propagation, the deviation from the convective propagation is
explained. Thus, it is emphasized that inertial waves are relevant for thermo-acoustics.

The other focus of the thesis is equivalence ratio waves. The impact of mixture inhomogeneities
on combustion instabilities was recognized back in the 1980s by Keller et al. [20] for gas tur-
bines. Lieuwen and Zinn [21] demonstrated that acoustic perturbations across the fuel injector
generate convective equivalence ratio waves. This generation mechanism is shown in the middle
part of Fig. 1.1 as a schematic illustration of a fuel jet surrounded an air stream. Later, low order
models were devised to explain the underlying flame response mechanisms. In Chapter 6, these
are discussed in detail. In this thesis, by employing a time domain approach, a physics-based
interpretation of flame response mechanisms is introduced, which emphasizes the importance
of relevant time scales. Moreover, improvements to the low order flame response model are
made.

Five publications are presented in this work. Two publications (Paper IW-Speed and Paper IW-
Flame) contribute to the inertial wave subject. The assumption of convective propagation is
scrutinized in the non-peer reviewed Paper IW-Speed. The deviation in the propagation speed
is explained via dispersive inertial wave propagation. In Paper IW-Flame, the flame response
caused by inertial waves are investigated. For an axisymmetric flame, tangential velocity fluctu-
ations generate no heat release rate. The flame response mechanism is explained by the stream-
wise and radial velocity fluctuations that are identified from inertial wave eigenmodes. Other
two publications (Paper φ′-Flame and Paper Local-φ′) contribute to the equivalence ratio wave
subject. In Paper φ′-Flame, the time domain representation of the flame impulse response to
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equivalence ratio waves is analytically derived. Relevant time scales are discussed and the im-
pact of species diffusion on the flame response is introduced. In Paper Local-φ′, the analytical
framework of the previous publication is extended to account for non-uniform mixture inhomo-
geneities. This serves as a more realistic model for technically premixed flame configurations.
In the final publication (Paper Scaling), the impact of time scales on combustor pressure levels
is demonstrated in a lab scale bluff body stabilized perfectly premixed swirl flame. Experiments
were conducted a decade ago and several papers were published since then by Tay-Wo-Chong
et al. [11], Komarek and Polifke [16]. By modifying the swirler position or varying the mass
flow rate, strong changes in pressure fluctuation levels and also in dominant oscillation fre-
quency were observed. In Paper Scaling, a convective scaling law for the dominant frequency
is introduced, i.e. the frequency changes approximately linear with the convection speed in
the mixing duct. For this scaling, the relevance of the superposition of different time scales is
pointed out.

This thesis is structured as follows. In chapter 2, two mathematical tools that are relevant for
the derivation are introduced, i.e. Sturm-Liouville theorem and the method of steepest descent.
In chapter 3, a brief introduction to the linear hydrodynamic stability analysis is given. This
analysis forms the mathematical basis to investigate the wave propagation, which is relevant
for determining time delays. In chapter 4, a broad introduction to inertial waves in rotating
flows is presented by emphasizing other research fields. More detailed introduction within the
thermo-acoustic context is given in chapter 5 with relevant references. The actuator disk theory
is revisited to explain the mode conversion process. Moreover, a novel analytical solution of the
initial value problem is derived, where the response of a swirler to a step acoustic perturbation is
considered. The resulting inertial wave structure is characterized. This solution serves as a time
lag model to clarify the deviation in propagation speeds and also enlightens the flame response
mechanism. In chapter 6, the equivalence ratio waves are discussed. The generation mechanism
is revised and the propagation is characterized by employing the advection-diffusion equation.
Similar to the inertial waves, the initial value problem is proposed. Moreover, flame response
mechanisms are mentioned.

5



2 Mathematical Tools

In this chapter, two important mathematical tools are briefly introduced, which are necessary for
deriving important outcomes for this thesis. In the following section, second order ordinary dif-
ferential equations that satisfy the Sturm-Liouville conditions are discussed. Such equations can
be solved as an eigenvalue problem and the solution forms an orthogonal eigenspace. This is rel-
evant for inertial waves, i.e. the governing flow equations can be written in the Sturm-Liouville
form as discussed in sections 4.2 and 5.2. In Sec. 4.2, the orthonogal eigenmode structures are
revisited from Kelvin work [19]. In Sec. 5.2, tangential velocity fluctuations that are gener-
ated at the swirler are decomposed into these eigenmodes, which is required to characterize the
propagation speed of inertial waves. In Sec. 2.2, the second important tool is presented, i.e. the
method of steepest descent to estimate the asymptotic behavior of an integral. This method is
employed for deriving the solution of initial value problem proposed in Sec. 5.2. A neat analyt-
ical expression is obtained for the inertial wave step response.

2.1 Sturm – Liouville Equation

A second order ordinary differential equation of the form

d
dr

[
a(r)

df(r)

dr

]
+ [b(r) + λw(r)] f(r) = 0 , r ∈ [ri, ro] (2.1)

is called Sturm-Liouville differential equation [22] if the following conditions are satisfied:

• In the given interval, r ∈ [ri, ro], the functions a(r), da/dr, b(r) and w(r), are real and
continuous.

• The functions a(r) and w(r) are positive for all r in the interval.

• The boundary conditions at ri and ro are separated, i.e.

α1f(ri) + α2
df(ri)

dr
= 0 , (2.2)

α3f(ro) + α4
df(ro)

dr
= 0 . (2.3)

where α2
1 + α2

2 > 0 and α2
3 + α2

4 > 0.

With these assumptions, a Sturm-Liouville equation is considered as an eigenvalue problem.
Infinitely many unique eigenvalues, λn, exist, which can be ordered as

λ1 < λ2 < . . . < λn < . . .→∞ . (2.4)

6



2.2 Method of Steepest Descent

For each eigenvalue there exists an eigenmode fn(r), which satisfies the differential equation
and the boundary conditions. The eigenmodes form an orthonormal basis, i.e.

∫ ro

ri

fn(r)fm(r)w(r)dr =

{
1, if m = n

0, if m 6= n
(2.5)

This is a powerful outcome and is useful for characterizing differential equations. Any solution
of this differential equation that satisfies the boundary conditions can be written as a sum of the
orthonogal eigenmodes.

Here, a simple example is demonstrated. The solution of the following differential equation is
sought

d2f(r)

dr2
+ λf(r) = 0 , (2.6)

where f(r) and λ are unknowns. The boundary conditions are

f(0) = 0 , (2.7)
f(π) = 0 . (2.8)

Note that this differential equation satisfies the Sturm-Liouville conditions by setting a(r) =
w(r) = 1, b(r) = 0, ri = 0, ro = π, α1 = α3 = 1 and α2 = α4 = 0. The solution of the
differential equation reads

f(r) = a sin
(√

λr
)

+ b cos
(√

λr
)
. (2.9)

By applying the boundary condition at r = 0, the prefactor is set to b = 0, since cos (0) = 1.
The other boundary condition at r = π, gives the following relation

a sin
(√

λπ
)

= 0 . (2.10)

The eigenvalues are identified from the solution of this equation, i.e.

λn = n2 , (2.11)

where n stands for positive natural numbers. The orthogonal eigenmodes then read as

fn(r) = sin(nπ) . (2.12)

2.2 Method of Steepest Descent

For integrals of the form

I(z) =

∫

C

f(k)ezg(k)dk , (2.13)

7



Mathematical Tools

where k ∈ C and z ∈ R, the method of steepest descent determines the asymptotic behavior of
the integral for z → ∞. For a detailed introduction on this subject, the reader may refer to the
textbook by Bender and Orszag [23]. The functions, f(k) and g(k), are assumed to be analytic
in the integration path, C. The saddle point, k0, of the exponent function, g(k), is found by

∂g

∂k

∣∣∣∣
k=k0

= 0 . (2.14)

If this saddle point is a local maximum of Re(g(k)), the steepest descent path, C ′, indicates the
most rapidly decaying path emanating from k0. As a result of Cauchy-Riemann equations, this
path is found by following the constant imaginary part, =(g(k0)). In the limit of z → ∞, the
contribution around the saddle point is the leading order for the integral, since the real part is
maximum. The steepest descent path is approximated by a tangent line at the saddle point as

k(s) = k0 + seiθ , (2.15)

where θ indicates the angle of C ′ at k0. The order of the steepest descend, N − 1, indicates

∂g

∂k

∣∣∣∣
k=k0

=
∂2g

∂k2

∣∣∣∣
k=k0

= ... =
∂N−1g

∂kN−1

∣∣∣∣
k=k0

= 0 and
∂Ng

∂kN

∣∣∣∣
k=k0

6= 0 . (2.16)

The functions, f(k) and g(k), can be approximated as

f(k) ≈ f(k0) , (2.17)

g(k) ≈ g(k0) + ΦsN , (2.18)

where Φ is determined from the Taylor series expansion as

Φ =
eiNθ

N !

∂Ng

∂kN

∣∣∣∣
k=k0

. (2.19)

The angle of the steepest descent, θ, is determined by

θ = − 1

N
arg

(
∂Ng

∂kN

)
+

2n+ 1

N
, n = 0, 1, 2, ..., N − 1 . (2.20)

The asymptotic behavior of the integral can be simplified as

I(z) ≈ f(k0)ezg(k0)+iθ

∫ ∞

−∞
ezΦs

N

ds . (2.21)

Since the path follows the steepest descent, the real part is always negative, i.e. Re(Φ) < 0.
This means that the integral is convergent and for simple saddle point (N = 2) the approximate
integral reads

I(z) ≈ f(k0)ezg(k0)+iθ

√
− π

zΦ
. (2.22)

Here, the integral for the Airy function is demonstrated as an example. The Airy function is
defined as the following integral

I(z) =
1

2π

∫ ∞

−∞
e
i
(
k3

3
+zk

)
dk . (2.23)

8



2.2 Method of Steepest Descent
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Figure 2.1: For z = 1, the contour plot of the real (left) and imaginary (right) part of the
integrand is shown. In the gray scale, darker colors indicate lower values. Black
lines correspond to constant levels of the plotted variable. Red crosses are saddle
points. Blue lines indicate constant levels of the imaginary part of the integrand
at saddle points. Green lines indicate the contour integral formed via method of
steepest descent.

No closed form solution exists for this integral and the asymptotic behavior for large z is inves-
tigated.

The functions, g(k) and f(k), read as

g(k) = i

(
k3

3z
+ k

)
, f(k) =

1

2π
. (2.24)

The real and imaginary part of the integrand are shown in Fig. 2.1 for z = 1. There exist two
simple saddle points at k0 = ±i√z, which are shown in the figure with red crosses. Only the
upper saddle point, k0 = i

√
z, is a steepest descent, since it is a local maximum for the real

part. Hence, the lower saddle point is not used to form the integral path. Blue lines indicate
the constant level of the imaginary part at the saddle points. The steepest descent path, Γ3, is
indicated with the green color. This path is parallel to the real axis at the saddle point, i.e. θ = 0.
The series expansion for the exponential function at the saddle point reads

g(k) ≈ −2
√
z

3
− s2

√
z
. (2.25)

Note that the function, f(k), does not depend on k for this particular problem and thus it is
not necessary to employ a series expansion. The integral along the steepest descent path, Γ3, is
approximated as

S(z) =

∫

Γ3

f(k)ezg(k)dk ≈ − e−
2
3
z3/2

2
√
πz1/4

. (2.26)
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Mathematical Tools

To find an approximation for I(z), the initial integral path, Γ1 = (−∞,∞), is connected to Γ3

via two semi circles, Γ2 and Γ4. These paths are shown in Fig. 2.1 with green lines. The integral
along this closed path reads

∫

Γ1︸︷︷︸
I(z)

+

∫

Γ2

+

∫

Γ4︸ ︷︷ ︸
C(z)

+

∫

Γ3︸︷︷︸
S(z)

= 0 , (2.27)

where the Cauchy’s integral theorem is employed, i.e. the integral along a closed path with
no singularities is zero. One can show that the integrals along Γ2 and Γ4 vanish as the radius
of the semicircle increase, i.e. C(z) = 0. Finally, the asymptotic behavior of the integral is
I(z) = −S(z), i.e.

I(z) ≈ e−
2
3
z3/2

2
√
πz1/4

. (2.28)

The Airy function is shown in Fig. 2.2. As expected the asymptotic approximation shows good
agreement only for large z.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

z

I
(z

)

Figure 2.2: Comparison of the Airy function (black) against the asymptotic approximation via
method of steepest descent (red).
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3 Hydrodynamic Stability Analysis

Hydrodynamic stability analysis is a prominent subject in fluid dynamics. Formally, it deals
with the growth of infinitesimal perturbations in laminar flow. The analysis is relevant for fluid
systems, where unsteady flow structures and the transition to turbulence are important. It is
worth to mention the initiators of hydrodynamic stability analysis with their canonical exam-
ples, i.e. Kelvin-Helmholtz instability in two parallel streams with different speeds named after
Helmholtz [24] and Kelvin [25], centrifugal instability in rotating annular flow by Rayleigh
[26] and the transition to turbulence in a straight pipe flow by Reynolds [27]. For a comprehen-
sive introduction to the subject, books from Drazin and Reid [28], Chandrasekhar [29] can be
recommended.

In the hydrodynamics stability analysis, the behavior of Navier-Stokes equations to small per-
turbations is considered. A commonly employed approach is the linear analysis due to its sim-
plicity. After 1960s, the non-linear approaches have been developed extensively. In this thesis,
the analysis is restricted only to the linear theory, since wave structures are easily character-
ized within the linear framework. Indeed, the main focus of this work is to determine the wave
propagation rather than quantifying instabilities.

In the following section, the main steps of the linear stability analysis are briefly formalized.
Then, its application is demonstrated on the famous example of transition to turbulence in a
plane Poiseuille flow in Sec. 3.2. The temporal stability analysis is performed to estimate the
critical Reynolds number, which predicts linear instability. Then, in Sec. 3.3, the inviscid cen-
trifugal instability is discussed, since it is tightly related to inertial waves.

3.1 Linear Normal Mode Formalism

The starting point is the incompressible Navier-Stokes equations in non-dimensional form,
which read as

∂u

∂t
+ u ·∇u = −∇p+

1

Re
∆u , (3.1)

∇ · u = 0 . (3.2)

First, a steady base flow field is required. Analytical expressions can be found for idealized
cases, such as the Poiseuille flow and the Taylor-Couette flow. For more realistic configurations,
a numerical simulation is often employed. Formally, the base flow is found by solving the steady
Navier-Stokes equations, which read

ū ·∇ū = −∇p̄+
1

Re
∆ū , (3.3)

∇ · ū = 0 , (3.4)
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Hydrodynamic Stability Analysis

where (̄·) denotes steady quantities. The next step is to linearize the equations around the base
flow. The linearization represents an infinitesimal perturbation to the mean flow, i.e.

u = ū + εu′ , (3.5)

where ε is an infinitesimally small factor and (·)′ indicates perturbations. For the linearization,
second and higher order terms for ε are neglected. The resulting equations for the order of ε
read

∂u′

∂t
+ ū ·∇u′ + u′ ·∇ū = −∇p′ +

1

Re
∆u′ , (3.6)

∇ · u′ = 0 . (3.7)

Very first attempts were to analyze parallel infinite flows with 1-d base flows, i.e. ū(x, y, z) =
ūz(y). Here, z axis indicates the fluid flow direction. The flow velocity varies with the y axis
and the configuration is assumed to be infinitely long in the x axis. For such flows, the normal
mode ansatz is employed for the perturbed quantities as

u′(t, x, y, z) = û(y)e−iωt+ikxx+ikzz . (3.8)

This step simplifies partial derivatives into algebraic terms, e.g. ∂u′
∂t

= iωû. The final expres-
sion is an ordinary differential equation with respect to y and the unknowns are the angular
frequency, ω, and wave numbers, kx and kz, which are determined as an eigenvalue problem.
The modal ansatz approach is also called as local stability analysis. Two methods, namely tem-
poral and spatial stability analysis, are commonly employed to solve the eigenvalue problem.
For the temporal analysis, the complex angular frequency, ω, is determined for given real wave
numbers, kx and kz. If the imaginary part of the angular frequency is positive, then perturbations
grow and the flow is temporally unstable. The spatial analysis follows the opposite approach, i.e.
the complex wave numbers are determined for a real angular frequency. In this case, the insta-
bility is recognized by the imaginary part of wave numbers. The Briggs-Bers criterion [30, 31]
distinguishes between convective and absolute instabilities. The convective instability indicates
that perturbations grow but propagate only in the downstream direction, whereas perturbations
in an absolute instability grow in both directions. Besides the characterization of stability, the
normal mode ansatz introduces traveling waves. The dispersion relation is formed by writing
the angular frequency as a function of wave number, i.e. ω(k). Two important quantities are
then introduced, namely the phase speed, cp, and the group speed, cg, which are defined as

cp =
ω

k
, cg =

∂ω

∂k
. (3.9)

Wave crests move with the phase speed while the envelope of wave moves with the group speed.
A wave is called dispersive if cp 6= cg. The dispersion relation of inertial waves are discussed in
Sec. 4.2.

The local analysis is not adequate for non-parallel flows. An extension to the linear stability
analysis is proposed by Pierrehumbert and Widnall [32]. The modal ansatz for the space is
relaxed as

u′(t, x, y, z) = û(x, y, z)e−iωt . (3.10)
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3.2 Stability of Plane Poiseuille Flow

In this case, the eigenvalue problem is only solved for ω and corresponding eigenmodes
û(x, y, z) are found numerically. This approach is called global stability analysis. With the
increasing computational power in last decades, this approach became more attractive than the
local analysis.

3.2 Stability of Plane Poiseuille Flow

The modal decomposed linearized Navier-Stokes equations for a parallel 1-d base flow can be
simplified to the Orr-Sommerfeld equation [33], which reads as

[
(−iω + ikzūz)

(
d2

dy2
− k2

z

)
− ikz

d2ūz
dy2
− 1

Re

(
d2

dy2
− k2

z

)2
]
ûy = 0 , (3.11)

where the base velocity of a laminar flow between infinitely long parallel walls is given as
ūz = 1− y2. The non-dimensionalized configuration is shown in Fig. 3.1.

z

y
x

ūz = 1− y2

y = 1

y = −1

Figure 3.1: Schematic illustration of Poiseuille flow.

No-slip boundary conditions are applied for the perturbed velocity at both walls, i.e. ûy(−1) =
ûy(1) = 0. Here, the temporal analysis is performed for the eigenvalue problem follow-
ing Orszag [34]. As discussed in Sec. 3.1, the wavenumber kz is assumed to be real. The differ-
ential operator d/dy is discretized by employing Chebyshev polynomials. The maximum of the
growth rate, i.e. the imaginary part of the angular frequency, max(=(ω)), is plotted against the
wavenumber for three different Reynolds numbers, Re = [3000, 5772.22, 8000], in Fig 3.2. As
discussed by Orszag [34], the critical Reynolds number is Re = 5772.22, for which the maxi-
mum growth rate crosses the zero line. The flow is linearly unstable for higher values. Although
the Orr-Sommerfeld equation is famous in literature, it does not capture the correct physics.
In experiments, the transition to turbulence occurs at much lower Reynolds numbers around
Re = 2000. The discrepancy comes from the transient growth due to the non-normal eigen-
modes as discussed in Schmid and Henningson [35]. This growth triggers non-linear behavior
of fluids, which is neglected in the linear analysis.
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Figure 3.2: Maximum of the growth rate, max(=(ω)), as a function of wave number, kz, for
three Reynolds numbers: Re = 3000 (black), 5772.22 (red) and 8000 (green).

3.3 Inviscid Centrifugal Instability

Rayleigh [26] derived the condition for the inviscid centrifugal instability by physically inter-
preting two fluid particles at different radial positions, say r1 and r2 with r2 > r1 that swap
their positions. The conservation of the angular momentum implies that the quantity H ≡ ruθ
is conserved. The total kinetic energy per volume at the initial state is

e1 =
1

2
ρ

(
H2

1

r2
1

+
H2

2

r2
2

)
. (3.12)

After the swap, keeping their angular momentum, the energy becomes

e2 =
1

2
ρ

(
H2

2

r2
1

+
H2

1

r2
2

)
. (3.13)

The difference in energy, ∆e = e2 − e1, is

∆e =
1

2
ρ
(
H2

2 −H2
1

)( 1

r2
1

− 1

r2
2

)
. (3.14)

For an instability, the energy should be released, thus H2
1 > H2

2 . This means that the quantity,
H2, should decrease radially, i.e. dH2/dr < 0. The famous Rayleigh criterion for centrifugal
instability is

d(r2u2
θ)

dr
< 0 . (3.15)

The solid body rotation, uθ = Kr, does not satisfy this condition, thus is always stable. The
marginally stable profile is the free vortex solution, uθ = K/r. A profile with uθ = K/rn,
where n > 1, is always unstable.
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3.3 Inviscid Centrifugal Instability

ri

θ

r

ro

Figure 3.3: Schematic illustration of Taylor-Couette flow.

A more rigorous proof can be achieved by linear stability analysis as described in Sec. 3.1. An
arbitrarily rotating base flow ūθ(r) in an annular duct with inner and outer walls respectively at
ri and ro is considered, see Fig. 3.3. Modal decomposed linearized Euler equations in cylindrical
coordinates can be simplified as

d
dr

(
1

r

d(rûr)

dr

)
− k2ûr = − k2

ω2r3

d(r2ū2
θ)

dr
ûr . (3.16)

By multiplying this equation with rû†r, where † indicates the complex conjugate, and integrating
along radial boundaries yields

∫ ro

ri

1

r

∣∣∣∣
d(rûr)

dr

∣∣∣∣
2

dr + k2

∫ ro

ri

r |ûr|2 dr =
k2

ω2

∫ ro

ri

1

r2

d(r2ū2
θ)

dr
|ûr|2 dr . (3.17)

Note that the integrals on the left hand side are always positive. The temporal instability is
observed for = (ω) > 0. This is realized if the integral in the right hand side integral is negative,
i.e. the condition in Eq. (3.15). This is in line with the interpretation by Rayleigh.
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4 Inertial Waves in Rotating Flows

Before the discussion of inertial waves in the context of thermo-acoustics, it is instructive to
overview the fundamentals of inertial waves. The intent is not to give a complete description
and the reader may refer to standard textbooks by Greenspan [36], Landau and Lifshitz [37],
Pedlosky [38]. As pioneered by Kelvin [19] in 1880, inertial waves are a phenomenon in rotating
fluids and commonly observed in astro- and geophysics. First laboratory examples of plane
inertial waves were devised in 1960s by Oser Hansjörg [39], Fultz [40], McEwan [41]. However,
only recently accurate PIV measurements were conducted by Messio et al. [42], Cortet et al.
[43]. To give the reader an impression of the diversity of the inertial wave research, the Rossby
waves [44], a subset of inertial waves, are briefly mentioned here. These waves are governed
by the restorative Coriolis force due to the Earth’s rotation and have a strong impact on the
climate by affecting jet stream paths and locations of high and low pressure areas. The sketch
in the left part of Fig. 4.1 illustrates eastward propagating jet streams that form a boundary
between the hot and cold air on Northern Hemisphere. Meanders are denoted as Rossby waves.
Analogous structures are reproduced in lab scale experiments with a rotating cylindrical tank.
An exemplary setup is given in the right part of the Fig. 4.1, where similar meander structures
are observed in the dye color.

In Sec. 4.1, fundamental plane inertial waves are discussed using the linear hydrodynamic sta-
bility formalism from Sec. 3.1. In plane waves, boundary effects are not present. Then, in
Sec. 4.2, Kelvin waves, named after work by Kelvin [19], in bounded vortex cores are dis-
cussed. Non-planar waves are observed in the presence of boundary effects. These wave modes
are used in Chapter 5 to describe the inertial wave propagation downstream of a swirler.

Figure 4.1: Left: Atmospheric Rossby waves in Northern hemisphere. (Image from Department
of Geography and computer science, CUNY [45]) Right: Picture of Rossby waves
excited by oscillating plunger in a rotating cylindrical tank filled with water (taken
from Rhines [46]). Dye is used to identify meandering structures.
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4.1 Plane waves

4.1 Plane waves

Inertial waves are oscillatory circular flow motions, where the Coriolis force acts as the restoring
force. To demonstrate the impact of the Coriolis force, a generic example of plane inertial
waves in an unbounded domain is discussed. An inviscid incompressible fluid with a solid body
rotation is considered. It is preferred to write the governing fluid equations in the rotating frame
of reference, since the fictitious Coriolis force becomes apparent. The velocity vector u in the
inertial frame is related to the rotating frame velocity, uR, as

u = uR + (Ω× r) , (4.1)

where Ω is the angular velocity vector of the rotating system and r is the position vector from
the origin of the rotation. The Navier-Stokes equations in rotating coordinates are

∇ · uR = 0 , (4.2)
∂uR
∂t

+ (uR ·∇)uR − ν∇2uR +
1

ρ
∇pr = −2Ω× uR , (4.3)

where ν is the kinematic viscosity and ρ is the density. The continuity equation does not change
in the rotating frame. In the momentum equation, the right hand side term is the Coriolis force.
Note that the cross product indicates that the Coriolis force is always normal to the rotation
axis and to the relative flow velocity. The other fictitious force, i.e. the centrifugal force, can be
included in the pressure term. The reduced pressure, pr, reads as

pr = p− 0.5ρ (Ω× r)2 . (4.4)

Note that the original Navier-Stokes equations are recovered for the case of zero angular veloc-
ity, Ω = 0, where the Coriolis and the centrifugal forces vanish.

According to the Buckhingham π theorem, non-rotating incompressible flows are characterized
by a single dimensionless parameter, i.e Reynolds number ( Re). For rotating flows, two dimen-
sionless parameters are required and commonly the Rossby ( Ro) and Ekman ( Ek) numbers are
preferred. The former defines a measure between the inertial (advective) force and the Corio-
lis force and the latter relates the viscous force to the Coriolis force. Mathematically, they are
defined as

Ro =
uz

ΩD
, Ek =

ν

ΩD2
. (4.5)

The Reynolds number is related to these parameters as Re = Ro/Ek. The non-dimensional
momentum equations in rotating coordinates are

∂u∗R
∂t

+ Ro (u∗R ·∇)u∗R − Ek∇2u∗R + ∇p∗r = −2ez × u∗R , (4.6)

where nondimensional parameters are indicated by (·)∗. Without loss of generality, the direction
of the rotation is set to the z direction (the unit vector ez), i.e. Ω = Ωez.

The inviscid assumption is realized by setting Ek = 0. Since a flow dominated by the rotation is
considered, the advective acceleration is also assumed to be negligible compared to the Coriolis
force by setting Ro = 0. Thus, the momentum equation reduces to

∂uR
∂t

+
1

ρ
∇pr = −2Ωez × uR . (4.7)
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By taking the curl of the momentum equation, the pressure is eliminated from the equation,
which reads

∂ (∇× uR)

∂t
= 2Ω (ez ·∇)uR , (4.8)

where the identity ∇× (ez × uR) = ez (∇ · uR)− (ez ·∇)uR is employed. The first term on
the right hand side vanishes due to the incompressibility. Then, the modal ansatz is introduced
as

uR = ûR exp(ik · r − iωt) , (4.9)

where k is the wave number vector and ω is the angular frequency. The continuity equation
reduces to the following transversality condition

k · ûR = 0 , (4.10)

which indicates that velocity perturbations are perpendicular to the wave number vector. The
momentum equation with the modal ansatz yields

ω (k × ûR) = 2Ωi (ez · k) ûR . (4.11)

Vector multiplication of this equation with k results in

−ω|k|2ûR = 2Ωi (ez · k) (k × ûR) . (4.12)

The above two equations are used to eliminate ûR and the dispersion relation is derived as

ω =
2Ωkz
|k| = 2Ω cos(θ) , (4.13)

where θ is the angle between k and ez. The relevant vectors are illustrated in the left part of
Fig. 4.2. The dispersion relation indicates that the angle of the wave vector is determined from
the frequency of oscillation and the angular velocity of the rotation. By substituting Eq. (4.13)
into Eq. (4.11), one derives the relation

k × ûR = i|k|ûR . (4.14)

By decomposing the modal velocity into its real and imaginary parts, i.e. ûR = a + bi, one
obtains k × b = |k|a, which means that the magnitudes of the real and imaginary parts are
equal, i.e. |a| = |b|. Moreover, they are perpendicular to each other and also to the wave vector.
This behavior is also observed in electromagnetic waves and denoted as circularly polarized
waves [37]. Finally, the velocity vector reads

uR = |a| [cos(ωt− k · r)ea − sin(ωt− k · r)eb] , (4.15)

where ea and eb are the unit vectors in the direction of a and b, respectively. The phase and
group speeds (defined in Eq. 3.9) read respectively as

cp = 2Ω cos(θ)
k

|k|2
, (4.16)

cg = ±2Ω

|k|

(
ez −

k

|k| cos(θ)

)
. (4.17)
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4.2 Kelvin Waves

Note that the phase and group speeds are normal to each other. In the literature, the plane waves
are observed in the canonical experiment of the rotating cylindrical water tank that is forced by
a oscillating disk. The setup is first proposed by Oser Hansjörg [39] and also employed by Fultz
[40], McEwan [41]. The flow visualization was achieved by the optical contrast from aluminum
gilt. Only recently, a quantitative agreement with the theory is achieved via PIV measurements
by Messio et al. [42], Cortet et al. [43]. A snapshot of the vorticity field from [43] is shown in
right part of Fig. 4.2. By the forcing frequency of the disk, the direction of inertial waves can be
accurately estimated using Eq. (4.13). Note that, waves are admitted only if the disk oscillation
frequency is less than twice of the tanks rotation, i.e. ω ≤ 2Ω, since |cos(α)| ≤ 1.

