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This study proposes a Finite Element (FE)-based efficient numerical model of the vibro-acoustic coupling
in flexible micro-perforated plates (f-MPPs) where each perforation is described as an imposed impe-
dance boundary condition (uniform impedance patch) on the plate. This approach opens the possibility
of predicting the influence of perforation distribution on the acoustic performance of f-MPP. Micro per-
forated plates have been a topic of interest as a promising sound absorber in a wide range of applications,
from room acoustics to combustion systems. One great advantage of these plates is that it gives the
designer the freedom of choice on material in production. Depending on the material and the dimensions,
the acoustical modes of the medium can couple with the structural modes of the plate. This coupling
changes the number of absorption peaks, frequency and amplitude of the Helmholtz resonance of the sys-
tem, therefore the coupling becomes an extra parameter in the design process. Current analytical models
superpose the mechanical impedance of the plate with the acoustic impedance of the perforations to
compute this coupling. This approach works fairly well for plates with uniform perforation distribution.
This study proposes a numerical method which assumes perforations as discrete impedance patches on
the flexible plate so that they can be considered separately. The method couples the solution of the
Helmholtz equation in air with shell plate theory to model the vibro-acoustic effects and the impedance
patches are represented as imposed transfer impedance boundary conditions. The assessment of the
method is performed in terms of comparing the calculated absorption coefficient values from the simu-
lations of several test cases, fundamental theories and measurement results from the literature. The sim-
ulation results agree both with these theoretical limits and measurement results. The use of the method
is illustrated by considering an example of the influence of modification of the spatial distribution of per-
forations on the sound absorption of a membrane.
1. Introduction

Micro-perforated plates (MPPs) have been designated as high
potential sound absorbers by Maa [1] for various applications
including the ones with severe environments. Before the study of
Maa [1], they were used only as protective layer for classical sound
absorbers. MPPs are plates with small perforations whose diameter
is in the order of 10�1 mmwith low porosity values, i.e. / ¼ Oð1%Þ.
When backed by a cavity, they provide broadband acoustic
dissipation.
The present study is limited to the amplitude range for which
the behaviour can be described by a linear model. This excludes
damping due to vortex shedding. The linear sound absorption
mechanism in MPPs is based on the conversion of the kinetic
energy of the fluid particles into heat energy due to the viscous
resistance in the perforations. As the viscous resistance increases
with the relative velocity between the plate and the fluid, the
kinetic energy loss of the particles and the corresponding sound
absorption is larger when the excitation frequency approaches to
the Helmholtz resonance frequency of the back cavity. For a rigid
MPP, the relative particle velocity of the air is the same for each
perforation at all frequencies when excited by a planar acoustic
wave. On the other hand, when the plate is flexible, at certain fre-
quencies the plate vibrates with the mode shape depending on its
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geometry, excitation frequency, boundary conditions and material.
Due to this mode shape, even under acoustic plane wave excita-
tion, the relative air particle velocity with respect to the plate
depends on the position of the perforation within the plate. There-
fore, the perforation position is potentially a design parameter in
flexible micro-perforated plates (f-MPPs).

Sound absorption by flexible plates is a known phenomenon in
room acoustics. One of the first analytical models for a flexible
plate, which does not have perforations but backed by an air cavity,
is provided by Cremer and Müller [2]. In this model, they couple
the bending waves of the flexible plate with the acoustic waves
of the air cavity. An important contribution to this model is made
by Basten et al. [3]. They consider an enclosed air cavity between
two flexible plates and the distance between these plates are small.
Basten et al. [3] analytically show that, such a small gap between
the flexible plates causes the visco-thermal effects to become dom-
inant in the cavity.

On the MPP side, the first scientists to observe that plate vibra-
tions affect the absorption mechanism are Lee and Swenson [4]. In
their experiments, they report an additional absorption peak which
cannot be modelled by the rigid MPP theory. The first analytical
model including the flexible effects in MPPs is given by Lee et al.
[5]. Inspired by their work, Toyoda et al. [6] propose a similar
approach for modelling of f-MPPs having circular geometry. Both
Lee et al. [5] and Toyoda et al. [6] calculate the structural impe-
dance of the flexible plate using modal analysis and combine it
with the acoustic transfer impedance defined by Maa [1]. In both
of these studies, the mathematical models are verified by experi-
ments. Bravo et al. [7,8] consider a case where the back cavity walls
are flexible and provide a theoretical model where the absorption
mechanism is governed by the relative velocity between the air
particles and the flexible plate. They verify this model by experi-
ments. Li et al. [9] propose a sophisticated model to account for
the non-zero velocity boundary condition at the inner walls of
the perforations. This boundary condition redefines the classical
acoustic transfer impedance expression by Maa [1].

