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Currently, gas turbine manufacturers frequently face the problem of strong acoustic
combustion driven oscillations inside combustion chambers. These combustion insta-
bilities can cause extensive wear and sometimes even catastrophic damages to com-
bustion hardware. This requires prevention of combustion instabilities, which, in turn,
requires reliable and fast predictive tools. This work presents a three-step method to
find stability margins within which gas turbines can be operated without going into
self-excited pressure oscillations. As a first step, a set of unsteady Reynolds-averaged
Navier–Stokes simulations with the Flame Speed Closure (FSC) model implemented in
the OpenFOAM R© environment are performed to obtain the flame describing function
of the combustor set-up. The standard FSC model is extended in this work to take into
account the combined effect of strain and heat losses on the flame. As a second step, a
linear three-time-lag-distributed model for a perfectly premixed swirl-stabilized flame is
extended to the nonlinear regime. The factors causing changes in the model parameters
when applying high-amplitude velocity perturbations are analysed. As a third step, time-
domain simulations employing a low-order network model implemented in Simulink R©

are performed. In this work, the proposed method is applied to a laboratory test rig. The
proposed method permits not only the unsteady frequencies of acoustic oscillations to
be computed, but the amplitudes of such oscillations as well. Knowing the amplitudes
of unstable pressure oscillations, it is possible to determine how these oscillations are
harmful to the combustor equipment. The proposed method has a low cost because it
does not require any license for computational fluid dynamics software.

Keywords: combustion instabilities; limit cycle; time-domain simulations; URANS;
FSC model

1. Introduction

Nowadays gas turbine manufacturers have to meet ecological requirements, particularly
emissions of NOx. These requirements force gas turbines that operate in the lean combustion
regime to be produced. However, operation in the lean combustion regime is characterized
by the high probability of occurrence of combustion instabilities (see [1–3]), which may
cause catastrophic damage. This requires prevention of combustion instabilities which, in
turn, requires understanding the nature of their onset.

There are different methods and numerical tools for the prediction of combustion insta-
bilities. Since the thermo-acoustic phenomena in gas turbines include unsteady turbulent
combustion, it is naturally to start with the analysis of these methods from Computa-
tional Fluid Dynamics (CFD). There are different approaches to performing complete
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CFD simulations of the unsteady flame–acoustic interaction of combustion systems: Un-
steady Reynolds-Averaged Navier–Stokes (URANS) simulations; Large Eddy Simulations
(LESs); and Direct Numerical Simulations (DNSs) [4]. These methods differ in their range
of turbulent scales that are modelled versus those that are resolved. DNS resolves the entire
range of turbulent length scales, thus this method gives the highest possible precision. Using
the LES technique, the smallest scales of the turbulent flow are modelled while the largest
and most important scales are resolved. In the URANS approach, all the turbulent scales
are modelled, which makes it computationally the least expensive approach. The price of
DNS precision is the computational cost, which depends cubically on the Reynolds number
of the flow under consideration. Because of its high cost, DNS methods up to now have
been applied only to simulate the closed-loop combustion–acoustic interaction of laminar
flames with a very small computational domain [5,6]. LES was recently used to analyse
the onset of thermo-acoustic instabilities in a laboratory-scale combustor [7], a self-excited
azimuthal mode in a helicopter combustion chamber [8], and transverse and radial modes
in a liquid rocket engine [9].

Some researchers perform low-Mach number or ‘incompressible’ LES to compute
forced flame response [10,11]. In this case, the simulation time step can be increased since
the speed of sound does not appear in the Courant–Friedrichs–Lewy (CFL) time-step limit,
which results in faster CFD simulations. However, the results of such simulations can
be different from those of compressible LES [12]. Compressible LES methods give very
good precision, and continuous improvement of the computational capabilities of high-
performance computing clusters will make its use more common. Nevertheless, nowadays
they still remain computationally expensive. This is the reason for the use of URANS CFD
calculations in this work.

Nonlinear CFD simulations of thermo-acoustic processes in the whole of gas turbine
chambers with complex geometries in the time domain are computationally expensive.
Since the thermo-acoustic problem is a multiscale phenomenon, in most thermo-acoustic
studies combined approaches are employed. This means that the analysis of turbulent react-
ing flow is conducted apart from the acoustic analysis, and it is done for the sake of reducing
the computational time. Acoustic length- and time-scales are often considered to be much
larger than chemical and turbulent scales. This makes it possible to perform simulations of
turbulent combustion and acoustics separately, using different tools. This decoupling is ar-
tificial but it helps to simplify the analysis. The heat response to acoustic and stoichiometry
perturbations is usually computed experimentally [13–15] or numerically [16,17] perform-
ing unsteady analysis and is the input for the network model. Because of the high costs,
difficulties, and uncertainties of the experimental heat response computation [18], CFD
methods are now widely used. For acoustic analysis, either network models, Computational
Acoustics (CA) or Computational Aero-Acoustics (CAA) methods are employed.

