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In the present work, we perform a stability analysis of a matrix burner configuration consisting of
a semi-infinite 1D duct. It is closed with a rigid piston at the upstream end. A cavity is formed
by a perforated plate placed a finite distance downstream of the piston; this perforated plate also
acts as a flame holder, in that it stabilises a matrix flame. The distance between the closed end
and the perforated plate, i.e. the cavity length, can be varied by varying the piston location. Our
model for the flame is based on the Flame Describing Function (amplitude-dependent flame trans-
fer function) measured by Noiray (Ph.D. Thesis, École Centrale Paris, 2007). It is an analytical
expression and features two prominent time-lags, i.e. we write the heat release rate in terms of the
time-delayed velocity as a superposition of two Gaussians, each characterised by three amplitude-
dependent quantities: central time-lag, peak value and standard deviation. The parameters of our
time-lag model are deduced from the experimental Flame Describing Function using error min-
imisation and nonlinear optimisation techniques. We then analyse the stability behaviour of the
combustion system using a tailored Green’s function approach. The main parameters of interest
are the amplitude and the cavity length.
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1. Introduction

In combustion systems like gas turbine engines, feedback between pressure oscillations and the
resulting heat release rate fluctuations can cause high-amplitude oscillations, which are called ther-
moacoustic instabilities. They can cause severe structural/hardware damage.

An important feature of models to predict such instabilities is the heat release law, i.e. the re-
lationship between the rate of heat released by the flame and the acoustic velocity that perturbs the
flame. This relationship can be measured (by exciting an acoustic field and measuring the resulting
fluctuations in the heat release rate). Fourier transform of the measured time histories gives the Flame
Transfer Function (FTF). This is a frequency-domain quantity, defined by

T (ω) =
Q̂(ω)/Q̄

û(ω)/ū
, (1)

where Q̂(ω) is the rate of heat release and û(ω) is the acoustic velocity, and Q̄, ū are the corresponding
mean values.

Typically, a measured FTF is available at certain frequency values in a given frequency range. If
this is to be used in low-order models, it needs to be converted into an analytical expression. Early
attempts to obtain such an expression have been made by Heckl [1, 2]; she constructed a heat release
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law from FTF values measured by Noiray [3] for a matrix burner. This was effectively an extended
nτ - law, containing not only a time-delayed velocity term, but also an instantaneous term. Further-
more, the time-lag and coupling coefficients were dependent on the excitation amplitude, and she
also represented this amplitude dependence analytically, based on Noiray’s measurements at different
amplitudes. This allowed the study of the stability behaviour of the matrix burner, using a tailored
Green’s function method.

In this paper, we follow the method described in [1, 2], but analytically represent the FTF and
its amplitude-dependence in a more general and systematic way. The new heat release law will be
described in terms of a multiple time-lag distribution, both in the time and frequency domain. This is
shown in section 2. The tailored Green’s function approach and stability calculations are outlined in
section 3. Stability predictions are given in section 4, followed by the discussions and outlook.

2. Multiple time-lag (MTL) approximation

The dynamic behaviour of many flames is characterised by two or more prominent time-lags, and
by a distribution of the heat release rate around these time-lags. Let us assume a generic heat release
rate law with k prominent time-lags τ1, τ2, · · · , τk, and with a Gaussian distributionD centred around
each of them,

Q
′
(t)

Q̄
= n1

∫ ∞
−∞

u
′
(t− τ)

ū
D(τ − τ1)dτ + n2

∫ ∞
−∞

u
′
(t− τ)

ū
D(τ − τ2)dτ + · · ·

+ nk

∫ ∞
−∞

u
′
(t− τ)

ū
D(τ − τk)dτ, (2)

where D, is given by

D(τ − τj) =
1

σj
√

2π
e

(
−(τ−τj)

2

2σ2
j

)
, j = 1, 2, · · · , k. (3)

Eq. (2) contains 3k parameters, τ1, τ2, · · · , τk, n1, n2, · · · , nk and σ1, σ2, · · · , σk, which are treated
as fitting parameters and assumed to be amplitude-dependent. Taking the Fourier transform of Eq. (2).
and rearranging, we get the FTF for each amplitude of excitation, i.e. the Flame Describing Func-
tion (FDF) as

Tk(A, ω) =
Q̂(ω,A)/Q̄

û(ω,A)/ū

= n1(A)e
−ω2σ1(A)2

2 eiωτ1(A) + n2(A)e
−ω2σ2(A)2

2 eiωτ2(A) + · · ·+ nk(A)e
−ω2σk(A)2

2 eiωτk(A). (4)

The unknown fitting parameters in this multiple time-lag approximation are determined using by the
optimisation routine fminsearch in MATLAB R© and minimising the error between approximated
FDF and the actual FDF for all amplitudes of excitation at which measurement data are available. We
also impose the additional constraint that |TK(A, ω)| = 1 at ω = 0, which gives

k∑
j=1

nj = 1. (5)

The amplitude dependence of each parameter in the MTL approximation is also modelled analytically
by representing it by a linear function, Altogether, we obtain a fully analytical expression for the FDF.

