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The nonlinear response of acoustic resonators is investigated over a broad

range of frequencies and amplitudes. Helmholtz resonators with a symmet-

ric and with an asymmetric neck, respectively, as well as quarter wave

resonators are considered. Describing functions for impedance and reflec-

tion coefficient of a Helmholtz resonator at various sound pressure levels

are determined from compressible flow simulation and validated against

experimental data. The particular focus of the present study is the non-

linear scattering to higher harmonics. For the Helmholtz resonator with

a symmetric neck, a distinct pattern in the amplitudes of the higher har-

monics is observed, where the odd harmonics dominate the response, while

the even harmonics are almost negligible. Such an “Odd-Harmonics-Only”

(OHO) pattern, which was observed previously in experiment at orifices,

is explained by a quasi-steady analysis based on the Bernoulli equation,

assuming a symmetric flow pattern at the neck. For the Helmholtz res-

onator with an asymmetric neck, it is observed in CFD simulations that

even harmonics contribute noticeably to the resonator response, such that
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the OHO pattern is less pronounced. For the markedly asymmetric geome-

try of the quarter wave resonator, the second harmonic is dominant and the

OHO pattern vanishes completely. The quasi-steady analysis is extended

successfully to describe also nonlinear scattering to higher harmonics for

asymmetric configurations and flow patterns. Overall, the scattering to

higher harmonics remains on a moderate level even at very high excitation

levels for the Helmholtz resonator configurations. For the quarter wave

resonator, the scattering is more pronounced and contributes perceptibly

to the response at high excitation amplitudes.

Nomenclature

A0 Cross-section area of the orifice, m2

Af , Au Input amplitudes, m/s

c0 Speed of sound, m/s

Cd Contraction factor, –

d0 Neck diameter and quarter wave resonator diameter, m

dcav Back-cavity diameter, m

f , g Riemann invariants, m/s

i Imaginary unit
√
−1, –

l0 Neck thickness and quarter wave resonator length, m

lc Reference length defined in Eq. (4), m

lcav Back-cavity length, m

lch Chamfer length, m

le Effective length, m

p Pressure, Pa

pref Reference pressure for the calculation of the SPL, 20µPa

prms Root mean square of the overall pressure, Pa

pc Reference pressure defined in Eq. (3), Pa

R Reflection coefficient, –

t Time, s

tc Reference time defined in Eq. (3), s

u′ Fluctuating velocity in the resonator tube, m/s

u′0 Fluctuating velocity in the neck, m/s

Z, z Acoustic impedance (non-normalized and normalized), Rayl / –

Conventions

ODE Ordinary differential equation

2 of 28



Preprint

OHO “Odd-harmonics-only” pattern

SPL Sound pressure level, dB

Symbols

∆p Pressure loss, Pa

ω0 Fundamental angular frequency, rad/s

ωeig Resonator angular eigenfrequency, rad/s

φ Acoustic velocity potential, m2/s

ρ0 Density, kg/m3

σ Open area ratio, –

Superscripts

•̃ Nondimensional quantity

•AJ Quantity corresponding to the area jump

•HR Quantity corresponding to the Helmholtz resonator

•QW Quantity corresponding to the quarter wave resonator

•̂ Fourier transformed variable

•′ Acoustic fluctuating part of the variable

I. Introduction

Acoustic resonators are used in various industrial applications to reduce sound emis-

sion1 or to avoid thermoacoustic instabilities2,3. Two basic types of such resonators

are the Helmholtz and the quarter wave resonators4, which are sketched in Fig. 1.

The scattering behavior of such resonators is investigated in this study under ambient

conditions without mean flow. During operation in industrial applications, the scattering

behavior of resonators can be strongly influenced by the working conditions. Some of these

influencing effects are listed here. In most applications, a grazing flow over the resonators

is present. This can cause a shift in the resonator eigenfrequency and has an impact on the

resistance. This has been studied, e. g., experimentally by Jones et al. 5 and numerically by

Zhang and Bodony 6 . Especially in gas turbines, resonators are often purged to guard them

from the hot gas in the combustion chamber and to guarantee constant working conditions.

Moreover, this increases the acoustic losses significantly, see for instance Eldredge and Dowl-

ing 7 , Bellucci et al. 8 , or Scarpato et al. 9 . When the amplitude of the acoustic excitation

rises and the purging flow rate is too low, hot gas can penetrate the resonator opening. This

can detune the resonator and should thus be avoided, see e. g., the studies by Ćosić et al. 10

and Rupp et al. 11 .

The present study will be based on two approaches: computational fluid dynamics (CFD)
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and 1-D quasi-steady analysis. CFD simulations have been performed by Tam and co-

workers. In a series of papers12,13,14, they studied slit and Helmholtz resonators using direct

numerical simulation (DNS) techniques, first in a 2-D setup, and later in a 3-D configuration.

The DNS approach is also pursued by Zhang and Bodony, who study the influence of laminar

and turbulent grazing flow6,15 and the interaction between neighboring cavity openings16.

Mendez and Eldredge 17 determine the influence of purging flow via large eddy simulations

(LES). The LES approach is also followed in the present study. Moreover, the linearized

Navier-Stokes equations can be used to investigate the linear response of resonator as it

is done by Tournadre et al. 18 for the investigation of temperature effects. An alternative

approach to those solving explicitly the Navier-Stokes equations is the Lattice Boltzmann

method, which is based on particle collision models and is promising low numerical cost, see

for instance Ji and Zhao 19 . Another alternative is to characterize an orifice (correspond-

ing to the resonator neck) by incompressible simulations and add the contribution of the

compressible backing volume analytically20.

On the side of the analytical modeling of Helmholtz resonators, a 1-D semi-empirical,

quasi-steady approach is followed in the present study as often done in the literature. The

idea of this ansatz is to analyze the Helmholtz resonator decomposed in an acoustically

compact orifice and a compressible backing volume. The motion of the fluid in the neck can

then be described by a 1-D quasi-steady equation containing semi-empirical correlations, see

the studies by Ingard 21 , Ingard and Ising 22 , Melling 23 , Cummings 24 , Hersh et al. 25 , as well

as Singh and Rienstra 26 .

