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a b s t r a c t 

The study is concerned with theoretical examination of thermo-acoustic instabilities in combustors and

focuses on recently discovered ‘flame intrinsic modes’. These modes differ qualitatively from the acoustic

modes in a combustor. Although these flame intrinsic modes were intensely studied, primarily numeri- 

cally and experimentally, the instability properties and dependence on the characteristics of the combus- 

tor remain poorly understood. Here we investigate analytically the properties of intrinsic modes within

the framework of a linearized model of a quarter wave resonator with temperature and cross-section

jump across the flame, and a linear n − τ model of heat release. The analysis of dispersion relation for the 

eigen-modes of the resonator shows that there are always infinite numbers of intrinsic modes present.

In the limit of small interaction index n the frequencies of these modes depend neither on the proper- 

ties of the resonator, nor on the position of the flame. For small n these modes are strongly damped.

The intrinsic modes can become unstable only if n exceeds a certain threshold. Remarkably, on the neu- 

tral curve the intrinsic modes become completely decoupled from the environment. Their exact disper- 

sion relation links the intrinsic mode eigen-frequency ω 

i with the mode number m 

i and the time lag τ : 

ω 

i = ( 2 m 

i + 1 )( π/τ ) + mπ/τ , where m = 0 , + / −1. The main results of the study follow from the mode 

decoupling on the neutral curve and include explicit analytic expressions for the exact neutral curve

on the n − τ plane, and the growth/decay rate dependence on the parameters of the combustor in the 

vicinity the neutral curve. The instability domain in the parameter space was found to have a very com- 

plicated shape, with many small islands of instability, which makes it difficult, if not impossible, to map

it thoroughly numerically. The analytical results have been verified by numerical examination.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

f  

a  

[

 

p  

e  

t  

p  

fl  

a  

fl  

o  

o  

b  

e  

i  

This is a preprint version
Published in Combustion and Flame 185 (2017) 188–209
DOI: 10.1016/j.combustflame.2017.07.012
1. Introduction

Instability in modern day combustors is an issue of fundamen-

tal interest and major practical concern [1] . The need of lowering

emissions pushes engineers to create ‘green’ combustion systems

by enhancing combustion efficiency and lowering emission prod-

ucts. In this context lean premixed pre-vaporized combustors be-

came the most popular way to address this challenge [2,3] . The

drawback of these combustors is their susceptibility to combus-

tion instability. These instabilities are thermo-acoustic instabilities

that can lead to self-sustained oscillations and cause severe dam-

age to the combustor. It has been common to assume that thermo-

acoustic instabilities are triggered by the coupling of flame heat

release and one of the acoustic modes. The acoustic modes exist

even in the absence of the flame. Thus, the overwhelming major-

ity of studies of combustion instabilities in last few decades was
∗ Corresponding author.
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ukherjee).
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ocused on the understanding of the acoustic modes, e.g. Lieuwen

nd Yang [4] , Poinsot and Veynante [5] , Schuller et al . [6] , Dowling

 7 ] and Dowling and Stow [ 8 ]. 

However, recently, a major shortcoming of the established

aradigm has been identified by Hoeijmakers et al. [9] , Hoeijmak-

rs [10] and Bomberg et al. [11] . Hoeijmakers et al. [9] suggested

hat the flame subsystem in a combustor can give rise to a com-

letely new family of modes, which are often referred to as the

ame intrinsic-thermoacoustic modes . Although it would be more

ppropriate to call them intrinsic thermoacoustic modes of the

ame and its nearby environment (burner). For brevity, through-

ut the paper we will call them just intrinsic modes . Thus, a set

f intrinsic modes (which might be unstable) can exist in a com-

ustor, apart from the conventional acoustic modes. Hoeijmakers

t al. [9] considered a n − τ combustor model with gradually vary-

ng reflection coefficient at the ends (i.e. + 1 to 0 at the closed end

nd −1 to 0 at the open end) and numerically evaluated intrinsic

ode frequencies. Their analytical analysis was confined to an in-

nite system. The implicit dispersion relation for the flame in an

nfinite system was found to be, ε + 1 + θF (ω) = 0 , where, F ( ω) is

http://dx.doi.org/10.1016/j.combustflame.2017.07.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/combustflame
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ame transfer function, ɛ is ratio of specific acoustic impedances

nd θ is ratio of temperatures across the flame. The real parts of

he intrinsic mode frequencies for an infinite system were found to

e ( π ± 2 k π )/ τ , where, τ is time lag and k is an integer. The ex-

licit expressions for the threshold of instability and the decay rate

ere given as, ( ε + 1 ) /θ and ( 1 /τ ) ln [ ( ε + 1 ) / nθ ] , respectively. The

nalytical results were complemented by numerical analysis of a

ingle intrinsic mode in a resonator. A possible physical explana-

ion of the origin of flame intrinsic modes was suggested to be the

ame reaction on the acoustic velocity fluctuations, created by its

wn heat release fluctuation. In other words, the flame (and its

earby environment) might create its own local, potentially unsta-

le, feedback loop. Independently, Bomberg et al . [11] performed

heoretical stability analysis using scattering matrix of the flame

nd matched their results with experiments [12 , 13] for two com-

ustor setups, one with a laminar flame holder stabilized and an-

ther with swirl stabilized turbulent flame. Thermo-acoustic insta-

ilities observed in these combustor setups were interpreted as

anifestations of intrinsic flame instability. Thus, it was concluded

hat the common assumption that in thermo-acoustic instabilities

ame heat release always locks onto one of the acoustic modes,

eeds to be critically reconsidered on a case by case basis. In a

arallel study by Emmert et al. [14] , the stability of intrinsic modes

as investigated from the viewpoint of a balance of the acous-

ic energy across the flame. Direct numerical simulations (DNS) by

ourtine et al . [15 , 16] and Silva et al . [17] , where a flame placed

n an acoustically anechoic environment, have also confirmed that

he intrinsic thermo-acoustic feedback is a genuine physical phe-

omenon, and not just a spurious by-product of simplistic mod-

ls. Recent study by Emmert et al . [18] has shown that a sum of

coustic and intrinsic modes constitutes the complete set of eigen-

odes of a combustor. A numerical procedure has been developed

o compute the acoustic and intrinsic eigen-modes of a combustor.

t was noted that it is sometimes difficult to distinguish the intrin-

ic and acoustic modes, solely, by comparing their mode shapes.

t has also been found that increased acoustic losses at the end of

ombustor may destabilize the combustion system due to intrinsic

ame instability. A somewhat similar observation has been made

n experimental study by Hoeijmakers et al . [19] . The experiments

uggest that as the acoustic reflections at the combustor bound-

ries decrease, the eigen-frequencies of the system becomes fully

etermined by intrinsic flame modes. The possible explanation was

iven as: the decrease in upstream and downstream acoustic re-

ections can put the flame in an open-loop, resulting in exposure

f intrinsic instability properties of the flame. 

Once the reality of the intrinsic modes has been established be-

ond any doubt, the following natural questions come to the fore.

t would be highly desirable to have an analytical criterion on the

ppearance of unstable intrinsic modes in a combustor and also,

t is important to know the boundaries and topology of the in-

tability domain in the multi-dimensional parameter space of a

ombustor. Besides, the effects of the combustor properties (e.g.,

ame location, boundary conditions at the ends, and parameters

f the cross-section and temperature jumps) on the intrinsic mode

rowth rates and positions have to be studied. To grasp the stabil-

ty behavior of intrinsic modes in a multi-dimensional parameter

pace via numerics might be extremely time consuming, if not im-

ossible. We reiterate that at present all analytical results for in-

rinsic modes are confined to anechoic environment, only. Overall,

n integrated picture of the instabilities of acoustic and intrinsic

odes is needed. The present work addresses this need by focus-

ng on the intrinsic mode part of the picture. 

Here we consider a standard 1-D acoustic model of a closed-

pen combustor with a heat source. The heat release rate is mod-

led by the linear n − τ law [20] . Within the framework of this

implified model we provide an overall picture of the intrinsic
rint

odes and explicit analytical expressions for the parameters of the

ntrinsic modes (growth rates, neutral curves, frequencies of unsta-

le modes) for the whole range of the system parameters. We also

how that whatever are the properties of the combustor, includ-

ng the end conditions, there is always infinite number of intrinsic

odes present. For small n , we derive explicit universal dispersion

elation for intrinsic modes. These modes strongly decay for small

 , which makes them practically impossible to observe. In closed-

pen combustors these modes can become unstable with increase

f n . The main discovery is that on the neutral curve the tran-

cendental dispersion relation can be factorized. We call this phe-

omenon decoupling . Factorization means that the intrinsic modes

ecome completely decoupled from the environment, i.e. it does

ot feel the properties of the combustor. This allows us to treat this

roblem analytically and to derive all the characteristics of intrin-

ic mode instabilities. The instability domain in multi-dimensional

arameter space proved to be so complicated that it would have

een close to impossible to retrieve it numerically. 

The paper is organized as follows. In Section 2 we introduce

ur model of a quarter wave resonator with n − τ model of heat

elease and derive a dispersion relation for small amplitude os-

illations. The dispersion relation takes into account the effects of

ross-section and temperature jumps across the flame. It forms the

asis of the subsequent analysis. In Section 3 , for the sake of com-

leteness, we reproduce the results from Mukherjee et al . [21] and

erive an analytical expression for the intrinsic modes in the limit

f small interaction index, n . In this limit the intrinsic modes are

eavily damped. Their frequencies are described by the same ana-

ytical expression as for the case of an infinite tube found by Hoei-

makers et al . [9] . The distinctive features of acoustic and intrinsic

odes are also highlighted and discussed using numerical results.

n Section 4 we describe decoupling of the intrinsic modes from

heir environment on the neutral curve and exploit it to derive

xplicit analytical expressions for the exact intrinsic mode neutral

urve, separating stability/instability domains on the n − τ plane

nd the growth rate near the neutral curve. We also find exactly

he intrinsic mode frequencies on the neutral curve. The analytical

esults are then compared with numerical simulations within the

ramework of the dispersion relation obtained in Section 2 and a

ery good agreement is demonstrated. In Section 5 we examine the

ependence on parameters (location of the flame, the cross-section

nd temperature jump) of the intrinsic modes. Finally, in Section 6 ,

e summarize our progress in understanding of intrinsic modes in

 combustor and outline the remaining open questions. 

. 1-D mathematical model of a resonator

Throughout this paper we will focus on analytical study of

ame intrinsic modes in a common 1-D model of acoustic quar-

er wave resonator. The previous analytical studies by Hoeijmakers

t al . [9] were performed for a tube with anechoic boundary con-

ition. The results of the only earlier analytical study of intrinsic

ame modes by Mukherjee et al. [21] will be reproduced in the

ext section. The acoustic modes in a resonator were extensively

tudied (see e.g., [4] ). Here we adopt the basic acoustic model from

chuller et al . [6] . The analytical approach we put forward here can

e extended to more complicated combustor setups, as well. How-

ver, for simplicity, we will restrict the current analysis to the sim-

lest case of a quarter wave resonator. The 1-D analytical formu-

ation based upon n − τ model provides an efficient versatile tool

nabling us to analyze the combustor modes and gives us a valu-

ble insight into the stability behavior of these modes in multi-

imensional parameter space. 

Figure 1 provides a schematic sketch of a quarter wave res-

nator with a compact heat source at x = x q , with x being the

ongitudinal coordinate with the origin at the closed end of the
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Fig. 1. Schematic sketch of a combustor with closed-open end conditions. The

combustor has a cross sectional area jump at the flame location x = x q . Thick 

arrows (brown online) symbolize the forward/ backward traveling waves up- 

stream/downstream of the flame. Shaded region (yellow online) marks the domain

of higher temperature after the temperature jump across the flame. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the

web version of this article).
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resonator. A 1 , A 2 / B 1 , B 2 are the pressure amplitudes for the for-

ward/backward going waves in the upstream and the downstream

region, respectively. The mean temperature is assumed to jump

from T 1 to T 2 across the flame. The cross sectional area jumps

across the flame from S 1 to S 2 . The effect of mean flow is neglected

in this analysis. 

The acoustic pressure and particle velocity at the upstream re-

gion and at the downstream region of the combustor can be writ-

ten as (e.g., [22] ): 

˜ p 1 ( x, t ) = 

[
A 1 e 

i k 1 x + B 1 e 
−i k 1 x 

]
e −iωt , 

˜ u 1 ( x, t ) = 

(
1 

ρ1 c 1 

)[
A 1 e 

i k 1 x − B 1 e 
−i k 1 x 

]
e −iωt (1)

and 

˜ p 2 ( x, t ) = 

[
A 2 e 

i k 2 x + B 2 e 
−i k 2 x 

]
e −iωt , 

˜ u 2 ( x, t ) = 

(
1 

ρ2 c 2 

)[
A 2 e 

i k 2 x − B 2 e 
−i k 2 x 

]
e −iωt . (2)

The wave numbers k i ( i = 1 , 2 ) upstream and downstream of

the flame can be presented as k 1 = ω/ c 1 and k 2 = ω/ c 2 , where ω
is the complex frequency, c 1 , c 2 represents the speed of sound and

ρ1 , ρ2 are the mean densities upstream and downstream of the

flame, respectively. We assume ideal boundary conditions at two

ends, 

at x = 0 , A 1 / B 1 = R 1 ( 0 ) = 1 , (3)

and, 

at x = L, B 2 e 
−ikL /A 2 e 

ikL = R 2 ( L ) = −1 . (4)

The pressure and flow rate balance at x = x q implies [7 , 23] , 

˜ p 1 ( x ) = 

˜ p 2 ( x ) , (5)

and 

S 1 ̃  u 1 ( x ) + 

(
( γ − 1 ) / ρ1 c 

2 
1 

)
˜ Q = S 2 ̃  u 2 ( x ) . (6)

Here, ˜ Q (t) is the heat release rate at x = x q and γ repre-

sents the ratio of specific heats of air ( c p / c v ). It is assumed that

the heat source acts like a monopole with a volume outflow

( γ − 1 )( ̃  Q / ρ1 c 
2 
1 
) . The linear heat release law can be assumed to

be of the form, (see e.g., [24] ) 

˜ Q ( t ) = 

(
ρ1 S 1 c 

2 
1 / ( γ − 1 ) 

)
n ̃

 u 1 ( t − τ ) . (7)

Here, n and τ are the interaction index and time lag, respec-

tively. The rate of heat release fluctuations, ˜ Q , is assumed to be

proportional to the local velocity upstream of the flame, ˜ u 1 , with a

time lag, τ . In the frequency domain this can be written as, 

˜ Q ( ω ) = 

(
ρ1 S 1 c 

2 
1 / ( γ − 1 ) 

)
n e iωτ ˜ u 1 ( ω ) . (8)