The analysis of linear waves is made easier when the cross-sectional dimension of the
combustor is small compared with the acoustic wavelength [19]. Then, acoustic modes with
variations across the cross section are ‘cut-off’, decaying with the axial position rather than
propagating, and variations of the acoustic waves across the cross section can be neglected.
This leads to plane waves in a cylindrical combustor, and axial and circumferential waves
in an annular combustor. The frequencies of interest for combustion instabilities in gas
turbines are sufficiently low that this is often a good approximation. Then, the linear wave
equations can be solved semi-analytically by a network approach [20–23]. This enables
physical insight into important mechanisms. The set-up is divided into a set of ducts with
constant cross section and constant thermophysical properties. Acoustic waves propagate
along the ducts and are connected between neighbouring ducts through transfer matrices
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[24]. The Green’s function approach introduced by Heckl [25] is similar to the network
model approach. The flame is modelled in the network model as one or as a number of
compact heat sources [26].

The following groups of analyses are CA and CAA methods. Both of these approaches
are applicable to complex three-dimensional geometries of gas turbine combustion systems.
The CA approach solves the inhomogeneous Helmholtz equation using, for example, the
Finite Element Method (FEM) (see Camporeale et al. [27]). In this approach, mean flow
and viscous effects on the acoustic field are neglected. In the CAA approach, either the
Linearized Euler Equations (LEEs) [28,29] or the Linearized Navier–Stokes Equations
(LNSEs) are resolved [29]. Both the LEE and the LNSE approaches take into account the
mean flow. The difference between the two approaches is that LEE neglects viscous effects,
while LNSE takes them into consideration. Despite its simplifications, various Helmholtz
solvers are widely used in the industrial setting to forecast combustion instabilities.

Numerical tools for thermo-acoustic analysis can be divided into two large groups:
frequency domain analyses [27,30] and time domain simulations [31,32]. The first type of
analysis is usually used in the linear setting, i.e. to predict whether the set-up is stable or
not [27]. It can also be used to predict the amplitude of unstable pressure fluctuations. To
accomplish this task, Silva et al. [33] proposed performing simulations for each amplitude
of acoustic oscillation that is characterized by its own Flame Transfer Function (FTF). The
value of acoustic oscillation amplitude that corresponds to zero growth rate is considered as
the amplitude of saturated oscillations. The procedure requires performing a set of several
simulations with different FTFs. On the contrary, using time-domain analysis, unstable
frequencies and their amplitudes are computed straightforwardly.

First, we model combustion dynamics with the help of Unsteady Reynolds-Averaged
Navier–Stokes (URANS) simulations using the Flame Speed Closure (FSC) model pro-
posed by [34] implemented in the OpenFOAM R© environment [35]. The advantage of
OpenFOAM R© is that it is open-source software and does not require a license for its utiliza-
tion. URANS simulations are suitable to predict flame-flow interaction in the low-frequency
limit (see [36]). The FSC model does not resolve combustion chemistry but makes use of
the regress variable approach. The chemistry is lumped with the laminar flame speed. This
results in relatively fast computations. Moreover, the FSC model used in the present work
is extended to take into account the combined quenching effect of strain and heat losses on
the flame [37].

Researchers and engineers often perform linear stability analyses. This type of analysis
allows the stable and unstable frequencies of thermo-acoustic systems to be predicted and
makes use of FTFs – the response of the flame to small-amplitude velocity perturbations
[38–40]. To forecast not only the frequency of pressure oscillations but also their amplitude,
the Flame Describing Function (FDF) – the response of the flame to velocity perturbations
at different amplitudes – should be known both for analyses in the frequency domain [14]
and in the time domain [32]. This type of analysis is called weakly nonlinear since the
acoustics are still assumed to be linear but the heat release response is dependent on the
amplitude of velocity excitation.

In this work, we discuss the Beschaufelter RingSpalt (BRS) test rig developed by
Komarek and Polifke [13] at the Technische Universität München. The authors of [13]
investigated the response of the flame to axial and tangential components of velocity
excitations for a perfectly premixed swirl-stabilized flame and proposed an analytical model
for the flame response to small-amplitude velocity excitations. However, this model is
limited to the linear regime of excitation. In this paper we extend the linear analysis of
Komarek and Polifke [13], performing simulations with different amplitudes of velocity
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excitation at several frequencies, obtaining the FDF. The obtained FDF is then approximated
with a new analytical model.