Physically, resonators dissipate acoustic energy due to the thermo-viscous losses at the

walls. It is well known that, for sufficiently high excitation amplitudes, additional acoustic

energy is absorbed due to flow separation at the resonator edges. Flow separation processes

are very sensitive to the edge shape. The edge shape impact has been investigated for

open-end pipes by Disselhorst and Wijngaarden 27 as well as Atig et al. 28 . Temiz et al. 29

investigated this effect for orifice configurations. Its influence on the resonator impedance

has been evaluated by Laudien et al. 30 and Förner et al. 31 .

The acoustic dissipation by flow separation is a nonlinear phenomena. Its nonlinear

behavior can be detected by two aspects for a harmonic excitation: On the one hand,

amplitude and phase of the reflected wave at the frequency of excitation may depend on the

amplitude of the excitation. This behavior can be described in terms of describing functions

for the resonator impedance, or its reflection coefficient, see for instance Hersh et al. 25 ,

Singh and Rienstra 26 , or the Appendix of the present paper. On the other hand, scattering

of acoustic energy to other frequencies may occur. To the authors’ knowledge this has not yet

been studied in detail for resonators. The scattering to higher harmonics at an orifice, which

is closely related to the Helmholtz resonator, was studied experimentally and analytically
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by Ingard and co-workers22,32 as well as Cummings 24 . An “Odd-Harmonics-Only” (OHO)

pattern in the higher harmonics was observed, where only the odd harmonics are present in

the response. This observation could be explained by a quasi-steady analysis based on the

Bernoulli equation.

The present study investigates the nonlinear acoustic scattering of both Helmholtz and

quarter wave resonator designs by means of CFD simulations. The appearance of the OHO

pattern is found to depend on the symmetry of the configuration under study. The quasi-

steady theory for scattering to higher harmonics at symmetric orifices24,32 is extended to

also describe asymmetric configurations and flow conditions, such that it can be applied to

Helmholtz resonators with an asymmetric neck or quarter wave resonators.

The paper is organized as follows: The approaches to describe the resonators response

restricted to the fundamental frequency are presented in Sec. II. The quasi-steady theory

from the literature is also introduced in this section. In Sec. III, this theory is applied

for the considered cases and the scattering behavior is evaluated. Section IV presents the

scattering behavior observed in the CFD simulations for both the Helmholtz and quarter

wave resonators. The behavior is also compared to analytical prediction. Finally, the findings

are summarized in Sec. V.

II. Physical Background

In this section, the basic terminology to characterize acoustic resonators is introduced.

Moreover, a quasi-steady analysis based on the incompressible Bernoulli equation is pre-

sented, which accounts for nonlinearities of the pressure drop across the neck of a resonator.

Throughout the whole study, the geometrical quantities, shown in Fig. 1, are denoted as

follows: For the Helmholtz resonators, the lengths and diameters of the neck and of the

backing volume are referred to as l0, d0, lcav, and dcav, respectively. The length and diameter

of the quarter wave resonator are named as l0 and d0. The open area ratio is denoted by σ.

II.A. Impedance and Refection Coefficient Describing Functions

The behavior of an acoustic resonator is often described in the frequency domain by its

impedance Z. It is defined as the ratio of the Fourier transforms (̂.) of the fluctuating

acoustic pressure p′ and velocity u′ normal to the reference surface:

Z(ω0) = z(ω) c0ρ0 =
p̂(ω0)

û(ω0)
. (1)

Here, ω0 denotes the angular excitation frequency. The real part of the impedance is referred

to as resistance and its imaginary part as reactance. In the following, impedance values
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(a) Helmholtz resonator. (b) Quarter wave resonator.

Figure 1. Sketch of both resonator types considered. Slip walls in the simulations are marked by dashed lines.

normalized with the air specific impedance ρ0c0 are denoted by lower case z. Here, ρ0 and

c0 stand for the mean density and the speed of sound, respectively.

The resonator can also be characterized in terms of characteristic wave amplitudes f

and g, assuming 1-D acoustics in front of the resonator. These f and g quantities can be

considered as right and left traveling waves, respectively. In absence of mean flow, they are

defined as f = (p′/(ρ0c0) + u′)/2 and g = (p′/(ρ0c0)− u′)/2. The ratio of the reflected ĝ(ω0)

wave to the normally incident f̂(ω0) wave in frequency domain is defined as the reflection

coefficient R(ω0) = ĝ(ω0)/f̂(ω0). Its relation to the impedance is given by:

R(ω0) =
ĝ(ω0)

f̂(ω0)
=
Z(ω0)− ρ0c0

Z(ω0) + ρ0c0

=
z(ω0)− 1

z(ω0) + 1
. (2)

At the resonator angular eigenfrequency ωeig, the reactance vanishes =(Z(ωeig)) = 0 and,

accordingly, the optimal resistance equals the specific impedance ρ0c0 of the medium, where

no reflection takes place at all (i. e., |R(ωeig)| = 0). Thus, the gain of the reflection coefficient

decreases with increasing SPL until it reaches the optimal resistance <(z(ωeig)) = 1. For a

resistance larger than this optimal value <(z(ωeig)) > 1, the resonator is called overdamped.

In that case, the reflection coefficient grows with a further increase of the resistance as can

be also observed in Sec. IV.

The concepts introduced above are not adequate to characterize nonlinear phenomena

since Z and R do not depend on the excitation amplitude. To extend the impedance to the

nonlinear regime, the describing function approach is commonly used, see for instance Hersh

et al. 25 , which is referred to as impedance describing function in the following. Here, the

impedance is specified not only in dependency on the frequency, but also on the excitation

amplitude. This is commonly done in terms of the sound pressure level (SPL) present at a
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(a) Orifice. (b) Area jump (with flow dependent contraction).

Figure 2. Sketch of the corresponding geometries for the incompressible quasi-steady analysis.

certain reference position. The value of this SPL is defined as 20 log10(prms/pref), where prms

and pref denote the root mean square of the fluctuating pressure and the reference pressure in

air 20µPa, respectively. Note that this approach cannot represent the nonlinear behavior in

a comprehensive manner, but only the behavior for the fundamental frequency of excitation.