The set of homogeneous equations for A 1 , B 1 , A 2 and B 2 , (3) –(6)

is usually presented in the matrix form (e.g., [6] ) ⎡ 

⎢ ⎢ ⎢ ⎣ 

1 −1 0 

e i k 1 x q e −i k 1 x q −e i k 2 x q (
1 + n e iωτ

)
e i k 1 x q 

(
−1 − n e iωτ

)
e −i k 1 x q −

(
S 2 
S 1 

)(
ρ1 c 1 
ρ2 c 2 

)
e i k 2 x q 

0 0 −e i k 2 L 

For a nontrivial solution of the eigen-value problem (9) to exist

the determinant D of the 4 × 4 matrix in (9) has to be zero, which

yields D = 0. Here we, however, find it more convenient to use a

compact dispersion relation 
rint

0 

−e −i k 2 x q )(
ρ1 c 1 
ρ2 c 2 

)
e −i k 2 x q 

−e −i k 2 L 

⎤ 

⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎨
⎪ ⎩

A 1 

B 1 

A 2 

B 2 

⎫ ⎪⎬
⎪ ⎭ 

=

⎧ ⎪ ⎨
⎪ ⎩

0 

0 

0 

0 

⎫ ⎪⎬
⎪ ⎭ 

. (9)

 ( S 2 / S 1 ) ( ρ1 / ρ2 ) ( c 1 / c 2 ) + 1 ] cos ( ( k 2 − k 1 ) x q − k 2 L ) 

+ [ ( S 2 / S 1 ) ( ρ1 / ρ2 ) ( c 1 / c 2 ) − 1 ] cos ( k 2 L − ( k 1 + k 2 ) x q ) 

+2 n e iωτ sin k 1 x q sin k 2 ( x q − L ) = 0 

(10)

This compact form of dispersion relation provides the basis of

ll analytical derivations in the subsequent sections. We denote the

unction on the left hand side of transcendental equation (10) as

 ( ω). Thus, dispersion relation (10) can be re-written compactly as,

f ( ω ) = 0 . (11)

The dispersion relation can be simplified for special cases worth

onsidering in detail. When there is no cross-section and temper-

ture jumps across the flame, that is S 1 = S 2 and T 1 = T 2 , and thus

 1 = c 2 , ρ1 = ρ2 and k 1 = k 2 = k , dispersion relation (10) reduces

o 

os kL + n e iωτ sin k x q sin k ( x q − L ) = 0 . (12)

The dispersion relation (12) can be further simplified, when the

ame is located exactly in the center of the resonator, i.e. at x q =
/ 2 , 

os kL = n e iωτ / 
(
2 + n e iωτ

)
. (13)

The dispersion relation (10) , (12) and (13) prescribes the eigen-

requencies ω of the system in implicit form. Eq. (10) describes the

ost general case (a quarter wave resonator with a cross-section

nd temperature jump across the flame), while Eqs. (12) and

13) are the reduced versions of (10) for special cases. The real part

f ω is the frequency and the imaginary part is the growth/decay

ate. Since the dispersion relation in the form (10) is more

menable for analytical study than the commonly used matrix for-

ulation (i.e. the determinant of the 4 × 4 matrix in Eq. (9) ,
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quated to zero), we employ it as the starting point for our sub-

equent analysis. For an insight into the physics of flame intrinsic

odes, the particular simplifications of the dispersion relation (12) ,

13) will be also used. There is no general method enabling one to

olve transcendental equations of this type. However, as we show

n Section 4 , the dispersion relation can be factorized on the neu-

ral curves, which allows us to find the neutral curve exactly and

pproximate solutions in its vicinity. 

. The place of intrinsic modes in the general picture of the

esonator modes 

In this section for completeness we reproduce the results of the

nalytical study of flame intrinsic modes in a 1-D resonator from

ukherjee et al. [21] . We derive analytical expressions for intrinsic

ode frequency and decay rate in the limit of small n and numer-

cally validate the formula. 

.1. Analytical expression for intrinsic modes in the limit of small n 

or arbitrary end conditions 

To fix the idea we start with the simplest form of dispersion

elation, namely, (13) , which provides an implicit expression for all

he modes present in the resonator. The presence of flame intrinsic

odes, different from the conventional acoustic modes, has been

stablished recently [9] . Both stable and unstable intrinsic modes

ere observed in experiments and simulations, e.g. [11,16,17] . The

nstable modes seemingly appear out of nowhere. To understand

etter the place of intrinsic modes in the big picture it is desirable

o know whether these modes exist when they are not unstable,

nd if yes, where in the complex plane are their frequencies. In

his section we address these questions for the case of a quarter

ave resonator in the limit of weak flame. From the simplified dis-

ersion relation (13) it is easy to see that for n → 0 there are only

wo sets of roots: 

(i) the conventional acoustic modes specified by condition cos kL =
0 , and, 

ii) a new set of roots with large negative imaginary part (this is,

| e i ωτ | �1, or, in other words, the strongly damped modes). This

can be explained as follows. For nonzero cos kL , there is only

one possibility for Eq. (13) to have solutions, that is the numer-

ator has to be O (1). This implies that when n is small, e i ωτ has

to be large. We now apply the same reasoning to the general

case. 

The dispersion relation can be derived for generic combustors

ith arbitrary R 1 (0) and R 2 ( L ) retained in the original form in

qs. (3) and (4) , it reads 

( 1 + α) 
{

e iω β1 − R 1 ( 0 ) R 2 ( L ) e 
−iω β1

}
+ ( 1 − α) 

{
R 2 ( L ) e 

iω β2 − R 1 ( 0 ) e −iω β2

}
+ n e iωτ { e iω β1 + R 2 ( L ) e 

iω β2 − R 1 ( 0 ) e −iω β2

−R 1 ( 0 ) R 2 ( L ) e 
−iω β1 } = 0 (14) 

here α, β1 and β2 are given by, 

= 

(
S 2 
S 1 

)(
ρ1 c 1 
ρ2 c 2 

)
, β1 = x q 

(
1 

c 2 
− 1

c 1 

)
− L

c 2 
and 

β2 = 

L 

c 2 
− x q 

(
1 

c 1 
+ 

1

c 2 

)
. (15) 

To find the roots of the general dispersion relation (14) in the

imit of small n we multiply both sides of the resulting equation

y e iω β1 . This leads to the following expression, 

( 1 + α) 
{

e 2 iω β1 − R 1 ( 0 ) R 2 ( L ) 
}

i  
rint

+ ( 1 − α) 
{

R 2 ( L ) e 
iω ( β1 + β2 ) − R 1 ( 0 ) e iω ( β1 −β2 )

}
+ n e iωτ { e 2 iω β1 + R 2 ( L ) e 

iω ( β1 + β2 ) − R 1 ( 0 ) e iω ( β1 −β2 )

−R 1 ( 0 ) R 2 ( L ) } = 0 (16) 

By the same reasoning (as for the simplified dispersion rela-

ion considered above), the new set of roots (intrinsic modes) for

he general dispersion relation (14) must have large negative imag-

nary part. Thus, for these new roots all the exponents in (16) , (that

s 2 i ω β1 , iω ( β1 + β2 ) and iω ( β1 − β2 ) ) contain highly negative

eal part, as well. Hence, for small n , e 2 iω β1 → 0 , e iω( β1 + β2 ) → 0 ,

 

iω( β1 −β2 ) → 0 . Then dispersion relation (16) reduces to the fol-

owing simplified form that exhibits decoupling of intrinsic modes

rom the combustor end conditions R 1 (0) and R 2 ( L ),

( α + 1 ) + n e iωτ
]
R 1 ( 0 ) R 2 ( L ) = 0 . (17) 

Eq. (17) shows that in the limit of small n intrinsic modes

re so localized, that they do not feel the acoustic boundaries.

q. (17) leads us to an explicit dispersion relation for intrinsic

odes in the limit of small n , valid for any 1-D combustor obeying

 − τ model of flame heat release, 

( α + 1 ) + n e iωτ = 0 . (18)

Eq. (18) generates the explicit solution for intrinsic mode fre-

uency in the asymptotic limit of small n , as follows, 

 = 

(
2 m 

i + 1 

)
( π/τ ) − ( i/τ ) ln [ ( α + 1 ) /n ] (19a) 

≈
(
2 m 

i + 1 

)
( π/τ ) + ( i/τ ) ln ( n ) . (19b) 

here, m 

i is the mode number of the flame intrinsic modes. If we

ssume the cross-section to be constant, then expression ( 19a ) is

dentical to the result found by Hoeijmakers et al . [9] for an infi-

ite tube with a flame inside. Note a difference in notation: in the

resent paper n is the same as in Courtine et al. [16] , which re-

ates to n in Hoeijmakers et al . [9] (here labeled as n H ) as n = θn H ,

here θ = ( T 2 / T 1 ) − 1 . Thus, in the limit of small n intrinsic modes

or 1-D resonator have the same frequencies as those in infinite

ube. We stress that the frequencies given by ( 19b ) do not de-

end on any parameters of the resonator including the end con-

itions. Note, that the intrinsic modes have their own mode num-

ers, completely independent of the mode numbers of the acoustic

odes. 

From Eq. ( 19b ) it is also easy to see that in the limit of small

 there is always infinite number of intrinsic modes present in the

ystem for any n and τ . The real part of the flame intrinsic mode

requency depends only on the time lag alone and is given by the

xpression, ( 2 m 

i + 1 )( π/τ ) . The decay rates, however, do not de-

end on the mode number ( m 

i ). Decay rates are inversely propor-

ional to τ and logarithmically depend on n and the temperature

nd cross-section jumps of the resonator. In the asymptotic limit

f small n , flame intrinsic modes are always strongly damped and

ndependent of the characteristics of the resonator and flame po-

ition. Since the decay rate is high, the intrinsic modes to lead-

ng order in e −i k 1 L do not feel the combustor boundaries. This ex-

lains why the result coincides with those for the infinite tube.

he practical implication of strong damping of the intrinsic modes

n combustors with weak flames is that this feature makes it prac-

ically impossible to observe their manifestations in such regimes.

ntrinsic modes could only be visible when flame heat release rate

s high enough for these modes to approach the neutral curve. In

ection 4.2 we derive an explicit criterion for occurrence of intrin-

ic mode instability in the closed-open combustors. 

Thus, for small but nonzero n there is always infinite number

f flame intrinsic modes present in a combustor, just like there is

nfinite number of acoustic modes present in a resonator. However,

n contrast to nearly neutral acoustic modes, for small n all these
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Fig. 2. Sketch of the experimental setup (e.g. [25] , [26] ). The glass duct, marked by

thick line (blue online) shows combustor wall. The upper end of the glass duct is

open and the lower end is flanged (closed). The flame sits on the tip of a brass rod

(shown by thick black line), concentric to the glass duct. There is a hollow mild

steel rod (shown by thin line (blue online)) concentric to this glass duct. Supply of

air fuel mixture comes via this mild steel rod. The flame can be traversed across the

glass duct using a traversing mechanism (not shown in figure). The figure is not to

scale. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Contour plot of | f ( ω)| for n = 0.025 and τ = 3.0 ms for the particular case 

x q = L/ 2 and no temperature and cross-section jump. The parameters used for this 

plot are: the length L is 0.75 m, the cross-section S is 0.0016 m 

2 , the temperature T

is constant throughout the duct and equal 297 K ( c 1 = c 2 = c = 345 m/s). Two sec- 

tions are parts of the same contour plot. The domain of instability is lightly shaded

(marked in yellow online). Diamonds (blue online) and triangles (orange online)

represent the acoustic and intrinsic modes, respectively. Dashed vertical lines indi- 

cate the intrinsic mode frequency in the limit of small n , given by Eq. ( 19a ). (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article).
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modes are strongly damped. They cease to exist for n = 0 , while

acoustic modes do not. We have established that in the limit of

small n these modes are equally spaced and their frequencies are

determined only by the time lag τ and, correspondingly, do not

depend at all on other characteristics of the system. We will show

below that in certain bands of τ the intrinsic modes can become

unstable when the value of n exceeds certain threshold. Their be-

havior in the vicinity of neutral curve will be studied in Section 4 .

In itself the dispersion relation behavior in the limit of small n is

important only in the context of outlining the general picture of in-

trinsic modes. But its significance becomes apparent in Section 4 ,

since the frequencies of intrinsic modes on the neutral curve prove

to coincide exactly with the real parts of the eigen-values found in

the small n limit. 

3.2. Understanding the stability behavior of intrinsic modes 

Here we examine the features of the full dispersion relation

(10) numerically. For certainty, we consider as an example a com-

bustor with the parameters of the test rig at IIT Madras [25] : the

length L is 0.75 m, the cross-section S is 0.0016 m 

2 (based on

45 mm inner diameter of the lab scale combustor setup), the tem-

perature T is constant throughout the duct and equal to 297 K

when there is no flame. 

Figure 2 provides a sketch of the setup. The actual setup con-

sists of a glass duct (shown by thick line (blue online)) with top

end open and bottom end closed. Concentric to the duct there is

a thin brass rod (shown by black line), at the tip of which flame

sits. There is a hollow mild steel rod (shown by thin line (blue on-

line)) concentric to this brass rod, through which air/fuel mixture

comes in. In the actual setup, there is a substantial temperature

jump across the flame. The flame in the setup can be traversed

across the length of the glass duct. For most of our analysis we as-

sume the flame to be located at x q = L/ 2 . However, we stress that

the specific parameters of the combustor are immaterial for our

study and they are used for illustration only. Our analytical model

is valid independently of the combustor specific properties and di-

mensions, as long as 1-D model idealization and ideal end condi-

tions assumption remain valid. 
A valuable insight into the nature of the intrinsic modes can

e gained through a set of contour plots of the absolute value of

unction f ( ω) prescribed in the full dispersion relation (( 10 ), ( 11 )).

n the complex ω plane these plots show topology of f ( ω) and

oth the frequencies and the growth/decay rates of the modes at

he same time. They also facilitate a comparative study of acoustic

nd intrinsic modes. 

In Figs. 3 –6 , acoustic modes are marked with diamonds, while

ntrinsic modes are shown by triangles. The effect of tempera-

ure and cross-section jump across flame is neglected in Figs. 3 –

 . Figure 6 shows that taking into account the temperature and

ross-section jumps does not make any qualitative difference. For

implicity, the flame is assumed to lie at x q = L/ 2 ( Figs. 3 –6 ).

n Figs. 3 –5 , the acoustic mode frequencies are (2 m a + 1)( πc / 2 L )

for m a = 0 , 1, 2,… and assuming c 1 = c 2 = c) [27] and have zero

rowth rates in Fig. 3 . The instability domain is lightly shaded
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Fig. 4. Contour plot of | f ( ω)| for n = 1.0, τ = 3.0 ms. Notation and other parameters 

are the same as in Fig. 3 .
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Fig. 5. Contour plot of | f ( ω)| for τ = 5.0 ms and n = 1.0, x q = L/ 2 and no tem- 

perature and cross-section jump. Notation and other parameters are the same as in

Fig. 3 .

Fig. 6. Contour plot of | f ( ω)| for τ = 5.0 ms, n = 1.4, x q = L/ 2 , S 2 / S 1 = 1.5 and T 2 / T 1 
= 2.25 (or, c 2 / c 1 = 1.5)). Notation and other parameters are the same as in Fig. 3 . 
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marked in yellow online). The iso-lines in Figs. 3 –6 present the

apping of the absolute value of f ( ω) onto the complex ω plane.

he innermost closed loops of the iso-lines represent the solu-

ion region for modal frequency ω. In Figs. 3 –5 , the real part of

requencies of the modes are given both in dimensional form ( ω 

n rad/s) and, in parallel, non-dimensionalized based on the fun-

amental modal frequency of acoustic mode ( πc /2 L in rad/s), i.e.

e ( ω n ) = Re (ω) / ( πc / 2 L ) . In Fig. 6 , the non-dimensionalization is

erformed by cold resonator frequency of acoustic mode ( πc 1 /2 L

n rad/s). The growth rate is non-dimensionalized by intrinsic in-

tability frequency, i.e. Im ( ω n ) = Im (ω) / ( π/τ ) . The number of fre-

uencies in the system, indeed, exceeds by far the number of

coustic modes, as was also noted by Emmert et al. [18] in their

nalysis of a premixed combustor. 