Besides the analytical and empirical approaches described so
far, some numerical models employing finite element method
(FEM) have been proposed. Hou and Bolton [10] model the plate
as a porous material and they include the vibrations effects
through the elastic frame model. They focus on the effect of plate
profile (such as bent and curved plates) on the absorption coeffi-
cient. Wang and Huang [11] investigate the effect of complex
back-cavity shapes in acoustic response of f-MPPs. They couple
the structural vibrations of the plate with the acoustics of the per-
forations and the back cavity. In their model, air particle velocity in
the perforations are averaged over the flexible plate. Okuzono and
Sakagami [12] propose a numerical model to analyse the sound
field in room acoustics which is computationally low-cost. How-
ever, they assume the plate as an additional mass vibrating in front
of the back cavity thus it does not consider the structural plate
modes. Moreover, as previous studies, they average the acoustic
transfer impedance of the perforations over the plate. On the other
hand, Carbajo et al. [13] consider each perforation separately in
their FE model. They represent the entire acoustic domain (includ-
ing the perforations) with linearized Navier-Stokes equations to be
able to capture the visco-thermal effects. They study the interac-
tion between the perforations. Even though they do not take plate
flexibility into account, they report that their model is computa-
tionally demanding.

The FE model proposed in the current study makes it possible to
model (i) the vibro-acoustic coupling in f-MPPs, (ii) viscous losses
in the small perforations, and (iii) the effect of perforation distribu-
tion. This is achieved by coupling the Helmholtz equation [14] and
Kirchhoff’s thin plate equation [15] in the numerical domain, while
each perforation is represented by transfer impedance boundary
rint

patches on the flexible plate separately. The boundary condition
for these patches take the viscous losses into account. Considering
this feature, the model presented in this study is more efficient
than the ones using linearized Navier-Stokes equations [13] to cap-
ture the viscous effects of the micro-perforations.

To validate the theory, a cylindrical impedance tube is modelled
numerically and the acoustic properties of the f-MPP with a back
cavity is assessed in terms of absorption coefficient, aA. The model
outputs are compared with fundamental plate and acoustic theo-
ries and experiments reported in the literature. The use of the
method is illustrated by considering an example of the influence
of modification of the spatial distribution of perforations on the
sound absorption of a thin plate.

2. Theoretical background

The numerical domain of the impedance tube configuration is
presented schematically in Fig. 1.

The numerical model is composed of two domains: a structural
domain (shell) and an acoustic domain. This section provides the
governing equations used for modelling these domains.

2.1. Structural domain

The equation of motion of the thin, homogeneous flexible plate
shown in Fig. 1 is given by Kirchhoff [15] as

Dpr2r2wðrÞ � qptpx
2wðrÞ ¼ bP ; ð1Þ

wherer2 is the Laplacian operator, wðx; yÞ is the plate displacement
in the z-direction, qp is the plate density (mass per unit of surface),

tp is the plate thickness; bP is the external pressure difference acting
on the plate; Dp ¼ Eð1þ jgÞt3p=½12ð1� m2Þ� is the flexural rigidity of

the plate where j is the imaginary number (j2 ¼ �1), E is the Young’s
modulus, g is the loss factor and m is the Poisson ratio of the plate
material. As the typical porosity of an f-MPP is in the order of
10�2 [16], the effect of perforations on the structural properties of
the flexible plate is ignored for the modelling.

2.2. Acoustic domain

Domains r and s in Fig. 1 are acoustic domains and they are
assumed to be excited by harmonic plane waves. Furthermore,
thermo-viscous losses at the sound-hard boundaries are negligible
in theses acoustic domains. Under these assumptions, the spatial
pressure distribution in frequency domain is given by Helmholtz
equation [14]

x2p̂nðzÞ þ c20r2p̂nðzÞ ¼ 0; ð2Þ
where x ¼ 2pf is the radial frequency, c0 is the speed of sound in
air and p̂n is the acoustic pressure in frequency domain for acoustic
medium n; i.e. n ¼ 1 for the impedance tube and n ¼ 2 for the back
cavity domains, respectively (see Fig. 1).

The two acoustical domains in Fig. 1 are connected through
micro-perforations which can be considered as independent uni-
form impedance patches on the flexible plate. These patches are
defined as imposed transfer impedance boundaries in the numeri-
cal model and the mathematical expression for each patch is given
by Temiz et al. [16] as

Zt ¼ p̂1 � p̂2

ûp

¼ jxtpq0 1� 2
Sh

ffiffiffiffiffiffi
�j

p J1ðSh
ffiffiffiffiffiffi
�j

p
Þ

J0ðSh
ffiffiffiffiffiffi
�j

p
Þ

" #�1

þ 2asRs þ jdsxq0
dp

2
; ð3Þ



(a) (b)
Fig. 1. (a) The schematic drawing of the flexible micro-perforated plate (f-MPP) placed between the impedance tube (Domain r) and the back cavity (Domain s). The plate
displacement vector wðx; yÞ is also illustrated on the cross-sectional view of the f-MPP; (b) front view of an f-MPP whose perforations are distributed uniformly.
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where ûp is the average acoustic particle velocity in the perforation,
q0 is the density of the acoustic medium and Jm is the Bessel
function of first kind of order m. The other parameters in Eq. (3)
are calculated for square-edged perforations as [16]