Finally, we use a simplified wave-based approach implemented in Simulink R© to find
stability margins of parameters under which gas turbines could be operated without going
into self-excited pressure oscillations. Li and Morgans [32] have shown that thermo-acoustic
simulations in the time domain using the wave-based approach with a nonlinear flame model
could predict different nonlinear behaviours of the system. The usage of an ad hoc network
model gives freedom in model settings.

The paper is structured as follows. First, the theoretical background of the first and
the third step is explained. In the second section, the FDF of the BRS set-up is pre-
sented, calculated performing URANS simulations with the FSC model implemented in
an OpenFOAM R© environment. In the third section, an analytical model for the FDF is
introduced and the meaning of the parameters’ dependence on the amplitude of acoustic
perturbations is explained. A stability analysis of the BRS test rig is performed using time-
domain network model simulations in the fourth section, where both linear and nonlinear
parametric analyses are done. The findings of the work are summed up in the last section.

2. Background

2.1. Description of the flame speed closure model

In order to model combustion in the BRS test rig, we use the FSC model (see [34]).
Compared to the Turbulence Flame Speed (TFC) model developed by Karpov et al. [41],
the FSC model describes the propagation of the flame not only in the case of fully developed
turbulence but also in the limit case of the absence of turbulence. Moreover, it takes into
account the dependence of turbulent diffusivity and turbulent flame speed on the time of
flow propagation from the flame holder to the flame front. We have implemented the FSC
model into the XiFoam solver of OpenFOAM R© [42]. This is a solver for the simulation of
compressible premixed/partially-premixed combustion with turbulence modelling. It uses
the compressible PIMPLE (merged PISO-SIMPLE) algorithm. The solver makes use of
the regress variable, i.e. the normalized fuel mass fraction, defined as

b = Tb − T

Tb − Tu

, (1)

where Tb is the temperature of the burnt gas, T is the gas temperature at the current point,
and Tu is the temperature of the unburnt gas. Thus, the regress variable is equal to one in
the unburnt gas zone and zero in the burnt gas zone. The transport equation for the regress
variable is

∂ρb

∂t
+ ∇ · (ρub) − ∇ · [ρ(κ + Dt,t )∇b

] = − S2
L,0

4(κ + Dt,t )
ρu(1 − b)b − ρuSt,t |∇b|, (2)

where ρ is the density of the air–fuel mixture, t is the time, u is the velocity vector, κ is the
molecular diffusivity, Dt, t is the time-dependent coefficient of turbulent diffusion, SL, 0 is
the unperturbed laminar flame speed, and St, t is the time-dependent turbulent flame velocity.
Definitions of these parameters can be found in the work of Lipatnikov and Chomiak [34].

The standard FSC model is extended in this work in order to take into account the
combined influence of the strain and heat losses on the flame [37]. The turbulent flame
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speed St is calculated as

St = 0.52(u′
turb)0.75S0.5

consα
−0.25
u l0.25

t , (3)

where u′
turb is the turbulent velocity perturbation, Scons is the consumption speed of a laminar

premixed flame, αu is the thermal diffusivity of the unburnt mixture, and lt is the turbulence
length scale. The consumption speed is calculated as suggested by Tay-Wo-Chong et al.
[37].

The right-hand-side of Equation (2) is the mass flow rate of the mixture passing through
the set-up. Thus, the heat release rate is calculated as

Q̇ = Yf HR

[
S2

L,0

4(κ + Dt,t )
ρu(1 − b)b + ρuSt,t |∇b|

]
, (4)

where Yf is the fuel mass ratio and HR is the lower heating value of the fuel.

2.2. The flame transfer function

The dynamic response of a flame to a flow perturbation of small amplitude can be rep-
resented in the frequency domain by its FTF(ω) (also called the frequency response of
the flame). It relates fluctuations of mass flow rate or velocity ûr at a reference position

r upstream of the flame to fluctuations of the flame heat release ˆ̇Q for a range of angular
frequencies ω

FT F (ω) =
ˆ̇Q(ω)/ ¯̇Q

ûr (ω)/ūr

. (5)

Here, fluctuations ˆ̇Q and ûr are normalized against the respective mean values of heat

release ¯̇Q and velocity ūr . In experiments, the flame transfer function FTF(ω) is computed
from time series of fluctuations u′

r (t) and Q̇′(t) with spectral analysis applying harmonic
excitation with a loudspeaker or siren at the inlet.

The FTF from the numerical simulations is calculated using the Wiener–Hopf Inversion
(WHI). Application of the WHI to results of unsteady CFD simulations was initially
proposed by Polifke et al. [43]. This method permits the FTF to be computed in a wide range
of frequencies by performing just one simulation. Thus, the time for the FTF calculations
is reduced significantly.