To show in the same figure the iso-lines of | f ( ω)| for both

coustic and intrinsic modes with huge difference in the decay

ates, we split Fig. 3 into two panels: for small interaction index n

 n = 0 . 025 ) and time lag, τ equal to 3 ms. In the chosen frequency

ange there are three intrinsic modes with strong decay rates, as

hown in the bottom panel. These modes are equally spaced and

he frequencies of these modes are well predicted by ( 19a ). The

pper panel shows acoustic modes, which are neutral for the cho-

en n and τ . When in Fig. 4 , n is increased from 0.025 to 1.0, this

ecreases significantly the decay rates of the intrinsic modes. 

Comparison of Figs. 4 and 5 shows that increase of τ from 3 ms

o 5 ms reduces the intrinsic mode frequency. At some threshold

alue of n these intrinsic modes become unstable. For example, the

ourth intrinsic mode at 4398 rad/s becomes unstable when n is

.0. This instability frequency is the same frequency as predicted

y Eq. ( 19a ) in the asymptotic limit of small n . The same is true

or the second intrinsic mode. This behavior of intrinsic instabil-

ty frequency (being the same as in the limit of small n ) is ro-

ust: it does not depend on the presence of temperature or cross-

ection jumps in the system, as illustrated by Fig. 6 , where tem-

erature and cross-section jump across the flame are taken into

ccount. Even in this case the second intrinsic mode attains in-

tability at the same frequency as predicted by Eq. ( 19a ) in the

symptotic limit of small n . However, this is not the only possibil-

ty. In Section 4.1 , we will show that the intrinsic modes can also

ttain instability at a frequency shifted by ± π / τ with respect to

he frequency ( 2 m 

i + 1 )( π/τ ) predicted by Eq. ( 19a ). The intrinsic

ode frequency might also shift for the modes remaining linearly

table for all n , e.g. the first intrinsic mode in Figs. 4 and 5 . Numer-

cal simulations (not shown here) indicate that in certain bands of
all intrinsic modes become unstable upon exceeding certain n -

hreshold, the threshold will be derived analytically in Section 4.2 . 

In summary, we can say that intrinsic modes are strongly

amped in the limit of small n and in this range are easily dis-

inguishable from acoustic modes. On the complex ω plane the

odes could be always distinguished by tracing their position by

arying n . The frequency of the intrinsic modes depends primar-

ly on τ and does not depend on any parameters of the combustor

within the framework of the adopted model of the closed-open

ombustor with ideal end conditions). We stress that the frequency

epends on n very weakly. In contrast, the intrinsic modes stabil-

ty is strongly dependent on n . These modes can become unstable

pon exceeding a certain threshold value of n . 

.3. Maps of acoustic and intrinsic modes on the n − τ plane 

The similarities and the differences between acoustic and in-

rinsic modes can also be elucidated by a set of maps on the n − τ
lane. These maps offer us a lucid picture of the evolution of in-

rinsic modes in the parameter space and also serve as a valida-

ion tool for our analytical results of Section 3.1 . Figures 7 and

 give examples of such kind of maps for acoustic and intrinsic
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Fig. 7. Map of acoustic (squares) and intrinsic (circles) modes: modal frequency vs.

time lag τ for n = 0.01, 0.25, 1.0, x q = L/ 2 and there is no temperature and cross- 

section jump. Solid lines show the analytical solution ( 19a ) for small n . Other pa- 

rameters are the same as in Fig. 3 .

Fig. 8. Map of acoustic (squares) and intrinsic modes (circles): modal frequency vs.

interaction index n . Solid lines show analytical solution ( 19a ) for small n . The plot is

for: τ = 5 ms and two different resonator lengths: L = 0.75 m, 0.375 m. The flame 

is at x q = L/ 2 and there is no temperature and cross-section jump. The first, second, 

third, fourth and fifth intrinsic modes are indicated by numbers (i), (ii), (iii), (iv)

and (v), respectively.
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modes. The acoustic modes are indicated by squares and intrinsic

modes by circles. These modal frequencies are tracked down man-

ually on the complex frequency plane (as shown in contour plots

3–6) by changing parameters n and τ . The numerical results are

compared with the analytical solution ( 19a ) for small n . The effect

of temperature and cross-section jump is neglected here (and thus,

c 1 = c 2 = c = 345 m / s ) and the flame is assumed to lie at x q = L/ 2 .

In parallel with the dimensional time lag τ we also use a non-

dimensional time lag, τn = τ c / 2 L employing the natural acoustic

mode timescale 2 L / c , where c is the sound speed in the absence

of temperature jump. When the fundamental frequencies of acous-

tic mode ( m a = 0) and the intrinsic mode ( m 

i = 0 ) are the same,

i.e. π/τ = πc / 2 L , this will correspond to τn = 1 . Modal frequencies

of intrinsic modes are given both in dimensional form ( f in Hz)

and, in parallel, non-dimensionalized on the fundamental modal

frequency of acoustic mode ( c /4 L in Hz), i.e. f n = f/ ( c/ 4 L ) . 

In Fig. 7 the time lag τ varies from 1 ms to 5 ms. Three dif-

ferent values of n are considered: n = 0 . 01 , 0 . 25 and 1.0 and the
rint

orresponding modal frequencies are obtained using contour plots.

he flame intrinsic mode frequencies have (1/ τ ) dependence well

utside the limit of small n , which is shown by solid line hyperbo-

ae, representing the analytical solution ( 19a ) for small n . Multiple

yperbolic lines arise from the same analytical Eq. ( 19a ). For ex-

mple, in Fig. 7 we find that for time lag of 1, 2, 3, 4 and 5 ms,

s per Eq. ( 19a ) the first intrinsic mode frequencies are 500 Hz,

50 Hz, 166 Hz, 125 Hz and 100 Hz, respectively. These frequen-

ies are connected by the lowest hyperbolic line. Similar exercise

s carried out for higher order intrinsic modes, as well. Recall, that

he squares and circles in Figs. 7 and 8 indicate exact solutions of

he full dispersion relation (10) corresponding to the acoustic and

ntrinsic modes, respectively. In the range of small n it is easy to

istinguish the acoustic and intrinsic modes. The key implicit as-

umption employed in drawing these figures is that that the modes

dentified as acoustic (intrinsic) for small n remain acoustic (intrin-

ic) when n is increased. This assumption is not always justified.

oupling of acoustic and intrinsic modes might switch identities,

.e. in Figs. 7 and 8 the circles (intrinsic modes) and the nearby

quares (acoustic modes) might swap positions. This effect is ig-

ored in Figs. 7 and 8 . Here we did not carry out an extra analysis

equired to establish whether a particular mode remains acoustic

or a chosen value of n . Detailed discussion of this phenomenon

ill be reported in the follow up paper. 

In Fig. 8 , τ is fixed at 5 ms and n is varied from 0 to 1.5.

he corresponding modal frequencies are obtained from the con-

our plots similar to Figs. 3 –6 . When flame is not present in the

ystem, (that is, n = 0 ), the intrinsic modes are absent, while the

requencies of the acoustic modes are (2 m a + 1)( πc / 2 L ) (for m a =
 , 1 , 2 , . . . ) for a quarter wave resonator. As we increase n flame

ntrinsic modes emerge. The intrinsic mode frequencies are weakly

ependent on n . In the range of n considered here, the overall

hange of the intrinsic mode frequency is less than 5%. To illus-

rate weak dependence of intrinsic mode frequencies on the res-

nator length, Fig. 8 presents results for two different resonator

engths. Note that the significant change in frequency of the fourth

ntrinsic mode in Fig. 8 is not due to resonator length, rather it is

ue to intrinsic–acoustic mode coupling. In this case, due to mode

oupling, the acoustic mode becomes unstable at intrinsic mode

requency given by ( 19a ), whereas, the intrinsic mode attains in-

tability at a frequency shifted by π / τ with respect to the fre-

uency ( 19a ). Again, details of this phenomenon will be reported

n the follow up paper. However, an insight into the nature of this

ype of frequency shift caused by mode coupling will be given in

ections 4.1 and 4.2 . 

Crucially, the analytical prediction of the intrinsic mode fre-

uencies ( 19a ) obtained in the asymptotic limit of small n is found

o be a very good approximation for a wide range of n . A sub-

tantial variation of n hardly alters the intrinsic mode frequencies

hen we have intrinsic mode instability. However, a significant

hift of frequency can be visible when we have intrinsic–acoustic

ode coupling (e.g. the fourth intrinsic mode in Fig. 8 ) or when

ntrinsic mode remains linearly stable for all n (e.g. the first intrin-

ic mode in Fig. 8 ). The detailed discussion is beyond the scope of

urrent paper. The intrinsic mode frequency shift by ± π / τ with

espect to the frequency ( 19a ) will be explained in Section 4.1 . 

. Intrinsic mode instability: neutral curves and growth rates

Hoeijmakers et al. [9] found intrinsic modes to be unstable for

ome values of n and τ . Small n limit of dispersion relation ( 19b )

lso suggests that the decay rate of intrinsic modes is logarithmi-

ally dependent on n . As n increases, the decay rate decreases and

t some threshold value of n , the decay rate crosses zero, making

he intrinsic mode unstable. Here, in Section 4.1 , we will derive

xact analytical expression for the intrinsic mode frequency at the
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eutral curve. Then, in Section 4.2 , will find the exact threshold

alue of n for intrinsic mode instability, that is, we will find the

eutral curve in the n − τ parameter space. In Section 4.3 we de-

ive the growth/decay rates near the neutral curve. The geometry

f instability domains for each mode proved to be quite compli-

ated. Hence, to simplify handling of infinite number of modes we

ntroduce bounds for the stability domain in Section 4.4 and derive

imple estimate of the largest growth rate in Section 4.5 . 

.1. The frequency of the intrinsic modes at the neutral curve 

In the previous section we have found the intrinsic mode fre-

uency in the limit of small n . Here we derive the exact frequency

t the neutral curve on the n − τ plane taking into account cross-

ection jump, temperature jump and flame location. 

.1.1. Decoupling on the neutral curve 

The intrinsic modes found analytically for small n can be traced

umerically for arbitrary n . At first, we denote by ω 

i 
c 

the discrep-

ncy between the eigen-frequency ω 

i and ω 

i 
0 
, the small n predic-

ion given by real part of ( 19a ). We, however, stress that we do not

 priori assume ω 

i 
c 
/ ω 

i 
0 

to be small in our analysis. Thus, for any n ,

e ( ω 

i ) = ω 

i 
0

+ ω 

i 
c 
, where superscript i denotes the intrinsic modes.

or any value of n the intrinsic mode frequency ω can be written

s, ω 

i = Re ( ω 

i ) + iIm ( ω 

i ) , or ω 

i = ( ω 

i 
0 

+ ω 

i 
c 
) + iIm ( ω 

i ) . On substi-

uting this presentation of ω 

i into the full dispersion relation (10) ,

e can re-write it as, 

( α + 1 ) cos 
{(

ω 

i 
0 
+ ω 

i 
c 
+ iIm 

(
ω 

i 
))

β1 

}
+ ( α − 1 ) cos 

{(
ω 

i 
0 
+ ω 

i 
c 
+ iIm 

(
ω 

i 
))

β2 

}
+2 n e 

i 

(
ω i 

0 
+ ω i 

c 
+ iIm ( ω i ) 

)
τ

sin 

{(
ω 

i 
0 
+ ω 

i 
c 
+ iIm 

(
ω 

i 
))

x q / c 1 
}

sin 

{(
ω 

i 
0 
+ ω 

i 
c 
+ iIm 

(
ω 

i 
))

( x q − L ) / c 2 
}

= 0 

(20) 

here α, β1 and β2 are given by Eq. (15) . By virtue of real part

f ( 19a ) we have, e 
iω i 

0 
τ = −1 . Substitution of this identity into ( 20 )

implifies it further. By definition, Im ( ω 

i ) is equal to zero for the

hreshold value of n , i.e. Im ( ω 

i ) = 0 at n = n i 
th

. This specifies the

eutral curve. Thus, on the neutral curve the imaginary part of

20) reduces to, 

 in 

i 
th

sin 

(
ω 

i 
c 
τ
)

sin ( k 1 x q ) sin ( k 2 ( x q − L ) ) = 0 . (21)

Thus, this equation becomes factorized. It is satisfied when just

ne multiplier containing ω 

i 
c 

vanishes, that is, 

in 

(
ω 

i 
c 
τ
)

= 0 . (22) 

This gives us an explicit expression for ω 

i 
c 

, 

 

i 
c 
= mπ/τ , (23) 

here m is an integer (not to be confused with the intrinsic mode

umber m 

i ). Once ω 

i 
c 

is obtained via (23) , the frequency for neutral

ntrinsic mode can be calculated using its definition Re ( ω 

i ) = ω 

i 
0 

+
 

i 
c 
, which yields (on the neutral curve ω 

i = Re ( ω 

i ) ),

 

i = 

(
2 m 

i + 1 

)
( π/τ ) + ( mπ/τ ) . (24) 

On the basis of extensive (although not comprehensive) numer-

cal analysis of the full dispersion relation (10) we hypothesize

hat the modulus of integer m in (23) does not exceed unity, since

 m | > 1 would imply ω 

i 
c 
τ ≥ 2 π . Recall, that according to ( 19b ) the

eal parts of frequencies of two neighboring intrinsic modes in the

imit of small n are separated by 2 π / τ . Hence, any discrepancy ex-

eeding 2 π / τ will imply the change of the mode number. For ex-

mple, if the third intrinsic mode has the frequency discrepancy

xceeding 2 π / τ , it would have become the second intrinsic mode,
rint

hile the second intrinsic mode would have become third intrinsic

ode. Thus, these modes will exchange their identities. So far, in

umerics we have not seen a single instance of such an exchange.

herefore, we assume ω 

i 
c 

to be confined by the condition prohibit-

ng such an exchange of identities, −2 π/τ < ω 

i 
c 

< 2 π/τ . But even

f we lift the restriction and allow ω 

i 
c 

to exceed 2 π / τ , we find

hat the resulting new neutral curve segments (other than ω 

i 
c 
τ = 0 ,

 

i 
c 
τ = π and ω 

i 
c 
τ = −π ) correspond to the neutral curve segments

f either higher or lower order intrinsic modes. Thus, from the

tability prediction perspective, lifting the restriction | ω 

i 
c 
| < 2 π/τ ,

ields nothing new compared to what has been already captured

n the stability maps obtained under the restriction. 

According to (23) , on the m = 0 part of the neutral curve on

he n − τ plane ω 

i 
c 

= 0 , that is, the frequency exactly equals the

alue predicted in the limit of small n . This remarkable coincidence

ill be discussed in the next section. Apart from the m = 0 option,

he assumption prohibiting the exchange of identities condensed

nto condition −2 π/τ < ω 

i 
c 

< 2 π/τ , leaves only two other possi-

ilities, namely m = ±1 , which corresponds to intrinsic mode fre-

uency shifts by ± π / τ with respect to ω 

i 
0 
.