Sh ¼ dp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xq0=ð4lÞ

q
; ð4aÞ

Rs ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lq0x

p
; ð4bÞ

as ¼ 5:08Sh�1:45 þ 1:70; ð4cÞ
ds ¼ 0:97 expð�0:20ShÞ þ 1:54; ð4dÞ
where Sh is the Shear number: the ratio of the perforation diameter
to the oscillating boundary layer thickness, l is the dynamic viscos-
ity of air (1:82� 10�5 kg=ms at 20 �C), Rs is the surface resistance,
as and ds are resistive and reactive end-correction coefficients for
circular orifices with square-edge geometries. Note that as ds is a
function of Sh, it takes into account the effect of viscosity on the
inertance. Other expressions for other edge geometries are pro-
posed by Temiz et al. [16]. The expression given in Eq. (3) is valid
when the perforations are far enough from each other, so that they
do not interact. Eq. (4) is based on numerical simulations and was
validated experimentally [16].

3. Numerical model

The numerical model is built in the finite element program
COMSOL Multiphysics� (ver. 5.0) [17] using the built-in Pressure
Acoustics and Plate modules. The model represents a cylindrical
impedance tube set-up with two microphones to estimate the
absorption coefficient. At one end of the tube, the flexible micro-
perforated plate and the back cavity is placed where the other
end is used for introducing the acoustic plane wave into the
system. The micro-perforations are modelled as described in the
previous section. The simplified representation of the numerical
domain, which describes the boundary conditions employed, is
given in Fig. 2.
(a)
Fig. 2. The description of the boundary conditions used for modelling the (a) impedance
MPP, XZt is the imposed transfer impedance and XS is the vibro-acoustic coupling boun
3.1. Boundary conditions

Four types of boundary conditions are used to model the config-
uration represented in Fig. 1.

� Imposed pressure boundary (XP): To represent the plane wave
excitation incident to the f-MPP, this boundary condition is
employed at the upstream of the tube geometry. The equation
for this boundary is
p̂jXP
¼ p̂ex; ð5Þ

where p̂ex is the prescribed pressure amplitude (in frequency
domain).

� Sound-hard boundary (Z1): The normal acoustic velocity van-
ishes at the side walls of the impedance tube and the termina-
tion of the back cavity by this boundary condition.
rintûjXZ1

¼ 0: ð6Þ
� Imposed transfer impedance boundary (XZt ): The change
(p̂1 � p̂2) in the acoustic pressure from Domain r to s through
the perforations is related to the particle velocity (ûp) by the
boundary condition, on the patch surface
p̂1 � p̂2

ûp
jXZt

¼ Zt ; ð7Þ

where Zt is calculated by using Eq. (3).
� Vibro-acoustic coupling boundary (XS): On this boundary, the
acoustics of Domains r and s are coupled with the structural
vibrations of the shell domain. This is achieved by the following
equations
tube; (b
dary.
ûðx; yÞjXS
¼ dwðx; yÞ

dt
¼ jxwðx; yÞ ð8aÞ

bP���
XS

¼ p̂1jXS
� p̂2jXS

; ð8bÞ
(b)
) f-MPP: XP is the imposed pressure, XZ1 is the sound-hard, Xf�MPP is the f-



Table 1
Properties of the cases from Toyoda et al. [6] used for comparing the discrete and
lumped models. Please see Fig. 3 for the definition of parameters.

Case A1 Case A2 Case A3

dp [mm] 0.5 1.0 2.0
tp [mm] 0.5 0.5 0.5
b [mm] 10 10 10
np 76 76 76
/ [%] 0.2 0.8 3.1
D [mm] 100 100 100
L [mm] 300 300 300
Lc [mm] 50 50 50

Fig. 3. Geometric parameters of the numerical domain.
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where Eq. (8a) couples the plate displacements with the acoustic
particle velocity and Eq. (8b) couples the forcing source term in
Eq. (1) on the flexible plate with the acoustic pressure difference
between Domains r and s.

The boundary condition represented as Xf�MPP is the combina-
tion of XZt and XS, as can be seen in Fig. 2.

3.2. Finite element model

The finite element model of the configuration is obtained by
discretizing Eqs. (1) and (2) over the numerical domain using
quadratic shape function for both acoustic and structural domains.
After introducing the boundary conditions (Eqs. (5)–(8)) into the
weak form of the governing equations (Eqs. (1) and (2)), the system
of equations representing the numerical model takes the following
form:

K s Kc

0 Ka

� �
þ jx

Cs 0
0 Ca

� �
�x2 Ms 0

Mc Ma

� �� �
wu

pu

� �
¼ Fsi

Fai

� �
;

ð9Þ
where, K is the stiffness, M is the mass, C is the dissipation and F is
the forcing matrices. The subscripts ‘a’, ‘s’ and ‘c’ represent the
words acoustic, structural and coupling. The vectors wu and pu stand
for the free plate displacement and acoustic pressure vectors,
respectively. These are the vectors that are not imposed as bound-
ary conditions and need to be solved for. The imposed boundary
conditions introduced in the acoustic and structural forcing vectors,
Fai and Fsi. Finally, Eqs. (8a) and (8b) are represented by Mc and Kc ,
respectively [18].