Ω

z

k

a

b
θ

uR

cpcg

cp
cg

Figure 4.2: Left: Sketch of the relevant vectors of plane inertial waves. Right: Experimental
visualization of inertial waves in a rotating tank forced by a oscillating disk (taken
from Cortet et al. [43]). PIV image of tangential vorticity field, ωθ, is shown. The
phase and group speed directions are added.

4.2 Kelvin Waves

In the previous section, plane inertial waves were introduced. The derivation assumed no bound-
ary conditions because of a large rotating tank compared to inertial wave scales. In the work of
Kelvin [19], inertial waves are derived for vortex cores enclosed by a rotating duct, which re-
sults in non-planar waves due to boundary effects. These waves are commonly attributed as
Kelvin waves. For the derivation, the stability analysis discussed in Chapter 3 is employed. The
linearized and modal decomposed Euler equation as defined by Eq. (3.16) for centrifugal insta-
bilities is also used here to characterize wave structures. The vortex core is modeled by the solid
body rotation, i.e. ūθ = Ωr. This simplifies the differential equation further to

d
dr

(
1

r

d(rûr)

dr

)
− ûr

(
k2 − 4Ω2 k

2

ω2

)
= 0 , (4.18)
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Inertial Waves in Rotating Flows

with impermeable boundary conditions for inner and outer walls (no flow through the solid)

ûr(ri) = 0 , (4.19)
ûr(ro) = 0 , (4.20)

respectively. The second order ordinary differential equation with these boundary conditions
is a Sturm-Liouville equation as discussed in Sec. 2.1. Hence, for a real wave number, k, the
solution consists of infinitely many eigenvalues, ωn, and corresponding orthogonal eigenmodes,
ûr,n. The solution is identified by Kelvin [19] as

ûr(r) = α

[
J1

(
k
√

4Ω2 − ω2

ω
r

)
+ βY1

(
k
√

4Ω2 − ω2

ω
r

)]
, (4.21)

where α and β are prefactors to be determined from boundary and initial conditions. J1 and
Y1 are the first and second kind of Bessel functions, respectively. Assuming a positive wave
number and employing both boundary conditions, the following dispersion relation is obtained

ωn = ± 2Ωk√
k2 + λ2

n

, (4.22)

where λn indicates roots of the following equation

J1(λnro)Y1(λnri)− J1(λnri)Y1(λnro) = 0 . (4.23)

Corresponding eigenmodes in the radial velocity read as

Mr,n(r) = α

[
J1(λnr)−

J1(λnri)

Y1(λnri)
Y1(λnr)

]
, (4.24)

Here, the prefactor α is left undetermined as no initial condition is posed. In Fig. 4.3, first
three eigenmodes are shown. Note that, the normalized radial velocity, M∗

r,n, is used, so that the
maximum value is 1. Similarly, the radius is scaled between 0 and 1, i.e. r∗ = (r−ri)/(ro−ri).
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Figure 4.3: Left: First three eigenmode structures of normalized radial velocity as a function of
normalized radius. Right: The plot of dispersion relation for the first three eigen-
modes. The normalized angular frequency is plotted against the normalized wave
number. Black color indicates the first mode (n = 1), red the second and green the
third mode.
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4.2 Kelvin Waves

Owing to orthogonality, any function that satisfies the boundary conditions can be formed
as a superposition of eigenmodes. In Fig. 4.3, the dispersion relation is shown for the first
three eigenmodes in the right plot. The angular frequency is normalized with the circulation,
ω = ω∗Ω. The wave number is normalized with the first root of Eq. (4.23), k = k∗λ1. Since
there is a ± sign in the dispersion relation in Eq. (4.22), for each eigenmode there exist two
eigenvalues with opposite propagation directions. Moreover, following the definitions of phase
and group speeds in Eq. (3.9), the wave propagation is dispersive, i.e. cp 6= cg. In Paper IW-
Speed, propagation speeds of the inertial waves are further discussed.

∂u′θ
∂z

< 0
∂u′θ
∂z

> 0

∂ω′z
∂z

< 0 ∂ω′z
∂z

> 0

ω′θ > 0ω′θ < 0

u′z > 0u′z < 0 z

z

2π
k

r

r

u′r > 0

u′r < 0

Figure 4.4: A sketch of Kelvin wave dynamics that is generated by the axial vorticity perturba-
tion ω′z. The figure is adopted from Renac et al. [47].

The physical explanation of Kelvin wave propagation in vortex tube was given by Arendt et al.
[48] via solving an initial value problem for the Rankine vortex. The time evolution of an ax-
isymmetric Gaussian perturbation in the axial vorticity is observed as the twisting of vortex
lines. Based on the movement of the vortex core radius, the propagation is interpreted. A similar
approach was given by Greitzer et al. [49]. Inspired by these works, Renac et al. [47] interpreted
the wave motion for the solid body rotation. Here, this interpretation is revisited. The governing
equation for the linearized vorticity, ω′ = ∇× u′ , reads

∂ω′

∂t
= 2Ω

∂u′

∂z
, (4.25)

which is equivalent to Eq. (4.8) as derived for plane inertial waves in the previous section.
The oscillatory line in the upper part of Fig. 4.4 indicates the initial perturbations in the axial
vorticity, which is defined as

ω′z =
∂ru′θ
∂r

. (4.26)
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Inertial Waves in Rotating Flows

Note that the slopes of axial vorticity perturbations and tangential velocity perturbations, u′θ,
are aligned in the stream-wise direction. Tangential velocity perturbations are illustrated with
semicircles (larger indicates stronger perturbation). The axial gradient of tangential velocity
fluctuations, ∂u′θ/∂z, generates tangential vorticity fluctuations, ω′θ, via Eq. (4.25). By the defi-
nition of the linearized tangential vorticity

ω′θ =
∂u′r
∂z
− ∂u′z

∂r
, (4.27)

the radial gradient in axial velocity perturbation is generated. This results in an axial stretching
for the minimum of ω′z and an axial contraction for the maximum of ω′z as illustrated in the lower
part of the Fig. 4.4. Employing Eq. (4.25) in the stream-wise direction, a reverse ω′z with respect
to the initial perturbation is generated as a result. This forms a restoring mechanism, which
governs the oscillatory propagation of the initial perturbation in both stream-wise directions.

In literature, the Kelvin wave dynamics is attributed to the axisymmetric vortex breakdown
(see Benjamin [50]). A flow with the solid body rotation and uniform stream-wise velocity is
considered, i.e. u = [ūz,Ωr, 0]. In such cases, the dispersion relation in Eq. (4.22) is simply
extended by a Doppler shift. The flow is characterized as a supercritical vortex, if inertial waves
only propagate downstream. If upstream propagation occurs, the flow is called as subcritical.
The transition is characterized by the critical circulation strength, Ωc, which satisfies

Ωc =
ūz
2

√
k2 + λ2

n (4.28)

The subcritical vortex is believed to initiate the vortex breakdown.

Kerrebrock [51], Golubev and Atassi [52], Tam and Auriault [53] studied wave modes in
swirling turbomachinary ducts. Compressible Euler equations were used to distinguish between
acoustic and inertial wave modes. The impact of compressibility and different swirl profiles on
wave modes were investigated. These authors employed a modal analysis similar to the Kelvin’s
approach [19] although the term inertial waves was not explicitly mentioned.
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5 Inertial Waves in Thermo-acoustics

In this chapter, inertial waves are discussed from the thermo-acoustic perspective. Although in-
ertial waves are not recognized in the thermo-acoustic community, several publications revealed
some properties of inertial waves without providing physical explanation. These publications
are reviewed in this chapter as a literature survey and the achievements of this dissertation are
discussed accordingly.

In combustion applications, rotating flows are extensively employed [54–56]. A common prac-
tice is to employ swirl generators to generate rotation. In Fig. 5.1, examples of widely used
axial (left) and radial (right) swirl generators are illustrated. The swirl provides several advan-
tages in terms of the flame stability and the mixing. The flame stabilization is enhanced by the
central recirculation zone that mixes hot burned products with fresh unburnt reactants. Mixture
inhomogeneities are reduced by the improved mixing process between the oxidizer and fuel.

Figure 5.1: Examples of axial (left) and radial (right) swirl generators. The axial swirler is
from TU Munchen burner [16] and the image is generated by a CAD drawing. The
radial swirler image is taken from TU Berlin burner by Terhaar et al. [57], Schimek
et al. [58]

Other than these preferable properties, swirl generators have also an impact on thermo-acoustics
of a combustion system [59, 60]. Experimental studies by Richards and Yip [12], Straub and
Richards [13], Komarek and Polifke [16], Palies et al. [61], Kim and Santavicca [62] demon-
strated that the flame is sensitive to tangential velocity modulations generated at the swirler.
They recognized that these modulations propagate with the mean flow speed. Due to the dif-
ference in propagation speeds of convective and acoustic waves, strong changes in combustor
sound pressure levels were observed by moving the swirler in the stream-wise direction.

In the theoretical framework, the generation of tangential velocity perturbations is attributed
to a mode conversion process. Incident plane acoustic waves generate tangential velocity per-
turbations while passing through the swirler. This process is modeled via the actuator disk
theory, which is extensively used for identifying jump conditions across turbomachinery cas-
cades [49, 63]. The jump conditions for tangential velocity perturbations were introduced
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by Cumpsty and Marble [14] and later employed by Palies et al. [15]. This is revisited in
Sec. 5.1.

As discussed in the introduction, convective propagation has been assumed for tangential veloc-
ity perturbations. However, recent publications reported puzzling results, i.e. the propagation is
around 40-50% faster than the mean flow [16–18]. In Paper IW-Speed, this behavior is explained
by the dispersive behavior of Kelvin waves discussed in Sec. 4.2. A more profound approach is
presented in Sec. 5.2, i.e. the initial value problem is proposed to characterize the time domain
representation of the propagation. The corresponding manuscript has been submitted to Journal
of Fluid Mechanics and currently under review.

The flame response to inertial waves was studied by several research groups with different
explanations of the relevant mechanism. Hirsch et al. [64] modeled the overall flame transfer
function by considering the Biot-Savart law for vorticity fluctuations. Komarek and Polifke [16]
constructed the flame transfer function by the superposition of acoustic and vortical contribu-
tions. Palies et al. [61] attributed the flame response to turbulent flame speed modulations caused
by tangential velocity fluctuations. Acharya and Lieuwen [18] recognized flow perturbations in
all directions caused by the tangential velocity modulations at the swirler. In Paper IW-Flame,
the flame response mechanism is discussed by respecting the Kelvin wave eigenmodes.

5.1 Generation: Actuator Disk Theory

The mode conversion process of tangential velocity fluctuations from incident plane acoustic
waves across a swirler is modeled via the actuator disk theory by Cumpsty and Marble [14],
Palies et al. [15]. The swirler is modeled as a thin disk, which generates azimuthal momentum
instantly. The jump condition across the swirler is schematically illustrated in Fig. 5.2. The
upstream condition of the swirler is indicated by the subscript 1 and downstream by 2. Black
and red arrows indicate the base and perturbed flow quantities, respectively. In a low Mach
number flow, the jump across the swirler for mean flow quantities is assumed to be isentropic
and incompressible. The base axial velocity across the swirler is constant, since there is no area
change in the duct. The base tangential velocity is modeled via the Kutta condition, i.e. the
flow angle at the swirler exit does not change. These jump conditions for the base flow read
mathematically

s̄1 = s̄2 , (5.1)
ρ̄1 = ρ̄2 , (5.2)
ūz,1 = ūz,2 , (5.3)
ūθ,2 = ūz,2 tan θ̄2 , (5.4)

where θ̄2 is the swirler angle as illustrated in the Fig. 5.2. The upstream flow is assumed uniform
and parallel to the stream-wise direction, hence θ̄1 = 0.
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ū2

ūz
ū1 u′1

ūθ

u′θ
u′2

u′z

θ2

Figure 5.2: Base and perturbed flow vectors across the swirler.

For perturbed quantities, linearized compressible equations are employed to describe the jump
across the swirler. Following conditions are derived from isentropic assumption, linearized con-
tinuity and energy equation, respectively

s′1 = s′2 , (5.5)
ρ′1
ρ̄1

+
u′1
ū1

− θ′1 tan θ̄1 =
ρ′2
ρ̄2

+
u′2
ū2

− θ′2 tan θ̄2 . (5.6)

p′1
γp̄1

+
s′1

(γ − 1)cp
=

p′2
γp̄2

+
s′2

(γ − 1)cp
, (5.7)

where the specific heat, cp, and the ratio of specific heat ratio, γ, are assumed to be constant
across the swirler. Moreover, assuming that the pressure drop across the swirler is negligible,
p̄1 = p̄2, and the swirler is acoustically transparent yield the following simplified conditions

p′1 = p′2 , (5.8)
u′z,1 = u′z,2 , (5.9)

u′θ,2 = u′z,1 tan θ̄2 . (5.10)

Physically interpreting these conditions reveals that incident plane acoustic waves are transmit-
ted lossless across the swirler and generate tangential velocity perturbations depending on the
swirler blade angle. At this point, mere convection has been taken for granted and no attempt
has been made to characterize the subsequent propagation of tangential velocity perturbations.
This is investigated in the following section.

5.2 Propagation: Initial Value Problem

In Paper IW-Speed, the frequency response of inertial waves is constructed from Kelvin eigen-
modes. The input of the frequency response was selected as the tangential velocity perturbation
at the swirler exit. As the output, the tangential velocity perturbation at a downstream position
of the mixing duct was chosen. This section introduces an alternative approach to characterize
the propagation. An initial value problem is proposed, where a step perturbation in the acoustic
plane wave is introduced upstream of the swirler. Corresponding inertial wave motion is derived
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analytically via the method of steepest descent as discussed in Sec. 2.2. The following results
are new material, submitted to Journal of Fluid Mechanics and currently under review [65].

An annular duct is considered with the inner and outer radii indicated by ri and ro, respectively.
Following Kerrebrock [51] the base flow downstream of a swirler is approximated by a solid
body rotation with uniform plug flow, ū = [ūz,Ωr, 0]. To propose an initial value problem,
modal ansatz is only applied to the stream-wise direction. For the time, the Laplace transfor-
mation is applied so that initial conditions are respected. The transformation and its inverse
read

û(s, k, r) =

∫ ∞

−∞

∫ ∞

0

u′(t, z, r) exp(−st− ikz)dtdz , (5.11)

u′(t, z, r) =
1

(2π)2i

∫ ∞

−∞

∫ γ+i∞

γ−i∞
û(s, k, r) exp(st+ ikz)dsdk , (5.12)

where γ is a real number, which is greater than all singularities of û(s, k, r). The transformation
is applied on linearized incompressible axisymmetric Euler equations

∂ûr
∂r

+
ûr
r

+ ikûz = 0 , (5.13)

sûz − ûz(t = 0) + ikūzûz = −ik
ρ̄
p̂ , (5.14)

sûr − ûr(t = 0) + ikūzûr − 2Ωûθ = −∂p̂
∂r

, (5.15)

sûθ − ûθ(t = 0) + ikūzûθ + 2Ωûr = 0 . (5.16)

As an initial condition, a step acoustic perturbation is employed. The corresponding acoustic
velocity perturbation reads

u′z,a(t = 0, z, r) = H(−z)ūzε , (5.17)

where ε is a small number and the Heaviside step function, H(z), indicates a step perturbation.
Note that, since the focus of this analysis is the inertial wave dynamics, the incompressible form
of the Euler equations is employed. Hence, acoustic perturbation in Eq. (5.17) is not included
in Euler equations. Following the actuator disk theory, the tangential velocity fluctuations are
generated across the swirler via acoustic velocity perturbation. The initial condition for the
tangential velocity fluctuation reads

u′θ(t = 0, z, r) = H(−z)f(r) , (5.18)

where the perturbation profile, f(r), is calculated via Eq. (5.10) as f(r) = ūzε tan(θ̄2). It is also
assumed that no radial velocity fluctuations are generated across the swirler due to the acoustic
perturbation. As discussed in Sec. 4.2, orthogonal Kelvin wave eigenmodes can be used to
reconstruct any perturbation. The eigenmode profile for the radial and azimuthal velocity is
denoted by Mr,n and the profile for the axial velocity and the pressure by Mz,n. Mathematically,
the eigenmodes read

Mr,n(r) = J1(λnr)−
J1(λnri)

Y1(λnri)
Y1(λnr) , (5.19)

Mz,n(r) = J0(λnr)−
J1(λnri)

Y1(λnri)
Y0(λnr) , (5.20)
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where λn indicates eigenvalues, which are obtained by solving

J1(λnro)Y1(λnri)− J1(λnri)Y1(λnro) = 0 . (5.21)

The initial condition can be written as a sum of these eigenmodes

u′θ(t = 0, z, r) = H(−z)
∞∑

n=1

αnMr,n(r) , (5.22)

where αn is the modal coefficient of the nth eigenmode as

αn =

∫ ro
ri
f(r)Mr,n(r)dr∫ ro
ri
M2

r,n(r)dr
. (5.23)

The Fourier transformed initial condition reads as

ûθ(t = 0) =

(
πδ(k) +

i

k

) ∞∑

n=1

αnMr,n(r) . (5.24)

Similar to Eq. (4.18) for describing Kelvin waves in the previous chapter, the set of equations
can be simplified to a second order ordinary differential equation as

d
dr

(
1

r

d(rûr)

dr

)
− ûr

(
k2 +

(
2Ωk

s+ ikūz

)2
)

= − 2Ωk2

(s+ ikūz)
2

(
πδ(k) +

i

k

) ∞∑

n=1

αnMr,n(r) .

(5.25)

Note that, the left-hand-side is the homogeneous part, which is equivalent to the eigenvalue
problem proposed in Eq. (4.18). The right-hand-side is the non-homogeneous part, which results
from the initial condition. The solution can be formed via the undetermined coefficients method
as

ûr(r) = ûr,F + ûr,P , (5.26)

where ûr,F is the fundamental solution of the homogeneous part and ûr,P is the particular solu-
tion obtained by a guess. The fundamental solution reads

ûr,F = αJ1


k
√
− (s+ ikūz)

2 − 4Ω2

s+ ikūz
r


+ βY1


k
√
− (s+ ikūz)

2 − 4Ω2

s+ ikūz
r


 . (5.27)

For the particular solution, the same form as the initial condition is employed as a guess, which
reads

ûr,P =
∞∑

n=1

κnMr,n(r) , (5.28)
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where the coefficient κn is determined by substituting the particular solution into Eq. (5.25).
This yields

κn =
2Ωk2

(s+ ikūz)
2

(
πδ(k) +

i

k

)
αn

λ2
n + k2 +

(
2Ωk

s+ikūz

)2 . (5.29)

Impermeability boundary conditions as defined in Eq. (4.19) are applied to the general solution,
i.e. the sum of the homogeneous and particular parts. This is only satisfied if α and β vanish.
Non-zero coefficients would only be possible for eigenvalues, however this is not satisfied due
to the denominator of the particular solution, which becomes zero. Thus, the particular solution
is also the general solution. Employing Eqs. (5.13)-(5.16), the complete solution reads

ûr(s, k, r) =
2Ωk2

(s+ ikūz)
2

(
πδ(k) +

i

k

) ∞∑

n=1

αnMr,n(r)

λ2
n + k2 +

(
2Ωk

s+ikūz

)2 , (5.30)

ûθ(s, k, r) =
1

s+ ikūz

(
πδ(k) +

i

k

) ∞∑

n=1

αn (λ2
n + k2)Mr,n(r)

λ2
n + k2 +

(
2Ωk

s+ikūz

)2 , (5.31)

ûz(s, k, r) =
2iΩk

(s+ ikūz)
2

(
πδ(k) +

i

k

) ∞∑

n=1

αnλnMz,n(r)

λ2
n + k2 +

(
2Ωk

s+ikūz

)2 , (5.32)

p̂(s, k, r) = − 2ρΩ

s+ ikūz

(
πδ(k) +

i

k

) ∞∑

n=1

αnλnMz,n(r)

λ2
n + k2 +

(
2Ωk

s+ikūz

)2 . (5.33)

The solution in time domain can be recovered by employing inverse Laplace transform from
standard conversion tables as

ûr(t, k, r) =

(
πδ(k) +

i

k

)
ke−iktūz

∞∑

n=1

αnMr,n(r)√
λ2
n + k2

sin

(
2Ωkt√
λ2
n + k2

)
, (5.34)

ûθ(t, k, r) =

(
πδ(k) +

i

k

)
e−iktūz

∞∑

n=1

αnMr,n(r) cos

(
2Ωkt√
λ2
n + k2

)
, (5.35)

ûz(t, k, r) =

(
πδ(k) +

i

k

)
ie−iktūz

∞∑

n=1

αnλnMz,n(r)√
λ2
n + k2

sin

(
2Ωkt√
λ2
n + k2

)
, (5.36)

p̂(t, k, r) = −2Ωρ̄

(
πδ(k) +

i

k

)
e−iktūz

∞∑

n=1

αnλnMz,n(r)

λ2
n + k2

cos

(
2Ωkt√
λ2
n + k2

)
. (5.37)

However, to the author’s knowledge, no analytical inverse Fourier transformation is available
for the wave number. Two possible treatments are presented in the following subsections.
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5.2.1 Non-dispersive approximation

An approximate solution for low wave-number is derived by assuming k << λn. This assump-
tion yields the following dispersion relation

ωn ≈
(
ūz ±

2Ω

λn

)
k . (5.38)

Note that, the simplified dispersion relation is non-dispersive, since ∂ω/∂k = ω/k. The prop-
agation is analogous to plane acoustic waves. The speed of sound is replaced by the Coriolis
parameter. In a supercritical flow, the stream-wise flow velocity is greater than this parame-
ter, ūz > 2Ω/λn. Thus, both waves propagate downstream. With this assumption, the inverse
Fourier transform can be performed analytically and the resulting set of equations read

ûr(t, z, r) = 0.5
∞∑

n=1

αnMr,n

λn

[
δ

(
z − ūzt−

2Ωt

λn

)
− δ

(
z − ūzt+

2Ωt

λn

)]
, (5.39)

ûθ(t, z, r) = 0.5
∞∑

n=1

αnMr,n

[
2−H

(
z − ūzt−

2Ωt

λn

)
−H

(
z − ūzt+

2Ωt

λn

)]
, (5.40)

ûz(t, z, r) = 0.5
∞∑

n=1

αnMz,n

[
H

(
z − ūzt−

2Ωt

λn

)
−H

(
z − ūzt+

2Ωt

λn

)]
, (5.41)

p̂(t, z, r) = −Ωρ̄
∞∑

n=1

αnMz,n

λn

[
2−H

(
z − ūzt−

2Ωt

λn

)
−H

(
z − ūzt+

2Ωt

λn

)]
. (5.42)

These equations analytically describe the swirler response to the step perturbation in the acous-
tic velocity. The convective propagation assumption can be simply replaced by these results for
low order thermo-acoustic network models. Since a step response fully characterizes linear sys-
tems, other type of perturbations such as harmonic and impulse forcing, can be easily derived
from these equations. For example, performing a time derivate yields the impulse response. In
the next section, the interpretation of these results are further discussed.

5.2.2 Asymptotic Solution by Method of Steepest Descent

A more rigorous solution is achieved by applying the method of steepest descent as described
in Sec. 2.2. Here, only the solution of the tangential velocity ûθ is presented. Other components
can be derived similarly. The Eq. (5.35) is re-written in its exponential form as

ûθ(t, k, r) = 0.5

(
πδ(k) +

i

k

)
e−iktūz

∞∑

n=1

αnMr,n(r)

(
e
− 2iΩkt√

λ2
n+k2

+ e

2iΩkt√
λ2
n+k2

)
, (5.43)

where the first term in the bracket indicates the fast propagating wave. The integral for the
inverse Fourier transformation reads

u′θ(t, z, r) =
1

2π

∫ ∞

−∞
ûθ(t, k, r)e

ikzdk . (5.44)
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For simplicity, the method of steepest descent is demonstrated only for the fast propagating
wave. Moreover, the bulk velocity ūz is neglected for the ease of the derivation. Similarly, other
terms, which do not depend on k, are neglected. However, in the final expression, Eq. (5.48),
the most general form is presented. The integral for the inverse Fourier transform with the given
simplification is written in the form introduced in Sec. 2.2 as

I(z) =

∫ ∞

−∞
f(k)ezg(k) =

∫ ∞

−∞

(
πδ(k) +

i

k

)
e
z

(
ik− 2iΩk

η

√
λ2
n+k2

)
dk , (5.45)

where η = z/t. Real and imaginary parts of the exponent function, g(k), are shown in Fig. 5.3
as contour plots. Columns correspond to the real and imaginary part, respectively. Darker colors
indicate lower values. The singularities are marked with red circles at k = ±λn. Corresponding
branch cuts are on the imaginary axis, i.e k > iλn and k < −λn. Blue contours indicate constant
levels of imaginary part, =(g(k)).

Saddle points are determined as

k0 = ±jn

√(
2Ω

ηjn

) 2
3

− 1 . (5.46)

Observing the form of saddle point relation, three different branches are recognized as η >
2Ω/jn, η = 2Ω/jn and η < 2Ω/jn. The first branch is shown in the first row of the figure.
Two non-degenerate saddle points marked with red cross are located on the imaginary axis.
Similarly, there exists two saddle points for the branch, η < 2Ω/jn, which is shown in the last
row. The saddle points lie on the real axis. For η = 2Ω/jn, there exist a single degenerate saddle
point at the origin.

For each branch, the initial integral path, k = (−∞,∞) is constructed by additional paths
from the steepest descent method. Cauchy’s integral theorem is employed, which states that the
integral along a closed path with no singularities is zero. The closed integral paths are indicated
with the green color. As an example, the first branch is discussed in detail. The closed integral
path reads

∫

Γ1

+

∫

Γ2︸ ︷︷ ︸
I(z)

+

∫

Γ3

+

∫

Γ6︸ ︷︷ ︸
C(z)

+

∫

Γ4

+

∫

Γ5︸ ︷︷ ︸
S(z)

= 0 , (5.47)

where S(z) is the contribution by steepest descent path, which follows the constant level of
=(g(k)) as discussed in Sec. 2.2. Note that the saddle point in the negative imaginary axis is a
local minimum and does not define a steepest descent path. Thus, only the saddle point in the
positive imaginary axis is employed. The circular paths, C(z), enclose the contour so that the
Cauchy’s integral theorem can be employed. As the radius of the circular path grows to infinity,
its contribution vanishes, C(z) = 0. Hence, the integral, I(z), can be related to the steepest
descent integral, I(z) = −S(z). Similar explanations also work for the other two branches of
η. The leading term for steepest descent integral, defined in Eq. (2.22), results into the general
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Figure 5.3: Contour plots of real (left) and imaginary (right) parts of g(k). From top to bottom,
three branches are plotted, η > 2Ω/jn, η = 2Ω/jn and η < 2Ω/jn.
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expression for tangential velocity perturbations as

u′θ(t, z, r) ≈
∞∑

n=1

αnMr,n ×





1−
(

2Ωt
jn(ūzt−z)

) 1
3 e−jn(−c−)

3
2

2
√

6πjn(−c−)
3
4
, if η < ūz − 2Ω

jn

5
6
, if η = ūz − 2Ω

jn

1
2

+
(

2Ωt
jn(ūzt−z)

) 1
3

cos

(
jnc

3
2
−

)
−sin

(
jnc

3
2
−

)
2
√

3πjnc
3
4
−

, if ūz − 2Ω
jn
< η < ūz

1
2
−
(

2Ωt
jn(z−ūzt)

) 1
3

cos

(
jnc

3
2
+

)
−sin

(
jnc

3
2
+

)
2
√

3πjnc
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jn

(5.48)

where
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(
2Ωt
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) 2
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− (z − ūzt)
2
3 , (5.49)

c− =

(
2Ωt

jn

) 2
3

− (ūzt− z)
2
3 . (5.50)

The regions, ūz − 2Ω/jn > η > ūz + 2Ω/jn, correspond to the last row in the Fig. 5.3. The
first region converges exponentially to 1. Similarly, the other one exponentially decays to 0.
This is inline with the non-dispersive solution derived in the previous section, which predicts
no fluctuations in these regions. The region, ūz − 2Ω/jn < η < ūz + 2Ω/jn, correspond to
the first row in the Fig. 5.3. The oscillatory dispersive behavior is predicted as a combination
of trigonometric functions. Note that the non-dispersive model does not capture the oscillatory
behavior and estimates a constant value. All these four regions diverge as η → ūz ± 2Ω/jn.
The middle row in the Fig. 5.3 corresponds to these limits. The solution for these points are
computed as 5/6 and 1/6 for η = ūz − 2Ω/jn and η = ūz + 2Ω/jn, respectively.