.1.2. Why is the instability frequency independent of the resonator 

arameters on the neutral curve? 

Thus we have found an unexpected remarkable exact result. On

he neutral curve the instability frequency is completely indepen-

ent of all the parameters of the combustor we take into account

n our model (the length, the flame location, cross-section jump

nd temperature jump) except the time lag τ . Here we briefly dis-

uss possible mathematical and physical reasons for such an un-

sual behavior. 

It is easy to see from (21) that at the neutral curve the intrin-

ic mode deviation ω 

i 
c 

from ω 

i 
0 
, i.e. its frequency in the asymptotic

imit of n → 0, is completely decoupled from the flame location

nd temperature jump, because of the equation factorization. Note

lso that the effect of cross-section jump does not even feature

n this equation. This makes the intrinsic mode frequency com-

letely independent of the environment on the neutral curve. In

he segment of the neutral curve corresponding to ω 

i 
c 
τ = 0 , the

igen-frequency is exactly equal to ω 

i 
0 

and in the segments cor-

esponding to ω 

i 
c 
τ = π and ω 

i 
c 
τ = −π , there is a frequency de-

iation of π / τ and −π/τ , respectively, compared to ω 

i 
0 
. There is,

owever, a qualitative difference between the eigen-frequencies in

he asymptotic limit of small n and the eigen-frequencies on the

eutral curve. In the limit of small n , the intrinsic modes are so

trongly damped, that they do not feel the combustor end condi-

ions and, hence, the length of the combustor, as well as, the po-

ition of the flame. We stress that as per ( 19b ) neither the real

art of ω 

i nor its imaginary part feels the parameters of the com-

ustor (except τ ) in the limit of small n . It can be seen from the

ontour plots in Figs. 3 –6 that as n is increasing the real part of

he eigen-frequency Re ω 

i for a given combustor is hardly chang-

ng. The only change of frequency can be seen when the real parts

f frequencies of neighboring intrinsic and acoustic modes are very

lose (then we have intrinsic–acoustic mode coupling scenario)

r when the intrinsic mode remains linearly stable for all n (e.g.

he first intrinsic mode in Figs. 4 and 5 ). Hence, the real part re-

ains insensitive to all parameters of the combustor (except τ ),

hile the decay rate does depend on all the characteristics of the

hosen combustor. When on complex ω 

i plane we approach the

eutral curve (from either side), the intrinsic modes growth/decay

ate by definition tends to zero. Hence, given that on the neutral

urve even the weak dependence of Re ω 

i vanishes, the dependence

f ω 

i on the flame location, cross-section and temperature jump

lso vanishes. To explain why the dependence of Re ω 

i on all pa-

ameters but τ vanishes on the neutral curve consider our sim-
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Fig. 9. Neutral curve (26) and stability domain on the n − τ plane for the second 

intrinsic mode ( m 

i = 1), when x q = L/ 2 and there is no temperature and cross- 

section jump (and thus, c 1 = c 2 = c = 345 m/s). Figures (a) and (b) are on a dif- 

ferent scale in τ . Figure (b) highlights the neutral curves in the smaller time lag

domain as compared to figure (a). The instability domain is lightly shaded (marked

in yellow online). The segments ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = π and ω 

i 
c 
τ = −π of the neutral 

curve are indicated by arrows (blue, red and green, respectively, online). The solid

lines show segments of the neutral curve for the second intrinsic mode and the

dashed lines show their continuations, which are also exact solutions of (26) . We

interpret them as neutral curves for acoustic modes coupled to the intrinsic mode.

Hatched area indicates the domain with multiple instability islands narrowing with

the decrease of τ . These islands are difficult to plot and therefore, they are not

shown. The other parameters are the same as in Fig. 3 . (For interpretation of the

references to color in this figure legend, the reader is referred to the web version

of this article).
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plified dispersion relation (13) which we repeat for convenience:

cos kL = n e iωτ / ( 2 + n e iωτ ) . By definition, on the neutral curve the

eigen-frequency ω is real. Since k = ω/c and the speed of sound c

is also real, this requires cos kL to be real, as well. This is possi-

ble only if e i ωτ is real, which implies sin ( ωτ ) = 0 , resulting in the

solution, ω 

i 
c 

= mπ/τ , where m is an integer. The same type of rea-

soning applies to the general form of the dispersion relation (10) . 

The decoupling phenomenon is not confined to the specific

quarter wave resonator we were examining. It can be shown that

the decoupling (or, in other words, the factorization of the dis-

persion relation) holds for other types of combustors of arbitrary

length, cross-section and temperature jump with perfectly closed

or perfectly open end conditions. 

4.2. Instability threshold for the intrinsic modes 

Here we derive an explicit expression for n as a function of

τ where intrinsic mode becomes unstable. We will refer to this

specific function as n i 
th

. On this basis for each intrinsic mode, we

will draw a set of neutral curves, i.e. the boundaries of stability

domains on the n − τ plane. These neutral curves will be ana-

lyzed below to provide an insight into stability behavior of intrin-

sic modes. Similar to Section 4.1 , the analysis in this section takes

cross-section jump, temperature jump and flame location into ac-

count. 

4.2.1. The neutral curve: exact solution 

Making use of e 
iω i 

0 
τ = −1 , the real part of (20) on the neutral

curve instantly yields the threshold n i 
th 

, 

n 

i 
th

= 

( α+1 ) cos 
{(

ω 

i 
0 
+ω 

i 
c 

)
β1 

}
+ ( α−1 ) cos 

{(
ω 

i 
0 
+ ωi 

c 

)
β2 

}
2 cos 

(
ω 

i 
c 
τ
)

sin ( k 1 x q ) sin { k 2 ( x q −L ) } , (25)

where α, β1 and β2 are provided by (15) . First we examine a

special case of x q = L/ 2 . In this case, expression (25) can be sig-

nificantly simplified. For the segments of the neutral curve corre-

sponding to ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = π and ω 

i 
c 
τ = −π we find

n 

i 
th

= 2 cos 

((
2 m 

i + 1 + m 

)πL

τ c 

)/ 

[ 
cos 

(
ω 

i 
c 
τ
){ 

cos 

((
2 m 

i + 1 + m 

)πL

τ c 

)
− 1 

} ] 
. (26)

Where, m is 0, + 1 and −1 for the neutral curve segments

ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = π and ω 

i 
c 
τ = −π , respectively. An equivalent non-

dimensional version can be written as, 

n 

i 
th

= 2 cos 

((
2 m 

i + 1 + m 

) π

2 τn 

)/ 

[ 
cos 

(
ω 

i 
c 
τ
){ 

cos 

((
2 m 

i + 1 + m 

) π

2 τn 

)
− 1 

} ] 
. (27)

where τn = τ c / 2 L . The neutral curve for the second intrinsic mode

( m 

i = 1 ) is shown in Fig. 9 as a typical example. Fig. 9 is divided

into two panels with slightly overlapping ranges in τ . Panel (b)

is the blow up of the smaller time lag domain as compared to

panel (a). In all subsequent neutral curves, we display both dimen-

sional and non-dimensional scales of time lag. In Fig. 9 tempera-

ture and cross section are uniform and thus, c 1 = c 2 = c = 345 m / s .

Figure 9 has two notable features. There is a narrow island of insta-

bility shown to the left and a large instability domain confined by

neutral curve loop on the right hand side, hereinafter referred as

‘neutral loop’ or just ‘loop’ for brevity. The right hand side loop has

three distinct segments. They correspond to the branches, ω 

i 
c 
τ = 0 ,

ω 

i 
c 
τ = π and ω 

i 
c 
τ = −π (blue, red and green online). Feature wise

the pattern of the instability island on the left is the same as

of the larger loop on the right. Moreover, this pattern is repet-

itive (with diminishing width) towards the left as evident from
ig. 9 (b). To avoid cluttering the figure, we hid the smallest pat-

erns under hatched lines. As these loops become thinner and thin-

er, they still manifest themselves as a combination of ω 

i 
c 
τ = 0 ,

 

i 
c 
τ = π and ω 

i 
c 
τ = −π segments of the neutral curve. In some

oops we have two neutral segments corresponding to ω 

i 
c 
τ = π

nd in some loops the sequence of ω 

i 
c 
τ = π and ω 

i 
c 
τ = −π is re-
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Fig. 10. Neutral curve (26) and stability domain for the second intrinsic mode ( mi

= 1) on the “extended” n − τ plane. The notation and parameters are the same as 

in Fig. 9 .
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ersed as compared to the main neutral loop on the extreme right.

he ‘instability domain’ is lightly shaded (marked in yellow online).

ach neutral loop composed of the neutral curve segments ω 

i 
c 
τ =

 , ω 

i 
c 
τ = π and ω 

i 
c 
τ = −π confines the instability domain from

elow. For small n, as we have shown in Section 3.1 , the intrinsic

odes are always strongly decaying; while with increase of n the

ecay rate decreases until vanishing and then changing sign at the

eutral curve. Hence, below the neutral curve there is always the

tability domain for intrinsic mode under consideration (it might

e unstable for another mode) and above is the instability domain

or the chosen mode. This will be independently verified below in

ection 4.2.2 . 

For any specific loop, the solid lines represent the neutral curve

or intrinsic modes and the dashed lines show their continua-

ions. These continuations are neutral curves segments for acoustic

odes coupled to intrinsic modes, since these dashed lines cor-

espond to exact neutral solutions of the full dispersion relation

10) deeply embedded into intrinsic mode stability domain. This

nterpretation is supported by numerical observations, discussed

elow in Section 4.2.2 . The conditions ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = π , as

ell as, ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = −π have to be satisfied simultane-

usly when we have a situation of intrinsic–acoustic mode cou-

ling. For these situations, for the same time lag we have two

oupled solutions (one for intrinsic mode and other for coupled

coustic mode) instead of a single solution for intrinsic mode. Sit-

ations of intrinsic–acoustic mode coupling occur near the inter-

ection point of neutral curve segments ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = π ; as

ell as, ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = −π ; in Fig. 9 . When there is no cou-

ling between intrinsic and acoustic modes, there is only one so-

ution corresponding to ω 

i 
c 
τ = 0 for the intrinsic mode. This is the

omain lying between the two afore-mentioned intersection points

n the neutral loop. Because of intrinsic–acoustic mode coupling

e can have an additional domain of instability. However, in this

aper this type of instability will not be discussed and in all neu-

ral curves from Fig. 9 onwards we focus on intrinsic instability

omain, only. 

The neutral curve segments corresponding to ω 

i 
c 
τ = π and

 

i 
c 
τ = −π yield higher values of n i

th
compared to the ω 

i 
c 
τ = 0 seg-

ent. The islands of instability in the left hand corner of Fig. 9 also

anifest coupling between acoustic and intrinsic modes. The rea-

on is the same as for the main neutral curve loop on the ex-

reme right in Fig. 9 (a). Because these loops are so narrow, that

he span of pure intrinsic mode ‘uncoupled solution’ corresponding

o ω 

i 
c 
τ = 0 is also quite narrow. Hence, the points of intersection

f neutral curve segments lie close to each other, which implies

uch stronger role of coupling in this domain of time lag. De-

ailed analysis of how intrinsic and acoustic mode live together in

 combustor and the corresponding overall stability domain due to

oupling of modes will be the subject of a follow up paper. How-

ver, discussing Fig. 9 we have to mention that there are also iso-

ated nearly vertical segments of the neutral curve we opted not

o show in the figure. These segments correspond to ω 

i 
c 
τ = π and

 

i 
c 
τ = −π segments located between the large loop on the right

nd the first small loop on the left of the figure and are also due

o acoustic modes coupled with intrinsic modes. 

Note that according to (25) , (26) , n i 
th

can be either positive

r negative. Of course, only positive n i 
th 

have physical sense. Cor-

espondingly, Fig. 9 is plotted showing only positive n i 
th 

. How-

ver, a helpful insight can be gained by looking at the neutral

urve continuation behavior in the unphysical domain, as well.

igure 10 presents the same instability domain on the “extended”

 − τ plane, i.e. with negative n i 
th 

included. The neutral curve seg-

ents ( ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = π and ω 

i 
c 
τ = −π ) extend into the nega-

ive n -region and intersect with each other. These intersections

w  
rint
re calculated numerically. Thus, positive n i 

th
exists only in certain

ands of τ (see Appendix A for details). The figure shows links be-

ween the seemingly disjointed neutral curve segments presented

n Fig. 9 . 

To give a better overall idea on the geometry of the instabil-

ty domain with more than one mode we first consider just first

hree modes (that is for m 

i = 0 , m 

i = 1 and m 

i = 2 ) simultaneously.

igure 11 illustrates the general tendencies: (i) as the mode num-

er m 

i increases, the neutral curve loop shifts to the right; (ii) the

pan of the islands of instability on the left increases, as well;

iii) the segments corresponding to ω 

i 
c 
τ = π and ω 

i 
c 
τ = −π be-

ome less steep for higher modes. Note that for the first intrinsic

ode ( m 

i = 0 ) the neutral curve segment ω 

i 
c 
τ = −π is very pe-

uliar. According to (26) n i 
th

is infinity, while ( 19a ) predicts zero

requency. First intrinsic mode, nonetheless, has neutral loop seg-

ents ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = π , which confine instability region that

verlaps with the small neutral loops on the left for second intrin-

ic mode, as can be seen from Fig. 11 . 

Note that the characteristic values of n i 
th

are smaller than to

he threshold values of n for an infinite tube found in [9] . For an

nfinite tube the same threshold in n can be obtained by equat-

ng the growth/decay rate to zero in Eq. ( 19a ). Hence we get,

 

i 
th 

= ( S 2 / S 1 )( ρ1 / ρ2 )( c 1 / c 2 ) + 1 , which yields n i 
th

= 2 for uniform

ube, i.e., for S 2 / S 1 = 1 , ρ1 / ρ2 = 1 and c 1 / c 2 = 1 . For a resonator

 

i 
th

can be substantially smaller, indeed. The range of values for 

 

i 
th

, as shown in Figs. 9 and 11 for a quarter wave resonator lies in

etween 0.4 and 1. The observation that in a resonator the intrin-

ic modes can become unstable at a much lower value of n might

ave major practical implications. 