The system of equations given in Eq. (9) is solved by using a
direct linear solver. For a model containing � 360;000 elements
and � 750;000 degrees of freedom, the simulation time for a single
frequency is � 210 s on a workstation with the following specifica-
tions: 4-core 2.60 GHz processor and 16 GB RAM.

3.3. Estimation of the absorption coefficient

In this study, the absorption coefficient is represented by beta in
order not to confuse it with the resistive end-correction coefficient
a. To calculate the absorption coefficient aA, the two-microphone
method by Bodén and Åbom [19] is applied to the numerical
model. Two microphone positions, zm1 and zm2 are chosen on
Domainr and the pressure values are averaged by section at these
two positions in z as p̂m1 and p̂m2. Using these pressure readings,
wave decomposition is performed to obtain complex amplitudes
of the right and left travelling pressure waves, p̂þ and p̂� respec-
tively. Therefore, the absorption coefficient is calculated as

aA ¼ 1� p̂�

p̂þ

���� ����2: ð10Þ
3.4. Compensation for inviscid reactance

Since the numerical method described in this section allows one
to model the perforations separately, it is referred here as the dis-
crete model. On the contrary, the conventional analytical model
assumes an average transfer impedance value over the plate and
lumps this value to the MPP to compute the acoustic properties
of the system, therefore it is refered to as the lumped model in
the present paper. Provided that the perforations are far enough
from each other, so that no interactions between perforations take
place, the discrete and lumped models should provide comparable
results for the rigid plate. Please note that, for the rigid plate mod-
rintelling, the vibro-acoustic boundary condition (XS) is replaced with
the sound-hard boundary condition (XZ1 ).

To verify this, three test cases are considered. The physical
properties of these cases are provided in Table 1 and Fig. 3.

In Table 1, b is the distance between the two neighbouring per-
forations, np is the number of perforations on the plate, L is the
length of the impedance tube and Lc is the depth of the back cavity
(see Fig. 3). These parameters are taken from the study by Toyoda
et al. [6].

The comparison between the absorption coefficients predicted
by the lumped and discrete models for Cases A1 to A3 is given in
Fig. 4. As it can be seen in these graphs, the discrepancy between
the analytical results and the numerical ones increase from Cases
A1 to A3. Considering the parameters given in Table 1, only perfo-
ration diameter and plate porosity values differ among the test
cases.

The same discrepancy is reported by Temiz et al. [18] with
another FE program, namely LMS Virtual.Lab [20]. Hence, the dis-
crepancy between the predictions of the lumped and discrete mod-
els is not solver dependent.

Keeping in mind that the Helmholtz equation does not take the
viscous effects into account, the frequency shift observed in Fig. 4
is a result of reactance only. In fact, Eq. (3) takes a reactance (end-
correction ds) into account describing the inertia of the non-
uniform acoustic flow around the opening of the perforations.
The solution of the Helmholtz equation should therefore disregard
this effect. To eliminate this inviscid reactance contribution (dH) by
the Helmholtz equation, its value is estimated and subtracted from
Eq. (3). This subtraction can be performed under the assumptions
that the acoustic flow is almost incompressible around the perfora-
tions and that acoustic impedance can be superposed due to the
linearity of the system.

This new expression is referred as the modified transfer impe-
dance and should be used at the imposed transfer impedance
boundaries in the proposed numerical model. To calculate the



Fig. 4. Comparison of the absorption coefficients calculated with the discrete model ( ) and the conventional lumped model ( ).

Fig. 5. Schematic representation of the numerical geometry used in the parametric
study for calculating the inviscid reactance contribution of an orifice.

Fig. 6. The change of inviscid reactive end-correction coefficient with respect to the
porosity. For 0:5 mm 6 dp 6 4:0 mm, the perforation diameter has negligible effect
on dH .
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inviscid reactance contribution, a set of simulations have been car-
ried out. The numerical domain for this set of simulations is almost
identical to the one described so far in this paper. The schematic
description of the numerical domain used in this parametric study
is given in Fig. 5 and the parameters investigated are provided in
Table 2. By examining Fig. 5, the differences can be noted: a single
orifice is modelled (instead of an MPP) and the plate is modelled as
a rigid boundary. Since it is a basic acoustic model, the meshing is
performed by the built-in meshing tool by COMSOL. The mesh size
is selected as the Extremely Fine level, which provides the finest
grid in the numerical domain. Using the results from this numeri-
cal model, a parametric study is performed. The results are repre-
sented in terms on non-dimensional parameters so that they can
be generalized.