We now apply the multiple time-lag expression (Eq. 4) to approximate the FDF measured by
Noiray [3, 4]. This has only two prominent time-lags [5], so only two terms need to be included,

T2(A, ω) = n1(A)e
−ω2σ1(A)2

2 eiωτ1(A) + n2(A)e
−ω2σ2(A)2

2 eiωτ2(A), (6)
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and Eq. (5) reduces to
n1 + n2 = 1. (7)

The unknowns are n1, n2, τ1, τ2, σ1 and σ2. Experimental FDF data are available for 5 amplitude
values: A/ū = 0.13, 0.23, 0.40, 0.48, and 0.54. The optimum values of n1, n2, τ1, τ2, σ1 and σ2
were calculated with the MATLAB R© routine fminsearch individually for each amplitude. The
results are shown by symbols in Fig. 1. It is evident that they depend on amplitude. We model this
amplitude dependence by a linear function. This is shown by the dashed lines in Fig. 1: the lines for
n1, τ1, τ2, and σ1 have a positive slope, and those for n2, and σ2 have a negative slope. Numerical
values for the slope and the vertical position of each line were obtained by least squares method;
(disregarding the results for A/ū = 0.54, which seem to be outliers); they are listed in Table 1.

Eq. (6), together with the parameters listed in Table 1, represents a fully analytical approxima-
tion of the measured FDF. It also gives us an extrapolation for higher amplitude values for which
experimental data are not available.
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Figure 1: Amplitude dependence of the model parameters for the FDF approximated with the two time-lag
model. The dashed lines represent linear approximations for the amplitude dependence. The amplitude depen-
dence is tabulated in Table 1.

Table 1: Amplitude dependence of the model parameters approximated by linear functions.

Parameter Dependence on A/ū
n1 0.25877(A/ū) + 1.5515

n2 −0.25873(A/ū)− 0.55153

τ1 0.0010114(A/ū) + 0.00078563

τ2 0.00057397(A/ū) + 0.0017958

σ1 0.00025061(A/ū) + 0.00029299

σ2 −5.9323×10−05(A/ū)+0.00076098
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A/ū = 0.13 Exp†

A/ū = 0.23 Exp†

A/ū = 0.40 Exp†
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A/ū = 0.54 Exp†

A/ū = 0.13 MTL
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A/ū = 0.48 MTL
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Figure 2: Gain (left) and Phase (right) vs frequency for the FDF of a matrix burner flame. Markers: experimen-
tal values; continuous curves: analytical approximations using the expressions given in Table 1.
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Figure 2 shows the measured FDF with markers, and the MTL approximation with continuous
curves. It is observed that that measured values and the MTL approximation have good agreement.

3. Stability Analysis

3.1 Matrix Burner

A schematic picture of the matrix burner used in Noiray’s work is given in Fig. 3. The setup
consists of a circular tube with a piston (variable position) at one end and a perforated plate at the
other end. The perforated plate acts as the flame holder and gives a matrix of flames.

tube
L

matrix flame

perforated plate

rigid piston
(position variable)

Figure 3: Schematic of Noiray’s matrix burner.

In order to model this set-up analytically, we make the following assumptions.
1. The sound field is purely 1-D, not only inside the tube, but also beyond its downstream end.

The wave transmitted beyond this end is of course 3-D, but we ignore this and instead assume
that the tube has a semi-infinite continuation, which keeps the transmitted wave 1-D.

2. We model the perforated plate at the otherwise open end as a pair of two interfaces at x = L and
x = L+ ∆, respectively, each with a given transmission and reflection coefficient; the distance
∆ between them is very small, ∆→ 0 .

3. The upstream end is modelled as rigid with a reflection coefficient of R0 = 1.
4. The mean temperature and speed of sound (denoted by c) are uniform throughout the semi-

infinite tube.
The modelled configuration is shown in Fig. 4. The tube is divided into 3 regions, A, B and C,

separated by the interfaces at x = L (perforated plate) and x = L + ∆ (open end). Acoustic waves
travel backward and forward with wave number k = ω/c. a+, b+, c+ are pressure amplitudes of the
waves travelling in the positive direction, and a−, b− of those travelling in the negative direction. The

a+e
ik(x−L)

a−e−ik(x−L)

A

b+e
ik(x−L)

b−e−ik(x−L)

B

c+e
ik(x−L)