.2.2. Numerical validation of the analytical predictions for the 

eutral curve 

Here we will corroborate numerically analytical results of

ection 4.2.1 for n i 
th 

, focusing on accuracy of the analytical predic-

ions for the examples considered in Figs. 9 and 11 . Figure 12 (a),

b) shows sample comparisons of the analytical prediction of n i 
th

given by (26) and (25) , respectively) with that of the exact numer-

cal solution of (13) and (10) , respectively for m 

i = 1 . We neglect

he effect of cross-section and temperature jumps in Fig. 12 (a),

hereas, in Fig. 12 (b), we assume the following jumps: S / S =
2 1 
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Fig. 11. The neutral curves (26) and stability domain on the n − τ plane for the first ( m 

i = 0), second ( m 

i = 1) and third ( m 

i = 2) intrinsic modes, shown by numbers 1, 2 

and 3 (Red, blue and magenta, respectively, online), when x q = L/ 2 and there is no temperature and cross-section jump. The common domain of instability for the first and 

second modes is marked in right hatching and indicated by (i) (lime online) and for the second and third intrinsic modes it is lightly shaded and indicated by (ii) (yellow

online). Horizontal hatching indicated by (iii) (gold online), darker shaded domain indicated by (iv) (brown online) and medium density shaded indicated by (v) (lavender

online) correspond to the non-overlapping domains of instability for the first, second and third intrinsic modes, respectively. Other parameters and notations are the same

as in Fig. 9 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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Prep1 . 5 and T 2 / T 1 = 4 (or, c 2 / c 1 = 2 )). The flame is assumed to lie at

x q = L/ 2 on both occasions. Dashed thin line (red online) shows the

threshold for an infinite tube according to [9] . In our notations the

expression for the threshold reads, n i 
th 

= ( S 2 / S 1 )( ρ1 / ρ2 )( c 1 / c 2 ) +
1 . The plots 12 (a) and (b) demonstrate that the numerical solu-

tion corroborates very well the analytical prediction, whether the

effect of cross-section and temperature jump is taken into consid-

eration or not. To plot the exact numerical solution we manually

track the loci of acoustic and intrinsic modes on the n − τ plane

by gradually increasing n . In this way, we ascribe identities to the

modes labeling them as intrinsic or acoustic. 

Figure 12 (a) and (b) also confirms the overall analytical pic-

ture. The instability domain has two distinctly different regions on

the n − τ plane; the narrow islands of instability on the left and

the main instability domain on the right. For the neutral curve on

the right of Fig. 12 (a) and (b), the analytical prediction of n i 
th

for

the intrinsic modes, exactly coincide with the numerical solution.

As mentioned in Section 4.2.1 , the combination of neutral curves

ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = π and ω 

i 
c 
τ = −π , is indeed a repetitive pattern for

any mode. Even though the numerical solution matches exactly the

analytical prediction on the left side region of the n − τ plane as

well, it is difficult to identify the nature of the modes in this region

without an extra analysis. Also, near the intersection of neutral

curve segments ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = π , as well as, ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = −π ,

intrinsic and coupled-acoustic modes invariably change their iden-

tities. Detailed discussion of these two aspects is beyond the scope

of current paper. Further, a comparison of the neutral curves for

the resonator and that of the infinite tube shows that the n i 
th

is

significantly lower for the resonator (see also Section 4.2.1 ). 

Thus, here we derived an explicit exact analytical expression

(25) for the neutral curves on the n − τ plane. A set of neutral

curves have been drawn for each mode. Figures 9 and 11 give a

good idea of the geometry of the instability domains. The neutral

curves have two qualitatively different regions. A region on the left,

n  
rint.e. towards smaller values of τ , comprises of loops with diminish-

ng (towards smaller) τ widths, made of strongly coupled acoustic-

ntrinsic modes. On the other hand, the region on the right ex-

ibits a single large loop. The neutral curve has three distinct seg-

ents corresponding to ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = π and ω 

i 
c 
τ = −π in the

n − τ space. The ω 

i 
c 
τ = π and ω 

i 
c 
τ = −π segments predict higher

alues of n i 
th 

compared to ω 

i 
c 
τ = 0 segments. These segments are

steep, but become less steep as the mode number, m 

i increases. For

igher values of m 

i , the span of the neutral curve segment ω 

i 
c 
τ = 0

ecomes wider and moves further to the right in the n − τ space.

e can find analytically the loci of the intersection points of the

eutral curve segments ±ω 

i 
c 
τ = π and ω 

i 
c 
τ = 0 . The analysis is,

owever, cumbersome and does not result in an easy to use for-

ula. To get tractable formulae we look for asymptotic behavior

or large and small τ . 

.2.3. Neutral curve asymptotics for small and large τ
Here we examine the neutral curve behavior for large and small

, which, in particular, will provide us compact formulae for n i 
th

t the intersection points of neutral curve segments ±ω 

i 
c 
τ = π ,

nd ω 

i 
c 
τ = 0 in the limit of large and small τ . For simplicity, the

effect of tem perature and cross-section jump is neglected in the

symptotic analysis presented below. The flame is assumed to be

t x q = L/ 2 and hence, the starting point of our analysis is Eq. (26) .

he analysis can be generalized to take into account temperature

ump, cross-section jump and any flame location, as well. However,

uch a generalization goes beyond the scope of the present work. 

.2.3.1. Asymptotics for small τ . It can be seen from Figs. 9 and

1 that the instability islands on the left hand side are quite nar-

ow and the boundaries corresponding to ω 

i 
c 
τ = ±π are almost

ertical. This trend continues further to the left as this pattern of

eutral curves is repetitive. As these islands of instability become
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Fig. 12. Neutral curve (( 25 ),( 26 )): comparison of analytical and numerical results

for m 

i = 1, x q = L/ 2 . (a) no cross-section jump or temperature jump, (b) S 2 / S 1 = 1.5 

and T 2 / T 1 = 4 (or, c 2 / c 1 = 2)). Solid and dashed lines show the analytical solutions 

for intrinsic and acoustic modes, respectively. Numerical solutions are shown by cir- 

cles (green online) and squares (red online). Dashed thin horizontal line (red online)

shows the threshold for an infinite tube: n i 
th 

= ( S 2 / S 1 )( ρ1 / ρ2 )( c 1 / c 2 ) + 1 . Other pa- 

rameters and notations are the same as in Fig. 9 . (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this

article).
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ncreasingly narrow, it becomes more difficult to resolve them ac-

urately numerically. In this section, we make use of this narrow-

ess of neutral curve loops and derive an approximate expression

or the width of the instability domains bounded by these loops. 

It can be shown (see Appendix A , Section A.1), that the maximal

alue of n i 
th

for the ω 

i 
c 
τ = 0 segments of neutral curve is 1 (when,

 2 / S 1 = 1 , c 1 / c 2 = 1 , ρ1 / ρ2 = 1 and x q = L/ 2 ) and we will use this

o find τ corresponding to maximum n i 
th

for ω 

i 
c 
τ = 0 . Moreover,

e can find the half width of the neutral loop for small τ regime,

y estimating the distance (in terms of τ ) between the position of

he local maximum of n i 
th 

and the intersection points of ω 

i 
c 
τ = 0
rint

nd ω 

i 
c 
τ = ±π . Here we will not seek exact analytical expressions

or the intersection points of the segments ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = ±π .

nstead, assuming the neutral curve segments ω 

i 
c 
τ = ±π to be ver-

ical and the intersection point of ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = ±π to cor-

espond to n i 
th

= 1 , we can derive an analytical estimate for the

alf width of the neutral loop. Since the neutral curve segments

 

i 
c 
τ = ±π are assumed to be vertical, the neutral curve loop width

s independent of the n i 
th

on ω 

i 
c 
τ = ±π segments.

First we find the location of τ corresponding to n i 
th

= 1 on the

eutral curve segment ω 

i 
c 
τ = 0 . Let us call it τ 1 . Requiring n i

th
= 1 ,

e immediately get from Eq. (26) 

os λ = −1 , (28) 

here λ = ( 2 m 

i + 1 ) πL / τ1 c . The solution of (28) is 

= ( 2 m + 1 ) π, m = 0 , 1 , 2 , . . . (29)

here m is the loop number of the neutral curve segment ω 

i 
c 
τ = 0 ,

ith m = 0 , being the rightmost loop. As we show in Appendix A ,

 has to be restricted to odd integers only, i.e., m = 2 j + 1 , be-

ause only for these loops n i 
th

is positive, whereas, for the loops

orresponding to even integers m = 2 j, n i 
th

is negative and, hence,

hese intersection points should be discarded from consideration.

aking use of (29) , we arrive at a simple expression for τ 1 corre-

ponding to the local maximum of n i 
th 

on ω 

i 
c 
τ = 0 ,

1 = 

{(
2 m 

i + 1 

)
/ ( 2 m + 1 ) 

}
( L/c ) . (30) 

We introduce τ2( + π) and τ2( −π) as the values of τ at the in-

ersections of n i 
th

= 1 with the ω 

i 
c 
τ = ±π segments of the neutral

urve. From (26) we find, 

os λ = 1 / 3 . (31) 

Solving (31) yields, 

= ( 2 m + 0 . 392 ) π. (32) 

Then for ω 

i 
c 
τ = π and ω 

i 
c 
τ = −π , we have λ( + π) =

( 2 m 

i + 2 ) πL / τ2( + π) c and λ( −π) = ( 2 m 

i ) πL / τ2( −π) c . Using (32) we

nd the points of the segment intersections, τ2( + π) and τ2( −π) 

2 ( + π) = ( L/c ) 
{(

2 m 

i + 2 

)
/ ( 2 m + 0 . 392 ) 

}
(33a) 

nd 

2 ( −π) = ( L/c ) 
{

2 m 

i / ( 2 m + 0 . 392 ) 
}
. (33b) 

The distance between τ 1 specified by (30) and τ 2 given by

 33a ) and ( 33b ) is the half width of the neutral loop in the asymp-

otic limit of small τ , �τ( ±π) = | τ2( ±π) − τ1 | . On making use of

 33a ) and ( 33b ) the solution for �τ ( ± π ) reads, 

τ( + π) = 

L 

c 

∣∣∣∣∣
(
2 m + 1 . 216 m 

i + 1 . 608 

)
( 2 m + 1 ) ( 2 m + 0 . 392 ) 

∣∣∣∣∣ (34a) 

nd 

τ( −π) = 

L 

c 

∣∣∣∣∣
(
2 m − 1 . 216 m 

i + 0 . 392 

)
( 2 m + 1 ) ( 2 m + 0 . 392 ) 

∣∣∣∣∣. (34b) 

An equivalent non-dimensional version based on τn = τ c / 2 L can

e expressed as, 

τn, ( + π) = 

1 

2 

∣∣∣∣∣
(
2 m + 1 . 216 m 

i + 1 . 608 

)
( 2 m + 1 ) ( 2 m + 0 . 392 ) 

∣∣∣∣∣
and 

τn, ( −π) = 

1 

2 

∣∣∣∣∣
(
2 m − 1 . 216 m 

i + 0 . 392 

)
( 2 m + 1 ) ( 2 m + 0 . 392 ) 

∣∣∣∣∣.
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This expression ( 34a, 34b ) can be further simplified for higher

values of m, �τ ( ± π ) ≈ ( L / c )(1/2 m ), which gives us the half width

of the neutral loop for small τ and large m . Recall, that the central

point of the neutral loop is given by (30) . 

Thus, we derived a simple expression for the neutral loop width

valid for large m and small τ . The loop width is independent of the

mode number of the intrinsic mode and is inversely proportional

to the loop number m . This quantifies how the instability island

width tends to zero as τ → 0. When τ → 0, the density of the

loops increases and therefore, it would be close to impossible to

capture faithfully this behavior using numerics. 

4.2.3.2. Asymptotics for large τ . As Fig. 11 suggests, the largest neu-

tral curve loop shifts towards larger values of τ , with increase of

the mode number. In this section we will find asymptotics of n i 
th

for large time lag τ , that is τ>>πL / c (see Eq. ( B.2 ) and the sup-

porting discussions). Large τ assumption provides a way to find

explicitly the intersection points for the neutral curve segments

ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = ±π belonging to the largest loop, as shown in

Fig. 9 . At the intersection n i 
th

simultaneously satisfies equations for

the neutral curve segments ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = ±π given by ( 26 ).

Although, the range of τ for which this large τ analysis is valid

might be too high from a practical combustor perspective, it is im-

portant to have an overall picture of the stability domain. The anal-

ysis addresses this need. Large τ part of the domain is also inter-

esting because the lowest threshold and the highest growth rates

occur there, which might serve as upper bounds for key character-

istics of practical combustors. We also mention that as we show

below simple formulae obtained using large τ asymptotics work

remarkably well far beyond the domain their formal applicability. 

The analysis (carried out in Appendix B ) yields an explicit ex-

pression for the normalized time lag, τ n ( τn = τ c / 2 L ), written as

τn ( + π, 0 ) , to stress the fact that it corresponds to the intersection

point of ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = π , valid for large τ ,

τn ( + π, 0 ) = 

(
4 m 

i + 3 

)
/ 
{

2 

(
2 m ( + π, 0 ) + 1 

)}
. (35)

Here, m ( + π, 0 ) = 0,1,2,… m ( + π, 0 ) , is the intersection point num-

ber of the neutral curve segments ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = π , with

m ( + π, 0 ) = 0 being the rightmost intersection point, while m 

i is the

mode number. Similar consideration of the intersections of the

neutral curve segments ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = −π yields,

τn ( −π, 0 ) = 

(
4 m 

i + 1 

)
/ 
{

2 

(
2 m ( −π, 0 ) + 1 

)}
. (36)

Here m ( −π, 0 ) is an integer indicating the intersection point

number of the neutral curve segments ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = −π ,

with m ( −π, 0 ) = 0 being the rightmost intersection point, while m 

i 

is the mode number. The n i 
th

corresponding to (35) and (36) can

be given as, 

n 

i 
th ( + π, 0 )

= 2 sin 

(
3 π/ 8 m 

i 
)
/ 
[
sin 

(
3 π/ 8 m 

i 
)

+ 1 

]
, (37)

n 

i 
th ( −π, 0 )

= 2 sin 

(
π/ 8 m 

i 
)
/ 
[
sin 

(
π/ 8 m 

i 
)

+ 1 

]
. (38)

This expression quantifies how n i 
th ( + π, 0 )

, n i 
th ( −π, 0 )

tends to zero as

m 

i increases. A comparison of (37) and (38) shows that n i 
th ( −π, 0 )

<

n i 
th ( + π, 0 )

. Thus the intersection points of neutral curve segments


 = 2 n 

i 
th

e iω 
i 

0
τ

{
iτ sin 

(
ω 

i 
0 
x q / c 1

)
sin 

(
ω 

i 
0 
( x q − L ) / c 2 

)
+ ( x q / c 1 ) cos 

(
ω

+ ( ( x q − L ) / c 2 ) sin 

(
ω 

i 
0 
x q / c 1

)
cos 

(
ω 

0

rint

 

i 
c 
τ = 0 and ω 

i 
c 
τ = −π , correspond to lower value of n i

th
compared

o the intersection of neutral segments ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = π .

Thus, to avoid dealing with large m ( + π, 0 ) , m ( −π, 0 ) and large τ
egimes head on, we found simple analytical description of the

oints of intersection of the segments of neutral curves ω 

i 
c 
τ = 0

nd ω 

i 
c 
τ = π , as well as, ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = −π , assuming large

. At the intersection of neutral curve segments, n i 
th

decreases with

ncrease of mode number. n i 
th 

at the intersection of ω 

i 
c 
τ = 0 and

 

i 
c 
τ = π is always larger than n i

th
at the intersection of ω 

i 
c 
τ = 0

nd ω 

i 
c 
τ = −π . The extreme right intersection point of ω 

i 
c 
τ = 0

nd ω 

i 
c 
τ = −π (that is, the intersection of the large loop with

 ( −π, 0 ) = 0 as given by (36) ) corresponds to the lowest value of

 

i 
th 

for any fixed mode number. These asymptotics prove to be ex-

remely useful for finding the bounds of the instability domain

n in Section 4.4 and estimates of the maximal growth rate in

ection 4.5 . 