In particular, the scattering to higher harmonics is not included in this describing approach,

which is investigated in the current paper.

II.B. Flow Separation as the Cause of Nonlinear Behavior

The Helmholtz resonator can be analyzed as a combination of an acoustically compact orifice

and a backing volume in the linear and nonlinear regime20. Thus, the loss mechanisms for a

Helmholtz resonator are the same as those at an orifice. To understand those mechanisms,

the 1-D unsteady Bernoulli equation with suitable extensions for the loss terms can be studied

for an orifice as sketched in Fig. 2(a), see, e. g., references 32, 24 and 33. In the quarter

wave resonator case, the situation is different due to the asymmetry of the area jump, as

sketched in Fig. 2(b), but can be analyzed in a similar framework. The following discussion

helps to understand how the nonlinear losses are caused in both configurations.

The analysis is presented in nondimensional form. Nondimensional quantities are indi-

cated by ·̃ . The reference time tc, and pressure pc used for the nondimensionalization are

defined as:

tc =
lc
c0

and pc = ρ0c
2
0 . (3)

The reference length scale lc, which was already introduced above to define the time scale

tc, is set differently for the orifice and the area jump to account for the different typical

scales present. It is set such that the corresponding nondimensional angular eigenfrequencies

ω̃eig = ωeig tc for the Helmholtz and quarter wave resonators are unity, i. e., ω̃eig = ωeig tc = 1.
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These eigenfrequencies ωHR
eig and ωQW

eig for can be approximated as Helmholtz and quarter

wave resonators

ωHR
eig = c0

√
σ

lcav (l0 + 2 ∆l)
and ωQW

eig =
πc0

2(l0 + ∆l)
, (4)

respectively. The length correction ∆l accounts for fluid in front of the resonator opening

taking part in the oscillation and can be set according to Ingard 21 as 4/(3 π)d0, where d0

is the diameter of the opening. This geometrical length l0 and the length corrections (2 ∆l

and ∆l, respectively) are usually combined to the so-called effective lengths le, as described

below in more detail in Eq. (7). The corresponding length scales are set as:

lHR
c =

√
lcav (l0 + 2 ∆l)

σ
and lQW

c =
2(l0 + ∆l)

π
. (5)

At first, the Helmholtz resonator is considered. It is assumed here that the resonator

neck is acoustically compact such that it can be treated as an incompressible orifice. Viscous

losses are neglected at the beginning of this consideration and the Bernoulli equation is

studied. This equation reads in terms of fluctuating quantities in nondimensional form as:

∂φ̃′

∂t̃
+

1

2
ũ′2 + p̃′ = const. , (6)

where φ̃ is the nondimensionalized potential ũ = ∇̃φ̃. The equation above is integrated from

position 1 to 2 sketched in Fig. 2(a). The nondimensionalized effective length l̃e is introduced

to express the result in a compact form:

φ̃′2 − φ̃′1 =

∫ 2

1

ũ′(x̃)dx̃ =

∫ 2

1

Ã0ũ
′
0

Ã(x̃)
dx̃ = ũ′0l̃e =

ũ′

σ
l̃e . (7)

Here, Ã0 and ũ′0 denote the nondimensionalized cross-section area and the velocity in the

orifice, respectively. The x̃-dependent area formed by the flow path is Ã(x̃). Note that the

effective length equals the nondimensionalized geometrical length of the orifice l̃0 with an

additional, nondimensionalized end correction 2∆l̃ added, see, e. g., Ingard 21 . The pressure

drop ∆p̃′ = p̃′1 − p̃′2 over the orifice without losses can be expressed as:

∆p̃′ ≈ 1

σ
l̃e
∂ũ′

∂t̃
. (8)

The losses caused by friction at the orifice walls, which are not considered in the above

equation, can be included by an appropriate real valued constant R̃l (see, e. g., Bodén and

Zhou 34). When the acoustical partial displacement in the orifice reaches the same order as
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the orifice diameter d̃0 or is larger, i. e., when the Strouhal number Sr = ω̃ d̃0 σ/ |ũ| is small,

the flow cannot follow the edge contour anymore and separates. Thus, the flow takes less

area to jet through the orifice as sketched in Fig. 2(a). The ratio of the flow core area to the

geometrical cross-sectional area is described by the contraction factor Cd, which is also often

referred to as discharge coefficient15,25. In the linear regime where Sr� 1, it can be assumed

Cd ≈ 1, while Cd < 1 in the nonlinear regime. Besides the Strouhal number, also the edge

shape has a strong impact on the separation process. The separation is more pronounced,

the sharper the edge is30,31. Using the contraction factor, the velocity in the orifice can be

expressed as ũ′0 = 1/(Cd σ) ũ′. When such a jet forms, it takes energy from the acoustics,

which is dissipated in the vortex structures generated due to the separation. If it is assumed

that the kinetic energy of the flow in the orifice 1/2 (1/(Cdσ) ũ′)2 is fully dissipated and does

not recuperate downstream of the orifice (see for instance Ingard 32), it follows

∆p̃′ ≈ 1

σ
l̃e
∂ũ′

∂t̃︸ ︷︷ ︸
inertia

+ R̃l ũ
′︸︷︷︸

viscosity

+
1

2

ũ′ |ũ′|
(Cd σ)2︸ ︷︷ ︸

flow separation

. (9)

It can be seen in the expression above that the loss terms due to friction and flow separation

contribute to the resistive part. When the losses and the pressure drop are not in equilibrium,

the fluid in the orifice is accelerated, which impacts solely the reactance of the transfer

impedance (∂̂ũ′/∂t̃ = i ω̃̂̃u). Moreover, it can be seen that only the flow separation behaves

in a nonlinear fashion in this model.