C

x = 0 x = L x → ∞x = L + ∆

R0 RBA&TBA

RAB&TAB

RBC&TBC

Perforated Plate Open end

Figure 4: The modelled configuration, showing the acoustic waves and reflection and transmission coefficients.
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reflection and transmission coefficients of the perforated plate are given by

RAB =
ω

ω + 2iN cK and TAB =
2iN cK

ω + 2iN cK , (8a, 8b)

whereN is the number of holes per unit area, c is the speed of sound, and K is the Rayleigh conduc-
tivity. For a plate of thickness h and with circular holes of radius rp,

K =
r2pπ

rpπ/2 + h
. (9)

For symmetry reasons we have RBA = RAB & TBA = TAB for waves coming from the other
direction (i.e. going from region B to region A). The reflection coefficient of an unflanged open tube
end of radius a is known from [6],

RBC = −1− [(1/4)(ωa/c2)− i(ωa/c)0.6133]

1 + [(1/4)(ωa/c2)− i(ωa/c)0.6133]
. (10)

The corresponding transmission coefficient TBC is given by (see [1])

TBC = |TBC | eiϕ, with |TBC | =
√

1− |RBC |2 and ϕ = Arg(1−RBC). (11)

Also, we have RBC = RCB & TBC = TCB for the waves hitting the interface between regions B
and C from the right.

The reflection and transmission coefficient of the combined interface of perforated plate and open
end has been calculated in [1], and these results for ∆→ 0 are

RAC =
RAB −RABRBARBC + TABTBATBC

1−RBARBC

and TAC =
TABTBC

1−RBARBC

. (12a, 12b)

The complex eigenfrequencies (ωn) of the system shown in Fig. 4 are obtained by solving the charac-
teristic equation

F (ω) = e−iωL/c −R0RACe
iωL/c = 0. (13)

3.2 Green’s function approach

We model the thermoacoustic interaction in the tube with a Green’s function approach. This
requires the tailored Green’s function, denoted by G(x, x′, t, t′), which is the response observed at
position x and time t to a point source at position x′ firing an impulse at time t′. Naturally, this is a
superposition of modes n,

G(x, x′, t, t′) = H(t− t′)
∞∑
n=1

Re
[
Gn(x, x′)e−iωn(t−t

′)
]
, (14)

H(t− t′) is the Heaviside function (it guarantees causality, i.e. G = 0 for t < t′); ωn is the complex
eigenfrequency of the tube without flame and given by Eq.(13); Gn is the Green’s function amplitude
and given by

Gn(x, x′) = − c

2L
R0T

2
ACe

2iωnxq/c. (15)

The calculations that lead to these results are based on the configuration in Fig. 5, with the impulsive
source situated at x′. They are quite lengthy; details can be found in [1].
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Figure 5: Analytical representation of the burner with a heat source located at x = x′.

The tailored Green’s function allows one to derive an ODE for the velocity of an individual mode
n, driven by a compact flame situated at xq. Again, the calculations are too long to be shown here;
details can be found in [1]. The resulting ODE has the form

ü′ + a1u̇
′ + u′ = 0, (16)

with,

a1 = −2Im(ωn)−B Im(ωnG
∗
n)α

[
n1

∫
D(τ − τc1)

sin(Ωτ)

Ω
dτ + n2

∫
D(τ − τc2)

sin(Ωτ)

Ω
dτ

]
−BRe(Gn)α

[
n1

∫
D(τ − τc1) cos(Ωτ)dτ + n2

∫
D(τ − τc2) cos(Ωτ)dτ

]
,

(17)

and

a0 =
∣∣ω2

n

∣∣+B Im(ωnG
∗
n)α

[
n1

∫
D(τ − τc1) cos(Ωτ)dτ + n2

∫
D(τ − τc2) cos(Ωτ)dτ

]
−BRe(Gn)α

[
n1

∫
D(τ − τc1)Ω sin(Ωτ)dτ + n2

∫
D(τ − τc2)Ω sin(Ωτ)dτ

]
. (18)

The new quantities appearing in these equations are:B = −(γ − 1)/c2 (abbreviation), Ω ≈ Re(ωn),
and α (this is a constant factor relating the local heat release rate and the global heat release rate).
Clearly, Eq. (16) is the equation for a damped harmonic oscillator. a1 is the damping coefficient and
hence an indicator of the stability behaviour: mode n is stable if a1 ≥ 0 and unstable otherwise.

4. Stability Predictions

We made stability predictions for a matrix burner with properties listed in Table 2.

Table 2: Geometry and other parameters of the matrix burner.