The single orifice illustrated in Fig. 5 is modelled with the
Acoustic module of COMSOL Multiphysics in frequency domain.
Therefore no viscous effects are taken into consideration. As a
result, the acoustic reactance of the orifice in Fig. 5, IfZtgH , is the
inviscid reactance contribution. Please note that subscript H repre-
sents the word Helmholtz and indicates the inviscid contribution.
This parameter is non-dimensionalized by normalizing it as pro-
posed by Ingard [21]

dH ¼ 2IfZtgH
q0xdp

: ð11Þ

From Table 2, simulations are run for 7� 4� 3 ¼ 84 different
parameter combinations. Among these combinations, the effect
of frequency change between the same porosity and perforation
Table 2
The parameters used in simulations to calculate the inviscid reactance contribution
from the Helmholtz equation.

Porosity (/) [%] Perforation diameter (dp) [mm] Frequency (f) [Hz]

0.1 0.5 200
0.2 1.0 1000
0.4 2.0 2000
0.8 4.0
1.6
3.2
5.0
rintdiameter values are found to be less than 1% for dH , therefore the
number of points to be investigated is reduced to 28 by taking
an average value of the three frequency values of the same combi-
nation. The resulting 28 data points are plotted with respect to
porosity in Fig. 6.

It is evident from Fig. 6 that the inviscid reactive end-correction
dH only depends on the porosity. Even for various diameter values
from 0:5 mm to 5:0 mm, the same dH value is found for the same
porosity. Hence, to estimate the non-dimensional inviscid reac-
tance, a fit which is a function of porosity only is proposed such as

dH ¼ 0:85/� 2:40
ffiffiffiffi
/

p
þ 1:54; 0 6 / 6 1: ð12Þ

The quality of the fit given in Eq. (12) is r2 ¼ 0:9998, where ð1� r2Þ
is the variance of the fit.

The fit is calculated in such a way that when the porosity is
unity, in other words when the orifice size is equal to the duct
diameter, dH ¼ 0 is satisfied. On the other hand, when the porosity
becomes very small, the fit value approaches to 1.54. This value is
comparable to the theoretical limit value calculated by Pierce [22]
who obtains the analytical value for the low frequency limit of the
length of the oscillating fluid mass at a circular orifice in an infinite
(thin) baffle plate as p=2 ¼ 1:57 times the orifice radius. Therefore
in the very low porosity limit, the fit proposed in Eq. (12) leads to
an error of no more than 2% compared to the theoretical limit of
Pierce [22].

Moreover, Tayong et al. [23] discuss the hole interaction effect
on the acoustic reactance with the help of Fok’s function which
also depends on porosity. Their correction is compared to the fit
given in Eq. (12) for 0:005 6 / 6 0:05 and a very similar trend is
observed between the two calculations (see Fig. 6). Therefore, we
conclude that using the expression given in Eq. (12) for compensat-
ing the excess reactance should be adequate.

Finally, the modified transfer impedance Z�
t , which is used in the

imposed transfer impedance boundary layer in the discrete numer-
ical model, is updated as



Fig. 7. Comparison of the absorption coefficients calculated with the discrete model using the modified transfer impedance ( ) and the conventional lumped model
( ).

Fig. 8. The example of typical meshing of the numerical geometry. The meshing is performed with COMSOL’s built-in physics controlled meshing tool and some part of the
side surface is left open to show the meshing around the perforations.
PrepZ�
t ¼ jxtpq0 1� 2

Sh
ffiffiffiffiffiffi
�j

p J1ðSh
ffiffiffiffiffiffi
�j

p
Þ

J0ðSh
ffiffiffiffiffiffi
�j

p
Þ

" #�1

þ 2asRs þ jðds � dHÞxq0
dp

2
;

ð13Þ

please recall that as and ds are resistive and reactive end-correction
coefficients for a circular perforation with square-edge profile and
their value can be calculated by Eq. (4).

In Fig. 7, the comparison between the predicted absorption
coefficient for the conventional analytical model and the discrete
model which uses the modified transfer impedance is made. For
each Case, the relative percentage error is calculated as

�f% ¼ jf peak�lm � f peak�dmj
f peaklm

100%; ð14Þ

where f peak is the frequency where the absorption peak is observed,
subscripts lm and dm represent the lumped and discrete models
respectively. The calculated relative percentage errors are presented
in Fig. 7, also.

It can be seen that the discrepancy between the two prediction
is practically eliminated when the modified transfer impedance
proposed in Eq. (13) is applied in the discrete model.
Table 3
Properties of the samples used in the experimental validation of the discrete
numerical model for the rigid plate case. The measurements are carried out with the
impedance tube set-up described by Temiz et al. [16].

Case A4 Case A5

dp [mm] 0.8 1.6
tp [mm] 1.0 1.6
b [mm] 8 15
np 29 7
/ [%] 0.7 0.7
D [mm] 50 50
L [mm] 150 150
Lc [mm] 20 20
Material Brass Brass
3.5. Meshing

The mesh used for discretizing the numerical domain is built by
COMSOL automatically based on the physics used in the model.
The extra-fine mesh option is chosen for all models in this study.
Although it is built automatically, the mesh is manually checked
to satisfy following conditions: (1) the largest acoustic element is
never larger than 1/10 of the smallest acoustic wave length of
interest; (2) there are at least 8 elements for each perforation;
(3) the mesh around the perforation is finer than the rest of the
acoustic domain matching locally the perforation mesh.