In analogy, an acoustically compact area jump, as sketched in Fig. 2(b), can be considered

for the investigation of a quarter wave resonator. In comparison to the formulations for

the orifice found in the literature, an additional term is introduced which also behaves

nonlinearly. By integration of the Bernoulli equation (6), the additional term 1/2 ũ′2(1/σ2−
1) appears due the non-equal cross-section area on both sides. In this case, the pressure drop

can be expressed as:

∆p̃′ ≈ 1

σ
l̃e
AJ ∂ũ′

∂t̃
+

1

2
ũ′2
(

1

σ2
− 1

)
+ R̃AJ

l ũ′ +
1

2

ũ′ |ũ′|
(Cd σ)2

. (10)

Above, l̃AJe and R̃AJ
l denote a suitable nondimensionalized effective length and linear loss

term for the area jump, respectively.
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III. Scattering to Higher Harmonics Described by Quasi-Steady

1-D-Analysis

In contrast to linear systems, nonlinear systems can respond not only at the fundamental

angular frequency ω0 of the excitation, but also at its multiples, the so-called higher harmon-

ics. The fundamental frequency ω0 is referred to as the 1st harmonic, any multiples nω0 as

the nth harmonic (n ∈ N). In the following, the spectrum of the response is studied numeri-

cally in dependency on the excitation frequency and amplitude. To the authors’ knowledge,

this is studied for the first time for resonator configurations in detail. The orifice, which

is from a geometrical point of view close to the Helmholtz resonator, has been investigated

with respect to its scattering behavior experimentally and analytically, see, e. g., Ingard and

Ising22,32 and Cummings24. A pattern in the harmonics has been observed in those studies,

where the odd harmonics (3rd, 5th, . . . ) dominate clearly over the even ones (2nd, 4th, . . . ).

This pattern is referred to as OHO (“Odd-Harmonics-Only”) in the following. Ingard 32 and

Cummings 24 explained the appearance of the OHO pattern by studying quasi-steady 1-D

equations.

In the following, these considerations are extended step by step to account also for an

asymmetric orifice and for an area jump as they are present for a Helmholtz resonator with

asymmetric neck and a quarter wave resonator. This analysis is applied to predict the

relative contributions of the first five harmonics for Helmholtz resonators with symmetric

and asymmetric neck as well as quarter wave resonators.

The appearance or absence of the OHO pattern can be explained by studying quasi-steady

1-D equations as Eqs. (9) and (10). Similar considerations have been done by Ingard 32 and

Cummings 24 . The theory presented in the literature is restricted to orifices assuming of a

time-invariant contraction factor Cd for the whole cycle.

In the current study, the contraction coefficient Cd is assumed to be constant during the

inflow and outflow half-cycle:

Cd =

 C+
d , for ũ′ ≥ 0

C−d , for ũ′ < 0
. (11)

First, the orifice is considered where the pressure drop is described by Eq. (9). The only

nonlinear term is given as 1/[2(Cd σ)2] ũ′ |ũ′|. Accordingly, this is the only term that can

contribute to the scattering to higher harmonics. Thus, the other terms are disregarded in

the analysis since the focus of the study is the scattering behavior to higher harmonics, i. e.,

∆p̃′(t̃) 2σ2 =
1

C2
d

ũ′ |ũ′| . (12)
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If a sinusoidal velocity ũ′(t̃) = Ãu sin(ω̃0t̃) is assumed, the Fourier series of this pressure drop

reads as

∆p̃′(t̃)
2σ2

Ã2
u

=
a0

2
+
∞∑
n=1

an cos(nω̃0t̃) + bn sin(nω̃0t̃) (13)

with the constants

an =


1
2
(C+

d − C
−
d ), for n = 0

1
4
(C−d − C

+
d ), for n = 2

0 , else

(14)

and

bn =


−4(C−

d +C+
d )

π(n3−4n)
, for odd n

0 , else
(15)

It can be seen that, for symmetric flow conditions with C+
d = C−d , the coefficients an = 0 for

all n. Thus, only contributions with bn 6= 0 remain for odd n. It can be concluded that the

appearance of the OHO pattern is due to the symmetry of the flow.

This flow symmetry is broken for an asymmetric geometry. Note that also mean flow may

lead to different flow contraction condition during the inflow and outflow phase, as shown by

Zhang and Bodony 35 for a Helmholtz resonator with grazing flow. The flow asymmetry due

to flow separation at sufficient high amplitudes can be described like this for an one-sided

chamfered orifice: At the sharp orifice edge, the flow contracts, i. e., C+
d < 1, while it does

not at the chamfered edge, i. e., C−d ≈ 1.

The asymmetry increases when the area jump is studied instead of the orifice. The

separation term (Eq. (12)) analyzed by Fourier transformed in Eqs. (13)– (15) is also part of

the nonlinear response. Due to the change in cross-section at the area jump, an additional

term appears in Eq. (10). This term can be expressed as:

1

2
Ã2
u sin2(ω̃0t̃)

(
1

σ2
− 1

)
=

1

4
Ã2
u

(
1

σ2
− 1

)(
1− sin(2ω̃0t̃)

)
. (16)

The expression above contributes significantly to the 2nd harmonic and, thus, amplifies the

disappearance of the OHO pattern.

The following conclusions can be made from the considerations above: The Helmholtz

resonator with symmetric neck shows the OHO pattern, where the harmonics decrease with

increasing order. If its neck is asymmetric (e. g., with C+
d ≈ 0.7 for sharp edged and C−d ≈

0.95 for 45◦ chamfered edge, see reference 36), the OHO pattern gets weaker. The 3rd

harmonic is still dominant. But now the 2nd harmonic is predicted to be more pronounced

than the 5th one. When a quarter wave resonator is considered, strong scattering in the 2nd

harmonic is expected. Overall, the scattering to higher harmonics is here much larger than
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Table 1. Geometric properties of the considered Helmholtz and quarter wave resonators in dimensional and
nondimensional form.

l0 [mm] d0 [mm] lcav [mm] dcav [mm] lch [mm] σ [%] ωeig/(2π) [Hz]

HRS 4.0 4.2 20 50 0 0.71 373

HRA 4.0 4.2 20 50 0.35 0.71 373

QW 143 6.35 – – – 1.56 589

l̃0 [-] d̃0 [-] l̃cav [-] d̃cav [-] l̃ch [-] σ [%] ω̃eig [-]

HRS 0.0274 0.0288 0.1369 0.3423 0 0.71 1

HRA 0.0274 0.0288 0.1369 0.3423 0.0024 0.71 1

QW 1.5561 0.0691 – – – 1.56 1

in the case of a Helmholtz resonator (for σ � 1).