.3. The growth/decay rates near the neutral curve 

In the context of intrinsic mode instability, the growth rate is of

rime interest. The derivation of growth/decay rate directly from

he original dispersion relation (10) for all values of n on the n − τ
lane, is a very challenging, but hardly a priority task. For large

eviations from the neutral curve, the mode in question is either

trongly decaying and, hence, plays little role in the dynamics of

he system, or has too high growth rates, which implies that the

inear theory we adopted quickly ceases to be applicable. Thus,

nly the growth/decay rates near the neutral curve are of true in-

erest. 

.3.1. Analytical expression for the growth rate 

Thanks to the discovered phenomenon of decoupling on the

eutral curve, in the previous section we established the exact lo-

ation of the neutral curve on the n − τ plane. Here, exploiting the

ecoupling and proximity to the neutral curve, we will find an-

lytically the growth/decay rate in the curve vicinity. To this end

onsider a point ( n, τ ) on the n − τ plane near the neutral curve

or a particular mode m 

i , denoting the deviation from the curve as

 

i 
1 
, i.e. n − n i

th
= n i 

1 
� n i 

th
. The eigen-frequency in the chosen point

 n, τ ) differs from its value on the neutral curve ω 

i 
0 

for the same

. We denote this deviation as ω 

i 
1 
. Assume that the real part of ω 

i
1

s small and of little interest near the neutral curve. This implies

hat ω 

i 
1 

represents the growth/decay rate. A priori this assumption

is difficult to justify rigorously. However, the fact that the real part

f eigen-frequency on the ω 

i 
c 
τ = 0 segments of the neutral curve

s exactly the same as for the limit of small n suggests that ω 

i 
1 

has

negligibly small real part. This assumption, as we show below, is

lso supported by numerics. 

Hence, n = n i 
th 

+ n i 
1 
, ω = ω 

i 
0 

+ ω 

i 
1 
. Substituting this expansion of

 and ω into the original dispersion relation (10) , neglecting higher

rder terms in ω 

i 
1 

in sin and cos function expansion and subtract-

ng the original dispersion relation (10) for ω = ω 

i 
0 

from this form,

e get a perturbed form of the dispersion relation (10) , which

ields an explicit analytical expression for the growth/decay rate

 

i 
1 
,

 

i 
1 

= 

2 n 

i 
1 
e iω

i

0
τ sin 

(
ω 

i 
0 
x q / c 1

)
sin 

(
ω 

i 
0 
( x q − L ) / c 2 

)
[
( α + 1 ) β1 sin 

(
ω 

i 
0 
β1 

)
+ ( α − 1 ) β2 sin 

(
ω 

i 
0 
β2 

)
− 


] . (39)

here, 

 c 1
)

sin 

(
ω 

i 
0 
( x q − L ) / c 2

)
L ) / c 2

)
}

.
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Fig. 13. Growth rate for m 

i = 1 at τ = 6 ms, x q = L/ 2 : (a) comparison of analyt- 

ical result (39) and numerical solution of the dispersion relation (13) , when S 2 / S 1
= 1 and T 2 / T 1 = 1; (b) comparison of analytical result (39) and numerical solu- 

tion of the dispersion relation (10) , when S 2 / S 1 = 1.5 and T 2 / T 1 = 4 (or, c 2 / c 1 = 

2)). Solid line and circles show the analytical and numerical solutions, respectively.

Dimensional (rad/s) and non-dimensional scales are used for the growth rate. The

instability domain is lightly shaded (yellow online). Other parameters are the same

as in Fig. 9 . (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article).
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hile α, β1 and β2 are given by (15) . It can be verified by direct

alculation of ω 

i 
1 
, that its real part is indeed insignificant, as was

ssumed. Thus, ω 

i 
1 

≈ Im ( ω 

i 
1 
) and will be treated as growth/decay

ate. We stress that in contrast to the frequencies on the neutral

urve, according to (39) ω 

i 
1 

depends on all combustor parameters,

ncluding the temperature and cross-section jump and the flame

ocation. 

Thus, we have derived a general explicit expression for the in-

rinsic mode growth/decay rates in the vicinity of the neutral curve

n the n − τ plane. For simplicity, only the first order term in n i
1

as been presented. Higher order corrections in n i 
1 

could be found

n a similar fashion. The justification of our a priori assumption

nd the accuracy of the analytical results will be demonstrated by

omparison with the numerical solution in Section 4.3.2 . The for-

ula above gives the growth/decay rates for each intrinsic mode.

n principle, by considering all the modes we can find the absolute

aximal growth rate or the least decay rate for any point ( n, τ )

n the n − τ plane. In practice, it might be difficult to deal with an

nfinite number of modes and therefore, alternatives are needed. 

.3.2. Numerical validation of analytical expression 

Here we validate the analytical growth rate given by (39) with

umerical solution of (10) and (13) . The comparison will also give

s an idea of the range of applicability and accuracy of our analyt-

cal approach. Figure 13 (a) presents results for the case of uniform

emperature and cross-section, whereas, Fig. 13 (b) shows compari-

on for the combustor with a temperature and cross-section jump

cross the flame. 

Figure 13 (a) shows a comparison of the analytical prediction of

he growth rates given by (39) with that of the numerical results.

n the vicinity of n i 
th

(0.98 for this case), analytical and numerical

redictions agree quite well. However, as we move away from n i 
th

he analytical prediction starts to deviate from the numerical re-

ults. As evident from Fig. 13 (b), this observation holds if the effect

f temperature jump is also taken into account. We can, therefore,

onclude that the analytical prediction for the growth rate is in

ood agreement with the numerical solution in the vicinity of n i 
th

,

here it is of most interest. Expectedly, as we move away from

he vicinity of n i 
th 

, the accuracy of approximate solution (39) de-

reases. However, we stress that a massive twenty percent devia-

ion from n i 
th

results only in smaller than two percent discrepancy

f the growth/decay rate. Recall also that our approximate solution

39) is a just the leading order term of expansion in n i 
1 

(the de-

arture of n from n i 
th

). Taking into account the next terms of the

xpansion would have further improved the accuracy. However, we

o not pursue this line here. 

Although, here we present just two examples of validation of

ur prediction of the growth rate, we stress that it has been thor-

ughly checked that the analytical prediction of the growth rate

39) works very well for all τ , including the vicinity of intersec-

ions of different segments of the neutral curve. Growth rate for-

ula (39) works equally well when the effects of cross-section and

emperature jump are taken into consideration. 

.4. Bounds on the stability domain 

In Section 4.3 we mentioned a potential difficulty in finding the

oundary of stability domain and growth/decay rates for any point

n the n − τ plane, when all the modes are taken into account. In-

eed, the small loops, on the left of the neutral curves for higher

odes, overlap with the large loop of the neutral curves for lower

odes, which creates an extremely intricate picture of overlapping

oops of different, often incomparable, widths for various modes.

o, here we suggest an alternative or a “short-cut”. Instead of deal-
ng with intricately curved stability domain specified by contribu-

ions of infinite number of modes, we coarse-grain the stability be-

avior of all the intrinsic modes and develop an “integral” stabil-

ty map that provides an upper and lower bound of the stability

omain on the n − τ plane. Figure 14 introduces the concept of a

tability envelope for the intrinsic modes. For the sake of simplic-

ty only the intrinsic modes one to six are shown in the figure. The

ffect of cross-section and temperature jumps across flame is ne-

lected here, even though it is straightforward to extend the anal-

sis for generalized case with temperature and cross-section jump.

nly the outermost stability loops for each mode are plotted; as it

as been discussed in the previous section that the outermost sta-

ility loops correspond to the minimal value of n i 
th 

. The dash dot-

ed black line indicates the upper bound of the stability envelope

nd the dashed black line shows the lower bound of the stability

nvelope. Short dashed thin line (pink online) shows the analytical

rediction (38) of the lower bound. Thus, there exists three dis-

inctly different regions of the coarse-grain stability: 
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Fig. 14. Neutral curve (26) and stability domain on the n − τ plane for the first six intrinsic modes, when x q = L/ 2 and there is no temperature and cross-section jump. The 

instability domain is lightly shaded (marked in yellow online). Black dashed line connecting intersections indicated by circles shows the instability domain lower envelope;

that is the locus of the lowest threshold of instability for each mode. Below this envelope, all points on the n − τ plane are guaranteed to be stable. Short dashed thin 

line (pink online) shows the analytical prediction (38) of the lower bound. Black dash-dotted line is the locus of the maximal threshold of instability for each mode. Above

this line all points on the n − τ plane are unstable. Between the dash-dotted and the dashed line, there is conditional instability domain. Stability at any point ( n, τ ) lying 

between these two lines depends on whether the point is in white or lightly shaded (yellow online) region. Hatched area indicates the domain with multiple instability

islands of decreasing scale, which are not shown. Also not shown are the narrow loops due to higher modes. For simplicity only the big right loop of neutral curves for each

mode were plotted, since these loops provide the minima of n i 
th 

. Other parameters used are the same as in Fig. 9 . (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article).
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Prep(i) For any point on the n − τ plane below the lower bound of the

stability envelope, all the intrinsic modes are linearly stable. 

ii) For any point on the n − τ plane above the upper bound of the

stability envelope, all the intrinsic modes are linearly unstable. 

ii) For any point on the n − τ plane in between the upper and

lower bound of the stability envelope, the intrinsic modes can

be linearly stable (for n − τ values falling into the white re-

gion) or unstable (for n − τ values corresponding to the lightly

shaded region (marked in yellow online)). For the points lying

in the lightly shaded (yellow online) region within the stabil-

ity envelope, roughly, the maximal growth rate is proportional

to the vertical distance of the point from the lower bound of

the stability envelope (this distance can be interpreted as n i 
1 

in

(39) ). Similarly, for the points lying in the white region above

the lower stability envelope, the maximal decay rate is pro-

portional to the vertical distance of the point from the upper

bound of the stability envelope. This domain needs extra anal-

ysis, which is carried out in the next section. 

The point, we want to re-iterate here, is that the large τ asymp-

totics formulae (( 36 ),( 38 )) for the lower bound of the stability en-

velope provides a good accuracy even far beyond the range of its

formal validity. 

4.5. Estimates of the maximal growth rates 

In itself the distance to the bounds of the stability envelope can

provide only qualitative tendencies of intrinsic mode growth/decay

rates as function of the parameters of the system. To quantify the

growth/decay rates we need to know the mode number of the

dominant mode. To this end we can employ the large τ asym-

potics (( 35 )–( 38 )), which were found to work surprisingly well for

the whole range of τ exceeding τ = πL /c (see Appendix B ). In the

generic case, any given τ specifies the two nearest mode numbers
rintsee Fig B.1a and the follow up discussion). As can be seen from

igs. 11 and 14 , all modes with numbers below those of these two

odes are stable (for large n ) for this τ and thus, their growth

ates need not be considered. Then the maximal growth rate can

e easily estimated using (39) , just by applying it to these two

odes. It can be shown that all the higher modes have smaller

rowth rates and, therefore, can be ignored. 

We elaborate this point by extra Fig. 15 . Similar to Fig. 14 , effect

f cross-section and temperature jumps across flame is neglected

ere, as well. Let us consider stability at a sample point on the

 − τ plane, choosing, say, n = 0 . 9 and τ = 16 . 5 ms (the point is

ndicated by the diamond). On the n − τ plane, according to our

arge τ asymptotics (36) , the chosen value of τ , τ = 16 . 5 ms falls

omewhere in between the values of τ corresponding to the min-

ma of n i 
th

for the second and third modes. Hence, Fig. 15 de-

icts just these two intrinsic modes in form of their large loops

f the neutral curve. As has been found in section 4.2.3.2 , n i 
th

is

inimal for the extreme right intersection point of ω 

i 
c 
τ = 0 and

 

i 
c 
τ = −π . Thus, the large neutral curve loop on the right cor-

espond to the dominant intrinsic mode instability. Any instabil-

ty corresponding to the smaller loops of overlapping higher order

odes will be weaker. Hence, the maximal growth rate will be de-

ermined by proximity to the large neutral curve loop on the right.

his will form the basis of our maximum growth rate estimate

t a particular point on the n − τ plane. The dashed vertical line

purple online) represents the formal (optimistically interpreted)

hreshold of applicability of the large τ asymptotics, τ = πL /c (see

B.2) and the supporting discussion). As we showed, the large τ
symptotics can be used with high confidence for all τ exceed-

ng this threshold. For the particular example indicated by dia-

ond ( n = 0 . 9 , τ = 16 . 5 ms ) the second intrinsic mode according

o (39) has a negative growth rate, while the actual growth rate

f the third intrinsic mode is 23 rad/s. Thus, for any τ exceed-
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Fig. 15. Neutral curve (26) and stability domain on the n − τ plane for two intrin- 

sic modes m 

i = 1, 2, when x q = L/ 2 and there is no temperature and cross-section 

jump. This figure shows a subset of curves from Fig. 14 . Note that the lower bound

of instability is shown by a dashed line (green online). The diamond indicates the

chosen sample point n = 0.9 and τ = 16.5 ms on the n − τ plane. The dashed 

vertical line (purple online), τ = πL /c , is the threshold in τ above which the large 

τ assumption applies (see (B.2) and the supporting discussion). Other parameters

used are the same as in Fig. 9 . (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article).
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Fig. 16. Effect of cross-section jump on the stability domain for m 

i = 1 , x q = L/ 2 

and no temperature jump. The plot is based on (25) and shows no cross-section

jump ( S 2 / S 1 = 1) and with ( S 2 / S 1 = 2) cross section jump configurations. The in- 

stability domains for the cases S 2 / S 1 = 1 and S 2 / S 1 = 2 are indicated by medium 

density shaded domain (ii) (lavender online) and darker shaded domain (iii) (brown

online), respectively. The common instability domain for these two cases is lightly

shaded and indicated by (i) (marked in yellow online). Other parameters and nota- 

tions are the same as in Fig. 9 . (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article).
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Prepng τ = πL /c , we can pinpoint the particular mode which has the

ighest growth rate and find using explicit expression (39) . It has

een checked by direct calculation that all higher intrinsic modes

ither have smaller growth rates than the third intrinsic mode or

emain stable. Note that had we taken the distance (along the ver-

ical) between the diamond and the dashed line (green online) in

ig. 15 as an estimate of n i 
1 
, then the maximal growth rate would

ave been 69 rad/s (assuming n i 
th

≈ 0 . 4 in (39) ). 

Thus, the coarse grained stability diagram is helpful for a rough

nstant stable/unstable answer. For a realistic estimate of the maxi-

al growth rate or minimal decay rate one has to identify first the

ost unstable mode using either (36) or Fig. B.1 (a). 

. Dependence of intrinsic mode stability on the

ross-section/temperature jumps and flame location 

Eq. (19a) describes how the dispersion relation for strongly de-

aying intrinsic modes depends on the cross-section jump and

emperature jump in the range of small n . In this section, we will

nd how n i 
th

and growth rate depends on the main parameters

f our combustor model: (i) cross-section jump, (ii) temperature

ump and (iii) flame location. 