In Fig. 5.4, inverse fast Fourier transformed results of equations (5.34)-(5.37) are shown as a
numerical validation. Perturbations are plotted against the stream-wise direction downstream of
the swirler for three different snapshots at t = [5 15 25]ms. The configuration of Komarek and
Polifke [16] is demonstrated here. The annular duct radii are ri = 8mm and ro = 20mm. The
bulk stream-wise velocity is 11.3m/s. The design point swirl angle is θ2 = 45◦. Following Ker-
rebrock [51], the tangential velocity profile quickly develops into the stable solid body rotation.
Thus, the azimuthal momentum is redistributed to the solid body rotation as

∫ ro

ri

2πrΩrdr =

∫ ro

ri

2πrūz tan(θ2)dr (5.51)

The corresponding design point circulation strength is around Ω = 760s−1. Here, only the first
inertial wave eigenvalue is considered as it causes the greatest deviation in the propagation. By
employing Eq. (5.21), the eigenvalue is computed as λ1 = 269.56m−1. The resulting deviation
in the propagation is quantified by

2Ω/λn
ūz

× 100 ≈ 50% , (5.52)
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5.2 Propagation: Initial Value Problem

which matches well with the experimental observation from Komarek and Polifke [16].

In left top part of Fig. 5.4, tangential velocity perturbations, u′θ(t, z, r), are presented. Black
lines indicate numerical inverse fast Fourier transformation results. Blue lines indicate the non-
dispersive solution proposed in the previous section. Red lines indicate the asymptotic solution
derived in this section. The oscillatory behavior is well captured by the asymptotic approach.
The non-dispersive solution shows quantitative agreement. With both approaches the deviation
in the propagation speed is apparent. These results also clarify the 40-50% deviation observed
in literature. Although the initial perturbation is only in the tangential velocity, it generates
fluctuations in other velocity components and also in pressure. The corresponding numerical
inverse fast Fourier transformation results are shown in Fig. 5.4. Similar oscillatory behavior
as tangential velocity perturbations is observed. This outcome motivated Paper IW-Flame, i.e.
the flame response is attributed to axial and radial velocity perturbations, respectively u′z(t, z, r)
and u′r(t, z, r).
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ūz + 2Ω

jn

)
−1

− 1
2

− 1
6

0

z

u
′ z

−1
− 5

6

− 1
2

− 1
6

0

p
′

−1
− 5

6

− 1
2

− 1
6

0

p
′

0
t
(
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ūz + 2Ω

jn

)
−1
− 5

6

− 1
2

− 1
6

0

z

p
′

− 1
2

− 1
6

0

1
6

1
2

u
′ r

− 1
2

− 1
6

0

1
6

1
2

u
′ r

0
t
(
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Figure 5.4: Snapshots of the inertial wave fields downstream of a swirler at t = [5 15 25]ms.
Top images: u′θ(t, z, r) (left) and u′z(t, z, r) (right). Bottom images: u′r(t, z, r) (left)
and p′(t, z, r) (right). p′ is multiplied by jn/(2Ωρ̄). Black line corresponds to the
numerical solution by inverse fast Fourier transformation. Blue line corresponds
to the non-dispersive solution. Red lines and circles correspond to the asymptotic
solution by the method of steepest descent.
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6 Equivalence Ratio Waves

In this chapter, equivalence ratio waves are discussed with respect to thermo-acoustics. The
impact of the equivalence ratio waves on the flame response was recognized decades ago. Since
then, different research groups showed interest in this subject by devising models for predicting
and understanding the flame response mechanism. Here, major contributions to this subject are
reviewed. Achievements of this dissertation are discussed with respect to the relevant literature.

In industrial application, it is not feasible to achieve perfect mixing of air and fuel. This type
of combustion process is recognized as technically/partially premixed in literature. For such
flames, unsteady heat release rate is not only sensitive to the flow velocity, but also to equiva-
lence ratio fluctuations as introduced by Keller et al. [20], Keller [66]. This is also confirmed by
the experiments from Straub and Richards [67], Richards and Janus [68]. The impact of equiv-
alence ratio fluctuations on the flame response becomes even stronger for the lean combustion,
since the sensitivity of the heat of reaction to equivalence ratio perturbations increases with
leaner premixture as discussed by Lieuwen et al. [69].

Equivalence ratio Heat release rateFlame speed

Heat of reaction

Flame surface area

Figure 6.1: Schematic illustration of flame response contributions caused by equivalence ratio
waves [70].

The equivalence ratio fluctuations are caused by the imperfect mixing through the mixing duct
(see Shih et al. [71]), but more importantly by the air velocity and pressure fluctuations at
the fuel injector (see Lieuwen and Zinn [21]). The latter contribution is directly related to the
acoustics of the system and strongly affects the thermo-acoustic instability. This contribution
is frequently addressed as ongoing research in literature. Further theoretical works were pio-
neered by Lieuwen and coauthors [21, 72] and Schuermans et al. [73] to understand the flame
response mechanism and to develop simple flame transfer function models for equivalence ratio
perturbations. These models identified heat of reaction contribution and the convective nature
of the equivalence ratio fluctuations. The flame response contribution was modeled accordingly
by a time lag model. The impact of the flame speed contribution to the flame transfer function
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Equivalence Ratio Waves

is introduced by Dowling and Hubbard [74]. The importance of diffusive processes is discussed
by Polifke et al. [75], Bobusch et al. [76]. More complete model was proposed by Cho and
Lieuwen [70], Lawn and Polifke [77], which also include the flame surface area contribution
caused by flame speed modulations as illustrated in Fig. 6.1.

In Sec. 6.1, the generation mechanism of equivalence ratio waves from plane acoustic waves
is presented. In Sec. 6.2, the convective propagation of the equivalence ratio waves is demon-
strated.

6.1 Generation

The generation of equivalence ratio waves is analyzed by considering the mass conservation
across the fuel injector. For a chemical reaction

νFF + νOO → Products , (6.1)

the equivalence ratio, φ, is defined for the unburnt region as

φ = s
ṁF

ṁO

, (6.2)

where F , O stand for fuel and oxidizer, respectively. The mass flow rate is indicated by ṁ. The
stoichiometric coefficient is ν. The mass stoichiometric ratio, s, is defined as

s =
vOMO

vFMF

, (6.3)

where M stands for the molar mass.

fuel
u′FūF

air
u′AūA

air
u′AūA

φ′φ̄

Figure 6.2: Schematic illustration of equivalence ratio wave generation. The upstream velocity
perturbations modulate the mass flow rates of air and fuel. The fuel-air ratio changes
and equivalence ratio waves are generated.

In the linearized framework, the equivalence ratio waves read

φ′

φ̄
=
m′F
m̄F

− m′O
m̄O

. (6.4)
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6.2 Propagation: Initial Value Problem

This equation indicates that perturbations in the mass flow rate of fuel and air generate equiv-
alence ratio fluctuations. This equation can be further simplified by considering the mass flow
rate at the position of the fuel injector. This scenario is shown in Fig. 6.2, where co-axial jet
flow is schematically illustrated. The fuel injector is located in the center of the duct and sur-
rounded by the annular air stream. The mass flow rates at the position of the fuel injector is
determined by ṁ = ρuA, where ρ is the density, u is the flow velocity and A is the surface
area. Surface areas of the fuel and air streams are constant. The mass flow rate modulations
are therefore related to the density and flow velocity fluctuations. The former is relevant in the
case of intake temperature inhomogeneities. However, in the thermo-acoustic perspective, only
acoustics related flow velocity fluctuations are relevant. These assumptions simplify Eq. (6.4)
further to

φ′

φ̄
=
u′F
ūF
− u′O
ūO

. (6.5)

Note that, a positive change in the air flow velocity causes a decrease in equivalence ratio. For
fuel flow velocity, the opposite is true.

If the fuel injection is choked or acoustically fully reflective, then the injector is called stiff. This
is achieved by a large pressure drop across the fuel injector. For stiff injector, acoustic pressure
variations at the fuel injector do not cause equivalence ratio fluctuations, hence u′F = 0. The
only mechanism that causes equivalence ratio fluctuations is the acoustic velocity perturbations
at the fuel injector.

6.2 Propagation: Initial Value Problem

In order to analyze the propagation of the equivalence ratio waves, the local definition based on
mass fractions is employed

φ = s
YF
YO

, (6.6)

where the mass fraction of fuel YF and oxygen YO are determined from the transport equations,
i.e.

∂ (ρYF )

∂t
+ ∇ · (uρYF ) = ∇ · (ρDF∇YF ) + ωF , (6.7)

∂ (ρYO)

∂t
+ ∇ · (uρYO) = ∇ · (ρDO∇YO) + sωF . (6.8)

Assuming that the fluctuations in species mass fractions are small compared to the mean values,
the equations can be linearized. Moreover, assuming a single species diffusion coefficient D =
DO = DF for all species, the transport equation for the equivalence ratio waves can be derived.
First, Eq. (6.7) is multiplied by s/ȲO and Eq. (6.8) by −sȲF/Ȳ 2

O . Then, the summation of two
yields the well known scalar transport equation, i.e.

∂ρφ′

∂t
+ ∇ (uρφ′) = ∇ · (ρD∇φ′) . (6.9)

The source term ωF drops from the derivation, because the equivalence ratio is defined for the
unburnt condition. The convective nature of equivalence ratio waves are evident from Eq. (6.9).
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Equivalence Ratio Waves

To derive an analytical low order model, the equation is further simplified for 1-d flow by as-
suming density, species diffusion coefficient and velocity to be uniform. The simplified equation
reads

∂φ′

∂t
+ ūz

∂φ′

∂z
−D∂

2φ′

∂z2
= 0 (6.10)

Similar to the inertial waves in Sec. 5.2, the initial value problem is proposed to quantify the
propagation of equivalence ratio waves. Again, the step response approach is employed by con-
sidering a sudden jump in the upstream acoustic velocity as an initial condition. Mathematically,

u′z,a(t = 0, z) = ūzεH(−z) . (6.11)

For a stiff injector configuration as discussed in the previous section, this yields a negative
fluctuation in the equivalence ratio

φ′(t = 0, z) = −φ̄εH(−z) (6.12)

Eq. (6.10) is transformed into an algebraic equation by employing modal ansatz for the stream-
wise direction and Laplace transformation for the time. This reads as

φ̂(s, k) = − φ̄ε(πδ(k) + i
k
)

s+ ikūz +Dk2
. (6.13)

The time-space domain solution is retrieved by inverse Laplace transformation for the time and
inverse Fourier transformation for the stream-wise direction. The final expression is

φ′(t, z) = −0.5φ̄ε

(
1− erf

(
z − ūzt√

4Dt

))
. (6.14)

Similar to the Fig. 5.4, the solution is plotted in the stream-wise direction for three different in-
stances t = [5 10 15]ms in Fig. 6.3. The configuration from Paper φ′-Flame is considered. The
base axial flow velocity is ūz = 1m/s. The molecular diffusivity is D = 0.22 × 10−4m2/s. The
well-known behavior of advection-diffusion problem is observed, i.e. the perturbation propa-
gates with the mean flow and diffuses in the stream-wise direction at the same time.
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6.2 Propagation: Initial Value Problem
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Figure 6.3: Snapshots of the equivalence ratio fluctuation field downstream of a fuel injector.
The generation mechanism is the step acoustic velocity perturbation. Hence, equiv-
alence ratio fluctuations are negative.
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7 Summary and Discussion of
Achievements

In this chapter, publications are summarized individually. Achievements of each publication are
discussed with respect to their impact on the relevant literature.

The first publication in Sec. 7.1 recognizes the dispersive inertial wave propagation as a thermo-
acoustic time delay. As revealed by several research groups [16–18], swirl fluctuations propa-
gates faster than the convection speed. This unexpected outcome causes prediction errors in
thermo-acoustic models. The dispersive propagation of inertial waves is employed to explain
this speed difference. Moreover, swirl fluctuations are recognized as inertial waves. In the sec-
ond publication in Sec. 7.2, these findings are further developed to explain the flame response
to swirl fluctuations. In the literature, there exist different physical interpretations of the flame
response mechanism [18, 61, 64]. None of these authors recognized the impact of the inertial
wave. In the second publication, inertial wave eigenmode structures are used to interpret the
flame response dynamics.

In the third and fourth publications ( respectively in Sec. 7.3 and 7.4), improvements to the flame
response models for equivalence ratio waves are introduced. Equivalence ratio fluctuations are
known to be relevant for the thermo-acoustic instabilities as they cause strong heat release
rate fluctuations [20, 66]. In the literature, there exist frequency domain models to predict and
understand the flame response mechanisms [70, 74]. In the third publication, a time domain
approach is employed to reveal characteristic time scales and the model is extended to account
for the effect of molecular diffusion. In the fourth publication, the model is further improved for
more realistic technically premixed flame configurations, where mixture inhomogeneities may
occur in the radial direction.

The fifth publication in Sec. 7.5 introduces a convective scaling of the dominant instability fre-
quency with the power rating in a lab scale swirl stabilized flame. Experiments were conducted
a decade ago by Komarek and Polifke [16], where the dominant instability frequency changed
significantly with power rating while equivalence ratio was held constant. At that time, this
behavior could not be explained, as the system acoustics barely changes with power rating. In
the fifth publication, the flame characteristic time scales are employed to explain these convec-
tive scaling. This publication is a good example that stresses the relevance of time scales for
combustion instabilities.
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7.1 Paper IW-Speed

7.1 Paper IW-Speed

This non-peer reviewed paper consists of a preliminary analysis of the dispersive inertial wave
propagation in an axial swirler. More advanced approach is given in chapter 5. Here, the aim
was to scrutinize the convective assumption for swirl waves. In several publications [16–18], it
was observed that the propagation speed is faster than the convection. This unexpected behav-
ior causes errors in thermo-acoustic models. To compensate the deviation in the propagation
speed, authors added ad-hoc corrections. However, the cause remained unknown. In this paper,
it was revealed that the dispersive propagation of inertial waves is the reason for deviations in
the propagation speed. The seminal work by Kelvin [19] on inertial waves provides the math-
ematical modeling, i.e. the incompressible linearized Euler equations are used. Moreover, by
employing a frequency response analysis, the propagation speed of inertial waves is quantita-
tively compared against a pure convective process.

The swirling flow downstream of the swirler is modeled by a solid body rotation superimposed
with uniform axial velocity. By employing the modal ansatz on the linearized Euler equations,
the inertial wave eigenmodes are revealed. The corresponding eigenvalues are investigated as
propagation speeds. It is revealed that for each eigenmode, there exist two eigenvalues. One of
them propagates faster than convection and the other one is slower than convection. The devia-
tion from the convection speed depends linearly on the circulation strength. Higher circulation
means more deviation. Moreover, each eigenmode propagates with a different level of devia-
tion. The propagation of the first eigenmode deviates most from the convection. As the order of
the eigenmode increases, the propagation approaches to convection.

The frequency response is derived for simplicity only for the first eigenmode. A downstream
location is selected as a measurement plane for the tangential velocity perturbations. The pure
convection process results in a unity constant gain with a linearly decaying phase. The slope of
the phase corresponds to the convection speed. In an inertial wave propagation, since there ex-
ists fast and slow waves, the superposition is decisive for the gain. For particular frequencies, a
destructive superposition occurs and zero gain is observed. A constructive superposition results
in unity gain. Obviously, changing the location of the measurement plane varies the frequen-
cies of constructive/destructive superposition. The results are also validated against numerical
simulations.

Besides the correct characterization of the propagation speed, a precaution is mentioned for the
commonly employed approach [16, 18] to identify the flame response to inertial waves. The
tangential velocity perturbations measured at a plane is used as an input and the corresponding
heat release rate fluctuations are used to calculate the flame transfer function. This publication
reveals that this approach is not accurate. The worst case for the identification is the following: a
destructive superposition occurs at the measurement plane and no tangential velocity perturba-
tions are measured. However, the heat release rate shows finite oscillations. By the definition of
the flame transfer function, the finite value (heat release rate fluctuation amplitude) is divided by
a very small number (tangential velocity amplitude). The resulting gain values are unrealistic.
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Summary and Discussion of Achievements

Contribution

The unexpected results in the propagation speed of swirl waves was recognized by Prof. Wolf-
gang Polifke, who suggested the research question. By employing the modal ansatz on lin-
earized equations, accurate estimation of wave speed is conducted by myself. Moreover, I per-
formed the numerical simulations. The draft is written by me with suggestions and corrections
of Prof. Wolfgang Polifke.

7.2 Paper IW-Flame

Although experimental results [12, 13, 62] suggest that the tangential velocity perturbations
generated at the swirler cause heat release rate fluctuations, these perturbations cannot be the
leading mechanism. Because, no heat release rate fluctuation is generated by tangential velocity
perturbations for an axisymmetric flame. Several approaches exist in literature to describe the
response mechanism. Hirsch et al. [64] employed Biot-Savart law on the azimuthal momentum
equation to derive a flame response. Based on experimental observations a black-box Gauss
distribution model is proposed by Komarek and Polifke [16]. Parameters of this model were
related to physical quantities of the configuration such as bulk flow velocity, flame length and the
distance of the swirler from the flame base. Palies et al. [61] attributed the unsteady heat release
rate to the turbulent flame speed variations due to the tangential velocity fluctuations. Acharya
and Lieuwen [18] recognized from numerical simulations that tangential velocity perturbations
generate velocity fluctuation in other directions.

In Paper IW-Speed, besides the characterization of the propagation speed of inertial waves, the
eigenmode structures are recognized. Initial perturbations in tangential velocity generate also
flow oscillations in other directions. This outcome is used to characterize the flame dynamics.

To perform a quantitative analysis on the interaction between inertial waves and unsteady heat
release, the linearized reactive flow equations are implemented in a numerical framework with
finite element method. The method is demonstrated on an idealized axisymmetric laminar
swirling flame. The computed flame impulse response is then physically interpreted by con-
sidering inertial wave eigenmodes in stream-wise and radial directions. The resulting flame
impulse response is similar to the turbulent flame studied by Komarek and Polifke [16]. It is re-
vealed that only the faster propagating wave interacts with the flame. The impact of the slower
wave possibly dissipates more due to viscosity, since it take much longer to reach the flame.
This explains why in all publications [16, 18, 61], the observed time delays are around 40-50%
less than the convective delay.

Contribution

The research question was proposed by myself. The linearized reactive flow solver is imple-
mented by Deniz Bezgin based on preliminary template generated by me. The interpretation of
results in terms of inertial wave–flame dynamics interaction is conducted by myself with the
help of Deniz Bezgin. The manuscript is written by me with suggestions and corrections of the
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7.3 Paper φ′-Flame

co-authors.

7.3 Paper φ′-Flame

The flame response of a laminar conical Bunsen flame to equivalence ratio perturbations is
investigated. The linearized level set G-equation is employed to derive the flame impulse re-
sponse analytically. A time domain approach is employed, where the flame base is subject to
an impulsive equivalence ratio perturbation. Three major contributions discussed by Cho and
Lieuwen [70] are also identified, namely the heat of reaction contribution, laminar flame speed
contribution and finally the flame surface area contribution, which indirectly results from flame
front deflection caused by laminar flame speed variations. The flame response is then validated
against the direct numerical simulation with reduced 2-step global chemical kinetics.

It is revealed that the flame impulse response has two relevant time scales: 1) τc is related to
the convection of the perturbation along the flame and 2) τr is related to the propagation of
the hypothetical restoration line that brings the perturbed flame to its original position. The
restoration process is always slower than the convective process. The restoration mechanism
was suggested by Blumenthal et al. [5] for the flame response caused by velocity fluctuations.
Since it is a kinematic mechanism, it also applies to equivalence ratio fluctuations. It is demon-
strated that the heat of reaction and laminar flame speed contributions have only the perturbation
time scale, τc. The indirect flame surface area contribution has both time scales, i.e. τc and τr.

By applying Fourier transform in time to the flame impulse response, the expression for the
flame transfer function in the frequency domain is retrieved. The resulting expression is iden-
tical to the one derived by Cho and Lieuwen [70] via the frequency domain approach. The
advantage of the time domain approach is that the relevant time scales are revealed. The in-
terpretation of time scales is not trivial in the frequency domain approach. Moreover, the time
domain approach enables an interpretation of the superposition of contributions: Both direct
contributions have always positive impulse response for a lean premixed flame, whereas the in-
direct contribution always results in a negative response. Since the restoration time scale affects
only the indirect contribution, the global impulse response has a positive part in early times, but
also a negative part in the later times, i.e. τc < t < τr. The constructive superposition of the
positive and negative responses is responsible for the high gain values observed in the flame
transfer function.

In the work from Cho and Lieuwen [70], 1-D advection equation is employed for modeling
the propagation of the equivalence ratio perturbations. In the first part of the paper, the same
model is employ to validate these results. Then, the propagation is replaced by a more realistic
advection-diffusion equation model, which also accounts for the molecular diffusion of the
perturbation. This model is especially relevant for the cases, where the fuel injector is positioned
far from the flame. Sharp features of the flame impulse response smear out with the impact of
the molecular diffusion, which improves the agreement between the model and the numerical
simulation results.
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Summary and Discussion of Achievements

Contribution

The research question was proposed jointly by all authors. The derivation of analytical models
and the numerical simulations was conducted by myself. The manuscript is written by me with
suggestions and corrections of co-authors.

7.4 Paper Local-φ′

In Paper φ′-Flame and also in Cho and Lieuwen [70], equivalence ratio fluctuations are assumed
to be uniform over the radius. This is a strong assumption, which is not realized in practice. The
analytical framework described in Paper φ′-Flame is extended to account for an arbitrary radial
profile of equivalence ratio perturbations. This is done by assuming an impulsive perturba-
tion localized at a given radius. The local flame impulse response is derived analytically with
variable perturbation source radius. This approach is validated by integrating the local flame
impulse for the uniform perturbation profile, which retrieves the expression presented in Paper
φ′-Flame.

The local flame impulse response reveals that the heat of reaction and laminar flame speed con-
tributions to the flame impulse response are local mechanisms. A response occurs only at the
instant, when the perturbation reaches the flame. For a conical Bunsen flame, a local perturba-
tion imposed at the center will travel the longest distance and thus yields a long convective time
scale τc, whereas a perturbation imposed at duct walls instantly acts on the flame base and thus
doesn’t introduce a time lag. The indirect response from the flame surface area fluctuations is
not a local process. As discussed in Paper φ′-Flame, it is generated by the flame speed variations,
hence activated locally at τc. Then, the wrinkled flame surface is advected through the flame tip.
The time for the wrinkle to leave the flame is related to the local restoration process and denoted
as τr. For a conical Bunsen flame, a local perturbation imposed at the center will not introduce
any restorative time scale, as it immediately leaves the flame. However, for a perturbation im-
posed at close to the duct walls generates a wrinkle at the flame base, which propagates till the
flame tip. This causes the longest restoration time. The time scales derived in Paper φ′-Flame
should be interpreted as global time scales that result from the weighted summation of the local
time scales varying from the center to the radius of the burner duct.

By exploiting the local framework, two perturbation profiles resulting from different fuel injec-
tion systems of technically premixed flames are studied. Perturbations at the center are higher
for one case and lower for the other. Corresponding flame responses are calculated analytically
for these cases. The flame transfer functions show considerable difference due to the differently
weighted time scales. The phase of the flame transfer function is less steep for the case with
higher perturbation at the side walls.

Contribution

A need for an extended framework was recognized after the discussions with Prof. Wolfgang
Polifke and Dr. Kilian Oberleithner in the framework of the FVV project (Forschungsvere-
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7.5 Paper Scaling

inigung Verbrennungskraftmaschinen — Research Association for Combustion Engines). The
derivation of analytical models is conducted by myself. The manuscript is written by me with
suggestions and corrections of Prof. Wolfgang Polifke.

7.5 Paper Scaling

The convective scaling of peaks in the combustion noise spectrum of a bluff body stabilized
turbulent swirl flame is studied. Experiments were conducted a decade ago and presented in
publications by Polifke and coauthors [11, 16]. Measurement campaigns were conducted for
several configurations by varying the power rating and the stream-wise location of the swirler.
The noise spectrum was obtained via pressure sensors in the combustion chamber. Moreover,
corresponding flame transfer functions were measured. The spectrum showed that the peak
frequency scales linearly with power rating, i.e. the mean flow speed. However, this was an
unexpected result, since the acoustic mode barely changes with the power rating.

In this paper, the peaks are shown to be related to burner-flame intrinsic thermo-acoustic feed-
back, which strongly depend on the phase of the flame transfer function. A mathematical frame-
work is introduced to prove the convective scaling. A new criterion is derived to estimate the
instability potentiality at frequencies, where the flame transfer function phase crosses −π/2.
Note that this criterion differs from solely flame intrinsic thermo-acoustic criterion [78], which
estimates the frequency at −π. This difference is attributed to the very large burner flow inertia
due to great area jumps across mixing duct to the plenum and combustion chamber.

An increase in the bulk flow velocity due to the power rating decreases the characteristic flame
time scale. This causes a less steep phase of the flame transfer function and the crossing with
−π/2 phase occurs at a later frequency. This explains linear convective scaling. Similar behavior
is also observed for the swirler position variation. This paper serves as good example for the
impact of flame related time scales on thermo-acoustic instabilities.

Contribution

The research question was formulated in the course of discussions of all authors. The unpub-
lished experimental results from Thomas Komarek are used. The extended criterion for the
intrinsic thermo-acoustic instability is derived by me. The convective scaling was introduced
by Thomas Steinbacher. The interpretation via phase diagrams and impedances was introduced
by Prof. Wolfgang Polifke. The manuscript is preparation by myself, Thomas Steinbacher and
Prof. Wolfgang Polifke. We kindly acknowledge the anonymous reviewers for this paper. The
extended criterion was derived following their constructive comments.
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8 Outlook

In Paper IW-Flame, it is observed that the flame responds to the fast propagating inertial waves,
but not to the slow one. This trend should be investigated further. Two possible approaches are:
1) including the viscous dissipation of inertial waves and 2) studying the dynamics of inertial
waves across the dump plane. The former is justified by the fact it takes more time for the slow
propagating inertial waves to reach flame base compared to fast waves. Hence, they are more
prone to the viscous dissipation. The strong area jump of the combustion chamber might have
an impact on the inertial wave dynamics. This motivates the proposed second approach. The
analytical framework of Paper IW-Speed can be extended to match inertial wave modes across
the dump plane. Eigenmodes of the combustion chamber region can be derived by employing
linearized Euler equations on simplified mean flow profiles such as the Rankine vortex. The in-
ertial wave solution from the mixing duct region can be used as the initial condition at the dump
plane and the spatio-temporal evolution inside the combustion chamber can be investigated.

The linearized reactive flow equations are demonstrated for an idealized 2-d configuration. This
approach can be extended to analyze a more realistic configuration with a 3-d swirler geome-
try. For such cases, inertial wave structures can be studied in detail. Moreover, the numerical
solution of linearized equations is much more efficient than solving non-linear equations. For
2-d cases, a perfect agreement was achieved for the linear flame response. The accuracy of the
linearized framework for 3-d turbulent cases can be analyzed. Time averaged flow fields of a
numerical simulation can be employed as the base flow for the linearization, where turbulence
and turbulent combustion models should also be linearized appropriately.

Instead of time domain analysis of the linearized reactive flow equations, a frequency domain
analysis can be performed with few modifications of the code structure. This approach is similar
to the hydrodynamic global stability analysis. Yet, this reveals not only the flow instabilities but
also flame instabilities and thermo-acoustic instabilities. Also, the sensitivity analysis and/or
design optimization can be studied by using adjoints method, e.g. the swirler blade shape can
be modified such that the flame transfer function at particular frequency is maximized or mini-
mized.

In most of the technically premixed flame studies, stiff fuel injection is considered. As a result,
equivalence ratio fluctuations are only generated by the air flow perturbations. However, if the
fuel injector is not choked, the pressure fluctuations at the injector become important and the
fuel velocity fluctuations generate heat release rate oscillations. For such cases, the properties
of the flame response should be further studied as a multiple input system.

The equivalence ratio wave generation mechanism is modeled by the crude 1-d framework, i.e.

φ′

φ̄
=
u′F
ūF
− u′O
ūO

. (8.1)

High fidelity numerical simulations of the well-studied jet in cross-flow setup can be employed
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to derive more realistic equivalence ratio generation mechanism. Similar to the flame trans-
fer function calculations, the fuel injector transfer functions can be derived, i.e. the frequency
dependent models can be achieved as

φ′

φ̄
= FF (ω)

u′F
ūF
− FO(ω)

u′O
ūO

. (8.2)

This might have strong impact on the flame dynamics.

The flame response to equivalence ratio waves is derived for laminar flames. A straightforward
extend is to study turbulent configurations. One interesting point is the sensitivity of the laminar
flame speed. As discussed in chapter 6, the laminar flame speed fluctuation, s′L (φ′), is one of
the major contributions to the flame response. For a turbulent flame, the flame speed does not
depend only on the equivalence ratio but also turbulent velocity fluctuations, i.e. s′T (φ′, u′T ).
The sensitivity of the turbulent flame speed should be further investigated to correctly estimate
the flame response.
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Inertial waves are observed in swirl burners, due to the acoustic waves crossing the swirl genera-
tors. These waves can significantly modify the flame response in terms of flame transfer function
because the propagation mechanisms are different for acoustic and inertial waves. Acoustic waves
propagate at the speed of sound, whereas inertial waves travel with convection. Small changes in
burner configuration may convert the constructive superposition of flame responses to a destruc-
tive one, or vice versa, which may change the flame transfer function. Therefore, it is necessary
to identify the propagation mechanisms correctly. The aim of this paper is to re-examine the
assumption that inertial waves travel with convection. An analytical approach is combined with
numerical simulations to determine and validate the propagation speed with emphasis on the im-
pact of different swirl strengths.