In the model, triangular elements are used for surfaces and
boundaries whereas tetrahedral elements are used for volumes.
Both the acoustic and shell domains are meshed with quadratic
elements. An example of the meshed geometry is shown in Fig. 8.

The study for mesh convergence is discussed in A.
rint4. Validation of the discrete numerical model and discussions

The validation of the discrete numerical model is partly per-
formed in the previous chapter by the parametric study for evalu-
ating the contribution of the inviscid reactance. Fig. 7 provides the
comparison between the discrete and lumped models of the acous-
tic absorption of an MPP backed by a cavity for rigid plates. In this
section, the predicted absorption coefficients for two rigid plate
configurations are compared to measured absorption coefficients
and then the effect of vibro-acoustically coupled system is dis-
cussed by comparing results from both fundamental analytical
models and measurements by Toyoda et al. [6] with the discrete
numerical model.

4.1. Rigid plate

The impedance tube used for the experimental validation of the
discrete numerical model is the same set-up described in the study



Fig. 9. Comparison between the (original) experiments (�) and numerical model ( ) with modified transfer impedance in Eq. (13).

Table 5
The first four vacuum eigen-frequencies of the circular plate whose circumference is
clamped. The plate properties are given in Table 4 for a non-perforated plate in
vacuum.

cm [–] Rff mg [Hz]

3.1962 129
6.3064 500
Prep

by Temiz et al. [16]. The physical properties of the samples used in
this validation is provided in Table 3.

The measurements are performed in the frequency interval of
100 Hz 6 f 6 700 Hz. The experimental and numerical results are
plotted together in Fig. 9. As it can be seen from the plots, the
numerical model successfully captures the general absorption
behaviour of the rigid MPPs.

The samples defined in Cases A4 and A5 have already been used
in an earlier study by Temiz et al. [24] and they are reported to
have some uncertainties in the perforation geometry. The perfora-
tions on these samples are manufactured by drilling and some of
them have more triangular shape than circular. The reason for
the frequency shift between the discrete numerical model and
the measurements in Fig. 9 can be this uncertainty.

4.2. Flexible plate

To validate the discrete numerical model in terms of vibro-
acoustic coupling, the test cases from Toyoda et al. [6] are used
and their properties are provided in Table 4. To include the struc-
tural effects into the model, the f-MPP boundary condition is
applied on the plate (See Fig. 2 and Eq. (8)).

Although the test cases are clearly defined in the study by Toy-
oda et al. [6], the density of the flexible plate is not explicitly pro-
vided. Instead, the material used for manufacturing the plates is
reported as rigid PVC (polyvinyl chloride). As a result, the simula-
tions are carried out using the PVC material which is already in
the material library of COMSOL (qPVC ¼ 1760 kg=m3).

4.2.1. Comparison with fundamental analytical models
First, the eigen-frequencies of the flexible plate Case VA0 is

computed analytically and compared with numerical results. The
Table 4
Parameters defining the validation test cases. Except from the density, they are taken
from the study by Toyoda et al. [6] who reports the sample material as PVC. The
density value is taken from the material library of COMSOL.

Case VA0 Case VA1 Case VA2 Case VA3

dp [mm] N/A 0.5 1.0 2.0
tp [mm] 0.5 0.5 0.5 0.5
b [mm] N/A 10 10 10
np 0 76 76 76
/ [%] 0 0.2 0.8 3.0
D [mm] 100 100 100 100
L [mm] 300 300 300 300
Lc [mm] 50 50 50 50
E [N/m2] 3� 109 3� 109 3� 109 3� 109

g [–] 0.03 0.03 0.03 0.03
m [–] 0.3 0.3 0.3 0.3
q [kg=m3] 1760 1760 1760 1760
rint

theoretical modes of a circular plate whose circumference is
clamped is calculated by [25]

J0ðcmÞI1ðcmÞ þ I0ðcmÞJ1ðcmÞ ¼ 0; ð15Þ
where subscript m denotes the mth natural mode and

cm ¼ D
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pf m

qptp
Dp

� 	0:5
s

: ð16Þ

Hence, the eigen-frequencies of a circular plate whose circumfer-
ence is clamped is found by solving for cm in Eq. (16). The first four
solutions of this equation and corresponding vacuum eigen-
frequencies are given in Table 5.

The eigen-frequencies calculated with the simple analytical
approach are compared with the simulation results in Fig. 10. It
is seen that the first eigen-frequency in the simulation is signifi-
cantly larger compared to the analytical calculations. This is due
to the additional stiffness added by the air volume in the back cav-
ity. This is verified by carrying out another simulation where the
back cavity wall is modelled as a sound-soft boundary, i.e.
p̂2jz¼Lc ¼ 0. Doing so it is ensured that the air in the back cavity
can flow through the back and forth through this sound soft
boundary and does not exert an additional stiffness on the plate.
In other words, by changing the boundary condition, the vacuum
9.4395 1121
12.5771 1990

Fig. 10. The comparison between a simple circular plate and the simulations of
Case VA0: ( ) Theoretical eigen-frequencies, ( ) simulation with vibro-acoustic
coupling, and ( ) simulation with vibration only.