In the discussion above, only the nonlinear terms are considered. It can be seen in

Eqs. (13) and (16) that their contribution scales with the square of the amplitude of the

velocity Ã2
u, while all the other linear terms scale with the amplitude of the velocity Ãu.

Thus, it can be concluded that the impact of the nonlinear term responsible for the scattering

to higher harmonics rises with increasing velocity.

IV. Scattering to Higher Harmonics Observed in CFD

Simulations

In this section, the predicted patterns in the amplitudes of the higher harmonics are

verified and quantified with compressible CFD simulations for three resonator configura-

tions. These considered configurations as well as the computational setup are introduced in

Sec. IV.A. A qualitative comparison of compressible Helmholtz resonator simulations and

incompressible orifice simulations is performed in Sec. IV.B. By doing so, a link from the

incompressible theory to compressible resonator simulations is provided. Moreover, the flow

separation for the three test cases is investigated during the inflow and outflow phase in this

section. Finally, the results of the compressible simulations of three resonators are presented

and discussed in Sec. IV.C.

IV.A. Simulation Setup and Definition of the Test Cases

IV.A.1. Definition of Test Cases

In the present numerical study, a quarter wave resonator (QW) as well as Helmholtz res-

onators with symmetric (HRS) and asymmetric neck (HRA) are considered. The generic

geometries are sketched in Fig. 1. The neck of configuration HRA is chamfered by 45◦ on
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the outside with a length in axial direction of lch = 0.35 mm. The values of all geometric

quantities are listed in Tab. 1 in dimensional and nondimensional form. The configuration

HRS is set as in reference 31 to have access to validation data. The chamfer length is set

small enough that it influences the linear response of the resonator only marginally.

IV.A.2. CFD Solver Setup

Compressible CFD simulations are performed with the PIMPLE algorithm of OpenFOAM37.

The slip condition is applied at the cylindrical wall of the impedance tube and the no-slip

condition is used at the resonator itself, see Fig. 1. At the inlet, the Navier-Stokes charac-

teristics boundary condition (NSCBC), cf. Poinsot and Lele 38 , is utilized. This boundary

condition ensures a low acoustic reflection of the outgoing g wave. Simultaneously, an exci-

tation signal can be imposed for the incoming f wave, which set sinusoidally f = Af sin(ω0t)

with different fundamental frequencies ω0/(2π). At this inlet plane, the fluctuating pressure

p′ and velocity u′ are monitored. From these dimensional quantities, the time series of the

nondimensional f̃ and g̃ waves can be computed directly. As explained above, the incoming

wave scatters in the harmonics of the reflected wave ̂̃g(n ω̃0). In the following figures, the am-

plitudes of the higher harmonics ̂̃g(n ω̃0) are normalized by the amplitude of the fundamental

harmonic of the incoming wave ̂̃f(ω̃0), which can be written as:∣∣∣̂̃g(n ω̃0)
∣∣∣∣∣∣̂̃f(ω̃0)
∣∣∣ . (17)

In the post-processing, the transient parts of the data series have been removed and then

truncated to a multiple of the period T to avoid leakage in the spectra. For further details on

the solver refer to reference 31. The simulations use 3-D meshes of at least 1.5 million cells.

Note that this is overall a rather coarse mesh in comparison to DNS simulations available in

the literature15. However, the mesh is refined carefully in the Helmholtz resonator neck (and

the quarter wave resonator mouth, receptively) and, especially at the edges, since here the

mechanisms responsible for the acoustic dissipation take place. The mesh independence with

respect to the acoustic impedance has been checked for HRS up to a overall SPL of 125 dB.

Overall, reasonable results with relatively low computation cost can be achieved enabling for

extensive parameter studies.

The compressible CFD simulations are performed as LES with the k-equation eddy-

viscosity model as subgrid scale (SGS) model. Several SGS models have been tested. How-

ever, the acoustic response of the resonator depends only very weakly on the SGS modeling.

Vortex structures are formed in the vicinity of the resonator neck due to the pulsation forcing

of the flow. The dissipation to thermal energy of these vortices follows mainly the turbulent

13 of 28



Preprint

cascade. However, the separation process itself, responsible for the nonlinear acoustic dis-

sipation, is almost not influenced by the vortices. This can also be seen with the Reynolds

number based on the orifice size and velocity amplitude at the orifice, which remains rather

low (maximum Re≈ 3000 at 119.7 dB for HRS). Accordingly, the impact of the SGS model

on acoustic properties remains very small as the separation process at the edges is resolved

sufficiently. Moreover, comprehensive parameter studies regarding mesh, time-step, and

solver parameters have been performed to ensure that the presented results are independent

of the numerical settings. The solver has been validated in detail in the linear regime for

various configurations in reference 31. In the nonlinear regime, the solver is validated against

measurements of M. A. Temiz39 based on a describing functions for configuration HRS, see

Appendix.

To compare the simulation with measurement, the input amplitude Af of the f waves

must be set such that the superposition of the waves f and the reflected g = Rf matches

the desired SPL, see reference 20 for more details. This requires an a priori knowledge of

the reflection coefficient or an iterative process. In the following, this approach of setting

the input amplitude is solely used for validation purposes. Besides that, the SPL is set only

with respect to the input signal f ignoring the reflected acoustic g wave. This is referred to

as input SPL in the following. Note that the input SPL and the actual SPL differ from each

other.

For the orifice configuration, also incompressible simulations are performed with the

SIMPLE algorithm of the commercial software ANSYS Fluent v15. A detailed description

of the corresponding solver setting can be found in reference 20. For a given geometry and

excitation frequency, the nonlinear behavior is linked to the magnitude of the velocity in

the orifice and resonator neck, respectively. For a valid comparison, the input amplitude in

the incompressible simulation has to be set such that velocities in the orifice agree with the

velocities in the Helmholtz resonator neck.