1. Introduction

Lower emission of pollutants in gas turbines requires leaner fuel mixture for combustion process.
This increases the likelihood of occurrence of combustion instability, which is caused by a feedback
mechanism between acoustic waves and heat release rate fluctuations from the flame. In order to
design safer and more reliable gas turbines, it is necessary to investigate the interaction between
acoustic/hydrodynamic perturbation and flame dynamics.

Swirl burners are ubiquitous in combustion technology, because swirl promotes fuel/air mixing
and flame stabilization. This work focuses on inertial waves generated by acoustic waves that prop-
agate across the swirl generator. Inertial waves are understood to have a significant impact on the
dynamic response of swirl flames to flow perturbations.

Richards and co-workers [1, 2, 3] studied the effects of the swirl vane location on thermo-acoustic
stability. The sensitivity of the flame was credited to the phase lag between pressure and heat release
rate. A convective time lag model is introduced for the tangential velocity perturbations that are
generated at the swirler and propagate towards the flame front. In other words, overall flame response
is the superposition of responses to tangential velocity and acoustic perturbations.

Komarek and Polifke [4] confirmed this scenario and showed individual Flame Transfer Func-
tions (FTF) for the swirl waves and the acoustic axial velocity perturbations at burner mouth. The
phase difference between these FTFs is then used to investigate how strongly constructive / destruc-
tive superposition can strongly modulate the gain of the overall FTF. Palies et al. [5, 6] modeled
the generation and the propagation of these waves by the actuator disk theory by Cumpsty and Mar-
ble [7], where the tangential velocity perturbations are assumed to travel with convection. Kim and
Santavicca [8] also confirmed the interference mechanism by FTF measurements.
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However, it was noted already by Straub and Richards [3] that the convective time lag model
leads to poor agreement against experiments. Similarly, Polifke and co-workers [4, 9] argued that the
propagation speed of the swirl (inertial) waves differs from the convective speed.

The convective propagation assumption is scrutinized in this paper. Kerrebrock [10], Golubev and
Atassi [11], and Tam and Auriault [12] investigated the interaction mechanism between the acoustic
and inertial waves using space–time Fourier transformed linearized compressible Euler equations.
They found non-convective behavior of the inertial waves, which is not influenced strongly by the
compressibility in the range of Mach number 0.3.

In this work, an analytical expression for the inertial wave propagation is proposed by neglecting
the compressibility. Using space–time Fourier transformed linearized incompressible Euler equations,
an analytical description of the inertial wave propagation is proposed. Distinct modes appear, since
the inertial waves are dispersed. These distinct modes propagate faster and slower than the convective
speed. It is shown that the strength of the swirl affects the deviation from the convection. The
analytical approach is then validated against the CFD simulations using OpenFOAM.

In Sec. 2.1, the space–time Fourier transform is applied to advection equation. The same approach
is then applied to linearized Euler equations in Sec. 2.2 to investigate the inertial wave propagation.
In Sec. 3 a simple example is shown for a solid body rotation in a duct, where the inertial wave
propagation is quantified by a transfer function. Finally, in Sec. 4 the approach is validated against
CFD simulations with a non-linear incompressible Navier-Stokes solver by OpenFoam.

2. Theory

The cylindrical swirling flows in most burners are incompressible. The interaction between acous-
tic and hydrodynamic waves is negligible and both can be investigated separately. Linearized incom-
pressible Euler equations are employed in this work to describe the inertial wave propagation.

For all derivations there are common assumptions, i.e. the mean radial velocity being zero ūr =
0, the mean axial velocity being uniform ūz (r) = ūz, the flow being axisymmetric ∂ (.) /∂θ and
developed ∂ (.) /∂z.

The theory section is divided into two. In the first subsection, the assumption of the convective
propagation mechanism for tangential velocity perturbations is revisited. The space–time Fourier
transform is applied to advection equation. The propagation is quantified by a transfer function be-
tween the area averaged perturbations sampled at the upstream and downstream locations. In the
second subsection, same approach is applied to linearized Euler equations that govern inertial waves.

2.1 Propagation of convective perturbations

The axisymmetric linearized advection equation for the tangential velocity perturbations u′θ reads
as

∂u′θ
∂t

+ ūz
∂u′θ
∂z

= 0 , (1)

where (.)′ denotes perturbed and (̄.) mean quantities, u is velocity and (z, r, θ, t) are axial, radial and
tangential coordinates and time, respectively.

Although this equation can directly be solved in time domain, the space–time Fourier transforma-
tion (.)′ = (̂.) exp(−iωt+ ikz) is performed in order to be consistent with Sec. 2.2. This transforma-
tion leads to an algebraic equation as dispersion relation D (k, ω) = 0 that reads as

k (ω) = ω/ūz, (2)

where ω is the angular frequency and k is the axial wave-number. The perturbation in space–time
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domain can be reconstructed by inverse Fourier transform as

u′θ (z, t) =

∫ ∞

−∞

[
N∑

n=1

ûθ exp
(
ikn (ω) z

)]
exp (−iωt) dω , (3)

where N is the number of characteristic waves resulting from dispersion relation. For the advection
equation there is only one characteristic wave N = 1 with convective phase speed cp = w/k = ūz.

A transfer function T (ω) can be introduced to quantify the propagation. The area averaged tan-
gential velocity perturbation is measured at particular upstream ’zu’ and downstream ’zd’ positions
and used as input and output, respectively. The transfer function reads

T (ω) =

∫
ro

0
2πr
[∑N

n=1 ûθ,n exp(iknzd)
]
dr∫

ro

0
2πr
[∑N

n=1 ûθ,n exp(iknzu)
]
dr

. (4)

The input plane is chosen as zu = 0 without loss of generality. The transfer function for the
advection equation can be written as

T (ω) = exp

(
iωzd
ūz

)
, (5)

whose gain and phase are |T (ω) | = 1 and ∠T (ω) = ωzd/ūz, respectively (see Fig. 2 in Sec. 3).

2.2 Propagation of inertial waves

The linearized Euler equations in cylindrical coordinates read as

u′r
r

+
∂u′r
∂r

+
∂u′z
∂z

= 0 , (6)

∂u′z
∂t

+ūz
∂u′z
∂z

+ u′r
∂ūz
∂r

= −1

ρ

∂p′

∂z
, (7)

∂u′r
∂t

+ūz
∂u′r
∂z
− 2ūθu

′
θ

r
= −1

ρ

∂p′

∂r
, (8)

∂u′θ
∂t

+ūz
∂u′θ
∂z

+ u′r
∂ūθ
∂r

+
u′rūθ
r

= 0 , (9)

where p is pressure. Other variables are defined in Sec. 2.1. Space–time Fourier transformed equations
can be written as a second order ODE for ûr as

d2ûr
dr2

+
1

r

dûr
dr
− ûr

(
1

r2
+ k2 − 2k2ūθ

(w − ūzk)2 r2
∂ (ūθr)

∂r

)
= 0 . (10)

This equation requires prescribed mean tangential velocity ūθ(r). For particular cases such as solid
body rotation ūθ (r) = Kr, free vortex ūθ (r) = K/r or uniform tangential velocity ūθ (r) = K, the
analytical solution can be found.

Two boundary conditions are required for ûr (r), which define the dispersion relation D (k, ω) =
0. The phase speed cp corresponds to the propagation speed of the inertial waves. The propagation
can be quantified by the transfer function defined in Eq. (4).
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3. Illustrative example: Solid body rotation in a duct

For the ease of illustration, the analysis is carried out for a duct with radius of ro = 5 mm. The
uniform constant axial velocity profile is used ūz = 10 m/s. The tangential velocity is prescribed as
a solid body rotation ūθ (r) = Kr, where K = 2000 s-1. The corresponding Reynolds Number is
Re = 6667 lying in turbulent regime.

The symmetry condition at center is translated to a boundary condition ûr (0) = 0. Second
boundary condition ûr (ro) = 0 is from the impermeability condition at duct wall. The analytical
solution reads as

ûθ,n (r) =cnJ1 (Anr) + dnY1 (Anr) , (11)

ûr,n (r) =
ūzkn − ω

2Ki
[cnJ1 (Anr) + dnY1 (Anr)] , (12)

ûz,n (r) =
An (ūzkn − ω)

2Kkn
[cnJ0 (Anr) + dnY0 (Anr)] , (13)

p̂n (r) =− An (ūzkn − ω)2 ρ

2Kk2n
[cnJ0 (Anr) + dnY0 (Anr)] , (14)

where An = kn
√

4K2 − (ūzkn − ω)2/ (ūzkn − ω) and J and Y are the Bessel functions of first and
second kind, respectively. J and Y are orthogonal functions, which form complete solution.

Since Y1 goes to infinity at r = 0, the boundary condition ûr(0) = 0 cannot be satisfied unless the
coefficients of Y vanish dn = 0. Applying the second boundary condition ûr (ro) = 0, the dispersion
relation D (k, ω) can be formed as

J1 (Anro) = 0⇒ Anro = jn ,∀n ∈ N+ , (15)

where jn are the roots of Bessel function of first kind J1. Axial wave-numbers kn (ω) can be deter-
mined explicitly by solving fourth order polynomial. This indicates that for each n there exist four
axial wave-numbers that have the same mode shape. Two of them propagate upstream while one
grows and the other decays, which are assumed to be unphysical (see Sec. 3.1).

Other two waves are addressed as inertial waves and propagate downstream (neither growing nor
decaying) at different speeds, one is faster ’+’ and the other is slower ’−’ than the convection. In left
part of Fig. 1, the dispersion relation defined in Eq. (15) is represented. Roots indicate eigenvalues as
axial wave-numbers, where x-axis is the normalized phase velocity c∗p = ω/ (kūz) .

0.6 0.8 1 1.2 1.4

−0.2

0

0.2

1− 2− 3− 1+2+3+

c∗p

ûr (ro)

0 15 30 45

0.6

0.8

1

1.2

1.4

ω∗

c∗p

−0.2 0 0.2 0.4
0

0.25

0.5

0.75

1

ûθ,n

r
ro

Figure 1: Left: Second boundary condition ûr,n (r0) = 0 as a function of normalized phase speed
c∗p = ω/ (kūz) for ω = 100 rad/s, Uz = 10 m/s, K = 2000 s-1 and ro = 5 mm. Zeros corresponds to
the eigenvalues: ’+’ and ’−’ indicating faster and slower waves than convection c∗p = 1, respectively.
Middle: Normalized phase speeds for the first three modes including both ’+’ and ’−’ as a function
of normalized angular frequency ω∗ = ωzd/ūz. Right: The eigenvectors of tangential velocity per-
turbation component ûθ,n for the first three slower ’−’ modes. n = 1 ( ), n = 2 ( ), n = 3
( ).
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The normalized phase speed can be written explicitly as

c∗p,n = 1± 2K

ūz

ro√
k2r2o + j2n

, (16)

which shows the effect of the circulation strength K on the propagation of inertial waves. As circula-
tion strength increases, the deviation from convection increases too. The normalized phase speed as a
function of normalized angular frequency ω∗ = ωzd/ūz for the first three modes n = 1, 2, 3 is shown
in the middle part of Fig. 1. As n increases, the phase speed approaches the convective speed. More-
over, the phase speed depends on the angular frequency. At low frequencies the propagation deviates
from the convection the most. For high frequencies, both fast ’+’ and slow ’−’ propagation speeds
approach the convection. Additionally, the inertial waves are not only perturbations in tangential
velocity, but also in radial and axial directions. This is evident from Eqs. (11), (12) and (13).

The eigenvectors of the tangential velocity perturbation component ûθ,n related to three outermost
slower waves ’−’ are illustrated in the right part of Fig. 1 as a function of radius. Although the modes
corresponding to the faster waves ’+’ are not plotted, they are equal to the negative of the slower
wave modes. As n increases, the modes become more oscillatory.

3.1 Construction of boundary condition regarding number of characteristics

Linearized compressible Euler equations for perfect gas can be described by five field variables
[ρ′, p′, u′z, u

′
r, u
′
θ] and corresponding five transport equations. Related to the transport equations there

are five characteristic waves, namely two acoustic waves (propagating downstream and upstream),
the convective entropy wave and two inertial waves. The latter are studied in this paper.

Assuming the flow is incompressible, the energy equation is decoupled from the system of equa-
tions and therefore, the entropy wave is eliminated. The incompressible system is described by four
field variables [u′z, u

′
r, u
′
θ, p
′] and four partial differential equations. The type of pressure equation

changes from hyperbolic to elliptic. The non-local behavior of the elliptic equation modifies the na-
ture of the acoustic waves making their propagation speed infinite. The incompressible equations
have, therefore, only two inertial waves as characteristics, which contradicts Eq. (15) that has four
characteristics. In this paper, the upward propagating waves are postulated to be unphysical and
related to modified spurious acoustic waves.

In order to construct a well-posed problem, the boundary condition at inlet z = 0 should be
defined for each variable [u′z, u

′
r, u
′
θ, p
′]. As there exist only two characteristics, the variables cannot

be chosen freely, otherwise non-local waves (spurious acoustic waves) are triggered, which cannot
be described as space–time Fourier transform. However, in order to be consistent with the actuator
disk theory [5, 6, 7], a perturbation in tangential velocity ûθ = fθ (r) is imposed. Other components
of the velocity perturbation are set to zero and the pressure perturbation is set as Neumann boundary
condition.

For simplicity, the tangential velocity perturbation at the inlet is assumed as the first mode shape
fθ (r) = J1 (j1r/ro) shown with solid line in the right part of Fig. 1. Since Bessel functions form
an orthogonal basis, the modes other than n = 1 are not excited. In this case, the coefficients are
calculated as the following set of equations for ûθ, ûr, ûz respectively

1 =− c1+ + c1− + c1u , (17)

0 =− ūzk1+ − ω
2Ki

c1+ +
ūzk1− − ω

2Ki
c1− +

ūzk1u − ω
2Ki

c1u , (18)

0 =
A1+ (ūzk1+ − ω)

2Kk1+
c1+ +

A1− (ūzk1− − ω)

2Kk1−
c1− +

A1u (ūzk1u − ω)

2Kk1u
c1u , (19)

where subscript ”u” stands for the upward propagating growing wave. The upward propagating de-
caying wave is neglected, because in downstream direction, it acts as if the wave is growing, which
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ruins the transfer function. Since three characteristics are used for construction of perturbation, the
pressure boundary condition is neglected too. The resulting coefficients are frequency dependent and
can be approximated by c1+ ≈ −0.5, c1− ≈ 0.5 and c1u ≈ 0. It is straightforward to construct any
type of perturbation similarly, which can be expressed as a summation of Bessel function of first kind
J1.

The perturbation in space–time domain at a downstream location can be constructed by consider-
ing only inertial waves

u′θ(z, r, t) = J1

(
j1
r

ro

)∫ ∞

−∞

[
− c1+ exp (ik1+z) + c1− exp (ik1−z)

]
exp (−iωt) dω . (20)

3.2 Derivation of transfer function

The transfer function defined in Eq. (4) can be simplified as

T (ω) = −c1+ exp (ik1+zd) + c1− exp (ik1−zd) . (21)

In Fig. 2 the gain and the phase are plotted at downstream position zd = 3ro = 15mm with the
solid line ( ) and compared against the convective model with the dashed line ( ). The CFD
results are indicated with the ( ) symbol and explained in Sec. 4. In the first two columns, the slow
and fast modes are analyzed separately. Each mode independently shows a constant gain |T (ω) | = 1
and a phase deviating from the convective phase as expected. For fast mode, the phase is steeper than
the convection at low frequencies and becomes parallel for higher frequencies. This agrees well with
phase speeds shown in the middle part of Fig. 1, where the phase speeds approach the convective
speed as frequency increases. The similar arguments can be made for the slow mode. The complete
inertial wave propagation is described by the superposition of the two modes as shown in the third
column. The constructive superposition results in gain values around |T (ω) | ≈ 1 and the destructive
superposition results around |T (ω) | ≈ 0. The superposition in the phase results in almost convective
phase. This might be misleading, since the propagation is far from being convective.

0

0.5

1

|T |

k1− (slow mode) k1+ (fast mode)

0 9 18 27 36 45
0

20

40

ω∗

∠T

0 9 18 27 36 45

ω∗

Combined mode

0 9 18 27 36 45

ω∗

Figure 2: Comparison of the Bode plots for inertial wave ( ), convective wave ( ) and CFD
results ( ). First two columns show slower k−1 and faster k+1 modes, respectively and the third column
shows the combined mode.

The Fig. 3 shows the gain plots |T (ω) | for output locations, zd = 3ro = 15 mm and zd =
6ro = 30 mm. As the downstream position zd increases, more destructive superpositions exist and
the frequencies shift. This characteristic of inertial waves is very crucial for experiments and CFD
simulations of real swirl generators, where the source of the inertial wave is not well known. Since
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the tangential velocity perturbations measured at upstream location zu is the denominator in Transfer
Function T (ω), a destructive superposition results in T (ω) → ∞. This behavior is not observed in
the case presented in this paper, because the upstream reference position is located at inlet zu = 0,
where the perturbations are generated and there is no possibility for destructive superposition.

0 18 36 54 72 90

0.2

0.4

0.6

0.8

1

ω∗

|T |

Figure 3: Gain plot for zd = 3ro = 15mm ( ) and zd = 6ro = 30mm ( ).

4. Comparison against CFD results

The CFD simulations are performed for the same configuration as described in Sec. 3 using Open-
FOAM. The transient incompressible Navier-Stokes equations are solved using PIMPLE algorithm.
The slip wall boundary conditions are used to match the inviscid analytical approach. The tangential
velocity perturbations are generated at the inlet boundary condition by broad-band excitation. Then,
the transfer function is constructed by Wiener-Hopf inversion [13].

As shown in Fig. 2, a good agreement is achieved between CFD results and analytical model for
the low and moderate frequencies. For high frequencies, the CFD simulations show low pass behavior
due to the viscous dissipation, which is not present in the analytical approach. However, very high
frequencies are not relevant for the linear combustion dynamics. Therefore, those frequencies can be
neglected and reliable results can still be obtained.

5. Conclusion

In order to investigate the inertial wave propagation, space–time Fourier transformation is applied
to linearized incompressible Euler equations. The transformed equations are solved analytically as a
second order ODE, where infinite number of waves with phase speeds diverging from convection are
revealed. It is shown that the phase speed of the inertial waves depends on mean tangential velocity.
As mean tangential velocity increases, the deviation from convection increases too. By defining a
transfer function between tangential velocity perturbations at different locations, the inertial wave
propagation is compared against the convective propagation by considering a solid body rotation in
a duct. The analytical model is successfully validated against numerical simulations. The model can
be coupled with low order models for more reliable estimation of thermo-acoustic stability. It is also
possible to build a velocity perturbation model that can be used to study the impact of inertial waves
on the flame dynamics.
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Response of a swirl flame to inertial waves

Alp Albayrak, Deniz A Bezgin and Wolfgang Polifke

Abstract

Acoustic waves passing through a swirler generate inertial waves in rotating flow. In the present study, the response of a

premixed flame to an inertial wave is scrutinized, with emphasis on the fundamental fluid-dynamic and flame-kinematic

interaction mechanism. The analysis relies on linearized reactive flow equations, with a two-part solution strategy

implemented in a finite element framework: Firstly, the steady state, low-Mach number, Navier–Stokes equations with

Arrhenius type one-step reaction mechanism are solved by Newton’s method. The flame impulse response is then

computed by transient solution of the analytically linearized reactive flow equations in the time domain, with mean flow

quantities provided by the steady-state solution. The corresponding flame transfer function is retrieved by fitting a finite

impulse response model. This approach is validated against experiments for a perfectly premixed, lean, methane-air

Bunsen flame, and then applied to a laminar swirling flame. This academic case serves to investigate in a generic manner

the impact of an inertial wave on the flame response. The structure of the inertial wave is characterized by modal

decomposition. It is shown that axial and radial velocity fluctuations related to the eigenmodes of the inertial wave

dominate the flame front modulations. The dispersive nature of the eigenmodes plays an important role in the flame

response.

Keywords

Flame response, inertial waves, swirling flows, linearized Navier–Stokes equations, finite element method, reactive flows
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1. Introduction

Thermo-acoustic combustion instabilities have been a
subject of intensive studies, with important applications
in power and propulsion systems. One important aspect
is the flame transfer function (FTF), which describes
the response of the flame heat release rate to flow per-
turbations. In the literature, a wide variety of studies
can be found, ranging from low order models1–3 to high
fidelity numerical simulations,4,5 with the objective to
determine the FTF and to understand the underlying
physics.

For premixed swirling flames, the flame dynamics
comprises several acoustic-flow-flame interaction mech-
anisms, see e.g. the overview given in Section 5 of the
lecture notes by Polifke.6 Rotational waves – also
known as inertial waves7 in fluid dynamics – generated
by acoustic waves propagating across the swirl gener-
ator have received increased attention in recent
years.8–13

The overall flame dynamics results from superpos-
ition of the various interaction mechanisms. Straub and

Richards8 demonstrated the importance of this super-
position by changing the axial position of the swirler
within a fuel nozzle, which resulted in a significant
alteration of the combustor stability. The correspond-
ing sensitivity of the FTF to swirler position was con-
firmed experimentally and numerically by Komarek
and Polifke10 and explained in terms of the different
time scales of acoustic and inertial waves. Simple
models for the response functions of the respective con-
tributions to the overall FTF were formulated in terms
of distributed delays, but the fluid-dynamic mechanism
by which inertial waves modulate the heat release rate
of the flame was not analyzed.

Hirsch et al.9 modeled the overall FTF of a swirl
flame by considering the transport equation for
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perturbations of azimuthal vorticity. Effective second-
ary velocity fluctuations, which result from vorticity
fluctuations, were then computed with the Biot–
Savart law. Palies et al.11,12 modeled inertial waves as
convective tangential velocity perturbations, adopting
actuator disk theory proposed by Cumpsty et al.14 and
Cumpsty and Marble.15 The corresponding flame
response was modeled by the level set method. It was
argued that the tangential velocity perturbations
change the turbulent burning speed, thus causing heat
release rate fluctuations. Acharya and Lieuwen13

observed in numerical simulations that tangential vel-
ocity perturbations generate axial as well as radial flow
fluctuations, which contribute to the flame response.

The objective of the present study is to gain further
insight into the fluid mechanics of swirl flame response
to flow perturbations. An academic configuration, i.e. a
laminar swirling flame is investigated. Linearized react-
ive flow (LRF) equations are formulated and solved
to compute the respective impulse responses (IRs) to
perturbations of axial and tangential velocity.
Axisymmetric inertial waves with three-dimensional
modal structure16,17 are observed to have a significant
impact on the flame shape and overall surface area.

In the first part of this paper, we propose a method
for accurate and fast estimation of FTFs based on LRF
equations. Linearized Navier–Stokes equations are
commonly used for stability analysis of non-reactive
flows. Recently, Qadri18 extended this approach
for reactive flows by including the linearized species
transport equation with Arrhenius type one-step chem-
istry. A slightly different approach was proposed
by Blanchard et al.19 to estimate the flame response
by direct numerical linearization over a steady state
solution of a reactive flow simulation. Qualitative
agreement with experiments was achieved. In both stu-
dies, steady state solutions were achieved via transient
simulation combined with selective frequency damping.

In the present work, Newton’s method is employed
to obtain the steady state solution. Instead of relying on
direct numerical linearization, the governing equations
are linearized analytically. Transient simulations are
performed to obtain the IRs. The corresponding
FTFs are retrieved by fitting a discrete finite IR
model to the time series data. Results are quantitatively
validated against the experiment from Kornilov et al.5

for a laminar Bunsen flame.
In the second part, the LRF-based method for com-

putation of FTFs is applied to a swirling laminar flame.
IRs for both flame response contributions are com-
puted, the interaction between inertial waves and the
flame front kinematics is explicated with the help of
snapshots of the flow fields. Following Albayrak and
Polifke,17 a modal decomposition is applied and the
perturbation structures are characterized as dispersive

waves with non-zero components in axial, radial and
azimuthal coordinate directions. Their distinct Bessel
function type eigenmodes are shown to be important
for the flame response. In particular, the structure of
the inertial wave eigenmodes implies that a tangential
velocity perturbation induces axial as well as radial vel-
ocity perturbations, which modulate the flame front
and thus generate heat release rate perturbations.

2. LRF model for the flame response

This section presents the approach for FTF computa-
tions based on LRF equations. The set of governing
equations for a low Mach number flow reads as

r � u ¼
1

�cpT
r � �rTð Þ þ _!T½ � ð1aÞ

Du

Dt
¼ �

1

�
rpþ

1

�
r � �ruð Þ ð1bÞ

DYF

Dt
¼

1

�cp
r � �rYFð Þ þ _!F½ � ð1cÞ

DT

Dt
¼

1

�cp
r � �rTð Þ þ _!T½ � ð1dÞ

p0 ¼ �RT ð1eÞ

where u is flow velocity vector, � is density, cp is heat
capacity at constant pressure, � is the thermal conduct-
ivity, � is the dynamic viscosity, T is temperature, _!T is
the heat release rate, _!F is the reaction rate, YF is the
mass fraction of fuel, R is the specific gas constant, p0 is
the thermodynamic pressure, p is hydrodynamic
pressure.

The above set of equations was derived for binary
air-fuel mixture under the following assumptions: In
lean hydrocarbon/air flames, the properties of air dom-
inate the mixture and the heat capacity of the mixture is
close to that of air. Furthermore, the value of heat cap-
acity is changing only slightly over a wide temperature
range. Therefore, heat capacity of air and fuel is
assumed to be equal and independent of temperature.
In hydrocarbon/air flames, Lewis number changes only
slightly across the flame front. In many theoretical
approaches, the Lewis number of all species is set to
unity, see Poinsot and Veynante.20 Accordingly, we
assume the Lewis number of fuel to be unity. Majda
and Lamb21 proposed a low Mach number assumption
for combustion at low Mach numbers and strong heat
release. The low Mach number assumption splits the
pressure into a thermodynamic and a hydrodynamic
pressure component.22 Following Williams23 and
Poinsot and Veynante,20 the reaction rate term _!F for
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a premixed flame is modeled by an irreversible one-step
Arrhenius law

_!F ¼ �A�YF exp
��=� exp �

�ð1� CÞ

1� �ð1� CÞ

� �
ð2Þ

where C ¼ ðT� T1Þ=ðT2 � T1Þ is the normalized tem-
perature and �, � and the preexponential factor A are
model parameters. Further explanation of the model
parameters is given in the Appendix. The heat release
rate _!T ¼ ��h0f,F _!F is calculated with the mass
enthalpy of formation of fuel �h0f,F. Sutherland’s vis-
cosity model is made use of

� ¼
AsT

3=2

Tþ S
ð3Þ

The temperature dependence of the thermal con-
ductivity � is modeled as

� ¼ �1
T

T1
ð4Þ

where �1 is the thermal conductivity of the fluid at
inflow temperature T1, see Williams.23

The steady state solution of equation (1) is computed
using Newton’s method. Using these base solutions, the
linearized equations (see equation (15) in Appendix) are
solved in time domain. The goal is to compute the
linear flame dynamics, in particular the flame IR.

The sets of equations (1) and (15) were implemented
in the finite element method framework Freefemþþ.24

P2-P1 Taylor-Hood elements are used, i.e. velocity,
temperature and mass fraction are discretized by
second order polynomials, while first-order polyno-
mials are used for pressure. Solution algorithms for
the steady state case and the linearized unsteady
dynamics are described in the next subsections.

The numerical methods were validated against CFD
simulations (OpenFOAM) and experiments on a
Bunsen flame by Kornilov et al.5 and Duchaine
et al.25 results are presented below. Further information
on the FreeFemþþ model constants, OpenFOAM
simulations and the experimental setup can be found
in the Appendix.

2.1. Steady state computations

The governing equations are nonlinear due to the con-
vective terms and the combustion model. Newton’s
method finds a solution for a nonlinear system of equa-
tions of type FðxÞ ¼ 0 by an iterative process, which
starts from an initial guess x0

xnþ1 ¼ xn � JFðxnÞð Þ
�1FðxnÞ n ¼ 0, 1, 2, . . . , ð5Þ

where x ¼ ½u,T,YF, p� denotes the field variables and JF
stands for the Jacobian matrix of FðxÞ.

Newton’s method converges if the initial guess is
sufficiently close to the solution, i.e. within the conver-
gence radius of the problem. To provide such an initial
guess, we employ the low Reynolds and low Peclet
number limit (Re,Pe! 0) of the governing equations.
In this limit, the Navier–Stokes equations reduce to
Stokes equations, while the energy and species trans-
port equations reduce to pure diffusion equations. The
use of Stokes equation as an initial guess for solving
the Navier–Stokes equations NSE via Newtons method
is well documented in the literature, see Kim et al.26

Furthermore, the convergence radius is enlarged by
artificially increasing the values of viscosity � and ther-
mal conductivity � by a factor of ten. Once the conver-
gence is achieved, the diffusive coefficients are
decreased by 5% and Newton’s method is re-started.
This loop is carried on until the correct values of vis-
cosity and thermal conductivity are retrieved.

Convergence of Newton’s method is checked by
evaluating the error

err ¼
X j�xj1
jxj1

ð6Þ

where j � j1 is the L-infinity norm and � is the increment
between two consecutive iteration steps in Newton’s
method. The diffusive coefficients are reduced, when-
ever err< 0.1. Iterations cease once the viscous terms
�, � attain their physical values and the error
err5 10�5.