Table 6
Corresponding Helmholtz frequency of Cases VA1, VA2 and VA3 (see Table 4).

Simulation case f H [Hz]

VA1 420
VA2 682
VA3 1051
Prep

modes of the plate described in case VA0 is simulated. The results
of this updated simulation validate that the structural properties of
the plate is captured successfully in the simulations.

The second basic model is the Helmholtz resonator. The eigen-
frequency of a Helmholtz resonator can be calculated by [26]

f H ¼ c0
2p

ffiffiffiffiffiffiffiffiffiffiffiffi
Snnp

V0Leq

s
; ð17Þ

where Sn ¼ d2
pp=4 is the cross-section of the perforation, V0 is the

volume of the backing cavity and Leq ¼ tp þ 1:70ðSn=pÞ2 is the equiv-
alent orifice length. In Table 6, the corresponding Helmholtz fre-
quencies of the simulation cases are given.

The calculated Helmholtz frequency values using the analytical
expression given in Eq. (17) is marked in the absorption coefficient
vs. frequency graphs for Cases VA1, VA2 and VA3 in Fig. 11.

First point to observe in Figs. 10 and 11 is that the absorption
peaks originating from structural vibrations are sharper and have
a more narrow-band character. On the other hand, the peaks
related to the acoustic modes are effective over a wide frequency
band. This is due to the difference in damping mechanisms
between the structural and acoustic systems. Since the acoustic
system benefits from the viscous damping, which dissipates more
energy in case of high particle velocity, the absorption caused by
the air particles passing through the perforations expands over a
wider frequency bandwidth.

The key observation from Fig. 11 is that all of the calculated
Helmholtz frequencies (see Table 6) are higher than the smooth
and wide-band peaks in the absorption curves, which originate
Fig. 11. Cases VA1 (a), VA2 (b), and VA3 (c). The corresponding Helmholtz frequencies
frequencies of the plate are also shown on the graphs ( ).
from the acoustic modes of the back cavity and viscous friction
in the vicinity of the perforations. This systematic shift to the lower
frequencies result from the added mass of the flexible plate
described by Cremer [27]. Unlike cases with rigid ones, in non-
rigid cavities the compressed air not only pushes out the particles
through the perforation, but exerts pressure on the flexible plate
also. Therefore, the eigen-frequency corresponding to the funda-
mental acoustic mode of a non-rigid cavity is referred as the first
cavity resonance frequency.
4.2.2. Comparison with experimental results
The validation of the discrete numerical model is completed by

comparing the predicted absorption coefficient for all cases given
in Table 4 with the measurements provided by Toyoda et al. [6]
in Fig. 12.

As shown in Fig. 12, the discrete numerical model represents
the general behaviour of a vibro-acoustic system successfully.
Although, there is a shift between the numerical simulation and
experiment results due to the difference in the material properties.
When the density is adjusted as a fit parameter to the value
qPVC ¼ 1300 kg=m3, the shift between the numerical simulations
and the measurements performed by Toyoda et al. [6] is signifi-
cantly reduced.
rint
5. Effect of perforation distribution

Three simulation cases illustrate the applicability of the pro-
posed discrete FE model. The effect of perforation distribution is
investigated by comparing 3 cases, whose geometric representa-
tions are provided in Fig. 13.

For all the cases shown in Fig. 13, the parameters D; Lc; L; E;g; m
and q have the same values as in Table 4. Moreover, the parame-
ters dp ¼ 1 mm; tp ¼ 0:2 mm are the same for cases Dist-0, Dist-1
and Dist-2. Table 7 provides the information for the remaining
parameters which vary between the test cases and the simulation
results are presented in Fig. 14.
are marked on top of the graphs ( ). Additionally, the first three vacuum eigen-
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Fig. 12. Comparison between the discrete numerical model ( ) and measurements by Toyoda et al. [6] (j). Additional simulations with the density as fit parameter adjusted
to qPVC ¼ 1300 kg=m3 instead of the density reported in the COMSOL library qPVC ¼ 1760 kg=m3 are shown as ( ).

(a) Dist-0 (b) Dist-1 (c) Dist-2

Fig. 13. Models for investigating the effect of perforation distribution: (a) uniform, (b) centered, and (c) peripheral distributions are shown.

Table 7
Parameters varying between test cases Dist-0, Dist-1 and Dist-2.

Dist-0 Dist-1 Dist-2

np 76 79 72
/ [%] 0.07 0.07 0.06
b [mm] 10 3 3

Fig. 14. Effect of perforation distribution. Dist-0: uniform, Dist-1: central, and Dist-
2 peripheral distribution (See Fig. 13).
The perforations distributions in Dist-1 and Dist-2 are selected
considering the 1st mode of a circular plate which is at its periph-
ery. For this mode, the largest displacement is expected at the cen-
ter of the plate. Therefore a significant difference is observed for
Dist-1 compared to the uniform case (Dist-0). Since the perfora-
tions are accumulated at the center, they change the structural
properties of the plate locally there. This results with frequency
shifts and higher absorption peaks related to the structural vibra-
tions. On the other hand, the sound absorption due to viscous
effects deteriorates, which can be an indication of the decrease in
the relative velocity between the plate and the air particles. In
other words, the plate and the air particles move in phase.