Figure 16 illustrates the dependence of the neutral curve main

oop on cross-section jump, plotted on the basis of (25) . It presents

wo different cases of cross-section jump: S 2 / S 1 = 1 and S 2 / S 1 = 2 .

he effect of temperature jump across flame is neglected here and

he flame is assumed to situate at x q = L/ 2 . Darker shaded domain

brown online) and medium density shaded domain (lavender on-

ine) mark the instability domains for each case, with the com-

on domain being lightly shaded (marked in yellow online). In all

ubsequent figures the common instability domain is also lightly

haded (marked in yellow online). It can be seen from Fig. 16 that

he span of the largest instability domain on the right is wider for

ower values of cross section jump, whereas, the peak n i 
th

remains

he same. 
rintThe effect of temperature jump on n i 
th 

( τ ) is slightly differ-

nt. Figure 17 , plotted on the basis of (25) , compares two dif-

erent cases of temperature jump: for T 2 / T 1 = 1 (or, c 2 / c 1 = 1 )

nd T 2 / T 1 = 4 (or, c 2 / c 1 = 2 ). These two different cases are shown

or the flame locations (a) x q = L/ 2 ( = 0.375 m) and (b) x q =
/ 3 (0.25 m), respectively. The effect of cross-section jump across

ame is neglected here. Figure 17 (a) shows that temperature jump

tretches the neutral curve main loop slightly to the left but, at the

ame time, the span reduces on the right hand side. The peak of

eutral curve segment ω 

i 
c 
τ = 0 attains higher value. Thus, for this

ase, the n i 
th

increases with respect to temperature jump in the low

ime lag region of the neutral curve. The observations are slightly

ifferent for a different flame location, as shown in Fig. 17 (b). The

gure shows that the temperature jump reduces the span of the

eutral loop on either side and shifts the peak of the neutral loop

own at the same time. This means that for this case the n i 
th 

de-

reases with respect to temperature jump for all time lags shown

n the figure. 

Figure 18 , plotted on the basis of (25) , demonstrates the effect

f flame location on n i 
th

( τ ). The figure is drawn for two different

ame locations, x q = 0 . 375 m and 0.25 m for uniform temperature

nd cross-section. Figure 18 shows that as the flame location shifts

way from the middle of the resonator (that is x q = 0 . 375 m ), the

eutral curve stretches to the left and also, the n i 
th

increases for all

ime lags shown in the figure. Moreover, it can be shown that in

he absence of cross-section and temperature jump, the flame lo-

ation yielding the minimal n i 
th

is at the middle of the resonator.

he minimal n i 
th

flame location is independent of cross section

ump and depends only on the temperature jump across the flame.

n this context, note that the function on the right hand side of

q. (25) is a symmetric with respect to x q = L/ 2 . Thus, we can fo-

us only on one half of the resonator for the analysis of the effect

f flame location. 
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Fig. 17. Effect of temperature jump on stability domain for m 

i = 1 , with no cross- 

section jump. The plot is based on (25) and shows configurations with no temper- 

ature jump, i.e. T 2 / T 1 = 1 (or, c 2 / c 1 = 1) and with T 2 / T 1 = 4 (or, c 2 / c 1 = 2) temper- 

ature jump. Figures (a) and (b) are for two flame locations x q = L/ 2 and x q = L/ 3 . 

The instability domains for the cases c 2 / c 1 = 1 and c 2 / c 1 = 2 are indicated by 

darker shaded domain (iii) (brown online) and medium density shaded domain (ii)

(lavender online), respectively. The common instability domain for these two cases

is lightly shaded and indicated by (i) (marked in yellow online). Other parameters

and notations are the same as in Fig. 9 . (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article).

 

 

 

 

 

 

 

 

 

 

Fig. 18. Effect of flame location on stability domain for m 

i = 1 and there is no tem- 

perature and cross-section jump. The plot is based on (25) and shows two flame

locations: x q = 0.375 m and 0.25 m. The instability domains for the cases x q = 

0.375 m and x q = 0.25 m are indicated by darker shaded domain (iii) (brown on- 

line) and medium density shaded domain (ii) (lavender online), respectively. The

common instability domain for these two cases is lightly shaded and indicated by

(i) (marked in yellow online). Other parameters and notation are the same as in

Fig. 9 . (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article).
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A similar analysis can be performed for the growth rates, as

well. Figure 19 (a) and (b) shows the effect of cross section jump

and temperature jump, respectively, on the growth rate. Growth

rates are calculated using the analytical result (39) . Figure 19 (a)

shows two different cases for time lag, 7 ms and 9 ms (the flame

is at x q = 0 . 375 m ), where, cross-section jumps of S 2 / S 1 = 1 and

S 2 / S 1 = 2 are introduced for each case (while the temperature is

constant). The growth rate hardly depends on cross section jump

for the time lag of 7 ms, but increases significantly with increase

of the cross-section for the time lag of 9 ms. Figure 19 (b) shows
rintwo different cases for time lag, 6 ms (the flame is at x q = 0 . 375 m )

nd 5 ms (the flame is at x q = 0 . 25 m ), where, temperature jumps

f T 2 / T 1 = 1 (or, c 2 / c 1 = 1 ) and T 2 / T 1 = 4 (or, c 2 / c 1 = 2 ), are intro-

uced for each case (while the effect of cross-section jump across

ame is neglected). The account of temperature jump reduces the

rowth rate for a time lag of 6 ms and increases it significantly for

 time lag of 5 ms. 

Thus, by manipulating the system parameters like cross section

ump, temperature jump and flame location, one can indeed in-

rease/lower n i 
th

and decrease/increase the growth rate, and hence,

ampen/instigate the intrinsic mode instability. 

. Concluding remarks

In the present work we have examined analytically flame in-

rinsic modes within the framework of the simplest 1-D acoustic

odel of a combustor with n − τ heat release. For the sake of cer-

ainty, we considered a quarter wave resonator, although, our ap-

roach is also applicable to other configurations of combustors, as

ell. The main results could be summarized as follows: 

(i) We answered an outstanding question on where unstable in-

trinsic flame modes are coming from. Our analysis shows

that for any nonzero n and τ there are always an infinite

number of intrinsic modes present in any combustor. For

small values of n a simple explicit dispersion relation ( 19a )

describes a set of strongly damped modes. To leading order,

the real parts of the frequencies Re ( ω 

i ) = ( 2 m 

i + 1 )( π/τ ) ,

where m 

i is the mode number, do not depend on the char-

acteristics of the resonator and the flame position. This

is in contrast with the acoustic modes whose frequencies

are primarily determined by the resonator length, L ( ω a =
(2 m a + 1)( πc / 2 L ) (for m a = 0 , 1 , 2 , . . . ) for a quarter-wave

resonator). For small n , the decay rate of the intrinsic modes

does not depend on the mode number and is inversely

proportional to τ . The decay rate logarithmically depends
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Fig. 19. Effect of cross-section expansion and temperature jump on growth rates for

m 

i = 1 (based on (39) ). (a) Two different time lags (7 and 9 ms) are indicated by 

solid and dashed lines. Two values of the cross section jump ( S 2 / S 1 = 1 and S 2 / S 1 = 

2) are marked dark (blue online) and light (green online). The effect of temperature

jump across flame is neglected in (a). (b) Two different time lags at different flame

locations (6 ms at x q = 0.375 m and 5 ms at x q = 0.25 m) are plotted by solid and 

dashed lines. The growth/decay rate dependence on n for two values of temperature

jumps T 2 / T 1 = 1 (or, c 2 / c 1 = 1) and T 2 / T 1 = 4 (or, c 2 / c 1 = 2) are marked in dark 

(blue online) and light (green online). The effect of cross-section jump across flame

is neglected in (b). Other parameters and notation are the same as in Fig. 9 . The

domain of instability is lightly shaded (marked in yellow online). (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this article).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

conditions should be satisfied: 
on n . For the weak flame regime characterized by small n ,

the heavily damped nature of these modes makes it prac-

tically impossible to detect them in combustion systems.

The strong decay also makes these modes insensitive to the

flame location and the specific properties of the combustor

boundaries. Hence, to leading order the modes in any com-

bustor coincide with the intrinsic modes in the infinite tube

with anechoic boundary conditions. With increase of n , the

real part of the frequency shifts only very slightly, unless

there is intrinsic–acoustic mode coupling or linear stability

of the intrinsic mode for all n , and, thus, remains insensitive

to all parameters of the system but τ , while, the imaginary
rint

part depends on all parameters of the combustor and varies

significantly. 

(ii) For each intrinsic mode for certain bands of τ , there is a

threshold in n above which the mode becomes unstable. The

threshold depends on the characteristics of the combustor

and flame position, as explicitly given by expression (25) .

For each intrinsic mode the convoluted neutral curve sepa-

rating stability and instability domains is made of segments

of three types specified by the equations ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = π

and ω 

i 
c 
τ = −π , where ω 

i 
c 

is the discrepancy between the

real part of the frequency on the neutral curve and the real

part of the frequency in the limit of small n . The intricate

shape of the instability domain composed of infinite num-

ber of loops of various scales has been revealed. Remarkably,

on the long stretches of the neutral curve with the lowest

threshold in n , the frequency exactly equals the real part of

the frequency in the limit of small n . On the neutral curve,

the instability frequency is independent of the flame loca-

tion and the combustor parameters (except τ ) and the mode

completely decouples from the environment. This astonish-

ing analytical result has been validated numerically. The fact

that the frequencies of marginally unstable intrinsic modes

are determined solely by τ suggests that there are natural

oscillations in the subsystem fuel injector-flame; for some

combustors determined by the ratio of the distance from

fuel injector to flame front and the mean flow velocity. 

(iii) Crucially, the threshold value of n might be much smaller

for a quarter wave resonator compared to the case with

the anechoic boundary condition [9] . Thus, in a closed-open

combustor intrinsic modes might attain instability at a much

lower value of n . The analytical results for the neutral curve

are exact and could be used for testing complex software

packages. 

(iv) The growth/decay rates in the vicinity of the neutral curve

have been found analytically and validated numerically. A

stability envelope has been introduced to provide a coarse

grained stability diagram on the n − τ plane with all intrin-

sic modes taken into account. Below this stability envelope,

all modes are stable, above this envelope all modes are un-

stable and within the stability envelope, we have conditional

stability domain. A simple technique has been developed to

estimate the maximal growth rate at any point on the n − τ
plane. 

(v) The dependence of the instabilities on the key parameters

of the combustor (the flame location, the cross-section and

temperature jumps across the flame) has been described

analytically. On this basis by manipulating the system pa-

rameters like cross section jump, temperature jump and

flame location, one can indeed increase/lower the n i 
th 

and in-

crease/decrease the growth rate and hence, prevent/instigate

the intrinsic mode instability. 

(vi) The question on when acoustic or intrinsic modes are more

important in combustion instabilities remains outstanding.

Both scenarios are possible. Obviously, the intrinsic modes

can be dominant when all acoustic modes are decaying.

Such a possibility is illustrated by Fig. 20 . A sample con-

tour plot of | f ( ω)| is drawn for τ = 2 . 2 ms , n = 1 . 1 for the

combustor parameters specified in Fig. 3 . The first and sec-

ond intrinsic mode (indicated by triangles) are unstable in

this parameter range, whereas, all the acoustic modes (in-

dicated by diamonds) decay simultaneously, making the in-

trinsic mode the main factor in combustion instability. To

observe intrinsic instabilities in a combustor the following
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Fig. 20. Contour plot of | f ( ω)| for τ = 2 . 2 ms and n = 1.1, x q = L/ 2 and no temper- 

ature and cross-section jump. The domain of instability is lightly shaded (marked

in yellow online). Diamonds (blue online) and triangles (orange online) represent

the acoustic and intrinsic modes, respectively. Other parameters are the same as in

Fig. 3 . (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article).
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(a) n should exceed the instability threshold specified by

Eq. (25) ; 

(b) in general, to avoid being overshadowed by acoustic

modes, the acoustic modes should be subdued, which

can be ensured, e.g. by the ‘out of phase’ relation-

ship between the pressure and heat release rate per-

turbation according to the Rayleigh criterion. How-

ever, we can also have scenarios where both intrinsic

and acoustic modes are simultaneously unstable [28] .

Acoustic modes can be also subdued due to reduced

acoustic reflections from the combustor ends. How-

ever, since in this work we have not considered non-

ideal end conditions, we can mention this scenario

only as an educated guess supported by the findings

of Hoeijmakers et al. [19] . 

The present work was confined to analytic study of linear in-

trinsic flame modes per se within the framework of the simplest

n − τ model of a closed-open combustor and from our perspective

it answered all the questions we aimed at within the framework

of this setting. Now we briefly mention a few possible extensions

of this work. We mentioned in passing in Section 4.2 that in our

numerical analysis of the dispersion relation we encountered sit-

uations where acoustic and intrinsic modes are strongly coupled,

which suggests a novel alternative route to instability in which

intrinsic modes play a key role. We have not explored it in this

work. A detailed study of this route requires a dedicated study. A

more comprehensive picture of the combustor instabilities which

will integrate all types of linear instabilities (the classical acous-

tic modes, the intrinsic modes studied here and coupled acoustic-

intrinsic modes) can be built as a result. 

The n − τ model itself could and should be improved by tak-

ing into account the randomly distributed delay, which has been

successfully done for acoustic modes (e.g. [29–31] ). Emmert et al.

[14] studied intrinsic modes considering a realistic model for the

flame dynamics with distributed delays. Mean flow turbulence is a

possible source of distributed time delay (another possible source

could be advective dispersion), which tends to dampen the acous-

tic instability. Since most of the industrial combustors work in tur-

bulent regime, we could expect such setups to be less prone to
rint

ntrinsic instability than laminar setups. How much less and how

oes it depend on characteristics of turbulence and combustor –

emains to be quantified. It seems possible (and desirable) to de-

cribe this effect analytically employing our approach. 

The present approach can be also directly applied to combus-

ors with open-open end conditions for which the exact decou-

ling of intrinsic instability frequency from the combustor param-

ters also occurs. It can be also easily extended to combustor with

on-ideal end conditions, as well as to multitude of other systems,

hich could be considered as perturbed versions of the strongly

dealized model of closed-open combustor employed in this work.

nce the clarity within the framework of linear models is achieved

 study of nonlinear dynamics of intrinsic modes and their nonlin-

ar interactions with acoustic modes will be a natural next step

pening a vast new field. The analytical observations made in this

aper provided the first overall map of intrinsic instabilities, which

pens a possibility for better targeted experimental studies of the

ature of intrinsic modes and applicability of specific idealizations

dopted in the theoretical model. 
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ppendix A 

.1. Local maxima of n i 
th

for neutral curves 

In Section 4.2 we have found the value of n i 
th 

at the intersec-

ion of two segments of the neutral curve. However, it also might

e interesting to have an idea of the maximal/minimal values of

 

i 
th

corresponding to each segment. We can, at this point, make

n attempt to find the values of τ , for which, n i 
th

attains its local

xtremum. According to (26) , n i 
th

can be positive only when cos λ

s negative, where λ = ( 2 m 

i + 1 ) πL / ( τ c ) . Thus, to ensure positivity

f n i 
th 

we require, 

os 
[(

2 m 

i + 1 

)
πL / ( τ c ) 

]
< 0 . (A.1)

This produces an upper and lower bound on the values of τ for

 solution with positive n i 
th

to exist, where m is a positive integer

nd can have only odd values to satisfy (A.1) . 