The resulting mean flow fields and flame shapes
compare well against OpenFOAM results, see
Figures 1 and 2, which show the spatial distributions
of axial velocity and heat release rate, respectively.
Both figures show normalized quantities, i.e.
uz=maxðuzÞ and _!T=maxð _!TÞ, thus the colormap
ranges from 0 to 1. Simulations with fixed wall tem-
perature – see the right plot – show a slight deviation
in flame shape, because combustion parameters of the
one-step chemistry model were fitted to the adiabatic
case, while OpenFOAM uses a two-step chemistry
model from the literature.27 Further information on
the OpenFOAM simulation setup is given in the
Appendix.

2.2. Linearized dynamics computations

A linearization of equation (1) is described in the
Appendix. As in the steady case, P2-P1 Taylor-Hood
elements are employed for the spatial discretization of
these equations. Implicit Backwards Euler scheme is
used to advance in time. The convective terms are dis-
cretized with Characteristic Galerkin method.28
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In the LRF framework, there exists no noise contri-
bution as the initial state is stationary. Therefore, the
flame response is simply obtained by an impulsive
perturbation in inlet flow velocity u0z ¼ �uz"�ðtÞ. It is
important to note that this perturbation is equivalent
to an acoustic wave in a compressible framework. The
Dirac impulse is approximated by a normal distribu-
tion, i.e.

�ðtÞ �
1

a
ffiffiffi
�
p exp�ðt=aÞ

2

ð7Þ

where a is the standard deviation and should be close to
zero to approximate the Dirac function accurately.
However, very small values are not feasible numeric-
ally. In this work, the value of a¼ 0.1ms is chosen
such that a5 	IR=20, where 	IR indicates the IR
length. This is appropriate for the frequency range of
0–1000 Hz.

By definition, the flame IR h(t) is the normalized
heat release rate fluctuations caused by the impulsive
velocity perturbation and reads as

hðtÞ �
_Q0ðtÞ

�_Q"
ð8Þ

where _Q ¼
R

_!TdV is the global heat release rate. The
IR contains the same information as FTF. It is also
possible to retrieve the corresponding FTF by fitting
a discrete-time finite IR model to the IR.

Figures 3 and 4 prove that the FreeFEMþþ simu-
lation of the linearized dynamics achieves good quan-
titative agreement for both IR and FTF. For the

isothermal walls, the FTF results match well with the
experiments5 and also the OpenFOAM simulations.
For the cases with adiabatic walls, good agreement is
also met. Here, the comparison is only shown against
the OpenFOAM simulations, as there are no experi-
mental data available.

3. Case study: A swirling flame

After validation of the proposed numerical method
with the example of slit flames, we proceed to a laminar
swirling V-flame stabilized on a bluff body, see
Figure 5. A 2D domain with cylindrical symmetry is
considered, with inner and outer radii of the annular
duct ri¼ 1mm and ro¼ 2mm, respectively. The duct
length between the swirler – which is not included in
the computational domain, but assumed to be located
just upstream of the inlet boundary – and the combus-
tion chamber is 5mm.

Following Kerrebrock,16 the flow profile at the inlet
is approximated by an uniform axial velocity and a
solid body rotation, i.e.

�u ¼ �uz, 0,Kr½ � ð9Þ

where K ¼ 1000s�1 is the circulation and �uz ¼ 2 m/s.

Figure 4. FTF of Kornilov flame.

Left: Adiabatic. Right: Fixed wall temperature. OpenFOAM (- - -),

FreeFEMþþ (—–) and experiments [5] (�).

Figure 3. IR of the laminar flame with adiabatic (left) and iso-

thermal (right) walls. The adiabatic flame OpenFOAM (- - -) and

FreeFEMþþ (—–).

Figure 1. Comparison of the normalized axial velocity field.

Left: Adiabatic. Right: Fixed temperature walls. Upper half:

OpenFOAM. Lower half: FreeFEMþþ.

Figure 2. Comparison of the normalized heat release rate.

Left: Adiabatic. Right: Fixed temperature walls. Upper half:

OpenFOAM. Lower half: FreeFEMþþ.
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First the steady mean fields are computed. Figure 5
shows the steady state heat release rate field. In order to
anchor a V-flame, the upper side wall and the combus-
tion chamber wall are cooled to 800K. Subsequently,
LRF equations are solved to compute the IR caused by
velocity perturbations upstream of the swirler. Since the
swirler is excluded, the perturbation structure at
the swirler exit should be modeled. This is done by
the actuator disk theory following Palies et al.,11,12

which introduces two different velocity perturbations.
One of them is the upstream axial velocity perturbation
itself, which is conserved throughout the swirler due to
continuity. The corresponding flame response mechan-
ism is illustrated in the upper branch of Figure 6
denoted by FA. The other perturbation occurs in the
tangential velocity due to Kutta condition and should
be identified as the source of an inertial wave.7 As will
be shown below, axial as well as radial velocity perturb-
ations result, which have distinct mode structures. The
first block FMC in the lower branch of Figure 6 stands
for the mode conversion from acoustic axial velocity to
inertial wave. The second block FS stands for the cor-
responding swirl component of the flame response.

Since the present approach is linear, the velocity per-
turbations can be applied separately. Similar to the
Bunsen flame calculations in the previous section, we
first compute the IRs. To account for the first contri-
bution, an axial velocity perturbation at the inlet is
introduced as

u0zðz ¼ 0, tÞ ¼ �uz"�ðtÞ ð10Þ

For the inertial wave contribution, the Kutta condi-
tion is applied, i.e. the tangential velocity perturbation
is defined as u0
 ¼ u0z tan�, where � indicates the swirl
angle. By applying modal decomposition on the linear-
ized Navier–Stokes equations, Albayrak and Polifke17

showed that any tangential velocity perturbation can be
constructed by modes. Mj ðmkrÞ is the j-th eigenmode
and given by

Mj ðxrÞ ¼ Jj ðxrÞ �
J1ðxroÞ

Y1ðxroÞ
Yj ðxrÞ ð11Þ

where Jj and Yj are the first and second kind of Bessel
function, respectively. These eigenmodes are found
analytically by deriving the dispersion relation and
applying the impermeability condition as u0r ¼ 0 at
annular duct walls. For simplicity, the perturbation is
approximated by the first eigenmode

u0
ðz ¼ 0, tÞ � �uz tanð�Þ"�1M1ðm1rÞ�ðtÞ ð12Þ

where mk is the k-th positive root of M1ðxriÞ ¼ 0 for x.
The prefactor � of the eigenmodes is calculated through

�k ¼

R ro
ri
rM1ðmkrÞdrR ro

ri
rM1ðmkrÞ

2dr
ð13Þ

Two separate simulations are performed with the
above boundary conditions, i.e. equations (10) and
(12). Again, the Dirac delta function is approximated
by a normal distribution function with small standard
deviation. The corresponding heat release rate fluctu-
ations describe the IRs denoted by hA and hS, which are
plotted in Figure 7(c). In the following subsection, the
IR results are interpreted.

3.1. Interpretation of the response to inertial waves

Since the configuration is 2D axisymmetric, a tangential
velocity perturbation by itself does not generate any
heat release rate fluctuations. The swirl contribution
to the flame response is generated through the axial
and radial velocity perturbations that result from iner-
tial waves. As explicated in a previous study,17 the
modal decomposition applied on a swirling flow gener-
ates also perturbations of axial and radial velocity.
Since we approximated the tangential velocity perturb-
ation at the swirler exit only with the first eigenmode
(see equation (12)), the corresponding eigenmodes for
axial and radial velocity perturbations read

ûr /M1ðm1,1rÞ ð14aÞ

ûz /M0ðm1,1rÞ ð14bÞ

Figure 6. Major contributions to the response of a swirl flame

to an acoustic perturbation, c.f. Figure 9 in Komarek and

Polifke.10

Figure 5. Normalized heat release rate of swirling V-flame.
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The eigenfunction profiles are plotted against the
duct radius in Figure 7(a). The amplitudes in x-axis
are normalized with the maximum values. These pro-
files are also observed in the snapshots in Figure 7(d),
which depict the results of the IR simulation with tan-
gential velocity perturbation as defined in equation
(12). All quantities in the snapshots are normalized
with maximum values. Thus, the range of the color-
maps is from –1 (blue) to 1 (red).

The tangential and radial velocities (shown in the
first and third columns, respectively) exhibit the pattern
of the M1ðm1,1rÞ eigenmode. In the third column, the
axial velocity perturbations are shown, which have a

M0ðm1,1rÞ eigenmode pattern. All velocity perturb-
ations exhibit dispersive behavior in the axial direction
during the propagation in the duct (see Albayrak and
Polifke17), which is clearly seen in the first row. For
example, in axial velocity perturbation, a pocket of a
wave travels in front and followed by another wave
pocket with a negative sign.

In the last column of Figure 7(d), the linearized heat
release rates are presented. We interpret the source
terms by the level-set approach proposed by
Blumenthal et al.2 The correspondence between the
LRF framework and the level-set approach
is demonstrated in Figure 7(b). A snapshot of a flame

(a)

(d)

(b) (c)

Figure 7. Response of flame front to an inertial wave generated by a perturbation of tangential velocity at the inlet. (a) Normalized

eigenmode of ûz (- - -); û
 and ûr (—–). (b) Sketch of a flame perturbed by negative axial velocity. Left: Level-set framework. Right: _!0T in

LRF framework. (c) Flame impulse responses to axial (top) and tangential (bottom) perturbation. Crosses indicate times of snapshots

shown in Figure 7(d). (d) Snapshots of normalized tangential, axial, radial velocities and heat release rate (from left to right) after an

impulsive perturbation of tangential velocity.

6 International Journal of Spray and Combustion Dynamics 0(0)

Reproduction of Publications

70



is illustrated, which is perturbed by a negative axial
velocity perturbation. In the level-set framework (left
plot), the flame is moved towards upstream due to the
kinematic balance between the flow velocity and the
flame speed. The perturbed flame surface generates a
deficit and an overlap in flame surface area as indicated
in the figure with – and þ signs, respectively. The
change in the flame surface area can be easily visualized
by projecting the perturbed flame to the unperturbed
flame. As discussed by Blumenthal et al.,2 the
unsteady heat release rate is generated by the flame
surface area fluctuations. In the linearized heat release
rate _!T framework (right plot), the movement of the
flame surface can be understood as a positive _!0T in
the upstream region and a negative _!0T in the down-
stream region.

The shape of the IR caused by a tangential velocity
perturbation (see Figure 7(c)) is explained using the
snapshots in Figure 7(d). The first row in the snapshots
corresponds to the simulation time of 1.5ms. At this
time, no heat release rate fluctuation is generated (see
lower part in Figure 7(c)) as the inertial waves still
propagates through the duct and did not reach the
flame yet. The negative axial velocity region around
the inner duct wall arrives first at the flame base and dis-
places the flame in the upstream direction. In level-set
framework, this is characterized by a leading overlap
(denoted by a plus sign in Figure 7(b)) and a following
gap (denoted by a minus sign in Figure 7(b)) in flame
surface area. It is important to note that when assessing
the net influence of a pocket, the leading part has a
stronger weight due to a larger radius compared to
the following part. Therefore, the IR starts with a posi-
tive contribution. At a slightly later time, the positive
axial velocity perturbation around the outer duct wall
arrives to the flame and displaces the flame towards
downstream, which causes a negative contribution.
Both, the impact of the negative (inner wall) and posi-
tive (outer wall) axial velocity perturbations can be
observed in the _!0T plot at 2.5ms with a sign change
in the middle of the flame. Combination of these both
effects yields a weakly positive slope of the IR at early
times. The downstream displaced flame reaches the
flame tip and the corresponding flame surface area
gap leaves the domain, i.e. the maximum IR is observed
at 3.5ms. After this point, the flame response starts to
sink. This trends continues till the upstream displaced
flame, caused by the negative velocity perturbation at
the inner wall, reaches the flame tip at 4.5ms. The only
remaining gap is then convected through the flame sur-
face till the initial flame is recovered around 6.5ms.
This is also called as the restoration mechanism by
Blumenthal et al.2

Although the configuration is simplified, we argue
that it is an ideal case to study the flame-flow

interaction mechanisms without complication. This
strong argument can be supported by the following
observations: (1) By definition, the FTF is a global
quantity as the heat release rate is integrated over the
whole flame surface. Therefore, impact of turbulence
related flame wrinkles on the FTF is negated. (2) In
swirling flows, there exist unstable coherent structures,
i.e. precessing vortex cores that are particularly import-
ant for the burner stability (see Oberleithner et al.29).
However, the energy content of these structures clus-
tered at a distinct high frequency, which is not explicitly
related to the inertial waves generated at the swirler.

The IRs in Figure 7(c) show qualitative similarities
with results of Komarek and Polifke10 for a turbulent
swirling flame, i.e. the axial velocity contribution shows
a Gaussian-like positive IR and the inertial wave con-
tribution has a positive response followed by a nega-
tive. The integral of the axial velocity contribution gives
one, whereas the inertial wave contribution gives zero.
These values are also in agreement with the low fre-
quency limit of the FTF described by Polifke and
Lawn.30 Two distinct time lags are observed. The
axial perturbation contribution has zero time lag (in
low Mach number framework, the speed of sound is
infinity). The swirl contribution has a convective time
lag (� 2ms), which is related to the distance from the
swirler to the flame. This also confirms the actuator
disk model by Palies et al.11,12 Our approach further
suggests that the tangential velocity perturbations gen-
erate axial and radial perturbations, which disturb the
flame front and cause heat release rate fluctuations.
This is not predicted by the actuator disk model,
where the turbulent flame speed modulations caused
by the tangential velocity perturbations are the major
cause of the flame response. Moreover, the inertial
wave structures brings a physical explanation to the
work from Acharya and Lieuwen,13 where the gener-
ation of axial and radial velocity perturbations is
observed in numerical simulations.

4. Conclusion

An idealized swirling flame is investigated with empha-
sis on the mechanism of flame response to tangential
velocity perturbations. We identify these perturbations
as inertial waves, which are accurately described by
linear theory. A method based on LRF equations is
thus developed to identify the flame IR. The linear
framework is ideal to scrutinize the interaction between
inertial waves and a swirl flame. Linearized low Mach
number Navier–Stokes equations with reduced order
one-step chemistry are implemented in a finite element
method framework in order to describe flame dynam-
ics. The solution algorithm consists of two parts: First,
Newton’s method is employed to find the steady state
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solution. Then, the LRF equations are solved with an
impulsive flow perturbation to obtain the flame IR.
This approach is thoroughly validated for a laminar
Bunsen flame.

The approach is then applied to a swirling flame. By
analyzing the snapshots of the perturbed LRF fields,
characteristics of the response of the flame to a tangen-
tial velocity perturbation are elucidated. Inertial waves
comprise perturbations in all three velocity compo-
nents; fluctuations of heat release rate are explained
in terms of the kinematic balance of flame front propa-
gation with the axial and radial velocity components.

The results bring new insight to the dynamics of swir-
ling flames and can be used to explain some previous
results. Acharya and Lieuwen13 observed in numerical
simulations that the acoustic waves crossing the swirler
generate hydrodynamic waves, which generate unsteady
heat release. Similarly, Hirsch et al.9 attributed the cause
of the unsteady heat release to the secondary velocity
fluctuations using the azimuthal vorticity equations. We
can precisely identify these flow structures as inertial
waves, and compute their spatio-temporal evolution.
Note that the argument of Palies et al.,11,12 i.e. that
flame response is caused by changes in turbulent flame
speed that result from swirl number variations, cannot
be applied to the present laminar swirl flame.

A possible extension of this work is to apply the
approach to a realistic configuration with turbulence
to study 3D structures. Solution of the Reynolds-
averaged Navier–Stokes equations (RANS), time aver-
aged reactive flow fields from large eddy simulation
(LES) or experiment can be used as the linearization
point. The LRF is a powerful tool for fast and accurate
IR estimations. Moreover, it can be easily converted to
a linear eigenvalue problem, which can be used for the
global stability and sensitivity analysis.
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cations. Rhode-St-Genèse: Von Karman Institute, 2004,

pp.22–33.

7. Gallaire F and Chomaz JM. Instability mechanisms in

swirling flows. Phys Fluids 2003; 15: 2622–2639.
8. Straub DL and Richards GA. Effect of axial swirl vane

location on combustion dynamics. In: International gas

turbine and aeroengine congress & exhibition,

Indianapolis, Indiana, 7–10 June 1999. New York, NY:

ASME.
9. Hirsch C, Fanaca D, Reddy P, et al. Influence of the

swirler design on the flame transfer function of premixed

flames. In: ASME turbo expo, Reno, NV, USA, 6–9 June

2005, pp.151–160. New York, NY: American Society of

Mechanical Engineers.
10. Komarek T and Polifke W. Impact of swirl fluctuations

on the flame response of a perfectly premixed swirl

burner. J Eng Gas Turb Power 2010; 132: 7.
11. Palies P, Durox D, Schuller T, et al. The combined

dynamics of swirler and turbulent premixed swirling

flames. Combust Flame 2010; 157: 1698–1717.

12. Palies P, Schuller T, Durox D, et al. Modeling of pre-

mixed swirling flames transfer functions. Proc Combust

Inst 2011; 33: 2967–2974.
13. Acharya V and Lieuwen T. Role of azimuthal flow fluc-

tuations on flow dynamics and global flame response of

axisymmetric swirling flames. In: 52nd aerospace sciences

meeting, National Harbor, Maryland, 13–17 January

2014.
14. Cumpsty NA, Nicholas A and Marble FE. The gener-

ation of noise by the fluctuations in gas temperature

into a turbine. Technical Report CUED/A TURBO/

TR57, Cambridge, England, 1974.
15. Cumpsty N and Marble F. The interaction of entropy

fluctuations with turbine blade rows; a mechanism of

turbojet engine noise. Proc Royal Soc Lond A 1977;

357: 323–344.

8 International Journal of Spray and Combustion Dynamics 0(0)

Reproduction of Publications

72



16. Kerrebrock JL. Small disturbances in turbomachine
annuli with swirl. AIAA J 1977; 15: 794–803.

17. AlbayrakAandPolifkeW.Propagation velocity of inertial

waves in cylindrical swirling flow. In: 23nd interntional con-
gress on sound and vibration (ICSV23), Athens, Greece,
10–14 July 2016. Auburn University, Alabama: IIAV.

18. Qadri UA. Global stability and control of swirling jets and

flames. PhD Thesis, University of Cambridge,UK, 2014.
19. Blanchard M, Schuller T, Sipp D, et al. Response analysis

of a laminar premixed M-flame to flow perturbations

using a linearized compressible Navier-Stokes solver.
Phys Fluids 2015; 27: 043602.

20. Poinsot T and Veynante D. Theoretical and numerical

combustion. 2nd ed. Philadelphia: Edwards, R. T.
Incorporated, 2005. [ISBN 1-930217-10-2].

21. Majda A and Lamb KG. Simplified equations for low

Mach number.Dynam Issues Combust Theor 2012; 35: 167.
22. McMurtry PA, Jou W-H, Riley J, et al. Direct numerical

simulations of a reacting mixing layer with chemical heat
release. AIAA J 1986; 24: 962–970.

23. Williams FA. Combustion theory. 2nd ed. Boston,
Massachusetts, US: Addison-Wesley Publishing
Company, 1985.

24. Hecht F. New development in freefemþþ. J Numer Math
2012; 20: 251–265.

25. Duchaine F, Boudy F, Durox D, et al. Sensitivity analysis

of transfer functions of laminar flames. Combust Flame
2011; 158: 2384–2394.

26. Kim SD, Lee YH and Shin BC. Newton’s method for the
Navier-Stokes equations with finite-element initial guess

of stokes equations.ComputMath Appl 2006; 51: 805–816.
27. Bibrzycki J, Poinsot T and Zajdel A. Investigation of

laminar flame speed of Ch4/N2/O2 and Ch4/Co2/O2

mixtures using reduced chemical kinetic mechanisms.
Arch Combust 2010; 30: 287–296.

28. Pironneau O. On the transport-diffusion algorithm and

its applications to the Navier-Stokes equations. Numer
Math 1982; 38: 309–332.

29. Oberleithner K, Sieber M, Nayeri CN, et al. Three-dimen-

sional coherent structures in a swirling jet undergoing vor-
tex breakdown: stability analysis and empirical mode
construction. J Fluid Mech 2011; 679: 383–414.

30. Polifke W and Lawn CJ. On the low-frequency limit of

flame transfer functions. Combust Flame 2007; 151:
437–451.

31. Weller HG, Tabor G, Jasak H, et al. A tensorial

approach to computational continuum mechanics using
object-oriented techniques. Comput Phys 1998; 12:
620–631.

Appendix

The experimental setup is described in detail by
Kornilov et al.5 A perfectly premixed lean Methane-
air flame with equivalence ratio is � ¼ 0:8 is considered
in a multi slit burner. Center to center distance between

two slits is 5mm. Both, the duct radius and the length
are both 1mm. Since the flow is laminar and axisym-
metric, only one-half of one slit flame is chosen as
the numerical domain. The plenum does not modify
the flow profiles in the combustion region and thus is
excluded. The flame is stabilized on the wall that is
cooled to temperature of T¼ 373K. The bulk flow
velocity in the duct is 1m/s and the inflow temperature
is T1 ¼ 293 K. Thermal conductivity at inflow is
�1 ¼ 0:0257 W/(mK).

The CFD simulations are performed in
OpenFOAM, which is a finite volume solver.31

Second-order spatial discretization (Gaussian integra-
tion with central differences) and time integration
(backward) schemes are employed. The modified ver-
sion of reactingFOAM is used, i.e. low Mach number
assumption and Schmidt number of 0.7. Reduced two
step chemistry mechanism 2S-CM2 as described by
Bibrzycki et al.27 is used to model the Methane-air
combustion.

The linearized version of equation (1) that is imple-
mented in FreeFemþþ reads

�0 �Tþ ��T0
� �

r � u0 þ �� �Tr � �u

¼
1

cp
r � �0r �Tþ ��rT0

� �
þ ð _!TÞ

0
� � ð15aÞ

��
Du0

Dt
þ u0 � ru

� �
þ �0 �u � r �u

¼ �rp0 þ r � �0r �uþ ��ru0ð Þ

ð15bÞ

��
DY0F
Dt
þ u0 � r �YF

� �
þ �0 �u � r �YF

¼
1

cp
r � �0r �YF þ ��rY0F

� �
þ ð _!FÞ

0
� � ð15cÞ

��
DT0

Dt
þ u0 � r �T

� �
þ �0 �u � r �T

¼
1

cp
r � �0r �Tþ ��rT0

� �
þ ð _!TÞ

0
� � ð15dÞ

where ð:Þ indicates a mean quantity and ð:Þ0 a perturbed
quantity. Linearized material derivative is given by

Dð:Þ

Dt
¼
@ ð:Þ

@t
þ �urð:Þ ð16Þ

For the combustion model, the parameters �, � and
A have to be chosen. The model parameter � represents
the total heat release of the flame, while � is a non-
dimensional formulation of the activation temperature.
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� can be calculated by � ¼ ðT2 � T1Þ=T2, while � is
given as � ¼ �Ta=T2 with the activation temperature
Ta. Poinsot and Veynante20 give two typical values
for �, �¼ 8 for turbulent combustion and � ¼ 18:4
for premixed hydrocarbon–air flames. We find that
the lower beta value of 8 yields thicker flame structures
which are closer to the results from OpenFOAM. The
preexponential factor is A ¼ 2:25 � 109. We adjust the
preexponential factor such that the flame speed of the

reference flame is captured. We use the analytic expres-
sion for the flame speed Poinsot and Veynante20

sL ¼
1

�
exp �

�

2�

� �
2A

�1
�1cp

� �0:5

1þ
1:344� 3�

�

� �
ð17Þ

The constants in Sutherland’s viscosity model are
As ¼ 1:67212 � 10�6 kg/(sm

ffiffiffiffi
K
p

) and S¼ 170.672K.

10 International Journal of Spray and Combustion Dynamics 0(0)

Reproduction of Publications

74



Available online at www.sciencedirect.com 

Proceedings of the Combustion Institute 36 (2017) 3725–3732 
www.elsevier.com/locate/proci 

An analytical model for the impulse response of laminar 

premixed flames to equivalence ratio perturbations 

A. Albayrak, R.S. Blumenthal, A. Ulhaq, W. Polifke 

∗

Professur für Thermofluiddynamik, Technische Universität München, Boltzmannstr. 15, Garching D-85748, Germany 

Received 2 December 2015; accepted 1 June 2016 
Available online 20 June 2016 

Abstract 

The dynamic response of conical laminar premixed flames to fluctuations of equivalence ratio is analyzed 

in the time domain, making use of a level set method (“G -Equation”). Perturbations of equivalence ratio 

imposed at the flame base are convected towards the flame front, where they cause modulations of flame 
speed, heat of reaction and flame shape. The resulting fluctuations of heat release rate are represented in 

closed form in terms of respective impulse response functions. The time scales corresponding to these mech- 
anisms are identified, their contributions to the overall flame impulse response are discussed. If the impulse 
response functions are Laplace transformed to the frequency domain, agreement with previous results for 
the flame frequency response is observed. An extension of the model that accounts for dispersion of equiv- 
alence ratio fluctuations due to molecular diffusion is proposed. The dispersive model reveals the sensitivity 
of the premixed flame dynamics to the distance between the flame and the fuel injector. The model results 
are compared against numerical simulation of a laminar premixed flame. 

© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

Keywords: Laminar premixed flame dynamics; Equivalence ratio perturbation; Impulse response; Flame frequency 
response; Dispersion 

1. Introduction 

Modern low-emission combustion processes of- 
ten utilize premixed combustion with lean fuel-air 
mixtures. However, premixed combustion is prone 
to thermo-acoustic instabilities, where positive 
feedback between fluctuating heat release and 

acoustics drives self-excited oscillations. Large 
amplitude oscillations can cause damage to a 

∗ Corresponding author. 
E-mail address: polifke@tfd.mw.tum.de (W. Polifke). 

combustor, thus it is necessary to understand the 
physics of lean premixed combustion dynamics 
and reveal key factors and interaction mechanisms 
responsible for instabilities. 

Premixed flame dynamics is driven mainly by 
velocity and equivalence ratio perturbations. The 
corresponding interaction mechanisms have been 

studied extensively by means of analytical mod- 
els, numerical simulations and experiments, as de- 
scribed by Lieuwen [1] . First analytical studies 
of the dynamic response of anchored premixed 

flames to velocity perturbation were carried out by 
Boyer and Quinard [2] and Fleifil et al. [3] . Schuller 

http://dx.doi.org/10.1016/j.proci.2016.06.002 
1540-7489 © 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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Equivalence
ratio

Heat of
reaction

Laminar
flame speed

Flame
surface area

Heat
release rate

Fig. 1. Major mechanisms contributing to heat release 
rate oscillations [7] . 

et al. [4] presented a comprehensive treatment for 
various flame shapes, and compared analytical re- 
sults against numerical and experimental data. All 
these studies were based on a linearized version 

of the so-called G-Equation , i.e. a kinematic equa- 
tion for a propagating flame front [5] . Using the 
same framework, the response of laminar premixed 

flames to equivalence ratio perturbations was stud- 
ied by Dowling and Hubbard [6] and by Lieuwen 

and co-authors [7–9] . 
The conventional way of representing the flame 

response to both velocity and equivalence ratio 

perturbations relies on the Flame Transfer Func- 
tions (FTF) in the frequency domain. Such a fre- 
quency domain approach is very convenient for 
asymptotic stability analysis, but poses a challenge 
for the physics-based interpretation of transient 
flow–flame interactions. A time domain approach, 
based on the Impulse Response (IR) function, ap- 
pears more suitable for this purpose, even though 

fundamentally FTF and IR contain the same in- 
formation. The IR of premixed flames to veloc- 
ity perturbations was determined by Blumenthal 
et al. [10] using the linearized G -Equation. The time 
domain perspective allowed straightforward identi- 
fication of characteristic time scales and gave addi- 
tional insight into the pertinent flow–flame inter- 
actions. Moreover, complete correspondence with 

frequency domain results by Schuller et al. [4] could 

be established. 
In the present work, the impulse response 

of a conical premix flame to perturbations of 
equivalence ratio is derived analytically. Following 
Lieuwen and co-workers [7–9] , the dominant inter- 
action mechanisms between fluctuations of equiv- 
alence ratio and heat release rate are considered 

(see Fig. 1 ): Firstly, perturbations in equivalence 
ratio modulate the heat of reaction and the lami- 
nar flame speed, which affect the heat release rate 
of the flame in a direct manner [11,12] . Moreover, 
changes in laminar flame speed disturb the kine- 
matic balance between flow and flame, such that 
the flame shape and the flame surface area are also 

perturbed. This is an indirect, but important effect, 

first discussed by Lawn and Polifke [11] . Other con- 
tributions, i.e. flame stretch and curvature, gas ex- 
pansion, flame confinement and anchoring, are not 
considered in the present analysis. 

Like earlier studies [2–4,7–9] , the present work 

uses the linearized G -Equation, but in the time do- 
main. More insight into the physics of flame dy- 
namics is expected to result from such a treatment. 
It will be confirmed that the overall flame dynamics 
can be described by the superposition of the mech- 
anisms depicted in Fig. 1 . The respective contribu- 
tions to the overall flame response are determined 

by individual IRs and relevant time scales are iden- 
tified. Furthermore, an extension of the model is 
proposed, which considers the effect of dispersion 

on the spatio-temporal distribution of equivalence 
ratio perturbations and on the flame dynamics. 