2.3. The flame describing function

In general, the response of the flame to velocity perturbations depends not only on the
frequency of the perturbation but also on its amplitude. Thus, if one would like to perform
amplitude-dependent stability analysis of a thermo-acoustic system, the FDF should be
known:

FDF (ω,A) =
ˆ̇Q(ω,A)/ ¯̇Q

ûr (ω,A)/ūr

, (6)
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Figure 1. Scheme of waves propagation in a section of a low-order model.

where A is the normalized amplitude of velocity perturbations at the reference point.
Unfortunately, advanced methods such as WHI can be used only in linear cases, i.e.

the response of the flame to small amplitudes of velocity perturbations. Thus, in order to
compute the FDF, we have to apply only one frequency excitation with one amplitude per
simulation.

2.4. Wave-based approach for thermo-acoustic simulations

When the length of the set-up under consideration is much larger than its dimensions in the
other directions, it is possible to perform a one-dimensional low-order acoustic analysis.

The test rig is divided into a set of sections with constant cross-sectional area. Pressure,
velocity, temperature, and density are decomposed into the sum of their mean components
(denoted by ‘ − ’) and their fluctuating component (denoted by ‘ ′ ’). Mean values of
pressure, velocity, temperature, density and thermophysical properties are assumed to be
constant along each section and change only from section to section.

Perturbations of pressure and velocity could be represented in terms of downstream and
upstream propagating acoustic waves (characteristics) (see Figure 1):

p′(x, t) = f

(
t − x

c̄s + ū

)
+ g

(
t + x

c̄s − ū

)
, (7)

u′(x, t) = 1

ρ̄c̄s

[
f

(
t − x

c̄s + ū

)
− g

(
t + x

c̄s − ū

)]
, (8)

where p is the pressure, f and g are downstream and upstream travelling components
(Riemann invariants) of acoustic waves, respectively, c̄s is the mean speed of sound, u is
the velocity, and ρ is the density. The entropy waves are neglected in the network model
since the set-up is perfectly premixed and it is assumed that no entropy perturbation enters
the set-up.

In order to connect oscillating variables in different sections (see Figure 2) we need
to know the so-called jump conditions. To compute the jump conditions between sections
separated by a compact acoustic element, such as a sharp cross-sectional area change and
a compact swirler, the system of linearized equations – conservation of mass equation
and Bernoulli equation – has to be written in terms of f and g as suggested by Dowling and
Stow [44]. We can write the system of equations in the case of area change in matrix form
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Figure 2. Scheme of waves propagation between sections of a low-order model. (Colour online)

as follows:

F

[
fd

gu

]
= K

[
fu

gd

]
, (9)

where subscripts u and d denote upstream and downstream sections, respectively. Matrices
F and K take into account acoustic losses between sections; their coefficients can be found
in Appendix A.

To calculate jump conditions at the flame, the system of linearized equations of con-
servation of momentum and energy (product of mass conservation equation and Bernoulli
equation) has to be written in terms of f and g [44]. The system of equations in matrix form
at the flame is

J

[
fd

gu

]
= H

⎡
⎣fu

gd

Q̇′

⎤
⎦ , (10)

where the coefficients of matrices J and H can be found in Appendix A.
At the beginning of the first section and at the end of the last section, the f and g waves

are related by the reflection coefficients Rinlet and Routlet, respectively.

3. Step 1. Modelling the flame describing function

3.1. Description of the experimental set-up

The test rig under consideration is operated under atmospheric pressure and consists of
three main parts: a plenum, a swirl stabilized burner with a central bluff body, and a
combustion chamber (see Figure 3). The perfectly premixed mixture of methane and air
with equivalence ratio equal to 0.77 enters in the set-up. A rigid sinter plate is placed at
the beginning of the plenum. The burner exit is represented by an annular section with
an inner diameter of 16 mm and an outer diameter of 40 mm. The swirler consists of
eight blades, has length 30 mm, and is positioned 30 mm upstream of the burner exit. The
combustion chamber has a quadratic cross section of 90 × 90 mm2. The length of the
combustion chamber is variable and during FTF measurements was kept equal to 300 mm.
A perforated plate is placed at the end of the combustion chamber in order to ensure a low
reflective acoustic boundary condition. In the experiments, the position of the heat release
distribution was determined by OH* chemiluminescence measurements. The walls of the
experimental set-up under consideration are water cooled so that strong heat losses occur
[45]. In our investigation, the thermal power is equal to 30 kW. Further details about the
experimental set-up can be found in the work of Komarek and Polifke [13].
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Figure 3. Scheme of the BRS test rig C© [Thomas Komarek]. Reproduced by permission of Thomas
Komarek. (Colour online)

Figure 4. Sector scheme of the numerical set-up of the BRS test rig.