IV.B. Validation of Modeling Assumptions via CFD

IV.B.1. Linking the Incompressible and Compressible Approaches

The orifice is treated incompressible in the analysis of Sec. III, while the CFD simulations

of the Helmholtz resonator are set up compressibly. Accordingly, a quantitative compari-

son between those two is not directly possible. Therefore, also incompressible orifice CFD

simulations are considered in this section, which allows a link from the CFD simulations to

the 1-D quasi-steady theory. The compressible resonator simulations and the incompressible

orifice simulations can be compared qualitatively.

A sinusoidal velocity ũ′(t̃) = Ãu sin(ω̃0 t̃) is assumed in the analysis of Sec. III. The
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(a) Higher harmonics in ∆p′ at the orifice (cf. Eq. (18)).
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(b) Higher harmonics in f for the Helmholtz resonator
(cf. Eq. (17)).

Figure 3. Higher harmonics for the Helmholtz resonator HRS and the corresponding orifice with an excitation
corresponding to a SPL of 119.7 dB: 2nd harmonic in CFD simulations , 3rd , 4th , 5th ;
2nd harmonic with quasi-steady 1-D analysis , 3rd , 4th , 5th .

higher harmonics occur there solely in the pressure drop ∆̂̃p(n ω̃0) over the orifice. This

pressure drop including the higher harmonics is also determined via incompressible CFD

simulations with sinusoidal velocity excitation. For these incompressible simulations, the

orifice corresponding to the resonator neck of HRS is considered as geometry. The amplitudes

Au of the velocities in the incompressible simulations are adjusted such that they coincide

with the velocity amplitudes in the resonator neck present for a SPL of 119.7 dB at the

reference distance lref = 49.7 mm. The higher harmonics in the pressure drop are presented in

Fig. 3(a). In this figure, the amplitude of the nth harmonic is normalized by the fundamental

harmonic ∆ˆ̃p(ω̃0), such that this harmonic is represented as∣∣∣∆̂̃p(n ω̃0)
∣∣∣∣∣∣∆̂̃p(ω̃0)
∣∣∣ . (18)

Moreover, the results of 1-D simulations40 of the quasi-steady equation (9) are included in this

figure. It can be observed that both the 1-D quasi-steady equation (9) and the incompressible

CFD simulation exhibit the OHO predicted by the quasi-steady analysis. The 3rd harmonic

is dominant followed by the 5th harmonics, as predicted by the analysis. The magnitude of

the odd harmonics obtained by the 1-D simulations of the quasi-steady equation (9) agrees

well with the one of the CFD simulations. The scattering to higher harmonics takes place

mainly close to the angular eigenfrequency ω̃eig ≈ 1, where the velocities in the orifice are

largest.
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In Fig. 3(b), the higher harmonics in the scattered g wave (as defined in Eq. (17)) are

plotted for the compressible LES simulations of the symmetric Helmholtz resonator. Again,

the input amplitudes Af are set in a way that a SPL of 119.7 dB at the reference distance

lref = 49.7 mm is achieved. The 1-D quasi-steady equation (9) can be rewritten in terms of

Riemann invariants f and g to a 1-D ordinary differential equation (ODE), which can be

solved numerically40. The scattered higher harmonics described by this 1-D quasi-steady

ODE are also included in this figure. Both compressible approaches, the LES and the 1-D

ODE, have the OHO pattern as predicted by the 1-D quasi-steady analysis in Sec. III. There

are almost no contributions to the even harmonics for both compressible approaches. Also

here, the scattering to higher harmonics occurs mainly close to the angular eigenfrequency,

ω̃0 ≈ 1. This also agrees with the incompressible analysis, since the velocities in the resonator

neck are largest close to the eigenfrequency. It can be observed that the 3rd harmonics of

this quasi-steady 1-D approach agree very well these of the 3-D LES simulations. The 5th

harmonic is under-predicted by the 1-D approach. Overall, the nonlinear term in the quasi-

steady equation (9), once written in terms of Riemann invariants, describes the mechanisms

responsible for the scattering to higher harmonics accurately.

It can be summarized that the OHO pattern is present for both symmetric orifices and

Helmholtz resonators. For both configurations, the mechanism responsible for the scattering

to higher harmonics can be explained well by studying the 1-D quasi-steady equation (9) as

it is done in Sec. III.

IV.B.2. Contraction Behavior for the Three Considered Configurations

Before the scattering to higher harmonics in the compressible CFD simulations for each

resonator is discussed, the flow contraction is investigated for these configurations. In Fig. 4,

a snapshot of the flow field during the inflow and outflow phase with maximal contraction is

presented for all configurations. These snapshots are cropped to the vicinity of the resonator

neck and mouth, respectively. Note that the separation process is a transient process such

that for a precise prediction phase averaging over several periods and, subsequently, averaging

over time would be required as it is done by Zhang and Bodony 15 . Here, only the order

of magnitude and the influence of the edge on separation behavior is evaluated optically

with the presented snapshots. The separation zones are marked in green at the upper

edges in each figure. The resonators are excited at a frequency close their eigenfrequencies

ω̃0 ≈ 1 (corresponding to 380 Hz) with an input SPL of 125 dB (for HRS and HRA) and

at ω̃0 ≈ 1 (corresponding to 580 Hz) with 160 dB (for QW). Configuration QW is excited

with a higher SPL in comparison to the Helmholtz resonator configurations since it requires

a higher SPL to trigger nonlinear behavior as it shown below in Sec. IV.C.3. As explained

above, these SPL values are set here and in the following as input SPLs, which means that
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(a) HRS inflow. (b) HRS outflow.

(c) HRA inflow. (d) HRA outflow.

(e) QW inflow. (f) QW outflow.