The paper is structured as follows: A model for 
premixed flame dynamics based on the linearized 

G -Equation is described in the next section. Heat 
release rate fluctuations caused by perturbations of 
equivalence ratio are described in terms of impulse 
responses. For each of the contributions depicted 

in Fig. 1 , the respective IR is derived and explained 

in Section 3 . Eventually the flame transfer func- 
tions of Shreekrishna et al. [8] are recovered. In 

Section 4 , the dispersive model is introduced. Re- 
sults of a validation study against numerical simu- 
lation is presented in Section 5 . 

2. Modeling tools 

2.1. Modeling of heat release rate fluctuations 

Flame dynamics can be investigated with the re- 
lation q (t) = 

∫ 
f ρ�H s L d A for the unsteady heat 

release rate of a premixed flame in linearized form 

q ′ (t) 
q̄ 

= 

∫ 
f 

�H 

′ 

�H̄ 

d A 

Ā 

+ 

∫ 
f 

s ′ L 
s̄ L 

d A 

Ā 

+ 

A 

′ (t) 

Ā 

, (1) 

where (̄ ) and ( ) ′ stand for the steady and fluctuating 
quantities, respectively. �H is the heat of reaction, 
s L is the laminar flame speed and A is the flame sur- 
face area. The fluctuating quantities depend on the 
local values of equivalence ratio φ. The unburnt gas 
density ρ is assumed to be constant. The major con- 
tributions to heat release rate fluctuations discussed 

above (see Fig. 1 ) appear explicitly on the r.h.s. of 
the equation. 

2.2. G-Equation approach for flame shape 

The flame surface motion is modeled with the 
G-Equation , i.e. a level set approach that reads 

∂G 

∂t 
+ 

� v · � ∇ G = s L | � ∇ G | . (2) 

Here � v is the flow velocity and G is the level set 
function with the flame position at G = 0 . The 
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Fig. 2. Flame configuration, important velocities and lab- 
oratory ( x, y ) and flame aligned ( X, Y ) coordinate sys- 
tems. 

linearized G -Equation can be solved analytically 
for uniform mean velocity � v = ( 0 , ̄v ) , see Fig. 2 . 
The assumption of linearity limits any perturba- 
tions to small amplitudes in order to have an 

amplitude independent flame response. The flame 
aligned coordinate system “( X, Y )” is employed in- 
stead of the laboratory coordinate system “( x, y )”, 
see Fig. 2 . The flame surface motion is assumed 

to be strictly normal to the flame, mathematically 
G(X , Y , t) = Y − ξ (X , t) . Substituting the pertur- 
bation in flame surface position ξ ( X, t ) in the lin- 
earized G -Equation leads to 

∂ξ

∂t 
+ Ū 

∂ξ

∂X 

= V 

′ − s ′ L . (3) 

The velocities U, V and s L are illustrated in Fig. 2 . 
The flame is assumed to be attached to the wall cor- 
ners, i.e., ξ (0 , t) = 0 is used as boundary condition. 
The analytical solution of Eq. (3) will be employed 

to determine the contribution of flame surface area 
fluctuations to the heat release rate in Section 3.3 . 

2.3. Impulse response (IR) for identification 

A general way to quantify linear fluctuations in 

heat release rate q ′ caused by equivalence ratio per- 
turbations φ′ is the impulse response h ( τ ), which is 
defined implicitly via 

q ′ (t) 
q̄ 

= 

1 

φ̄

∫ ∞ 

0 
h (τ ) φ′ (y = 0 , t − τ ) d τ . (4) 

Here the source of φ′ is located at flame base y = 

0 without loss of generality. If an impulse per- 
turbation φ′ (y = 0 , t) = φ̄εδ(t) is imposed, where 
δ is the Dirac delta function and ε the relative 
strength of the perturbation, then correspondingly 
q ′ (t) /ε ̄q = h (t) , which is why h ( τ ) is called the im- 
pulse response . The effects that contribute to flame 
response – see Fig. 1 and Eq. (1) – can be investi- 
gated separately, 

h (t) = h �H 

(t) + h s L (t) + h A (t) . (5) 

The FTF F ( ω) is obtained from the IR 

by Laplace transformation, F (s ) = 

∫ ∞ 

0 e −st h (t ) d t 
with s = −iω. 

2.4. Transport of equivalence ratio perturbations 

The convective transport of equivalence ratio 

perturbations may be modeled with the 1-D advec- 
tion equation as 

∂φ′ 

∂t 
+ v̄ 

∂φ′ 

∂y 
= 0 . (6) 

The analytical solution for an impulse perturbation 

imposed at flame base y = 0 reads 

φ′ (x, y, t) = φ̄εδ
(

t − y 
v̄ 

)
= φ̄εδ

(
t − X 

W̄ 

)
. (7) 

Physically interpreted, a sudden change in equiva- 
lence ratio at the flame base convects in y −direction 

towards the flame tip with the flow velocity v̄ . 
Equation (7) also shows how this effect may 
be represented in the flame-aligned coordinate 
system. 

3. Contributions to the flame impulse response 

3.1. Fluctuations of heat of reaction 

The first term on the right hand side of 
Eq. (1) stands for the contribution of heat of 
reaction fluctuations to the heat release rate. The 
fluctuation in heat of reaction �H 

′ caused by 
the equivalence ratio perturbations φ′ is approx- 
imated by a relation �H = f (φ) from empirical 
data (valid for CH 4 [7] ). First order Taylor series 
expansion is employed for fluctuating quantities, 
�H 

′ = d�H/ d φ| φ= ̄φφ
′ . 

By integrating �H 

′ over the flame surface, the 
IR contribution is calculated as 

h �H 

(t) = 

1 
ε 

∫ 
f 

�H 

′ 

�H̄ 

d A 

Ā 

= 

1 
ε 

d�H 

d φ

∣∣∣∣
φ= ̄φ

1 

�H̄ Ā 

∫ 
f 
φ′ d A , (8) 

where Ā = πL 

2 
f sin α is the steady flame surface 

area and d A = 2 π (L f − X ) sin αd X is the steady 
infinitesimal flame surface area for a conical flame. 
By substituting φ′ = φ̄εδ

(
t − X/ W̄ 

)
as defined in 

Section 2.4 , the IR is obtained in closed form 

h �H 

(t) = 

2 S �H 

τ 2 
c 

{ R ( t − τc ) − R ( t ) + τc H ( t ) } . (9) 

where H ( t ) is the Heaviside function and R ( t ) is 
the Ramp function. S �H 

= 

(
φ̄/ �H̄ 

)
d�H/ d φ| φ= ̄φ

is the sensitivity of the heat of reaction to the equiv- 
alence ratio. τc = L f / W̄ is a convective time scale, 
which is defined as the time span for the perturba- 
tion to travel from the base of the flame to its tip. 
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Fig. 3. Contribution of fluctuations in heat of reaction or 
laminar flame speed to the IR. Models without ( ) and 
with dispersion ( ). 

Fig. 4. Intermediate flame shape with relevant velocities 
for convection of perturbation and restoration process. 
Visualization of area gap and overlap due to the change 
in laminar flame speed. 

The IR according to Eq. (9) is plotted in Fig. 3 with 

the solid line. 
Laplace Transform as defined in Section 2.3 re- 

covers exactly the analytical expression for the 
flame transfer function obtained by Shreekrishna 
et al. [8, Eq. (25)] . 

For the lean premixed flame, a positive impulse 
perturbation in the equivalence ratio increases 
the heat of reaction on the flame surface element 
located at the instantaneous position of the per- 
turbation. The increase in heat of reaction also 

increases the heat release rate (see Eq. (1)) . In 

Fig. 4 a flame perturbed by a δ-pulse as defined in 

Eq. (7) is shown. The upper gray line (“Pertur- 
bation, W̄ ”) indicates the flame surface element, 
whose heat of reaction is changed. The incoming 
perturbation initially acts on the flame at the base, 
which has the largest radius. As the perturbation 

is convected towards the flame tip, the resulting 
perturbation in heat release rate decreases, be- 
cause the radius of the flame decreases. This fact 
explains the trend shown in Fig. 3 , that the IR 

contribution is highest at the beginning and de- 
creases until the convective time scale τ c , when the 

perturbation reaches the flame tip, which has zero 

radius. 
For rich mixtures, additional fuel barely changes 

the heat of reaction, which implies that the sensitiv- 
ity S �H 

and thus also the corresponding IR are very 
small. 

3.2. Fluctuations of laminar flame speed 

The second term on the right hand side of 
Eq. (1) stands for the contribution of laminar flame 
speed fluctuations to the heat release rate. The same 
approach as described in Section 3.1 is employed 

also for laminar flame speed contribution. The only 
difference is that S �H 

is replaced with the sensitiv- 
ity of laminar flame speed to the equivalence ratio, 
S s L = 

(
φ̄/ ̄s L 

)
d s L / d φ| φ= ̄φ . The shape of the corre- 

sponding IR is shown in Fig. 3 and can be explained 

with similar arguments as in Section 3.1 . Again, 
Laplace Transform recovers exactly the FTF of 
Shreekrishna et al. [8, Eq. (24)] . 

For lean premixed flames the sensitivity S s L is 
positive and therefore the IR is positive. For rich 

mixtures, additional fuel leads to a decrease in the 
laminar flame speed and the IR is reversed. 

3.3. Fluctuations of flame surface area 

The third term on the right hand side of 
Eq. (1) stands for the contribution of flame surface 
area fluctuations to the IR of the heat release rate. 
This mechanism was already discussed by Blumen- 
thal et al. [10] , albeit only for the perturbations in 

velocity. Relevant time scales of restoration τ r and 

convection τ c were revealed, their impact on flame 
dynamics was discussed. In the present study, a 
similar approach is developed for the effects of 
equivalence ratio perturbations on flame shape and 

heat release rate. The similarity comes from the 
fact that the perturbed flame position ξ depends 
on V 

′ and s ′ L , as described in the right hand side of 
Eq. (3) . The similarity is attributed to Eq. (3) , where 
V 

′ and s ′ L act as source terms for the perturbed 

flame position ξ . 
The first step is to compute ξ . Equation (3) for 

ξ ( X, t ) can be formulated as an integral equation 

ξ (X , t) = − 1 

Ū 

∫ X 

0 
s ′ L 

(
X 

′ , t − X − X 

′ 

Ū 

)
d X 

′ , 

(10) 

where laminar flame speed fluctuations caused by 
φ′ are considered solely ( V 

′ = 0 ). The IR contribu- 
tion is calculated as 

h A ( t ) = 

1 
ε 

A 

′ (t) 

Ā 

= 

2 
εL 

2 
f tan α

∫ L f 

0 
ξ (X , t) d X . 

(11) 

In order to calculate the closed form IR, φ′ = 

φ̄εδ
(
t − X/ W̄ 

)
is substituted in Eq. (10) and ξ is 
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Fig. 5. Contribution of fluctuations of flame surface area 
to IR. Model without ( ) and with dispersion ( ). 

expressed as 

ξ (X , t) = − d s L 
d φ

∣∣∣∣
φ= ̄φ

φ̄ετr 

τr − τc 

[
H 

(
t − X 

W̄ 

)

− H 

(
t − X 

Ū 

)]
, (12) 

where τr = L f / ̄U is the restorative time scale, which 

is defined as the time span for the hypothetical 
restoration line to travel from the base of the flame 
to its tip. ξ is illustrated with an intermediate flame 
shape perturbed with an impulse in Fig. 4 . 

The upper gray line (“Perturbation, W̄ ”) indi- 
cates the convection of impulsive perturbation and 

W̄ = v̄ / cos (α) is the projection on X −direction. 
Since the mixture is assumed lean and the equiv- 
alence ratio perturbation is positive, the laminar 
flame speed perturbation is also positive. An in- 
crease in laminar flame speed overcomes the flow 

velocity normal to the flame surface and the flame 
propagates towards the base. 

Starting from the anchoring point, where 
ξ (0 , t) = 0 , the restoration mechanism [10] re- 
establishes the original, unperturbed flame shape 
after the perturbation of equivalence ratio has 
passed. The lower gray line (“Restoration, Ū ”) in 

Fig. 4 indicates up to which position the restoration 

process has progressed. This line travels with the 
speed U = v̄ cos (α) in X −direction. The restora- 
tion line is upstream of the perturbation line, be- 
cause of slower propagation speed. 

By substituting ξ described in Eq. (12) into 

Eq. (11) , the closed form IR is obtained 

h A (t) = − 2 S s L 

τc ( τr − τc ) 

[
τc 

τr 
{ R (t − τr ) − R (t) } 

− { R (t − τc ) − R (t) } 
]

(13) 

which is plotted in Fig. 5 with the solid line. Again 

the FTF given by Shreekrishna et al. [8, Eq. (26)] is 
exactly recovered by Laplace Transform. 

The shape of the IR may be explained as fol- 
lows: The perturbation φ′ causes flame propagation 

towards the base and creates additional flame sur- 
face area indicated as “Overlap, A 

+ ” in Fig. 4 . At 
the same time, the restoration mechanism brings 
the flame to its old position and causes a deficit in 

flame surface area indicated as “Gap, A 

−” in Fig. 4 . 
Since the restoration process is slower, it acts at a 
position where the flame radius is larger than the 
one for the perturbation, thus the perturbed area is 
less than the steady area (negative IR in Fig. 5 ). As 
long as both processes act on the flame together, 
the deficit of flame surface area continuously in- 
creases. At late times t > τ c , when the perturbation 

has passed the flame, only the restorative mecha- 
nism acts to recover the original flame shape. The 
flame surface area deficit vanishes once the restora- 
tion line reaches the flame tip, which corresponds to 

the restorative time scale τ r . 
This section concludes with a comment on the 

study of Cho and Lieuwen [7] , who derived time 
domain representations of flame dynamics by in- 
verse Laplace transformation of frequency domain 

results. However, the IR was not recovered, because 
a generic form of perturbations was considered in- 
stead of an impulse perturbation. A full time do- 
main analysis of the flame response to a generic 
perturbation is not straightforward and was indeed 

not attempted by Cho and Lieuwen [7] . Instead, 
their results are valid only in the low-frequency, 
quasi-steady limit. 

4. Extended model with dispersion 

In typical technical premixed combustion sys- 
tems, the fuel is injected from a considerable dis- 
tance upstream of the flame. This distance is impor- 
tant for the equivalence ratio perturbations because 
of dispersion due to molecular diffusion for a lam- 
inar flame. Generalization to turbulent dispersion 

is straightforward, but not discussed further here 
(refer to Polifke et al. [13] , Lawn and Polifke [11] , 
Schuermans et al. [12] and Bobusch et al. [14] ). As 
the injection point moves further upstream, a wider 
Gaussian distribution instead of an impulse (Dirac 
function) arrives at the flame base and thus the im- 
pact on flame dynamics becomes weaker. 

The model described in Section 2 and also pre- 
vious models [7–9] employ an advection equation 

as described in Eq. (6) . The impact of the species 
diffusion can be accounted by considering 1-D 

advection-diffusion equation with impulse pertur- 
bation at flame base y = 0 , which reads 

∂φ′ 

∂t 
+ v̄ 

∂φ′ 

∂y 
= D 

∂ 2 φ′ 

∂y 2 
, (14) 

where D is the averaged diffusion coefficient. The 
analytical solution reads 

φ′ (x, y, t) = φ̄ε 

√ 

1 
πτd t 

exp 

[ 

− 1 
τd t 

(
t − X 

W̄ 

)2 
] 

, (15) 
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where τd = 4 D/ ̄v 2 is the diffusive time scale, which 

describes the strength of the diffusion. The solution 

is expressed in the flame aligned coordinate system. 
The formalism developed in Section 3 can also 

be applied to the extended model. For heat of re- 
action contribution, Eq. (8) is integrated with the 
diffusive perturbation equation (15) instead of the 
impulse equation (7) (same for laminar flame speed 

contribution). The resulting IR contribution reads 

h �H 

(t) = 

S �H 

τ 2 
c 

{
R (t − τc ) − R (t) + τc erf 

(
t √ 

τd t 

)}
, 

(16) 

where R ( t, τ ) is the smoothed Ramp function de- 
fined as 

R ( t − τ ) = 

√ 

τd t 
π

exp 

( 

− ( t − τ ) 2 

τd t 

) 

+ ( t − τ ) erf 
(

t − τ√ 

τd t 

)
. (17) 

The contribution of laminar flame speed fluctua- 
tions is the same as Eq. (16) , but S �H 

is replaced 

with S s L . 
For flame surface area contribution, the flame 

surface deviation ξ is determined by integrating 
equation (10) again with the diffusive perturbation. 
The contribution is then computed by integrating 
the flame surface deviation Eq. (11) as 

h A (t) = − S s L 

τc ( τr − τc ) 

[
τc 

τr 
{ R ( t − τr ) − R ( t ) } 

−{ R ( t − τc ) − R ( t ) } 
]
. (18) 

The resulting IRs are plotted in Figs. 3 and 5 with 

dashed lines, for heat of reaction (same for laminar 
flame speed) and flame surface area, respectively. 

The model can be extended for the cases, where 
the perturbation is imposed upstream of the flame 
base, say y = −y 0 . The additional time lag for the 
perturbation to travel till the flame base τ0 = y 0 / ̄v 
can be accounted by change of variable of t = t ∗ −
τ0 in Eqs. (15) –(18) . 

5. Validation against numerical simulation 

A numerical simulation of a 2D axisymmetric 
conical flame is performed to validate the analyt- 
ical model. Length and radius of the upstream 

flow duct are both 1 mm, the downstream radius 
of the computational domain is 6 mm in order to 

prevent confinement effects. A uniform mesh is 
constructed with a cell size of 0.02 mm. Slip and 

adiabatic wall boundary conditions are imposed 

to correspond with the analytical framework. A 

lean mixture of CH 4 and air ( ̄φ = 0 . 8 ) is used, 
the inflow velocity is v̄ = 1 m/s (Reynolds number 
130) at a temperature of 293 K. A 2-step reduced 

Fig. 6. Flame shapes: G-Equation model vs. numerical 
simulation with 2-step chemistry. 

Fig. 7. Impulse response functions of conical laminar 
premixed flame. Analytical model without dispersion 
(– - –), with dispersion ( ) and CFD results ( ). 

chemistry is employed [15] in rhoReactingFoam 

(OpenFOAM solver), which is modified to assume 
Prandtl number of 0.7. The averaged molecu- 
lar diffusivity was set to D = 0 . 22 × 10 −4 m 

2 / s , 
appropriate for CH 4 in air [16] . 

Figure 6 compares the distribution of steady 
heat release rate from CFD against the analytical 
G -Equation flame. Close to the tip, curvature ef- 
fects – which are not considered in G -Equation used 

– result in a comparatively shorter flame length of 
the CFD model. 

Broadband equivalence ratio perturbations 
with an amplitude of ε = φ′ / ̄φ = 0 . 05 are imposed 

at the inlet. The corresponding IR is determined 

via system identification (for details see [17] ) and 

compared against the analytical model in Fig. 7 . 
The latter includes all three contributions discussed 

above, see Fig. 1 . 
Including dispersion in the analytical model 

gives a “smeared out” response, in qualitative 
agreement with CFD. More than that, Fig. 7 shows 
very good quantitative agreement between CFD 

and the dispersive model for the early period t < 

2 ms. 
At later times, the impulse response is nega- 

tive before it decays to zero. This important fea- 
ture, which is responsible for the excess gain of the 
FTF (see below) is reproduced qualitatively by both 

models based on the G -Equation. Nevertheless, it is 
apparent that at later times t > 2 ms quantitative 
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Fig. 8. Gain of FTF. Analytical model without disper- 
sion (– - –), with dispersion ( ) and CFD results ( ). 

agreement with CFD deteriorates. This is due to 

the over-predicted flame length of the G -Equation 

model, resulting from the neglect of curvature ef- 
fects. Note that the overall duration of the IR is re- 
lated to the restorative time scale τr = L f / ̄U . Since 
the flame length L f is over-predicted, the resulting 
IR is also more pronounced at late times. 

Figure 8 compares the gain of the FTFs deter- 
mined with the analytical model and the CFD sim- 
ulation, respectively. Important qualitative features 
are reproduced by both analytical model formu- 
lations: the overall low pass filter behavior is ob- 
served, initial overshoot in gain is present, the low 

frequency limit (see Polifke and Lawn [18] ) is cor- 
rectly captured as unity. 

The dash-dotted line indicates the FTF from 

the analytical model without dispersion. The model 
shows oscillatory behavior in the high frequency 
range, which is eliminated by dispersion (shown 

with solid line). 
Both analytical and numerical results exhibit ex- 

cess gain | FTF | > 1 at frequencies around 200 Hz. 
Excess gain results from constructive superposition 

of the positive and negative parts of the IR, as dis- 
cussed by Huber and Polifke [19] and Blumenthal 
et al. [10] . The analysis in Section 3 has shown that 
the positive part of the IR results from fluctuations 
in heat of reaction and flame speed, while the neg- 
ative part is due to the modulation of flame surface 
area. In the low frequency limit there is destruc- 
tive superposition of these effects, which becomes 
constructive at intermediate frequencies, resulting 
in excess gain. Indeed, earlier models that did not 
take into account changes in flame surface area do 

not exhibit excess gain [13,20] . 
The intermediate frequency f max where the gain 

attains its maximum can be roughly estimated as 

f max ≈ π

2(t max − t min ) 
, (19) 

where t max and t min are the times where the IR 

reaches maximal/minimal values. For the analytical 
model with dispersion, one estimates f max ≈ 200 
Hz, which agrees with the gain of the FTF shown 

in Fig. 8 . For the CFD results, the negative part of 
the IR appears earlier and is less pronounced (see 
Fig. 6 ), thus excess gain occurs at higher frequen- 
cies and with reduced magnitude, as seen in Fig. 8 . 

6. Conclusion 

The response of laminar premixed flame to 

equivalence ratio perturbations was studied analyt- 
ically by determining the IR for heat release rate. 
In the framework of the G -Equation contributions 
of heat of reaction, laminar flame speed and flame 
surface area were taken into consideration. Two rel- 
evant time scales were identified, i.e. a convective 
time scale τ c and a restorative time scale τ r . The 
transport of equivalence ratio perturbations is re- 
lated to τ c , while the propagation of flame shape 
perturbations along the flame is related to τ r . The 
contributions of heat of reaction and laminar flame 
speed are governed only by τ c , since the convec- 
tive perturbations of equivalence ratio causes local 
changes at the flame surface. The contribution of 
flame surface area is controlled by both τ c and τ r 

due to the restoration mechanism. Complete agree- 
ment with flame transfer functions calculated by 
Shreekrishna et al. [8] was established by Laplace 
transformation of IRs. 

An extension to the model was proposed in or- 
der to account for the dispersion due to molecular 
diffusion. The dispersive model adds one more time 
scale τ d regarding the strength of the dispersion. 
As the location of the perturbation moves further 
away from the flame, its impact on the flame dy- 
namics becomes weaker [13] . 

Analytical models were compared against nu- 
merical simulation by examining the respective 
IRs and FTFs. Quantitative agreement was not 
achieved, since the analytical G -Equation model 
used in this study neglects curvature effects and 

thus over-predicts the flame length. Nevertheless, 
very satisfactory qualitative agreement with re- 
spect to the shape of the IR and the relevant time 
scales was observed. Overall, the model with dis- 
persion showed significantly better agreement than 

the model without dispersion. 
The analysis in the paper shows that excess gain 

in the flame response to equivalence ratio fluctua- 
tions results from constructive superposition of the 
effects of fluctuations in heat of reaction and flame 
speed on the one hand, and the effects of modula- 
tion of flame shape on the other. 
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An analytical model based on the
G-equation for the response of
technically premixed flames to
perturbations of equivalence ratio

Alp Albayrak and Wolfgang Polifke

Abstract

A model for the response of technically premixed flames to equivalence ratio perturbations is proposed. The formu-

lation, which is an extension of an analytical flame tracking model based on the linearized G-equation, considers the flame

impulse response to a local, impulsive, infinitesimal perturbation that is transported by convection from the flame base

towards the flame surface. It is shown that the contributions of laminar flame speed and heat of reaction to the impulse

response exhibit a local behavior, i.e. the flame responds at the moment when and at the location where the equivalence

ratio perturbation reaches the flame surface. The time lag of this process is related to a convective time scale, which

corresponds to the convective transport of fuel from the base of the flame to the flame surface. On the contrary, the

flame surface area contribution exhibits a non-local behavior: albeit fluctuations of the flame shape are generated locally

due to a distortion of the kinematic balance between flame speed and the flow velocity, the resulting wrinkles in flame

shape are then transported by convection towards the flame tip with the restorative time scale. The impact of radial non-

uniformity in equivalence ratio perturbations on the flame impulse response is demonstrated by comparing the impulse

responses for uniform and parabolic radial profiles. Considerable deviation in the phase of the flame transfer function,

which is important for thermo-acoustic stability, is observed.

Keywords

Equivalence ratio perturbation, flame dynamics, flame transfer function, impulse response, technically premixed flames
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1. Introduction

Lean fuel–air mixtures allow low-emission combustion
processes in a variety of industrial applications.
However, operating under such conditions increases
the chance of thermo-acoustic instabilities. In order to
analyze, predict and control instabilities that result
from flow–flame–acoustic interactions, the dynamic
response of flames to perturbations is an active research
topic. Premixed flames are sensitive to perturbations of
upstream velocity as well as equivalence ratio.1,2 The
present study focuses on the latter response mechanism.

The so-called G-equation—a level set equation that
can be used to describe flame front kinematics3—has
been used in a variety of studies on the response of a
premixed flame to velocity perturbations.4–6 To the
authors’ knowledge, Dowling and Hubbard7 were the

first to propose a model based on the G-equation for
the response to equivalence ratio perturbation. In the
framework of that model, Lieuwen and co-authors8,9

identified three major contributions to perturbations
of flame heat release as heat of reaction, laminar
flame speed, and flame surface area; and provided an
analytical expression for the flame transfer function
(FTF) by solving the linearized G-equation in the fre-
quency domain. An equivalent time-domain formula-
tion, which yields the flame impulse response (IR)
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rather than the frequency response, was proposed by
Albayrak et al.10 This approach explicitly reveals two
global time scales of the flame response, related to the
propagation of the perturbation along the flame sur-
face and the restoration of flame shape. These time
scales were identified previously in the flame response
to velocity fluctuations, as explained in detail by
Blumenthal et al.11

All the models cited in the previous paragraph
assume perturbations of equivalence ratio that are uni-
form across the mixing duct. This is a strong assump-
tion, which will in general not be satisfied in practical
applications with so-called technical premixed flames,a

where fuel–air mixing is not perfect, such that mean as
well as fluctuations of equivalence ratio will exhibit
some non-uniformity. The present study proposes an
extended, time-domain-based analysis of the effect of
perturbations of equivalence ratio on flame heat release
rate, which relaxes this assumption. In particular, the
flame IR to a local, impulsive, infinitesimal perturb-
ation of fuel concentration is derived analytically.
The approach allows to determine the flame response
to any kind of equivalence ratio perturbation profile as
a convolution over the local perturbations. Moreover,
the infinitesimal perturbation gives insight to the flame
response mechanisms: the direct contributions, i.e. the
heat of reaction and laminar flame speed, are local pro-
cesses with a convective time delay, whereas the flame
surface area contribution exhibits a convective nature,
which is triggered locally.

In the next section the derivation of the local IR is
given for a laminar conical Bunsen flame. The IR that
corresponds to an uniform perturbation profile10 is
recovered, which validates the approach. Then, several
perturbation profiles are investigated. It is shown that
the perturbation profile has an impact on the phase of
the FTF.

2. Model

The flame IR model is derived for a laminar, axisym-
metric, conical flame (see Figure 1), which has been
investigated repeatedly with analytical approaches.8–10

It is possible to formulate the model for other flame
shapes, e.g. V- and M-shaped flames, however this is
not explicated in this paper. The flame is subjected to
an impulsive local equivalence ratio perturbation
�0ðt, z, rÞ around infinitesimal vicinity of the radius a.
This is illustrated in Figure 1 with a blue circle. This
reads mathematically

�0aðt, 0, rÞ ¼
��� r� að Þ� tð Þ ð1Þ

where �ðtÞ is the Dirac delta function. Without essential
loss of generality, the axial position of the perturbation

is assumed to be located in the flame base z¼ 0. The
corresponding IR in heat release rate haðtÞ is defined
implicitly by the relation

q0a tð Þ

�q
¼

Z 1
�1

haðt� �Þ
�0a t, 0, rð Þ

��
d� ð2Þ

where q is the global heat release rate integrated over
the whole flame.