3.2. Description of the numerical set-up

A 3D structured mesh consisting of around 280,000 cells was created using the commercial
software ANSYS R© ICEM CFDTM. Since the structure of the set-up is periodic, just one
quarter of the test rig has been modelled in the simulations (see Figure 4). The heat release
zone lies within the first 100 mm of the combustion chamber and the recirculation zones lie
within 200 mm from the entrance of the combustion chamber, as reported by Komarek and
Polifke [13]. Thus, the combustor length of 200 mm is enough to simulate the behaviour of
the flame. The time step of the simulations is 4 × 10−7 s to ensure an acoustic CFL number
lower than 0.7. The Launder–Reece–Rodi Reynolds-stress turbulence model [46] is used,
which is required for the correct calculation of the consumption speed [37]. The automatic
wall functions used provide a turbulent dynamic viscosity (μt) condition for rough walls,
based on velocity, using Spalding’s law to give a continuous μt profile to the wall [42].

To avoid the development of resonance modes, non-reflective or partially reflective
boundary conditions at both inlet and outlet have been employed. We make use of the
waveTransmissive boundary condition implemented in OpenFOAM R© [42], which is based
on the work of Poinsot and Lele [47], and is expressed by the following equation for the
pressure at the boundaries:

∂p

∂t
+ uwave

∂p

∂x
= uwave

linf
(pinf − p), (11)

where uwave = u + cs at the outlet, uwave = u − cs at the inlet, cs is the speed of sound, and
linf is the distance from the boundary (outlet or inlet) at which the pressure field p becomes
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Table 1. Boundary conditions for the BRS numerical model.

Face Boundary condition Details

Inlet Velocity inlet 11.3 m/s
Outlet Pressure outlet 101,325 Pa
Burner tube, swirler Adiabatic no-slip wall –
Combustor wall Isothermal no-slip wall 600 K
Bluff body tip Isothermal no-slip wall 600 K

Figure 5. Normalized unperturbed heat release distribution from simulation averaged over 35 m/s.
(Colour online)

equal to pinf. In this work, linf = 1 m, which guarantees both low reflection coefficients and
numerical stability. Boundary conditions for the unperturbed simulation are listed in Table
1. The walls of the combustion chamber and of the burner tip are imposed as isothermal in
order to take into account the heat losses [16].

3.3. Results of unperturbed simulations

In a previous work of ours [35], a sensitivity analysis of the parameters of the FSC model
was described. As a result, the following values of parameters were chosen: the turbulent
Schmidt number Sct = 0.3, the model constant CD = 0.3, and the axial flow velocity at the
burner exit uFSC = 18 m/s.

The surface distribution of the heat release averaged over 35 m/s of simulations is shown
in Figure 5. The quenching effect of heat losses and strain is clearly seen in the outer shear
layer of the flame (see Figure 5).

It is illustrative to compare the heat release distributions in experiments and simulations
along the longitudinal axis. To obtain this distribution from our simulation we take several
planes perpendicular to the longitudinal axis in the range −0.02–0.12 m from the entrance
of the combustion chamber in the axial direction. Then, we integrate the heat release over
these planes and plot the resulting values over the longitudinal axis (see Figure 6). The
experimental heat release distribution is normalized by its maximum value. The numerical
heat release distribution is normalized such that the integrals from the two distributions are
the same in the range known from experiments [16].

3.4. Numerical calculation of the flame transfer function

A transient numerical simulation of the system is performed by exciting the axial component
of velocity at the inlet of the computational domain. The excitation signal is composed of a
sum of sine waves with random frequencies in the range 0–1 kHz and of random phase. The
excitation signal is normalized such that three standard deviations of the signal amplitude
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Figure 6. OH* chemiluminescence distribution from experiment and heat release distribution from
the simulation.
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Figure 7. Velocity excitation used in the FTF calculation.

are equal to 10% of the mean velocity at the inlet of the computational domain; this is
shown in Figure 7. The fast Fourier transform of the velocity excitation signal is shown in
Figure 8.

The time series ur is composed during the simulations as the axial component of velocity
averaged in a plane perpendicular to the z-axis situated 2 cm upstream of the burner exit
(1 cm downstream of the swirler). The flame response Q̇ is measured in simulations as the

volumetric integral of Equation (4). After that, the mean values ūr and ¯̇Q of the measured
ur and Q̇ are computed and are subtracted from series of ur and Q̇, respectively, in order to
obtain fluctuations of the axial velocity u′

r and fluctuations of the heat release Q̇′.
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Figure 8. The Fast Fourier Transform (FFT) of the velocity excitation used in the FTF calculation.