Figure 4. Flow visualization in a 2-D cutting plane in the vicinity of the resonator neck/mouth during the inflow
and outflow phases for the three configurations considered at excitation frequency close to the eigenfrequency
ω̃0 = 1 with input SPL 125 dB for HRS and HRA, and with input SPL 160 dB for QW. On the upper half, the
contraction is marked in green for each case.
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the SPL values refer solely to the input f waves while ignoring the reflected g waves. The

separation behavior is similar for the inflow and outflow for HRS, see Figs. 4(a) and 4(b).

A contraction ratio of ≈ 0.7, as can be found in the literature15,36, is confirmed by the

simulation. The asymmetric neck induces an asymmetric separation behavior. During the

outflow, the contraction remains the same as for HRS, see Fig. 4(d). However, the flow

contracts less with a factor C+
d ≈ 0.9 for the inflow (Fig. 4(c)), which is close to literature

values (0.95 in Blevins’ textbook36). The separation is also asymmetric for the quarter wave

resonator QW with C+
d ≈ 0.7 and C−d ≈ 1 as can be seen in Figs. 4(e) and 4(f). Overall, it

can be concluded that the assumption of Sec. III that the contraction depends on the flow

direction is reasonable.

IV.C. Scattering to Higher Harmonics Determined by CFD Simulations

IV.C.1. Scattering to Higher Harmonics at the Helmholtz Resonator with Symmetric Neck

The amplitudes of the higher harmonics nω̃0 up to order n = 5 of the resonator response

for an input SPL of 125 dB are plotted in Fig. 5(a) for the fundamental excitation frequency

ω0/(2π) in the range of [200 - 700] Hz corresponding to ω̃0 ∈ [0.54, 1.87]. All harmonics with

larger order (n > 5) are negligible with a relative content of < 2 h. It can be observed that

the damping of the fundamental harmonic ( ) is best close to the resonator eigenfrequency,

i. e., where ω̃0 is close to unity. On the other hand, scattering to higher harmonics mainly

occurs close to that frequency. This is in line with expectations since the velocity in the neck

is largest in this frequency range and is causing strong nonlinear effects here. Away from the

eigenfrequency, velocities are smaller and the system behaves almost linearly. As expected,

the OHO pattern occurs, i. e., the odd harmonics contribute predominantly to the response,

while the even harmonics are almost absent. The 3rd harmonic ( ) clearly dominates over

the even ones (2nd ( ) , 4th ( ) , . . . ). The contribution of the harmonics becomes

less and less considerable with increasing order n. The impact of the 5th harmonic ( ) is

noticeably smaller than the 3rd but is still more prominent than even harmonics.

In Fig. 5(b), the scattering to the harmonics is depicted under variation of the input

SPL for an excitation frequency close to eigenfrequency ω̃0 ≈ 1 (corresponding to ω0/(2π) =

380 Hz). The reflection coefficient and the resistance are presented in Fig. 6 ( ). Note that

the reflection coefficient equals the scattering into the fundamental harmonic, which is also

shown in Figs. 5(a) and 5(b). With increasing input SPL, the fundamental harmonic first

decays (up to 110 dB), since the resistance increases, see Fig. 6(b). The optimal damping

for orthogonal incident acoustic waves is achieved with a normalized impedance z = 1.

Increasing the excitation further leads to higher resistance, but also the reflection increases.

This occurs due to the over-damping of the system. The trend of increasing resistance with
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(a) Helmholtz resonator HRS for input SPL 125 dB.
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(b) Helmholtz resonator HRS at ω̃0 ≈ 1 (380 Hz) for vari-
able input SPL.
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(c) Helmholtz resonator with asymmetric neck HRA
for input SPL 125 dB.
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(d) Helmholtz resonator with asymmetric neck HRA at
ω̃0 ≈ 1 (380 Hz) for variable input SPL.
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(e) Quarter wave resonator QW for input SPL 160 dB.
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(f) Quarter wave resonator QW at ω̃0 ≈ 1 (580 Hz) for
variable input SPL.

Figure 5. Scattering to harmonics plotted in logarithmic scale for the three considered test cases: 1st, funda-
mental ; 2nd ; 3rd 4th ; 5th .
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(b) Gain of reflection coefficient |R|.

Figure 6. Gain of reflection coefficient |R| and normalized resistance <(z) under variation of the input SPL
at the corresponding eigenfrequency ω̃0 ≈ 1 (ω0/(2π) = 380 Hz and ω0/(2π) = 580 Hz, respectively) for the three
configurations considered.

increasing SPL can also be explained by studying the 1-D equation for the pressure drop,

see Eq. (9). The only nonlinear term in this equation corresponds to the flow separation.

The corresponding nonlinear resistance scales with the amplitude of the velocity in the

neck, which itself increases with rising SPL. This can also be seen in experimental41 and

numerical15 studies.

The scattering to higher harmonics increases with increasing amplitude in the normal-

damped range (z < 1). Close to the region of optimal damping (z = 1), the scattering to

higher harmonics attains abruptly a local minimum. This minimum cannot be explained

with the analysis of Sec. III, since the velocity in the neck is actually further increasing.

Furthermore, the scattering to higher harmonics does not totally vanish for low amplitudes.

The considerations made above would actually suggest a monotonic increase of the scattering

with the amplitude, starting with no scattering and reaching asymptotically a limit. The

reasons for the discrepancy to the presented simulation results are still unknown. In the

over-damped range, the scattering increases again by increasing the input SPL. The overall

scattering remains small for this resonator setup even for very high excitation levels. Thus,

modeling the nonlinear behavior only for the fundamental frequency ω̃0 with the describing

function approach (see Sec. II.A) reflects the main mechanisms accurately in that case.