( 2 L /c ) ( 2 m 

i + 1 ) / ( 2 m + 1 ) < τ < ( 2 L /c ) ( 2 m 

i +1 ) / ( 2 m −1 ) . (A.2)

Differentiating both sides of Eq. (26) for ω 

i 
c 
τ = 0 , we get the

ollowing equation; where, λ = ζ /τ , and ζ is a constant, defined

s, ζ = ( 2 m 

i + 1 ) πL /c , 

n 

i 
th 
/ dτ = 

{
−2 sin λ/ ( 1 − cos λ) 

2 
}(

ζ / τ 2 
)
. (A.3)

The necessary condition for the extrema of n i 
th

, dn i 
th 

/ dτ = 0 , re-

uires, sin λ = 0 . This generates an explicit solution for λ, λ = mπ ,

here m according to (A.2) is a positive odd integer. For these val-

es of m , cos λ = −1 . Thus, the value of τ corresponding to an ex-

remum is, 

= ( 2 m 

i + 1 ) ( L/c ) ( 1 /m ) . (A.4)

Differentiating both sides of Eq. (A.3) with respect to τ , we get

 

2 n 

i / d τ 2 = 2 

(
ζ 2 / τ 4 

)
cos λ/ ( 1 − cos λ) 

2 
. (A.5)
th 
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Clearly, d 2 n i 
th

/ d τ 2 < 0 for cos λ = −1 . Thus, the values of τ
pecified by ( A.4 ) correspond to maxima. According to ( 26 ) the

aximal value of n i 
th

is 1. 

Hence, we have derived an analytical criterion for the positiv-

ty of n i 
th

values and explained the specific feature of the neutral

urve showing multiple confined loops of instability. We have also

erived a maximum value for n i 
th

and the corresponding value of

. The maximal value of n i 
th 

, for the segment of neutral curve cor-

esponding to ω 

i 
c 
τ = 0 comes out as 1. Similarly, for the neutral

urve segments corresponding to ω 

i 
c 
τ = π and ω 

i 
c 
τ = −π , it can

e shown that the minimal value for this case is −1 and, hence,

hese segments of neutral curve do not have any maxima. 

ppendix B 

.1. Asymptotics for large τ

As Fig. 11 suggests, the largest loop of the neutral curve shifts

owards larger values of τ , with increase of the mode number. In

his section we will find asymptotics of n i 
th

for large time lag τ ,

hat is τ � 2 L / c . Large τ assumption provides a way to find explic-

tly the intersection points for the neutral curve segments ω 

i 
c 
τ = 0

nd ω 

i 
c 
τ = ±π belonging to the largest loop, as shown in Fig. 9 . At

he intersection n i 
th 

simultaneously satisfies equations for the neu-

ral curve segments ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = ±π given by (26) . We be-

in our analysis with the left intersection: ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = π .

n equating n i 
th

for ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = π from (26) we get

 cos ( λ) / { cos ( λ) − 1 } = 2 cos ( λ + δ) / { 1 − cos ( λ + δ) } , (B.1)

here, λ, δ and normalized time lag τ n are: 

= ( 2 m 

i + 1 ) π/ 2 τn , δ = π/ 2 τn , and τn = τ c / 2 L . (B.2)

We are now focusing on large τ asymptotics, i.e. δ in (B.2) will

e treated as a small parameter (i.e. δ�1, in other words τ�πL / c .

his is the exact range of applicability of large τ asymptotics.). Us-

ng this smallness of δ, Eq. (B.1) can be expanded in δ. On retaining

ust zero and linear terms we get, 

 cos λ − δ sin λ − 2 cos 2 λ + 2 δ sin λ cos λ = 0 , (B.3)

hich immediately yields an explicit expression for δ, 

= 

(
2 cos λ − 2 cos 2 λ

)
/ { sin λ( 1 − 2 cos λ) } . (B.4) 

We can consider λ, as a sum of a zero order term, λ0 and a cor-

ection 

˜ λ, λ = λ0 + ̃

 λ. To leading order in δ, δ = 0 and Eq. (B.4) be-

omes, 

 cos λ0 − 2 cos 2 λ0 = 0 . (B.5)

Eq. (B.5) yields two solutions for λ0 : cos λ0 = 0 , 1 . The cos λ0 =
 root corresponds to, τ n → ∞ . Hence, we choose the second

olution cos λ0 = 0 , which leads to the explicit solution for λ0 :

0 = ( 2 m ( + π, 0 ) + 1 ) π/ 2 , where, m ( + π, 0 ) = 0 , 1 , 2 , . . . . The integer

 ( + π, 0 ) is the intersection point number of the neutral curve seg-

ents ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = π , with m ( + π, 0 ) = 0 being the rightmost

ntersection point, while m 

i is the mode number. Since not all in-

ersections occur at positive n , m ( + π, 0 ) cannot take all integer val-

es. This limitation on m ( + π, 0 ) will be discussed below. Inserting

he two term expansion for λ in the form λ = λ0 + ̃

 λ into (B.4) we

et, 

= 

{
2 cos 

(
λ0 + ̃

 λ
)

− 2 cos 2 
(
λ0 + ̃

 λ
)}

/{
sin 

(
λ0 + ̃

 λ
)(

1 − 2 cos 
(
λ0 + ̃

 λ
))}

. (B.6) 

Due to presumed smallness of ˜ λ we assume cos ̃  λ ≈ 1 and

in ̃

 λ ≈ ˜ λ. Also, using sin λ = ( −1 ) m ( + π, 0 ) , for cos λ = 0 , we apply
0 0 s  
rint

he following trigonometric identities in Eq. (B.6) , cos ( λ0 + ̃

 λ) ≈
( −1 ) m ( + π, 0 ) ̃  λ, sin ( λ0 + ̃

 λ) ≈ ( −1 ) m ( + π, 0 ) . On neglecting the higher

rder terms in 

˜ λ, we obtain a simplified expression for δ from

B.6) , δ = −2 ̃ λ. Using this form and also, λ0 = ( 2 m ( + π, 0 ) + 1 ) π/ 2

nd Eq. ( B.2 ) we rewrite λ = λ0 + ̃

 λ as follows, 

( 2 m 

i + 1 ) π/ 2 τn = 

(
2 m ( + π, 0 ) + 1 

)
π/ 2 − π/ ( 4 τn ) . (B.7) 

After further simplification, we arrive at an explicit expression

or the normalized time lag, τ n , written as τn ( + π, 0 ) , to stress the

act that it corresponds to the intersection point of ω 

i 
c 
τ = 0 and

 

i 
c 
τ = π , valid for large τ ,

n ( + π, 0 ) = 

(
4 m 

i + 3 

)
/ 
{

2 

(
2 m ( + π, 0 ) + 1 

)}
. (B.8) 

Using (26) n i 
th 

at the intersection can be found as, 

 

i 
th ( + π, 0 )

= 2 cos 

{ (
2 m ( + π, 0 ) + 1 

)(π

2 

)(
1 − 1

4 m 

i 

)} / 

[ 
cos 

{ (
2 m ( + π, 0 ) + 1 

)(π

2 

)(
1 − 1

4 m 

i 

)} 

− 1 

] 
. (B.9) 

To ensure positive n i 
th ( + π, 0 ) 

, we require cos { ( 2 m ( + π, 0 ) + 1 )( π/ 2 )

( 1 − 1 / 4 m 

i ) } < 0 , thus, m ( + π, 0 ) will be restricted to odd integers,

.e. m ( + π, 0 ) = 2 j + 1 . The even intersection points should be dis-

arded from consideration. On substituting m ( + π, 0 ) = 2 j + 1 into

B.9), we obtain the simplified form, 

 

i 
th ( + π, 0 )

= 2 sin 

(
3 π/ 8 m 

i 
)
/ 
[
sin 

(
3 π/ 8 m 

i 
)

+ 1 

]
. (B.10) 

This shows how n i 
th ( + π, 0 )

tends to zero as m 

i increases. Further,

or m 

i >> 1, sin (3 π /8 m 

i ) ≈ 3 π /8 m 

i . Thus, for large m 

i (B.10) reduces

o, 

 

i 
th ( + π, 0 )

≈ 6 π/ 
(
3 π + 8 m 

i 
)

= 2 π/ 
(
π + 8 m 

i / 3 

)
. (B.11) 

Similar consideration of the intersections of the neutral curve

egments ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = −π yields,

n ( −π, 0 ) = 

(
4 m 

i + 1 

)
/ 
{

2 

(
2 m ( −π, 0 ) + 1 

)}
. (B.12) 

Here m ( −π, 0 ) is an integer indicating the intersection point

umber of the neutral curve segments intersections ω 

i 
c 
τ = 0

nd ω 

i 
c 
τ = −π , with m ( −π, 0 ) = 0 being the rightmost intersec-

ion point, while m 

i is the mode number. However, in contrast

o the previous case, to ensure positive value of n i 
th ( −π, 0 ) 

, we re-

uire cos { ( 2 m ( −π, 0 ) + 1 )( π/ 2 )( 1 + 1 / 4 m 

i ) } < 0 . Hence, the value

f m ( −π, 0 ) will be restricted to even integers, i.e. m ( −π, 0 ) = 2 j,

hereas, the odd intersection points should be discarded from

onsideration for this case. Equivalent to ( B.10 ), we can arrive at

n identical expression for n i 
th 

in this case, as well, 

 

i 
th ( −π, 0 )

= 2 sin 

(
π/ 8 m 

i 
)
/ 
[
sin 

(
π/ 8 m 

i 
)

+ 1 

]
. (B.13) 

This expression quantifies how n i 
th ( −π, 0 ) 

tends to zero as m 

i in-

reases. A comparison of ( B.10 ) and ( B.13 ) shows that n i 
th ( −π, 0 )

<

 

i 
th ( + π, 0 )

. Thus the intersection points of neutral curve segments for

his case correspond to lower value of n i 
th 

compared to the previ-

us case. For large mode numbers we arrive at an expression for

 

i 
th ( −π, 0 )

which is identical to (B.11), 

 

i 
th ( −π, 0 )

≈ 2 π/ 
(
π + 8 m 

i 
)
. (B.14) 

Figure B.1 shows how the values of τ and n i 
th

at the intersection

given by ( B.8 ), ( B.10 ), ( B.12 ), ( B.13 ), respectively) depend on the

ode number. The plots are for two particular intersection num-

ers: m ( + π, 0 ) = 1 and m ( −π, 0 ) = 0 . As mentioned previously, inter-

ection number m ( + π, 0 ) = 0 correspond to negative n i 
th

. Hence, we
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Fig. B.1. (a) Values of τ at the intersections of the neutral curve segments ω 

i 
c 
τ = 0 

and ω 

i 
c 
τ = ±π vs mode number of intrinsic mode. Solid line (red online) and 

dashed line (blue online) show the large τ asymptotic solution (( B.12 ), ( B.8 )) for the

intersections ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = −π (when m ( −π, 0 ) = 0) and ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = π (when 

m ( + π, 0 ) = 1) segments, respectively. Circles (red and blue in online) show their nu- 

merical counterparts found by plotting (26) and tracking down manually the points

of intersection of the corresponding neutral curve segments. The light grey color

represents the region where the large τ assumption might be applicable. (b) ni
th

at

the intersections of neutral curve segments ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = ±π vs mode num- 

ber of intrinsic mode. Solid line (red online) and dashed line (blue online) show an- 

alytical solution ( B.13 , B.10 ) for ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = −π (for m ( −π, 0 ) = 0) and ω 

i 
c 
τ = 0 , 

ω 

i 
c 
τ = π (for m ( + π, 0 ) = 1) intersections, respectively. Circles (red and blue in online) 

show their numerical counterparts as in panel (a). The instability domain is lightly

shaded (marked in yellow online). The first intrinsic mode is not shown. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to

the web version of this article).

 

 

 

 

 

 

 

 

 

 

 

t  

t  

s  

g  

b  

a  

a  

t  

t  

s  

i  

t  

r  

o

a

 

m

s  

c  

a  

c  

t  

i  

g  

l

r  

p

a

τ  

i

ω

a

a

m  

n

R

 

 

 

 

 

 

 

made plots for the intersection, m ( + π, 0 ) = 1 . In Fig. B.1 (a) the re-

gion above τ = πL /c is marked in light grey to indicate extremely

optimistic interpretation of the domain of validity of large τ as-

sumption (recall, the true condition of validity is τ � πL / c ). The

values of τ at the intersection of neutral curve segments go up as

the mode number increases, while n i 
th

at the intersection decreases

as ( 2 π/ ( π + 8 m 

i / 3 ) ) or ( 2 π/ ( π + 8 m 

i ) ) for high mode numbers. 

The figure can be also viewed from a different perspective. For

any given τ a straight horizontal line in Fig. B.1 (a) would give the

numbers of modes whose large loops overlap for such a combus-

tor. The intersection of this horizontal line with the solid straight

line gives in the generic case a non-integer m 

i . That is, this in-
rint

ersection falls in between the extreme right intersections of neu-

ral curve segments for two subsequent modes. In Section 4.4 it is

hown that only these two modes are important from the maximal

rowth rate prediction perspective. All modes with the numbers

elow these two modes are stable (for large n ) for this τ , while

ll modes higher than these two have lesser growth rate. For ex-

mple, τ = 25 ms intersection of ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = −π falls be-

ween the third and fourth intrinsic modes, whereas, the intersec-

ion of ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = π falls between eighth and ninth intrin-

ic modes, as shows the black dashed line projections on the hor-

zontal axis of Fig. B.1 (a) and/or relation (( B.8 ), ( B.12 )). Hence, it is

hese two modes which are of crucial importance from the growth

ate prediction perspective. Figure B.1 (b) also shows that the value

f n i 
th

at ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = −π intersection is always lower than n i

th

t ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = π intersection, in accordance with ( B.10 ) and

( B.13 ). Previously, considering Fig. 9 we noticed that for the second

ode n i 
th 

is minimal at the intersection of the ω 

i 
c 
τ = 0 , ω 

i 
c 
τ = −π

egments of the neutral curve for the extreme right loop in the

urve. This proved to be the case for all modes. Here in, Fig. B.1 we

lso plot the exact numerical solutions for segments of neutral

urve and tracking down manually the points of their intersec-

ions. The agreement between the “exact” numerical results shown

n Fig. B.1 by circles and the analytical predictions is remarkable,

iven that the large τ asymptotics is not formally applicable in the

eft corner of these figures. 

Thus, to avoid dealing with large m ( + π, 0 ) , m ( −π, 0 ) and large τ
egimes head on, we found simple analytical description of the

oints of intersection of the segments of neutral curves ω 

i 
c 
τ = 0

nd ω 

i 
c 
τ = π , as well as, ω 

i 
c 
τ = 0 and ω 

i 
c 
τ = −π , assuming large

. At the intersection of neutral curve segments, n i 
th

decreases with

ncrease of mode number. n i 
th

at the intersection of ω 

i 
c 
τ = 0 and

 

i 
c 
τ = π is always larger than n i

th
at the intersection of ω 

i 
c 
τ = 0

nd ω 

i 
c 
τ = −π . The extreme right intersection point of ω 

i 
c 
τ = 0

nd ω 

i 
c 
τ = −π (that is, the intersection of the large loop with

 ( −π, 0 ) = 0 as given by ( B.12 )) corresponds to the lowest value of

 

i 
th

for any fixed mode number. 
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