The simulation is run for 200 m/s in real time. Longer simulation times do not change
the FTF. The duration of the Unit Impulse Response (UIR) is assumed to be equal to 12
m/s. The first 15 m/s are considered as a transition period and are neglected. Using the
Wiener–Hopf inversion method described before, the FTF of the BRS test rig is calculated
and is shown in Figure 9.

There is good agreement between the experimentally obtained FTF and that computed
from simulations in terms of the phase in the range of frequencies 0–200 Hz. The underes-
timated gain of the FTF is explained by the more dispersed heat release distribution from
simulations with respect to the experimental one as shown in Figure 6.

3.5. Numerically computed flame describing function

In order to construct the FDF, excitation frequencies of 100, 160, 240, and 320 Hz are
chosen; 160, 240, and 320 Hz are equidistantly distributed; 100 Hz is chosen instead of 80
Hz since instability was observed in the experiment at 101.3 Hz [16]. Different excitation
amplitudes of velocity perturbations are applied at the inlet of the numerical set-up in order
to obtain velocity perturbations after the swirler with amplitudes of 30, 50, and 70% for
each frequency.

The FDF obtained from the simulations is shown in Figure 10. The most significant
decay of the gain of the FDF with increasing amplitude of the velocity perturbations is
observed at 100 Hz (see Figure 10). The most significant change in phase of the FDF is
observed at 240 Hz (see Figure 10).

The reason for the variation of the phase of the FDF for different amplitudes of excitation
can be explained as follows. When high-amplitude velocity excitations are applied, the
turbulence of the flow in the combustor is intensified. This results in higher turbulent flame
velocity and, as a result, the shift of the heat release distribution towards the entrance of
the combustion chamber (see Figures 11 and 12). The results of the simulations with high-
amplitude excitation at 240 Hz are shown in this paper, but similar behaviours are observed
with excitations at other frequencies. Similar flame behaviour was also observed during
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Figure 9. FTF calculated experimentally and from simulations.

LES of limit-cycle oscillations in a rocket engine [9]. Note that the flame length, i.e. the
length of non-zero heat release averaged over one cycle of perturbation, remains the same
as in the unperturbed simulation. Further insight on the change of the FTF phase is given
in Section 4.1.

4. Step 2. Analytical FDF models

4.1. URANS FDF model

Komarek and Polifke [13] have proposed the following model for the FTF in the case of
perfectly premixed swirl-stabilized combustion:

FT F (ω) = e−iωτ1−0.5ω2σ 2
1 + a

(
e−iωτ2−0.5ω2σ 2

2 − e−iωτ3−0.5ω2σ 2
3

)
, (12)

where τ i is the time delay of the corresponding mechanism, σ i is the standard deviation
of the corresponding time delay, and a is a dimensionless constant. The response of the
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Figure 10. FTF (continuous line) and FDF (points) computed from simulations. (Colour online)

Figure 11. Heat release distribution in the set-up at different instants of a period of oscillation
(excitation at 240 Hz with amplitude 70%). (Colour online)
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Figure 12. Averaged heat release distribution in the set-up without perturbation and heat release
distribution averaged over one period of oscillation (excitation at 240 Hz with amplitude 70%).

flame to the axial perturbations of the velocity is modelled with the parameters τ 1 and σ 1.
The parameters τ 2, σ 2, τ 3, and σ 3 model the response of the heat release to the tangential
perturbations of the velocity produced by a swirler. With respect to the original model [13],
Tay-Wo-Chong et al. [45] introduced the dimensionless parameter a = 1.05 in Equation
(12), which gives better agreement with the measured FTF.

In this paper, the model given in Equation (12) is extended to the nonlinear regime
by introducing the dependence of the parameters τ i and σ i on the amplitude of velocity
excitation:

FDF (ω,A) = e−iωτ1(A)−0.5[ωσ1(A)]2 + a
{

e−iωτ2(A)−0.5[ωσ2(A)]2 − e−iωτ3(A)−0.5[ωσ3(A)]2
}

.

(13)

First, we calculate the optimum values of τ i and σ i for each amplitude of velocity
perturbation using the method of least squares. The obtained values of parameters τ i and
σ i for different amplitudes of perturbation are presented in Table 2 and the corresponding
modelled FDF is shown in Figure 13. All τ i decrease with increasing A. This trend is
explained by the heat release distribution peak shift towards the swirler when the flame
is forced with high-amplitude excitation. The increase of σ 2 and σ 3 while increasing A

Table 2. Values of parameters τ i and σ i for different
amplitudes of perturbation (ms).