2.1 Governing equations

To pursue analytical expressions the flow velocities are
assumed to be uniform. The flame front kinematics is
described by the level set method G-equation

@G

@t
þ u � rG ¼ sLjrGj ð3Þ

where sL stands for the laminar flame speed.
The global heat release rate can be computed as

q ¼

Z
f

�sL�HdA ð4Þ

where � is density, �H is heat of reaction, and A is
the flame surface area. The integral interval denoted
by subscript ‘‘f’’ indicates that the integral is
evaluated over the flame surface area. The flame surface
area reads

A ¼

Z R

0

2�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

@�

@r

� �2
s

dr ð5Þ

Figure 1. Illustration of the flame configuration. The mean and

perturbed flame front are shown by black and red lines,

respectively. Blue surface indicates the mean uniform equivalence

ratio. The circle with radius a indicates infinitesimal hollow

equivalence ratio perturbation. �c and �r indicate local time scales

for propagation of the perturbation and restoration, respectively.
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The transport of mixture inhomogeneities can be
modeled by the advection equation for the equivalence
ratio. This mathematically reads

@�

@t
þ u � r� ¼ 0 ð6Þ

2.2 Modeled equations

Assuming small amplitude fluctuations, all equations
described above are linearized. �ð�Þ and ð�Þ0 indicate
mean and fluctuating quantities, respectively. No vel-
ocity fluctuations are allowed, u0 ¼ 0. It is assumed that
the flame is surjective, i.e. G t, z, rð Þ ¼ z� � t, rð Þ. The
linearized �-equation reads

@�0

@t
þ cr

@�0

@r
¼ �s0L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@ ��

@r

� �2

þ1

s
ð7Þ

where cr is the propagation speed in the radial direc-
tion of the flame restoration process (see Blumenthal
et al.11)

cr ¼ ur þ
�sL
@ ��

@rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@ ��

@r

� �2

þ1

s ð8Þ

The normalized and linearized heat release rate fluctu-
ations q0= �q read

q0 tð Þ

�q
¼

Z
f

�H0

� �H

dA

�A
þ

Z
f

s0L
�sL

dA

�A
þ
A0

�A
ð9Þ

where the density perturbations �0 due to the equiva-
lence ratio perturbations are assumed to be negligible.
The impulsive perturbation simplifies the convolution
integral in equation (2) and the IR can be explicitly
defined as

ha tð Þ �
q0a tð Þ

�q
¼ h�H þ hsL þ hA ð10Þ

where three major contributions according to equation
(9) are identified as heat of reaction h�H, laminar flame
speed hsL and flame surface area hA.

To calculate h�H and hsL the fluctuating quantities,
i.e. �H0 and s0L, should be modeled. This is done by
first-order Taylor series expansion

�H0 ¼ S�H
� �H

��
�0 ð11aÞ

s0L ¼ SsL

�sL
��
�0 ð11bÞ

where S�H and SsL are defined as the respective sensi-
tivities of the heat of reaction and the laminar flame
speed to change in equivalence ratio

S�H �
d�H

d�

����
�¼ ��

��

� �H
ð12aÞ

SsL �
dsL
d�

����
�¼ ��

��

�sL
ð12bÞ

Following Abu-Off and Cant,12 for a lean premixed
methane air flame, the heat of reaction, and laminar
flame speed are expressed as a function of equivalence
ratio

sL ¼ A�Be�C ��Dð Þ
2

ð13Þ

�H ¼
2:9125 � 106 minð1,�Þ

1þ 0:05825�
ð14Þ

where A¼ 0.6079, B ¼ �2:554, C¼ 7.31, and D¼ 1.23.
The flame surface area contribution hA is calculated by
the linearized flame surface area

A0

�A
¼

Z R

0

2�r

@ ��

@r

@�0

@rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@ ��

@r

� �2

þ1

s dr

Z R

0

2�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

@ ��

@r

� �2
s

dr

ð15Þ

The equivalence ratio perturbation �0 t, z, rð Þ is mod-
eled by linearized advection equation

@�0

@t
þ uz

@�0

@z
¼ 0 ð16Þ

3. Response of a conical flame

For a conical flame, the steady flame shape is expressed
as

�� rð Þ ¼ R� rð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uz
�sL

� �2

�1

s
ð17Þ

and the flame restoration speed simplifies to

cr ¼ ��sL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�sL
uz

� �2
s

ð18Þ
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The solution of the �0 transport equation (16) with
the boundary condition (1) reads

�0a t, z, rð Þ ¼ ��� r� að Þ� t�
z

uz

� �
ð19Þ

Using equations (17), (18), and (19), the contribu-
tions to the IR can be expressed in closed forms.
The following subsections provide the derivations for
the heat of reaction and flame surface area contribu-
tions. The contribution of the laminar flame speed is
analogous to that of the heat of reaction and therefore
not discussed explicitly. Note that the derivations are
valid for any equivalence ratio. For convenience, this
paper presents only the results for lean flames with
�5 1 and S�H 4 0.

3.1 Heat of reaction contribution

The flame IR contribution of the heat of reaction is
calculated by substituting the perturbation profile
defined in equation (19) into equation (10)

h�Hða, tÞ ¼ 2S�H
a

R2
� t� �cð Þ ð20Þ

where �c is the time scale related to the propagation of
the equivalence ratio perturbation from the base to the
flame surface which reads

�c að Þ ¼
�� að Þ

uz
ð21Þ

In Figure 1, the time scale �c is indicated as the dashed
line, on which the equivalence ratio perturbation
propagates. The IR is plotted in the left column of
Figure 2 for five perturbation locations, i.e.
a ¼ R� ½0, 0:25, 0:5, 0:75, 1�. The IR is a local process.
A positive impulsive response in heat release is
observed at the instant when the perturbation reaches
the flame surface. For a¼R, the delay in the response is
�c ¼ 0, since the perturbation acts immediately on the
flame surface. The delay in the response increases as the
location of the perturbation gets closer to the center.
At the same time, the strength of the IR decreases. This
is explained by the perimeter of the flame, which
decreases with the radius. For the perturbation close
to the center, the perturbation acts on a smaller perim-
eter and generates a weaker modulation of the overall
heat release rate.
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Figure 2. Heat of reaction (left) and flame surface area (right) contributions to the impulse response. From top to bottom, impulse

responses with different perturbation locations are shown, respectively a ¼ R� ½1,0:75,0:5,0:25,0�. Last row is the uniform impulse

responses.
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For validation purposes, the IR for a uniform
equivalence ratio perturbation is obtained by integrat-
ing the local source over the radius, mathematically

h
R
�H tð Þ ¼

Z R

0

h�H a, tð Þda ð22Þ

The final expression reads

h
R
�H tð Þ ¼

2S�H

T2
c

Tc � tð Þ H tð Þ �H t� Tcð Þ½ � ð23Þ

where Tc ¼ �cð0Þ is the convective time scale of the per-
turbation at the center. The detailed derivation is given
in Appendix 1. This expression is the same as the one
derived by Albayrak et al.10 The IR is plotted in last
row on left column of Figure 2.

The same derivation also applies for the laminar
flame speed contribution. Substituting �H with sL in
the equations in this subsection yields the IR for flame
speed contribution.

3.2 Flame surface area contribution

First, the solution of equivalence ratio perturbation
(equation (19)) is inserted to the linearized laminar
flame speed (equation (11)). The resulting expression
is then used as the right hand side term that is the
source term for linearized �-equation (equation 7).
The corresponding solution of the linearized �-equation
reads

�0a t, rð Þ ¼ SsL

uz
cr

Hðr� aÞ � 1½ �� t� �c � �r þ
r

cr

� �
ð24Þ

where HðtÞ �
n
0, t5 0
1, t � 0

is the Heaviside step function,

which is equal to the integral of the Dirac delta function

HðtÞ ¼

Z t

�1

�ðt0Þ dt0 ð25Þ

�r is the time scale of the restoration process and reads

�r að Þ ¼
a

cr
ð26Þ

The time scale is illustrated in Figure 1 by the dashed
line from the perturbed flame to the tip of the flame.

The flame surface area contribution defined in equa-
tion (10) is calculated via equation (15) and reads

hAða, tÞ ¼ �2SsL

cr
R2

H t� �cð Þ �H t� �c � �rð Þ½ � ð27Þ

In right column of Figure 2, the IR contribution is
plotted for different perturbation locations, i.e. a ¼ R�
½0, 0:25, 0:5, 0:75, 1�. Contrary to the flame speed and
heat of reaction contributions, the area contribution
is not a local process. The contribution starts when
the perturbation reaches with the flame, which is related
with the convective time scale �c. Change in the laminar
flame speed occurs at the location of contact and results
in flame displacement. Assuming a lean premixed flame
with positive equivalence ratio perturbation indicates
that the flame displacement is in upstream direction
and thus causes a negative response. This is shown in
Figure 2. A negative response is generated at the time
�c. Then, the perturbed flame is transported towards
flame tip, which occurs with the restorative time scale
�r. The IR contribution vanishes once the perturbed
flame reaches the flame tip.

For validation purposes, the IR for uniform equiva-
lence ratio perturbation is obtained by integrating the
local source over the whole radius. Mathematically

h
R
A tð Þ ¼

Z R

0

hA a, tð Þda ð28Þ

The final expression reads

h
R
A tð Þ ¼ �

2SsL

Tc Tr � Tcð Þ

�
Tc

Tr
R t� Trð Þ � R tð Þ
� �

� R t� Tcð Þ � R tð Þ
� �� 	 ð29Þ

where Tr ¼ �rðRÞ is the global restorative time scale and
RðtÞ � maxðt, 0Þ is the ramp function, which is equal to
the integral of the Heaviside function

RðtÞ ¼

Z t

�1

Hðt0Þ dt0 ð30Þ

The IR is shown in last row of the right column of
Figure 2. Again, this expression agrees with the results
of Albayrak et al.10

4. Comparison of perturbation types

A generic description of the equivalence ratio perturb-
ations can be defined as a boundary condition

�0a t, 0, rð Þ ¼ Cf að Þ ��� tð Þ ð31Þ

The overall IR contribution h
R
can be calculated from

the local source IR ha as

h
R
tð Þ ¼

Z R

0

Cf að Þha tð Þda ð32Þ
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where Cf stands for the form factor, which is Cf¼ 1 for
the uniform perturbation.

For illustration purposes, an uniform perturbation
profile is compared against parabolic profiles. Possible
configurations are illustrated as sketch in Figure 3.
In the left part of the figure, the choked fuel injection
at the center with a co-flow air supply is shown.
Flow perturbations in the air supply cause equivalence
ratio fluctuations. The magnitude of the equivalence
ratio perturbations is higher closer to the side walls,
since the choked fuel flow prevents the penetration to
the center region. In the right part of the figure, the
reversed configuration is shown, i.e. the choked fuel
injection is supplied through side walls. In this config-
uration, penetration to the side walls is prevented. This
yields an equivalence ratio perturbation with higher
magnitude in the center.

The form factors Cc
f and Cs

f indicate the case with
center fuel injection and the side fuel injection, respect-
ively. Perturbation strengths are kept constant as the
uniform profile, i.e.

R R
0 aCfda ¼

R R
0 ada. The form fac-

tors are approximated by parabolic functions

Cc
f ¼ 2

a2

R2
ð33Þ

Cs
f ¼ 2 1�

a

R


 �
1þ

a

R


 �
ð34Þ

The profiles are shown in Figure 4. The burner radius
is R¼ 1mm, the axial flow velocity is uz¼ 1m/s and the
mean equivalence ratio is �� ¼ 0:8. Corresponding lam-
inar flame speed is �sL ¼ 0:278 m/s. The global convective
time of perturbation is Tc ¼ 3:45 ms and the global res-
toration time scale is Tr ¼ 3:74 ms.

The IRs are shown in Figure 5. The solid line indi-
cates the uniform perturbation profile, which also cor-
responds to the model derived by Albayrak et al.10 The

dashed and dotted lines correspond to the fuel injection
from side walls and the center, respectively. The global
time scales, i.e. Tc and Tr, are the same for all perturb-
ations profiles. However, initial response of the side fuel
injection is less steep than the uniform profile because
the perturbations close to the walls are weak. The posi-
tive response region of the parabolic profile is longer.
This can be explained by the stronger positive contri-
butions at the center, i.e. the flame speed and heat of
reaction contributions, because the equivalence ratio
perturbation is higher around the center. This is fol-
lowed by a narrower but a stronger negative response,
which is mainly caused by the flame surface area
contribution.

The response of the center fuel injection case is
stronger at the beginning compared to the uniform pro-
file due to the large amplitude perturbation close to the
walls. However, the positive response region is shorter
and followed by a longer and weaker negative response.
This is explained by the weak equivalence ratio perturb-
ation close to the center.

The corresponding FTFs are calculated as the
Fourier Transform of the IRs. For the case of the uni-
form perturbation profile, the corresponding results
previously derived by Shreekrishna et al.9 are recovered

Figure 3. Sketches of two possible fuel injector configurations

for technically premixed flames. Left: the fuel injection at the

center and air supply as co-flow. Right: fuel supply from side

walls. The blue color represents the equivalence ratio perturb-

ations �0. On top, �0 is plotted against the radius.

Figure 5. Overall impulse responses for uniform (——), para-

bolic with side wall fuel injection (- - -), and with center fuel

injection (�����) equivalence ratio perturbations.

Figure 4. Different radial profiles for equivalence ratio per-

turbations. (——) is uniform profile, (- - -) is parabolic profile

with side wall fuel injection, and (�����) is with center fuel injection.
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exactly. Results are shown in Figure 6. The gain for the
case with the side fuel injection is slightly stronger than
the other profiles. Considerable deviation is observed in
phase for the case with the center fuel injection.

5. Conclusion

The linear response of a technically premixed flame to
perturbations of equivalence ratio is investigated using
a level set method (‘‘G-equation’’). In particular, the
time-domain-based, analytical model proposed by
Albayrak et al.10 is extended to account for local modu-
lations of fuel concentration, which are likely to result
from imperfect fuel–air premixing in technical applica-
tions. Three major contributions to the fluctuations in
heat release rate—related to modulation of heat of
reaction, laminar flame speed, and flame surface area,
respectively8—are analyzed for the case of a local per-
turbation. It is demonstrated that the heat of reaction
and laminar flame speed contributions are local pro-
cesses in the sense that the flame response is activated
once the perturbation reaches the flame. Therefore,
they are characterized by a local convective time scale
�c, which is the time for the local perturbation to travel
from the flame base to the flame surface. The third
contribution, related to flame surface area, is an indir-
ect mechanism caused by the modulation of the laminar
flame speed, which locally induces a wrinkle in the
flame shape that propagates towards the flame tip.
This process is related to the restoration time scale �r
identified by Blumenthal et al.11 Thus, the flame surface
area affects the heat release rate during a time interval
from �c to �r.

For validation purposes, the IR to a perturbation
with uniform profile, which was already studied by
Albayrak et al.10 and Cho and Lieuwen,8 is recovered
with the method proposed in this paper. Moreover, the
method is applied in an exemplary manner to two

parabolic perturbation profiles, which can be regarded
as a technically premixed case with fuel injection from
the center and side walls, respectively. It is shown that
the flame response, particularly the phase of the FTF,
can be altered significantly by the non-uniformity of
equivalence ratio perturbations.

The local flame IR is a simple yet powerful concept,
which allows to determine the response to arbitrary
profiles of equivalence ratio perturbations as an inte-
gral over local perturbations. Closed form analytical
solutions for the flame impulse can be found if mean
equivalence ratio and mean flow velocities are assumed
to be uniform, as was the case in the present study.
More complicated configurations can be calculated
numerically, however the underlying physics is the
same. Including the generation and propagation of
local equivalence ratio fluctuations in more realistic
flow configurations can be an interesting future work.
The impact of the local convective time scales on the
flame response can be analyzed.

In this work, the time domain approach is preferred
over the frequency domain approach, although they
contain the same information. This is justified by the
convective processes, which can be interpreted from a
time domain approach. The local response can be also
derived in the frequency domain as the FTF, which can
be extended for the case the weakly non-linear
response.
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Appendix 1

The derivation of the heat of reaction contribution to
the impulse response for the uniform perturbation

h
R
�H tð Þ (equation (23)) is demonstrated starting from

the local heat of reaction contribution h�Hða, tÞ (equa-
tion (20)).

Substituting equation (20) in the integral in equation
(22) yields

h
R
�H tð Þ ¼

2S�H

R2

Z R

0

a� t� �cð Þda ð35Þ

where �c ¼ Tcð1� a=RÞ is valid for a conical flame. The
change of variables b ¼ t� Tcð1� a=RÞ yields

h
R
�H tð Þ ¼

2S�H

T2
c

Z t

t��c

b� bð Þdbþ Tc � tð Þ

Z t

t��c

� bð Þdb

� 	
ð36Þ

The first integral is zero. The second integral is eval-
uated by using the fact that the Heaviside step function
is the anti-derivative of the Dirac delta function.
The result reads

h
R
�H tð Þ ¼

2S�H

T2
c

Tc � tð Þ H tð Þ �H t� Tcð Þ½ � ð37Þ

Now, we derive the same for the parabolic profile
that corresponds to the center fuel injection case.
Substituting the form factor Cf ¼ 2a2=R2 into equation
(32), the integral term reads

h
R
�H tð Þ ¼

2S�H

R4

Z R

0

a3� t� �cð Þda ð38Þ

Again, we perform the change of variables
b ¼ t� Tcð1� a=RÞ. The resulting integral reads

h
R
�H tð Þ ¼

2S�H

T4
c

Z t

t��c

b� tþ Tcð Þ
3� bð Þdb ð39Þ

Since all integrals
R
bn�ðbÞdb with n 2 N1, the only

the integral with n¼ 0 remains

h
R
�H tð Þ ¼

2S�H

T4
c

Tc � tð Þ
3

Z t

t��c

� bð Þdb ð40Þ

This integral is calculated as

h
R
�H tð Þ ¼

2S�H

T 4
c

Tc � tð Þ
3 H tð Þ �H t� Tcð Þ½ � ð41Þ

The flame surface area contribution is calculated in
an analogous manner.
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Convective Scaling of
Intrinsic Thermo-Acoustic
Eigenfrequencies of a
Premixed Swirl Combustor
Spectral distributions of the sound pressure level (SPL) observed in a premixed, swirl sta-
bilized combustion test rig are scrutinized. Spectral peaks in the SPL for stable as well as
unstable cases are interpreted with the help of a novel criterion for the resonance fre-
quencies of the intrinsic thermo-acoustic (ITA) feedback loop. This criterion takes into
the account the flow inertia of the burner and indicates that in the limit of very large flow
inertia, ITA resonance should appear at frequencies where the phase of the flame transfer
function (FTF) approaches �p=2. Conversely, in the limiting case of vanishing flow iner-
tia, the new criterion agrees with previous results, which state that ITA modes may arise
when the phase of the FTF is close to �p. Relying on the novel criterion, peaks in the
SPL spectra are identified to correspond to either ITA or acoustic modes. Various com-
bustor configurations are investigated over a range of operating conditions. It is found
that in this particular combustor, ITA modes are prevalent and dominate the unstable
cases. Remarkably, the ITA frequencies change significantly with the bulk flow velocity
and the position of the swirler but are almost insensitive to changes in the length of the
combustion chamber (CC). These observations imply that the resonance frequencies of
the ITA feedback loop are governed by convective time scales. A scaling rule for ITA fre-
quencies that relies on a model for the overall convective flame time lag shows good con-
sistency for all operating conditions considered in this study. [DOI: 10.1115/1.4038083]

1 Introduction

Stricter emission regulations, in particular for nitrogen oxides
(NOx), promoted the development of lean premixed combustion
systems. Such combustors, however, often exhibit increased emis-
sions of combustion noise and are more susceptible to thermo-
acoustic instabilities [1,2]. Such self-excited instabilities arise
from feedback between the unsteady heat release of the flame and
flow perturbations—in particular acoustic waves—in a combustor.
High amplitude pressure and velocity oscillations resulting from
thermo-acoustic interactions can cause problems ranging from
increased noise emissions to severe damage of the complete
system.

Thermo-acoustic instabilities are commonly characterized as
acoustic eigenmodes of the combustion system driven by heat
release fluctuations of the flame [3]. The flame is viewed as a
source, which feeds perturbation energy into the acoustic modes.
However, Hoeijmakers et al. [4,5] showed that velocity sensitive
flames can develop thermo-acoustic instabilities even in a fully
anechoic environment. This appears paradoxical, since all acous-
tic perturbations generated by the flame leave an anechoic domain
without reflection; acoustic modes cannot form in such an envi-
ronment. Polifke and coworkers, however, identified the so-called
intrinsic thermo-acoustic (ITA) feedback loop between unsteady
heat release by the flame and upstream velocity fluctuations,
which does not involve reflection of acoustic waves at the com-
bustor inlet or exit [6,7]. Numerical simulation [8,9] of intrinsic
instabilities of laminar premixed flames in computational domains
with nonreflecting boundary conditions confirmed the results of
Hoeijmakers. Emmert et al. [10] argued that the ITA feedback
should play an important role even for realistic combustor

configurations with (partially) reflecting boundaries, because ITA
modes exist in addition to acoustic cavity modes and can, for cer-
tain conditions, be dominantly unstable. Analytical results of
Mukherjee and Shrira [11] for a simple model of an n–s flame in a
resonator support these findings. It is particularly interesting that
the standard methods for passive control of thermo-acoustic insta-
bilities (i.e., acoustic liners and decreasing boundary reflection
coefficients) may not stabilize ITA modes. As shown by Emmert
et al. [10], just the opposite effect can be observed, i.e., increased
acoustic losses at the combustor exit can enhance the ITA feed-
back and lead to increased growth rates. Silva et al. [12] showed
that ITA resonances can lead to the formation of characteristic
peaks in the spectral distribution of the sound pressure level (SPL)
of broad-band combustion noise of turbulent flames.

Fundamentally, ITA feedback exists because the sound emitted
by an unsteady flame directly—i.e., without reflection of acoustic
waves by the environment—disturbs the velocity field in the
vicinity of the flame. This argument is developed in more detail as
follows: premixed flames respond to perturbations of upstream
velocity with a change in their heat release rate _Q. This, in turn,
generates acoustic waves that travel in both upstream and down-
stream direction. The upstream propagating acoustic wave gc per-
turb the upstream velocity uc and, thus, close a feedback loop, see
Fig. 1. It has to be emphasized that corresponding intrinsic modes
exist in addition to the acoustic modes (“cavity modes”). The ITA
feedback loop may be affected but not eliminated by acoustic
reflections at the boundaries or area jumps. Therefore, the fre-
quencies of ITA modes need not to be close to acoustic eigenfre-
quencies of the combustor. On the other hand, one should expect
that lock-on between ITA and acoustic modes is possible.

The characteristics of the ITA modes are largely determined by
the flame transfer function (FTF), which relates velocity fluctua-
tions u0ref at a reference position—usually close to the flame
anchoring position—to fluctuations of the heat release rate q0. In
previous studies, it was argued that the frequencies of the pure
ITA modes in any anechoic environment coincide with
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frequencies where the phase of the FTF is close to an odd multiple
of �p [5,7,9]. Furthermore, the gain of the FTF at those frequen-
cies determines whether the corresponding ITA mode is stable or
unstable: The higher the gain, the more prone the flame becomes
to an instability driven by ITA feedback. Clearly, a flame may
exhibit more than one ITA mode, provided that the gain of the
FTF does not decrease rapidly with frequency.

In this work, ITA resonances and instabilities of a perfectly pre-
mixed, swirl stabilized combustor are investigated, and a refined
criterion for the respective frequencies is developed. It is argued
that the ITA frequencies depend not only on the phase of the FTF
but also on the inertia of the burner flow, plus the ratios of temper-
ature, cross-sectional area, and specific impedance across the
flame. The analysis is validated by experimental results, where (1)
the power rating, and thus the mean flow velocity, and (2) the
position of the swirler are modified. Although these two measures
do not change the acoustic characteristics of the system, signifi-
cant shifts in peak frequencies of the SPL spectra are observed.
These shifts are well predicted by the refined criterion for ITA
frequencies.

The measures (1) and (2) both change the gain and in particular
the phase of the FTF, i.e., the time scales of the flame response,
which are understood to be convective in nature. This suggests
that ITA frequencies should exhibit convective scaling. This
hypothesis is substantiated by considering how relevant length
and velocity scales of a turbulent flame change with bulk flow
velocity. A simple relation that predicts how ITA resonance fre-
quencies should increase with bulk flow velocity compares well
with experimental results.

This paper is structured as follows: We first describe the experi-
mental setup investigated in this study. Then, measurement meth-
ods and results for the SPL spectra and the flame frequency
response (FFR) are presented. Subsequently, the distributed time
lag model for the FTF is outlined. This is followed by the deriva-
tion of a refined criterion for ITA eigenfrequencies, which is then
employed to interpret the experimental results. Finally, convective
scaling of the ITA modes is established.

2 Experimental Setup

Measurements presented in this paper were performed on a
swirl stabilized, perfectly premixed combustor as sketched in
Fig. 2. All parameters are specified in Table 1. This setup is known
as the “BRS burner” and has served as a base for several numerical
and experimental studies, e.g., Refs. [13–15]. It consists of a cylin-
drical plenum (P) with an inner diameter of DP and a length of LP.

A sinter plate is placed at the upstream end of the plenum. The
porous material allows flow to pass through, but at the same time
provides a defined acoustic “hard wall” boundary condition. At the
combustor exit, a perforated plate is installed in order to achieve a
boundary condition with reduced acoustic reflections.

Attached to the plenum is the burner (B), which comprises an
annulus with inner and outer diameter DB,i and DB,o, respectively,
and a swirler mounted on a central bluff body. The swirler with an
axial length LS has eight vanes, which turn the flow by approxi-
mately 45 deg, resulting in a swirl number of approximately 0.74.
The combustion chamber (CC) has a square cross section and a
variable axial length LCC. Two configurations were investigated
with LCC¼ 300 mm and LCC¼ 700 mm. The former leads to stable
operation, while the latter tends to develop thermo-acoustic insta-
bility. The combustor is operated with a methane-air mixture at an
equivalence ratio of �/ ¼ 0:77 with three power settings 30, 50,
and 70 kW, which correspond to a bulk axial flow speed inside the
burner annulus �uB of (�uB ¼ 11:3, 18.8, and 26.4 m/s), respec-
tively. The increase in thermal power leads to a small axial shift
of the spatial distribution of the maximum heat release and, thus,
to a slight elongation of the flame.

The swirler can be placed at two axial positions denoted by “R”
for the rear and “F” for the front position. The front position is
located 30 mm before the combustion chamber, the rear at
130 mm. A change in the swirler positions has only a negligible
effect on the mean distribution of heat release but results in a sig-
nificant change of the FTF [13]. Inspired by studies of Straub and
Richards [16] on the effect of fuel nozzle configuration on premix
combustion dynamics, Komarek and Polifke [13] explained that
this effect results from superposition of the respective responses
of the flame to axial and tangential velocity fluctuations. Since the
axial velocity fluctuations travel with the speed of sound, while
the tangential velocity fluctuations are convected by the mean
flow, a change in the swirler position by half a convective wave-
length alters the superposition of the respective contributions and

Fig. 1 Intrinsic thermo-acoustic feedback loop of a velocity
sensitive flame: heat release q0 responds to fluctuations of
upstream velocity u0c, thereby generating a characteristic wave
g, which propagates upstream, where it perturbs velocity u0c.
The resulting intrinsic feedback loop does not involve reflection
of acoustic waves at combustor inlet or outlet. R and T repre-
sent coefficients of reflection and transmission by the disconti-
nuity of acoustic impedance across the flame, respectively.

Fig. 2 Sketch of the Beschaufelter-Ring-Spalt (BRS) test rig

Table 1 Parameters of the BRS test rig

Length LP ¼ 0:17, LS ¼ 0:03, LB ¼ 0:18, Lref ¼ 0:07, LF ¼ 0:045 LCC ¼ Lmic ¼ ð0:3; 0:7Þ,
LD ¼ ð0:03; 0:13Þ DP ¼ 0:2, DB;o ¼ 0:04, DB;i ¼ 0:016, DCC ¼ 0:09 m

Mean velocity at burner (B) 30; 50; 70 kW, respectively �uB ¼ 11:3; 18:8; 26:4 m=s

Cross-sectional area AP ¼
p
4

D2
P, AB ¼

p
4

D2
B;o �D2

B;iÞ
�

, ACC ¼ D2
CC

Temperature Tc¼ 293, Th¼ 1930 K
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thus the overall flame dynamics significantly. These arguments
were corroborated by studies of Palies et al. [17] on the dynamics
of swirling flames.

3 Spectral Distribution of Sound Pressure Levels

Time series of pressure fluctuations are measured by a micro-
phone placed at the position “mic” in Fig. 2. From these data, the
noise level in terms of the SPL spectrum is estimated using
Welch’s method with a symmetric Hamming window of a width
of 20,000. No acoustic excitation was applied.

The SPL spectra for the 30 kW and 70 kW cases with the short
combustion chamber (LCC¼ 300 mm) are plotted in the bottom
row of Fig. 3. These cases correspond to a stable operating condi-
tion. Accordingly, the SPL spectra show several fairly broad reso-
nant peaks of moderate height. Figure 3 shows clearly that under
variation of power rating—at constant equivalence ratio—or swir-
ler position, both frequencies and amplitudes of the peaks change.
The changes in frequency are remarkable, because the speed of
sound in plenum and combustor, which governs the acoustic
eigenfrequencies of the test rig, is not affected by changes in
power rating or swirler position.

By increasing the combustion chamber length from LCC

¼ 300 mm to LCC¼ 700 mm, the 30 kW cases become unstable.
Figure 4 shows the corresponding SPL spectra. The front position
case (left plot) has a strong peak at a frequency near 100 Hz and
its multiples. Similarly, the rear position case (right plot) has a
peak frequency near 60 Hz and its multiples. For the 70 kW power
rating with elongated combustion chamber, the combustor is sta-
ble; therefore, the SPL spectrum is not shown here.