It can be observed that the OHO pattern vanishes in a range of very high SPL (≥ 130 dB),

which is shaded in gray in Figs. 5(b) and 5(d) (for HRA). The interaction of the vortices

formed at leading and trailing edges was identified as the cause of this behavior. The exact

mechanism and the circumstances when the OHO pattern is absent will be discussed in detail

in a separate article.
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IV.C.2. Scattering to Higher Harmonics at the Helmholtz Resonator with Asymmetric Neck

The gain of the reflection coefficient and resistance for various SPLs are included in Fig. 6

for the configuration with the asymmetric neck HRA. The chamfer size has been set such

that the linear impedance is almost not influenced by the chamfer. Thus, the eigenfrequency

remains the same as for HRS and the excitation for that case is also set to 380 Hz. The

nonlinear resistance can be observed to decrease slightly in comparison to the unchamfered

case HRS, see Fig. 6(a). This decrease arises from the lower flow contraction during the

outflow phase, see reference 31. The scattering to the harmonics n ω̃0 (n ∈ {1, 2, . . . , 5})
is shown for an input SPL of 125 dB in Fig. 5(c) for a range of [200 – 700] Hz for the

fundamental excitation frequency ω0/(2π), corresponding to ω̃0 ∈ [0.68, 1.36]. Moreover,

the scattered higher harmonics are presented for an excitation close to eigenfrequency ω̃0 ≈
1 (corresponding to 380 Hz) with varying input SPL in Fig. 5(d). As predicted, the 2nd

harmonic increases in comparison to HRS with symmetric neck. According to the analysis

of Sec. III, the 2nd harmonic should be weaker than the 3rd but stronger than the 5th one.

However, the increase of the 2nd harmonic is moderate such that the 2nd and 5th harmonics

have about an equal strength in the CFD simulations.

IV.C.3. Scattering to Higher Harmonics at the Quarter Wave Resonator

For the quarter wave resonator, the behavior changes significantly with respect to the

Helmholtz resonators. For QW, the scattering to higher harmonics is mostly into the 2nd

harmonic, which again fits well to the analysis of Sec. III. This can be seen in Fig. 5(e) for a

constant SPL of 160 dB and in Fig. 5(f) for the excitation eigenfrequency close to eigenfre-

quency ω̃0 ≈ 1 (corresponding to 580 Hz) in a range of [80 – 160] dB. The frequency sweep is

performed for QW at 160 dB instead of 125 dB for Helmholtz resonator configurations due to

the higher SPL required to trigger nonlinear behavior. This can be seen in Fig. 6(a) ( ).

For HRS, the resistance starts to increase at a SPL of about 105 dB due to nonlinear effects.

For QW, this occurs at about 125 dB. This difference can be explained only partially due

to the different open area ratios σ. Thus, the different threshold to trigger nonlinearities

originates mainly due to the different resonator concepts. Moreover, the overall scattering

increased as well. The maximal scattering was in the order of 2 % for the Helmholtz res-

onators. Here for QW, the relative scattering to the 2nd harmonic can reach values up to the

order of 10 %. This difference in magnitude of the Helmholtz and the quarter wave resonator

is backed by the quasi-steady analysis.
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V. Summary and Conclusion

The nonlinear acoustic response of quarter wave and Helmholtz resonators has been

studied by means of compressible CFD simulations. Particular attention was paid to the

scattering to higher harmonics. For the Helmholtz resonators the higher harmonics exhibit

an odd-harmonics-only (OHO) pattern, where only the odd harmonics are present, while the

even ones are negligible. Such patterns were observed previously at symmetric orifices, and

explained by a 1-D quasi-steady analysis based on the Bernoulli equation with suitable extra

terms for the losses22,24,32. The current study extends the analysis, such that it is applicable

also to configurations that exhibit asymmetric flow patterns, e.g. Helmholtz resonators with

an asymmetric necks, or quarter wave resonators.

The following observations are observed in CFD simulations and confirmed by the quasi-

steady analysis: For the Helmholtz resonator with a symmetric neck, the scattering to higher

harmonics exhibits the OHO pattern. The OHO pattern is weaker if a Helmholtz resonator

with an asymmetric neck is considered. It is concluded that the pure OHO pattern occurs due

to the flow symmetry during the inflow and outflow phase through the symmetric resonator

neck. For the quarter wave resonator – corresponding to a simple discontinuity in cross-

sectional area in the 1-D compact analysis – a larger threshold for the excitation is required

to trigger noticeable nonlinear effects. If scattering takes place in this configuration, the 2nd

harmonic is the dominant higher harmonic, and the OHO pattern vanishes completely.

Overall, the scattering to higher harmonics is more pronounced for the quarter wave

resonator, for which values up to the order of 10 % of the incident wave are observed. In

contrast, Helmholtz resonators exhibit quite moderate nonlinear scattering (up to 2 %) even

for very high excitation levels. One may conclude that in many cases describing functions

for impedance or reflection coefficient characterize the nonlinear response of resonators with

acceptable accuracy.

Appendix

The solver validation in the nonlinear regime is presented using impedance describing

function measurements performed by M. A. Temiz39 from TU Eindhoven on configuration

HRS in a frequency range [100, 700] Hz corresponding to ω̃0 ∈ [0.27, 1.87]. Figure 7 shows the

normalized impedance and the reflection coefficient for an overall SPL of 120 dB and 125 dB

obtained by the measurements and the CFD simulations. In those simulations, the input

amplitudes of the f wave have been set in a way that the acoustic SPL directly in front

of neck matches the target value. Since the nonlinear effects affect mainly the resistance

<(z), it is more challenging to capture this quantity correctly in the CFD simulation, see
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(d) Phase of reflection coefficient ∠(R).

Figure 7. Impedance and reflection coefficient for HRS determined by LES and measurements of M. A. Temiz39

at a SPLs of 120 dB (LES: , measurements: ) and 125 dB (LES: , measurements: ).

Fig 7(a), than the reactance =(z), which always fits very accurately, see Fig 7(b). The curves

agree quite reasonably but the numerics slightly over-predicts the nonlinear resistance. A

reason for this is (at least partially) that the edges in the CFD mesh are perfectly sharp

while the real sample is not due to manufacturing reasons20. The measurements are also

a bit shaky away from the eigenfrequency. This shaky behavior does not originate from

physics but from the ill-conditioned transformation from reflection coefficient to resistance.

The reflection coefficient is in both experiment and CFD the quantity that is directly and

subsequently transformed to the impedance. Thus, a comparison in the reflection coefficient

is more suitable. This is depicted in Figs. 7(c) and 7(d). Here, the curve match is almost

perfect and shows the quality of the computational setup.
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