Parameter Value

Tube radius, a 0.035m
Length of the tube, L 0.1 to 0.8 m (variable)
Thickness of the perforated plate, h 0.003m
Number of perforations per unit area, N 1.09× 105/m2

Radius of perforations, rp 0.001m
factor relating local and global heat release rate, α 3× 105 m2 s−2

Distance of flame from perforated plate, xq − L 0.01m
Specific heat ratio, γ 1.4
Speed of sound, c 345m/s
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Two parameters were varied to construct stability maps: The tube length L ranges from 0.1m to
0.8m, and the amplitude A/ū from 0 to 2. The map for mode n=1 is shown in Fig. 6c. The region
of instability is marked in grey. It has the shape of a tongue emerging from the bottom left corner
and agrees qualitatively with Noiray’s results. However, the quantitative agreement is not so good:
the tongue covers L values from 0.1 to 0.4 (rather than from 0.1 to 0.25) and A/ū values from 0 to
1.7 (rather than from 0 to 0.7). In other words, our predictions overestimate the size of the instability
region. We will investigate this discrepancy further in a future study.

In order to illustrate the influence of the two time-lags τ1 and τ2, we have produced the Figs. 6a
and 6b. Figure 6a shows contours for the difference (0.5Teig − τ1) and Fig. 6b for the difference
(0.5Teig − τ2), where Teig is the period of the fundamental mode (the mode under consideration),
estimated by considering the burner as a quarter-wave resonator with eigenfrequency feig = c/4L and
corresponding time period Teig = 1/feig. The zero contour lines are superimposed on the stability
map in Fig. 6c. From this figure, it can be seen that the unstable region lies close to the zero lines of
the (0.5Teig − τ1) and (0.5Teig − τ2)contours.
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Figure 6: Stability map of a matrix burner using a two time-lag heat release rate law and Green’s function
approach. (a) Contours of (0.5Teig−τ1) (b) Contours of (0.5Teig−τ2) (c) Stability map with (0.5Teig−τ = 0)
lines.

5. Summary and outlook

In this paper, we presented a systematic method to approximate a measured FDF by an analytical
expression featuring

- several discrete time-lags, τ1, τ2, · · ·
- Gaussian distributions around each time-lag with standard deviations σ1, σ2, · · ·
- generalised coupling coefficients n1, n2, · · ·

Each of these coefficients can be determined by minimising the discrepancy with the experimental
FDF data. If this is done for different amplitudes, the amplitude-dependence of the parameters τ1,
τ2, · · · , σ1, σ2, · · · , n1, n2, · · · can be elucidated, and this amplitude-dependence can also be ap-
proximated analytically. Altogether, a full analytical description of a measured FDF can be obtained.

We applied this method to a specific laboratory burner (Noiray’s matrix burner) and determined
the analytical representation of its FDF. We subsequently used this analytical FDF to make stability
predictions (based on a Green’s function approach) and presented them in the form of a stability map.
We obtained good qualitative agreement with Noiray’s measured stability map. Also, we observed
that the stability map is quite sensitive to the curve fit used to evaluate the amplitude dependence of
the model parameters. We used a curve fit which suits the physical behaviour of the matrix flame.
Obtaining an optimal fit for the parameters is a part of our work in progress.

ICSV24, London, 23-27 July 2017 7



ICSV24, London, 23-27 July 2017

6. Acknowledgements

The presented work is part of the Marie Curie Initial Training Network Thermoacoustic and
Aeroacoustic Nonlinearities in Green combustors with Orifice structures (TANGO). We gratefully
acknowledge the financial support from the European Commission under call FP7-PEOPLE-ITN-
2012.

REFERENCES

1. Heckl, M. A. Analytical model of nonlinear thermo-acoustic effects in a matrix burner, Journal of Sound
and Vibration, 332 (17), 4021–4036, (2013).

2. Heckl, M. A new perspective on the flame describing function of a matrix flame, International Journal of
Spray and Combustion Dynamics, 7 (2), 91–112, (2015).

3. Noiray, N., Durox, D., Schuller, T. and Candel, S. A unified framework for nonlinear combustion instability
analysis based on the flame describing function, Journal of Fluid Mechanics, 615, 139–167, (2008).

4. Noiray, N., Linear and nonlinear analysis of combustion instabilities, application to multipoint injection
systems and control strategies, Ph.D. thesis, École Centrale Paris, (2007).

5. Gopinathan, S. M., Bigongiari, A. and Heckl, M. A. Time-domain representation of a flame transfer func-
tion with generalised nτ - law featuring a time-lag distribution, In: Proceedings of the 23rd International
Congress on Sound and Vibration, Athens, Greece, 10–14 July, (2016).

6. Levine, H. and Schwinger, J. On the radiation of sound from an unflanged circular pipe, Physical Review,
73, 383–406, (1948).

8 ICSV24, London, 23-27 July 2017


	Introduction
	Multiple time-lag (MTL) approximation
	Stability Analysis
	Matrix Burner
	Green's function approach

	Stability Predictions
	Summary and outlook
	Acknowledgements