Amplitude
(%) τ 1 σ 1 τ 2 σ 2 τ 3 σ 3

10 2.57 1.01 4.96 0.93 7.00 1.69
30 2.43 0.90 4.54 0.96 5.65 2.50
50 2.37 0.91 4.39 0.98 5.09 2.50
70 2.30 0.92 4.17 1.03 3.96 2.50



Preprint

15

Frequency, Hz
0 100 200 300 400 500

0

0.5

1

1.5

2
Gain of FDF, [-]

Simulations 10%
Model 10%
Simulations 30%
Model 30%
Simulations 50%
Model 50%
Simulations 70%
Model 70%

Frequency, Hz
0 100 200 300 400 500

-15

-10

-5

0
Phase of FDF, [rad]

Figure 13. FDF computed from simulations and modelled with Equation (13). (Colour online)

is explained by higher dispersion of the flame when applying high-amplitude excitation
(see Figure 12); σ 1 slightly decreases while increasing A, which could be influenced by the
second time delay τ 2 and its standard deviation σ 2. The values of the FDF phase at 240 and
320 Hz for high-amplitude excitations are shifted by 2π with respect to the ones shown in
Figure 10 in order to guarantee the continuous lines of the FDF model.

Secondly, the dependence of τ i and σ i on the normalized amplitude of velocity pertur-
bations A are modelled as

τi = τi,lin(1 + 	iA), (14)

σi = σi,lin(1 + 
iA), (15)

where τ i, lin and σ i, lin are values of the parameters τ i and σ i for infinitesimal ampli-
tude A, while 	i and 
i are dimensionless parameters that correspond to the relative
change of the parameters τ i and σ i when A = 1. Linear dependencies τ i(A) and σ i(A) are
chosen because they give smaller values of root-mean-square errors than squared ones.



Preprint

16 D. Iurashev et al.

Table 3. Optimum values of parameters τ i, lin,
	i, σ i, lin, and 
i.

i τ i, lin (ms) 	i (–) σ i, lin (ms) 
i (–)

1 2.59 −0.168 0.99 −0.131
2 5.02 −0.251 0.91 0.176
3 7.36 −0.658 1.81 0.671
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Figure 14. Dependencies τ i(A) and σ i(A) from Table 2 (points, ‘Model’) and modelled by Equations
(14) and (15) (lines, ‘2-modeled’). (Colour online)

Optimal values of parameters τ i, lin, 	i, σ i, lin, and 
i are computed using the least squares
method and are listed in Table 3. The resulting functions are shown in Figure 14 together
with the values from Table 2. Equations (14) and (15) guarantee the continuity of the FDF
model in Equation (13) for different excitation amplitudes.

The physical meaning of parameters τ i and σ i and of their dependence on A is understood
if we switch from the frequency domain representation of the FTF to the time-domain
representation, i.e. to the UIR. The UIR in this work is the response of the normalized heat
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Figure 15. UIRs for different amplitudes of velocity excitations modelled by Equation (16). (Colour
online)

release to the normalized velocity perturbation of unit amplitude. The analytical form of
the UIR corresponding to the FTF of Equation (12) is

UIR(t) = 1

σ1

√
2π

e−0.5[(t−τ1)/σ1]2 + a

{
1

σ2

√
2π

e−0.5[(t−τ2)/σ2]2 − 1

σ3

√
2π

e−0.5[(t−τ3)/σ3]2

}
.

(16)

Thus, Equation (16) models the response of the heat release to acoustic oscillations
with the help of three Gaussians with peaks at τ i and standard deviations σ i. The UIRs for
different amplitudes of velocity excitation are shown in Figure 15. As already mentioned
in Section 3.5, high-amplitude velocity excitations intensify the turbulence of the flow and
shift the peak of the heat release distribution towards the combustion chamber entrance
(see Figure 12). This causes the flame response peaks in the UIR (see Figure 15) to occur
earlier in time. Moreover, the length of the non-zero heat release distribution remains almost
unchanged. That is why the overall response duration remains almost the same for the four
amplitudes considered.

Note that the proposed FDF model consists of only six parameters. The FDF at a
certain excitation amplitude computed for three frequencies gives six equations for the
FDF model parameters estimation: three equations for the FDF gain and three equations
for the FDF phase. From a mathematical point of view, it is possible to find optimum model
parameters knowing the FDF just at three frequencies. With four frequencies, as used in the
present work, the problem of the optimum parameters’ search becomes even overestimated,
improving the reliability of the obtained results. Thus, using the proposed FDF model it is
possible to reduce the number of time-consuming CFD simulations for the FDF calculation,
which is the advantage of this FDF model.
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Table 4. Values of parameters τ i and σ i

for the model of experimental FTF (ms).