Since the edges are fixed, the local plate velocity is significantly
low near the periphery compared to its center. Therefore between
the absorption curves of Dist-0 and Dist-2, there is only a slight
deviation.

6. Conclusions

A new, efficient numerical model for estimating the absorption
characteristics of flexible micro-perforated plates (f-MPPs) is



presented. The model couples the linear acoustics with the shell
plate theory. Specifically, the flexible plate is assumed as a shell
domain and the micro-perforations are defined separately as
imposed transfer impedance boundaries on this domain. The calcu-
lation of the transfer impedance value of a single perforation is per-
formed by relations provided by Temiz et al. [16].

Since each perforation is represented separately, the proposed
model is referred to as the discrete numerical model. During the
model building it is observed that the Helmholtz solver takes the
area changes into account, hence inserting additional reactance
to the modelled system. This additional reactance is calculated
for several porosity values and a correction to the transfer impe-
dance expression proposed as a part of the numerical model.

The validation of the discrete numerical model is performed by
comparing it to the experiment results. The experiment results
from Toyoda et al. [6] is used for the validating the vibro-
acoustic coupling of the discrete numerical model. Good agree-
ment is achieved between the experimental and numerical results.

The proposed method enables one to treat perforation position
as an additional variable. As a result, the effect of non-uniform per-
foration distribution can be investigated for design purposes.
Moreover, even though only circular f-MPPs are studied in this
paper, it is possible to use the same model for all types of plate
geometries. The model has been used here with impedance of per-
forations with square edges. The effect of modified edge geometry
can be taken into account as proposed by Temiz et al. [16].

The use of the proposed model has been illustrated by an exam-
ple in a study of the effect of a non-uniform perforation distribu-
tion on f-MPPs on the sound absorption. It is observed that the
Prep
(a) Mesh-1

Fig. 15. The element size comparison for two meshes built to represent

(a) Mesh-1

Fig. 16. A slice of the numerical domain in yz-plane to show the gradual increase of th
represent the element size and the dimensions provided in the scale are in [m].
perforation distribution can have a significant effect on the viscous
damping mechanism.
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Appendix A. Mesh convergence

A mesh convergence study is performed for the discrete numer-
ical model. Since the most critical part of the numerical domain is
around the perforations, the element size representing the perfora-
tions is the main focus of this study. The size of the elements in and
around one of the perforations is compared in Fig. 15: Mesh-1 is
the typical mesh built for the simulations in this study and
Mesh-2 is the finer mesh built for checking the effect of element
size.

The parameters of the numerical model used for comparing the
effect of mesh is chosen among the test cases, i.e. VA1 (see Table 4).
The reason for selecting this particular case is that it has the small-
est perforation diameter, thus the number of elements in perfora-
tions is more critical than other cases in this study.
rint
(b) Mesh-2

the same geometry. The diameter of the perforation here is 0.5 mm.

(b) Mesh-2

e element size from the plate to the rest of the acoustic domain. Different colours



Fig. 17. The relative percentage error between Mesh-1 and Mesh-2. Increasing the
number of elements in the perforation by 5 times in each perforation results in a
difference of less than 1% relative error in the absorption coefficient. Please note
that when the absorption coefficient is not close to zero, the relative error is even
less.
Prep

To minimize the number of elements in the mesh, a gradually
increasing element size is used. The maximum growth rate of the
elements are selected as 1.35 in this study. As a result, once the
size of the elements around the perforations become smaller, they
affect the size of the elements around. The gradual change in the
element size away from the plate is given for Mesh-1 and Mesh-
2 in Fig. 16.

In Figs. 15 and 16, it is seen that Mesh-2 has 5 times more ele-
ments in a perforation compared to Mesh-1. Moreover, the size of
the elements are decreased both for the plate and the acoustic vol-
ume around the perforation. In general, the number of elements in
Mesh-2 is 30% more than those of Mesh-1. To assess this effect on
the absorption coefficient, the relative percentage error, �%, is cal-
culated as follows:

�% ¼ jaA2 � aA1 j
aA2

100%; ð18Þ

where aA1 and aA2 are the absorption coefficients calculated in the
simulations using Mesh-1 and Mesh-2, respectively. The graph over
the frequency range of interest, 100 Hz 6 f 6 2000 Hz is illustrated
in Fig. 17.

In Fig. 17, it is seen that, increasing the number of elements in
the perforations by factor 5 does not affect the absorption coeffi-
cient more than 1% for 100 Hz 6 f 6 2000 Hz. Considering the
absorption coefficient vs. frequency graph of Case VA1 (see
Fig. 12), the increase in �% is due to the evaluation of the ratio of
two small numbers. For absorption peaks, the relative percentage
error is significantly lower than 1%.
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