4 Measurement of Flame Frequency Response

The FFR, which describes the response of the flame to upstream
velocity perturbations, is determined by acoustically exciting the
flame with a siren [18]. The normalized axial velocity fluctuations
u0ref=�uref at a point 70 mm upstream of the beginning of the com-
bustion chamber (marked by a cross in Fig. 2) are related to the
normalized integrated heat release fluctuations Q0= �Q of the flame
at discrete frequencies xn

F xnð Þ ¼
Q0 xnð Þ= �Q

u0ref xnð Þ=�uref

;xn 2 R (1)

The velocity signal was captured by a constant temperature ane-
mometry probe and the heat release by a photomultiplier with an
interference filter attached (centered on a wavelength of
307:1þ 3=� 0 nm; half power bandwidth of 1062 nm; transmis-
sion of 15%).

For the stable configuration with a short combustion chamber
LCC¼ 300, the FTF was measured for power ratings 30 and
70 kW, each with the swirler mounted in the front and the rear
position, respectively. The results are again shown in Fig. 3
(� symbol). For the front swirler position (left plots), the transfer
function has, for both power ratings, a single excess of gain
jFj > 1 at low frequencies, followed by a smooth decay, while the
phase can be approximated with a constant negative slope.

For swirler mounted in the rear position, the gain of the FFR
exhibits pronounced maxima and minima, which can be explained
as the effect of constructive and destructive superposition of sev-
eral contributions to the flame dynamics with different time lags.
As mentioned in the introduction, the flame response of a swirl
flame includes contributions from acoustic and swirl waves
[13,17]. The difference in time lags is significantly larger for the
rear swirler position, which leads to more frequent extrema in
gain due to more rapid alternations between constructive and
destructive interference (see Ref. [19]). For the swirler mounted
in the rear position, the phase follows the same overall slope as
for the front position but exhibits jumps at several frequencies,
i.e., at 100 Hz for the 30 kW and at 210 Hz for the 70 kW cases.
These frequencies match with the local minima of the gain. This

Fig. 3 Stable operating condition with LCC 5 300 mm. Vertical lines indicate ITA frequencies according to 2p criterion ( ) and
refined criterion ( ), respectively. Top three rows: measurements (�) versus model (––––) of FTF. Row 1 and 2: gain and
phase of FTF. Row 3: absolute value of dispersion relation, solution of FM 2v 5 0 ( ), local minima of jF 2vj ( ). Row 4: measured
sound pressure levels.

Fig. 4 SPL for unstable 30 kW case. Left/right: front/rear swir-
ler position. Vertical lines: refined criterion .
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is a typical behavior of systems governed by processes with differ-
ent time scales, cf. [20] for an illustrative example.

The increase of the power rating from 30 to 70 kW affects
noticeably the slope of the phase, since the characteristic time
delay of the flame changes. This is largely an effect of the change
in the flow velocity �uB and the flame length LF, as described by
Alemela et al. [21]. This is discussed in more detail in the
following.

5 Modeling of Flame Transfer Function

As suggested by Subramanian et al. [22], a distributed time lag
model in the form of a stable rational function is used in this work
to model the flame transfer function

FM xð Þ ¼
Xn

k¼1

Ck

ix� Ak
; x 2 C (2)

where approximately n � 10 poles suffice to provide a good fit to
the measured flame frequency response. Here, x is the angular
frequency and i is the complex unit. During regression, all param-
eters Ck and Ak are optimized such that the quadratic error
between the measured data and the model is minimized. Accord-
ing to Polifke and Lawn [23], the frequency response at the low-
frequency limit x¼ 0 should be 1, which corresponds to a gain
value of 1 and a phase value of 0. By adding these data point to
the experimental data set, we ensure that the resulting FTF satis-
fies this condition.

The Bode plot of the resulting FTF for the 30 kW is shown with
the solid line ––– in Fig. 3 (first two columns and first two rows).
Similarly, for the 70 kW case, the corresponding FTF is shown in
Fig. 3 (last two columns and first two rows). The fitted models are
in excellent agreement with the measurements of the FFR. At fre-
quencies higher than the plotted ones, the model predicts a quick
decay of the gain to 0. This agrees well with the low-pass filter
behavior of a realistic flame transfer function as described by
Merk [24]. For the analysis performed in this study, only frequen-
cies below 440 Hz are relevant, since all observed ITA modes are
within this range.

6 Criteria for Intrinsic Thermo-Acoustic Frequencies

Intrinsic thermo-acoustic frequencies can be estimated by a
simple criterion proposed independently by Hoeijmakers et al. [5]
and Emmert et al. [7], which we refer to as the “�p criterion.”
Here, the argument is developed for an anchored flame in a
straight duct with anechoic boundaries, see Fig. 5. Following
Silva et al. [8], the equations for such a configuration are written
as

�1 Rin 0 0

T11 T12 �1 0

T21 T22 0 �1

0 0 Rout �1

2
664

3
775

fin
gin

fout

gout

2
664

3
775 ¼

0

0

0

0

2
664
3
775 (3)

where Tij are the coefficients of the acoustic transfer matrix of the
flame. Rin and Rout refer to inlet and outlet reflection coefficients.
In general, all T’s and R’s are functions of x. The corresponding
dispersion relation evaluates to

T22 � RoutT12 þ RinT21 � RinRoutT11 ¼ 0 (4)

where the l.h.s. is the determinant of the system matrix. With
anechoic inlet and outlet boundaries Rin ¼ Rout ¼ 0, this equation
simplifies further to T22 ¼ 0. For a velocity sensitive flame

T22 ¼
1

2
nf þ 1þ hF
� �

(5)

with the temperature ratio h ¼ Th=Tc � 1 and the ratio of the
impedances nf ¼ qcccð Þ= qhchð Þ [8]. T denotes the temperature, q
is the density and c is the speed of sound. The subscripts c and h
indicate position, upstream (cold) and downstream (hot) of flame,
respectively. The dispersion relation (4) reduces to

F ¼ �
nf þ 1

h
(6)

This expression can be solved analytically if the FTF is repre-
sented by a simple time lag model F ¼ Ne�ixsF , where sF is the
time lag and N is the gain of the FTF, yielding the flame intrinsic
frequencies

fITA ¼
2nþ 1

2sF

� �
n2N0

(7)

which are identified as the frequencies where the phase of FTF is
equal to � 2nþ 1ð Þp. Hoeijmakers et al. [5] showed that this sim-
ple criterion works also for realistic FTFs. A graphical representa-
tion of the dispersion relation as a phasor plot also leads to the
conclusion that ITA frequencies should occur close to frequencies,
where the phase of the flame transfer function is close to an odd
multiple of �p, see Fig. 6 in Ref. [25].

However, if the �p criterion is applied to the BRS test rig, the
estimated frequencies do not coincide with the peaks in SPL, see,
vertical, dashed-dotted lines in Fig. 3. In order to resolve this
discrepancy, we argue that ITA frequencies may be significantly
influenced by the flow inertia of the flame holder or burner, which
for the present configuration can be regarded as the inertia of the
air column inside the annulus. We propose a refined, more accu-
rate criterion for ITA frequencies by solving the dispersion rela-
tion for a combined “burner and flame” configuration as shown in
Fig. 6.

The overall transfer matrix for burner and flame is formed by
considering the area jump between the plenum and the upstream
of the mixing duct (p–u), the propagation of waves inside the mix-
ing duct section (u–d), the area jump between the downstream of
mixing duct, and the combustion chamber (d–c) as well as the
flame (c–h). Location (d) is assigned as the velocity reference
position of the FTF. The coupling relations across all elements
read as

fu

gu

� �
¼ 0:5

1þ a1 1� a1

1� a1 1þ a1

� �
fp
gp

� �
(8)

fd

gd

� �
¼ e�ixLB=cc 0

0 eixLB=cc

� �
fu

gu

� �
(9)

Fig. 5 Flame intrinsic configuration Fig. 6 Flame and burner placed in an anechoic environment
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fc

gc

� �
¼ 0:5

1þ a2 1� a2

1� a2 1þ a2

� �
fd

gd

� �
(10)

fh
gh

� �
¼ 0:5

nf þ 1 nf � 1

nf � 1 nf þ 1

� �
fc
gc

� �

þ 0:5a2hF
1 �1

�1 1

� �
fd
gd

� �
(11)

(again we refer to Ref. [8] for details). The overall transfer matrix
Tij from location “p” to “h” (see Fig. 6) is obtained by sequential
matrix multiplication of the transfer matrices that appear in Eqs.
(8)–(11). The dispersion relation T22 ¼ 0 corresponding to the
case of anechoic boundaries can be simplified considerably if one
assume that the burner is acoustically compact, xLB=cc � 1, such
that e6ixLB=cc � 16ixLB=cc. In that case, one obtains the disper-
sion relation

F ¼ � 1

h
1þ

nf

a
þ ikLInf

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

v

(12)

where k ¼ x=cc is the axial wave number and a ¼ a1a2 is the
area ratio between plenum and combustion chamber. The latter is
a product of the two area ratios plenum-burner a1 ¼ AP=AB and
burner-combustion chamber a2 ¼ AB=ACC. The inertial length

LI �
a2

1 � 1

a2
1a2

LB (13)

quantifies the flow inertia of the burner. We identify the frequen-
cies where the dispersion relation (12) has a solution,
F xð Þ � v xð Þ ¼ 0, as ITA frequencies of the combined burner and
flame system.

If the area ratio between plenum and burner is large, the inertial
length is larger than the geometrical length of the burner.
Thus, the flow inertia may be very significant even for a burner
that is acoustically compact. For the case of a very large
area ratio between plenum and burner, a1 � 1, one approximates
LI � LB=a2, and the dispersion relation (12) reduces to the expres-
sion derived by Polifke [25] for identifying the frequencies, where
the instability potentiality of a burner attains a maximum. The
intimate connection between ITA feedback and the instability
potentiality was explicated by Emmert et al. [7]. On the other
hand, for the case of an acoustically transparent flame holder with
a¼ 1 and LI ! 0, the dispersion relation (12) reduces to the estab-
lished result Eq. (6), i.e., the �p criterion.

It is not possible to solve the dispersion relation Eq. (12) by
using the measured flame frequency response F, since it only con-
tains sampled information at real frequencies xn 2 R. If a stable
rational function model FM for the flame transfer function is fit to
the measurements as described earlier, the dispersion relation
FM xð Þ � v xð Þ ¼ 0 can be evaluated numerically to compute
complex-valued frequencies, i.e., growth rates. This yields several
frequencies and growth rates, all corresponding to ITA eigenmo-
des of the system shown in Fig. 6, i.e., flame and burner in an
anechoic environment. The frequencies obtained from this method
are indicated with markers on the abscissa in the third row of
Fig. 3.

A simpler method to estimate ITA frequencies is to evaluate
the absolute value of the dispersion relation jF� vj for real fre-
quencies xn 2 R. This can be done for every sampling point of
the measured FFR without a rational fit for the FTF. By identify-
ing the local minima of the absolute value, the ITA mode frequen-
cies may be estimated. This absolute value of the dispersion
relation is plotted in the third row of Fig. 3. Local minima are
shown on the plot with the marker . Dashed vertical lines
are used to indicate the corresponding frequencies. The proximity

of markers and indicates that this simplified criterion works
well for all cases.

The ITA frequencies estimated from the dispersion relation
(12) for burner and flame in an anechoic environment coincide in
many cases with peaks in measured SPLs. For the 30 kW case
with the front swirler position (first column of Fig. 3), a first peak
in SPL is observed at around 100 Hz, which is predicted with only
a slight deviation by the proposed refined criterion. In the noise
spectrum around 400 Hz, a broad peak is observed. On the one
hand, this is known to be the acoustic quarter wave mode of the
complete system [10]. On the other hand, analysis of the disper-
sion relation (12) predicts an ITA mode in this frequency range at
about 380 Hz. With the swirler in the rear position (second column
of Fig. 3), we find ITA modes near 70, 130, and 200 Hz. All of
them are captured correctly by the extended criterion. Just as for
the case with the swirler mounted in the front position, an ITA
mode is predicted just below 400 Hz, which is again close to the
acoustic quarter wave mode. In the 70 kW case with the front
swirler position (third column of Fig. 3), only a single, prominent
peak is observed in the noise spectrum at around 150 Hz. For the
rear swirler position (last column of Fig. 3), two peaks are
observed at around 120 and 250 Hz, which may be associated with
ITA feedback. A third peak emerges at around 400 Hz, which
coincides with the acoustic quarter wave mode.

For the 30 kW power rating cases, the combustor becomes
unstable if the combustion chamber length LCC is increased from
300 mm to 700 mm. Comparison of Figs. 3 and 4 shows that the
fundamental frequencies of instability for the long combustion
chamber, which are 102 Hz for the swirler in the front position
and 65 Hz for the swirler in the rear position, are in good agree-
ment with the frequencies of combustion noise resonance peaks
observed in the short combustor (see the two plots on the left in
the bottom row of Fig. 3). At first sight, it is a remarkable, even
baffling observation that the significant change in combustor
acoustics that certainly must result from the increase in combus-
tion chamber length did not affect the frequencies of SPL peaks in
a significant manner. However, the fundamental frequencies of
the peaks in SPL for the unstable cases are in good agreement
with the estimates of the refined criterion for ITA frequencies, so
we may conclude that for the BRS burner the dominant unstable
modes are ITA modes, which resolves the paradox.

7 Analysis of Liming Cases

In this section, the dispersion relation Eq. (12) is analyzed for
two limiting cases in order to develop a physical interpretation of
the effect of burner flow inertia on the ITA feedback mechanism
and the phase of the flame frequency response at ITA resonance.
For the case of vanishing inertial length LI ! 0, we will recover
the �p criterion discussed earlier. On the other hand, we will find
that for very large inertial length LI !1, ITA modes should
occur whenever the phase of the FTF is close to �p=2.

For the analysis of both limiting cases, a thermo-acoustic block
diagram as introduced by Schuermans [26] for the coupling of
acoustic velocities and pressure across a compact flame is helpful,
see Fig. 7. Linearization of the Rankine–Hugoniot conditions
yields the result that pressure fluctuations up- and downstream
side of the flame are equal, while a discontinuity in velocities
results from heat release rate oscillations

p0h ¼ p0c (14)

Fig. 7 Block diagram for a thermo-acoustic system
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u0h ¼ u0c þ hq0 (15)

where q0 ¼ Q0= �Q�uc. The remainder of the acoustic system can be
lumped into two acoustic impedances, Zc for elements upstream
of the flame, and Zh for elements downstream of the flame.

The first case considered is one of a burner with small inertial
length LI placed in an anechoic environment. To be precise, it is
assumed that the length LB of the burner is small, while the area
ratios a1 between plenum-burner and a2 burner-combustion cham-
ber are not very different from unity, such that ikLInf � 1 þnf =a.
This case describes an acoustically transparent burner (or flame-
holder) and could be realized, e.g., by a thin perforated plate with
moderate porosity.

It should be obvious that in the limit LI ! 0, this setup is equiv-
alent to the configuration in Fig. 5 described by Eq. (6), for which
the �p criterion should hold. Nevertheless, let us analyze the rela-
tive phases between fluctuating velocities, pressure, and flame
heat release in more detail. The anechoic inlet and outlet boundary
conditions imply for the acoustic impedances Zc ¼ �qccc and
Zh ¼ qhch. The corresponding system variables p0; u0c; u

0
h; q
0
 �

are
illustrated in a phasor plot in the left part of Fig. 8.

Since the upstream and downstream pressure fluctuations are
equal, p0c ¼ p0h, only a single arrow is drawn to represent pressure,
which is aligned with the real axis without loss of generality. The
velocity perturbation u0h at the downstream side is parallel to the
pressure vector, because the impedance Zh is a positive real num-
ber, i.e., multiplication with Zh only scales the magnitude. The
upstream velocity perturbation u0c, however, is antiparallel to the
pressure fluctuations, because the impedance Zc is a negative real
number. Note that the length of the vectors is only of secondary
importance, the relative phases and thus the directions of vectors
are significant. Nevertheless, the downstream velocity vector u0h is
represented with a longer arrow than the upstream velocity vector,
since qccc > qhch. Finally, one can also construct the heat release
rate vector q0 from the velocity difference, as stated in Eq. (15).

The semicircular arc Zh=Zc represents the phase difference in
acoustic velocity fluctuations across the flame. With reference to
the block diagram in Fig. 7, it is noted that this relation results
from the acoustic impedances, i.e., u0c ¼ Zh=Zcu0h, which implies a
phase difference of �p between the velocities. The thermo-
acoustic feedback loop is closed by the flame dynamics, u0h ¼
u0c þ hq0 ¼ 1þ hFð Þu0c as illustrated with the semicircular arc
1þ h=F . We see that at resonance, the phase angle for the flame
response F is obtained by the definition of the FTF q0 ¼ Fu0c. The
angle between u0c and q0 is equal to �p, which recovers the �p
criterion.

Now, we consider the limit of a burner with very large flow
inertia LI !1 placed in an anechoic environment. This limiting
case may be realized by a burner with significant length LB and
strong flow contraction, such that a1 � 1, while a2 � 1.

The downstream impedance Zh is unaltered, because an
anechoic outlet condition is considered as in the previous case.
Therefore, the fluctuations of pressure p0 and downstream velocity

u0h are again aligned to each other in the phasor diagram, see the
right part of Fig. 8. However, the upstream impedance Zc is modi-
fied by the flow inertia of the burner. A momentum balance for
the fluid inside the burner yields

p0u � p0d ¼ qcLB
@u0B
@t

(16)

where u0B stands for the acoustic velocity inside the burner (which
is assumed to be acoustically compact). We have assumed that the
cross-sectional area AP of the plenum is much larger than that of
the burner AB, such that a1 ¼ Ap=AB � 1. Thus, the upstream
side of the burner approximates an “open end” boundary condition
with p0u ¼ 0. We obtain from Eq. (16) for the upstream impedance
Zc resulting from burner flow inertia

Zc ¼
p0c
u0c
¼ �iqcccLIk (17)

where the mass balance between burner and the combustion
chamber is used for substituting u0B ¼ u0c=a2 and the acoustic dis-
persion relation is used for substituting x ¼ cck. The inverse of
the impedance 1=Zc determines the phase angle between p0 and
u0c, which is �3p=2 as shown in Fig. 8. The resulting phase differ-
ence between u0h and u0c is illustrated with the semicircular arc
Zh=Zc. The feedback loop is closed by the flame dynamics, as
illustrated with the semicircular arc 1þ h=F , which relates u0c to
u0h. Again, we examine the angle between u0c and q0 for the FTF
phase angle. This angle is slightly smaller than �p=2. In the limit
of very large burner flow inertia LI !1, the upstream velocity
perturbations u0c becomes very small compared to the downstream
velocity perturbations u0h, following the upstream impedance
Zc !1. This necessitates that heat release rate fluctuations q0 be
aligned with the downstream velocity perturbations u0h. Thus, in
the limit LI !1 of very large burner flow inertia, the refined cri-
terion for ITA frequencies reduces to a “�p=2 criterion,” i.e., the
phase of the FTF should be equal to �p=2 (or in general
� 4nþ 1ð Þp=2; n 2N0). The BRS burner has a rather large iner-
tial length, LI � 1:4 m, and indeed the SPL spectra in Fig. 3 show
that the ITA resonances roughly comply with the �p=2 criterion.

For the small, but non-negligible values of the burner inertial
length LI, the phase of the flame transfer function at ITA reso-
nance should be between �p=2 and �p (up to multiples of 2p).
Note that graphical analysis of the dispersion relation Eq. (12) for
the configuration of burner and flame in a phasor plot—see the
discussion of Fig. 6 in Ref. [25]—leads to the same conclusion. In
this general case, the refined criterion described in Sec. 6—which
requires numerical solution of the dispersion relation Eq. (12) or
identification of the minima of jF� vj—gives a quantitative pre-
diction of ITA frequencies for the configuration of burner and
flame in an anechoic environment.

8 Convective Scaling of Intrinsic Thermo-Acoustic

Frequencies

In Secs. 6 and 7, a method for identifying peaks in the SPL
with ITA modes has been introduced. It has been applied to iden-
tify several stable and unstable ITA modes in experimental data
of different burner configurations and operating points. In this sec-
tion, we emphasize the fact that the frequencies of the ITA modes
scale roughly with the bulk flow velocity inside the burner but not
with the speed of sound in plenum or combustor. We distinguish
between two effects: (1) a direct effect, which depends on the
characteristic convective time scale of a flame, and (2) an indirect
effect, which depends on the generation and propagation of so-
called swirl waves. As discussed, e.g., by Komarek and Polifke
[13] or Palies et al. [17], those waves propagate with a convective
speed.

In Secs. 8.1 and 8.2, we focus, first, on the direct effect of a
varying bulk flow velocity, which corresponds to a change of the

Fig. 8 Phasor diagrams for flame-only (left) and burner-flame
(right) ITA feedback loops. Phase lags of acoustics and flame
response are represented by circular arrows indicated by Zh/Zc

and 11h/F , respectively.
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characteristic time scale of the flame. Second, we analyze the
impact of the position of the swirler.

8.1 Bulk Flow Velocity. According to Alemela et al. [21],
the characteristic time of a flame sF can roughly be estimated by

sF ¼ Cs
L�F
ueff

(18)

where L�F is the modified flame length and Cs is a proportionality
factor. The effective velocity ueff is proportional to the axial bulk
flow velocity inside the burner: ueff / �uB. The length L�F can be
computed from the geometrical flame length LF by a correlation
including the turbulent Reynolds number Ret and the Karlovitz
number Ka [21]. By assuming fITA / 1=sF and applying Eq. (18)
a scaling relation for the ITA frequencies with varying bulk flow
velocities can be derived

fITA;2

fITA;1
¼

L�F;1
L�F;2

�uB;2

�uB;1
¼ LF;1

LF;2

Ret;1

Ret;2

� �0:2 �uB;2

�uB;1
(19)

Here, the effect of the Karlovitz number was neglected. If we
further assume that the turbulent Reynolds number is proportional
to the bulk flow velocity Ret / �uB, we obtain

fITA;2

fITA;1
¼ LF;1

LF;2

�uB;2

�uB;1

� �0:8

(20)

This equation relates the ITA frequencies of two power ratings,
signified by the indices 1 and 2. It is now compared to the experi-
mental results described earlier by using the bulk velocities speci-
fied in Table 1. Data from experiments with a power rating of
50 kW (18:83 m=s), which have not been discussed until now,
were added here. The axial distribution of the normalized OH�

intensity I inside the combustion chamber is plotted in Fig. 9 for
these power settings. The flame lengths for the power ratings, 30,
50, and 70 kW are approximated as 41, 43.5, and 45.1 mm, respec-
tively. This length is defined as the distance from the beginning of
the combustion chamber to the maximum of the heat release. For
plotting, linear interpolation is employed between these power rat-
ings. The resulting function for the relative change of the fre-
quency is plotted in Fig. 10 ( ). Additionally, the behavior of
the lowest ITA frequency for the swirler rear ( ) and swirler
front ( ) position is plotted.

The proposed model with its nearly linear dependency captures
the measured behavior quite well. A change in the power rating,
and, hence the bulk flow velocity, affects the resonance frequency
of the ITA feedback loop, i.e., the eigenfrequency of the ITA
modes. This fact can be exploited to detect these modes: a scaling
of the frequency of a certain peak in the measured SPL with bulk
velocity indicates that ITA feedback is involved.

8.2 Swirler Position. In this section, the effect of the swirler
position on the ITA modes is scrutinized. The contribution of the
swirl to the flame transfer function adds an additional time scale.
An acoustic disturbance impinging on the swirler generates fluctu-
ations of the swirl number. Those transversal velocity
fluctuations—or swirl waves—propagate with a velocity that is of
the order of the mean flow speed, which leads to a convective
time lag

sS �
LD

�uB
(21)

here, LD stands for the distance from the swirler to the combustion
chamber inlet and �uB is the axial velocity in the mixing duct. The
relevant velocities and lengths are schematically illustrated in
Fig. 11. More details about interactions of acoustics with a swirler
in the thermo-acoustic context can be found in a review paper by
Candel et al. [27]. The processes leading to the characteristic
delay described in Eq. (18) (direct effect) acts in parallel to the
swirl effects from Eq. (21). If the swirler is mounted close to the
flame, both time delays are of the same order of magnitude.

As the swirler is moved further away from the combustion
chamber, the time lag for the swirl contribution increases, while
the time delay for the direct effects stays approximately constant.
As a result of the superposition of those two different time lags,
the phase of the frequency response shows several bends and
jumps.

For the 30 kW power rating (first two columns of Fig. 3), the
overall slope of the phase is similar to the one of the front posi-
tion. This is a consequence of the fact that the flow structures and
flame shape are not sensitive to changes in the swirler position.
However, locally the phase deviates significantly from the linear

Fig. 9 Axial distribution of normalized OH� intensity emission
–––I. 30 kW , 50 kW, and 70 kW .

Fig. 10 Normalized variation of the dominant ITA frequency
over the bulk flow velocity inside the burner. model from
Eq. (20), lowest ITA frequency of swirler rear setup,
lowest ITA frequency of swirler front setup.

Fig. 11 Relevant length scales of the burner. LF is the flame
length and LD is the duct length from the swirler to the combus-
tion chamber.
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decay due to the occurrence of further time scales. This introduces
more ITA modes. The first ITA frequency shifts from 100 Hz
(front) to 70 Hz (rear). This can be qualitatively explained by an
increase of the time delay and, therefore, a decrease in the associ-
ated frequency.

A similar behavior can be observed at 70 kW. In the front swir-
ler case, the time lag difference between acoustic and swirl com-
ponents are again not significant. Therefore, the phase has a
constant slope, which only leads to one ITA mode at around
155 Hz. Shifting the swirler to the rear position adds one addi-
tional mode at 246 Hz and shifts the first one to 124 Hz. Again,
the frequency of the first ITA mode is reduced by moving the
swirler upstream.

9 Summary and Conclusions

The experimental data from a premixed swirl combustor that
are scrutinized in this study were generated almost a decade ago.
At that time, flame transfer functions and sound pressure levels
were measured over a range of power ratings and equivalence
ratio for several values of combustion chamber length and swirl
generator position. The objective of the measurement campaign
was to generate a comprehensive data set, which would be used to
validate the large eddy simulation (LES)/system identification
approach for estimating the flame transfer function from simula-
tion data on the one hand, and low-order network models for pre-
diction of thermo-acoustic stability on the other. This objective
was met to some extent; results of validation studies that concen-
trated on the flame transfer function of the flame were published
by Tay-Wo-Chong et al. [14,28,29].

However, some features of this particular data set were difficult
to align with our understanding of the nature of thermo-acoustic
modes. For example, peaks in the spectral distribution of combus-
tion noise showed convective scaling, i.e., they increased almost
linearly with power rating. At constant equivalence ratio, an
increase in power rating implies an increase in bulk flow velocity,
while the speed of sound in the combustor remains constant, so
that one would expect only a small change in acoustic frequencies.
Similarly, a change in swirler position—which is commonly
understood to change the flame transfer function and thus the sta-
bility, but not the frequency of a thermo-acoustic mode—resulted
in a reduction of the peak frequency by more than one third. Con-
versely, more than doubling the length of the combustion chamber
barely affected the frequency of the dominant mode in this test
rig. A thermo-acoustic network model did reproduce these trends,
but quantitative agreement was difficult to achieve, due to a lack
of precise data on the reflection coefficient of the combustor exit
and the temperature profile in the combustor. What was worse, the
results did not “make sense,” i.e., they could not be reconciled
with the prevalent understanding that thermo-acoustic modes
result from coupling of unsteady heat release with “chamber mod-
es,” i.e., acoustic modes of the combustion chamber or combined
acoustic modes of plenum and combustion chamber coupled via
the burner [3,27].

The present paper showed that these paradoxical observations
can be explained as resonances or instabilities that result from
ITA feedback, which is a feedback mechanism that does not
involve reflection of acoustic waves at combustor inlet or outlet
[6]. The stability and the frequencies of ITA modes is dominated
by the gain and phase of the flame transfer function. In the ideal-
ized case of a velocity sensitive, time-lagged flame stabilized on
an acoustically transparent flame holder in an anechoic environ-
ment, ITA modes were predicted to go unstable at frequencies
where the gain of the flame response is large enough and its phase
is close to a multiple of �p [5]. For the turbulent, premixed swirl
burner investigated in this study, this simple �p criterion does not
hold.

A refined criterion for ITA frequencies was deduced from the
dispersion relation that describes the combined dynamics of a
burner with significant flow inertia and a velocity sensitive flame

in an anechoic environment. In the limiting case of very large
flow inertia, the new criterion reduces to the condition that the
phase of the FTF be �p=2 at ITA resonance. For small, but non-
zero burner flow inertia, the phase should be between �p=2 and
�p.

The refined criterion depends only on the ratios of cross-
sectional areas and temperatures up- and downstream of burner
and flame, the inertial length of the burner and the flame transfer
function. This explains the convective scaling of ITA
frequencies—recall that FTF phase scales with the characteristic
convective time of the flame—as well as the observed sensitivity
to swirler position and the insensitivity to combustion chamber
length.

As was the case with the present study, one should expect that
the concept of ITA feedback may elucidate further seemingly
inexplicable observations on thermo-acoustic resonances and
instabilities. On the other hand, the precise nature of the interac-
tions between chamber and ITA modes in combustors with signifi-
cant reflection coefficients poses intricate questions. Both topics
are subject of ongoing investigations.
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