τ 1 σ 1 τ 2 σ 2 τ 3 σ 3

2.79 0.88 4.88 0.52 6.76 1.48

Frequency, Hz
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Figure 16. Experimental FTF and its model.

4.2. Hybrid experimental–URANS FDF model

It is possible to combine the FTF computed experimentally with the FDF computed with
URANS simulations. First, the optimum values of τ i and σ i for the experimentally ob-
tained FTF are calculated using the method of least squares and presented in Table 4. The
corresponding model of the FTF is shown in Figure 16.

Then, the model described by Equations (13), (14), and (15) is assumed for the hybrid
FDF. For infinitesimal perturbation amplitude, values of τ i and σ i correspond to the exper-
imental FTF by taking the parameters τ i, lin and σ i, lin from Table 4. Then, the change of
parameters τ i and σ i with the amplitude is assumed to be the same as in the FDF model by
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Figure 17. Scheme of numerical set-up divided into sections.

taking the dimensionless parameter values 	i and 
i from Table 3. As a result, the hybrid
FDF model is constructed.

5. Step 3. Stability analysis using a wave-based approach

5.1. Low-order network model set-up

The numerical set-up has been divided into six regions with three jump conditions with
pressure losses, one jump condition at the flame, and two boundary conditions as shown
in Figure 17. The cross-sectional area, length, and temperature of each section are listed
in Table 5. Jump matrices to connect waves between sections are calculated using systems
of Equations (9) and (10). The reflection coefficient of the inlet is taken as Rinlet = 1.
The outlet reflection coefficient Routlet = −0.35e−0.375−3iω is approximated from the values
suggested by [16]. The total length of the combustor (sum of the lengths of Combustor 1
and Combustor 2) Lc.c. is varied in the range 0.3–0.95 m. Acoustic losses at area changes
between plenum and burner tube and between burner tube and combustor are taken into
account by coefficients of pressure losses ζ decr = 0.487 and ζ incr = 0.756, respectively [48].
Acoustic losses at the swirler are taken into account by the coefficient of pressure losses
ζ swirler = 2.073 calculated from the unperturbed simulations. As noted by Tay-Wo-Chong
and Polifke [45], the flame can be considered compact since its Helmholtz number is around
0.1 for the considered frequencies. The active flame, i.e. the unsteady heat release, in the
low-order network model is positioned at xfl = 0.036 m when the URANS FDF model is

Table 5. Values of parameters imposed in the network model.

N Section Area (m2) Length (m) Temperature (K)

1 Plenum 3.146E − 2 0.17 300
2 Burner tube 1 1.056E − 3 0.135 300
3 Burner tube 2 1.056E − 3 0.025 300
4 Burner tube 3 1.056E − 3 0.02 300
5 Combustor 1 8.1E − 3 xfl 300
6 Combustor 2 8.1E − 3 Lc.c. − xfl 1930
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used and at xfl = 0.040 m [16] when the hybrid FDF model is used. This values corresponds
to the peaks of the heat release distributions in the longitudinal direction in the simulations
and in the experiment, respectively (see Figure 6).

The mean temperature is uniform in the first five sections from Plenum till Combustor 1
and is equal to 300 K. The speed of sound in these sections is 354 m/s and the heat capacity
ratio is 1.399. The temperature gradient coincides with the position of the active flame and is
situated between the sections Combustor 1 and Combustor 2. The value of the temperature
in the section Combustor 2, TCombustor 2 = 1930 K is taken from the work of Tay-Wo-Chong
et al. [16]. The speed of sound in that section is 854 m/s and the heat capacity ratio is 1.268.
This value is close to the adiabatic temperature of the flame (1960 K), which is observed
in the inner recirculation zone in the simulation. Considering the case with the value of
the temperature in the section Combustor 2, 1930 K makes possible the comparison of our
results with the results of Tay-Wo-Chong et al. [16]. Stability analysis with TCombustor 2 =
1712 K that takes into account heat losses gives very similar results and is not presented in
this work.

The velocity fluctuations for the unsteady heat release model are taken between sections
Burner tube 2 and Burner tube 3, which corresponds to the velocity reference position in
the simulations. The instantaneous unsteady heat release is calculated as the convolution
of the history of velocity fluctuations and the UIR:

Q′(t) = Q̄

ū

∫ ∞

0
UIRmod

u (t ′ − t)u′
r (t) dt ′, (17)

where t′ is the integration variable.
The normalized amplitude of velocity perturbations A is needed for the calculation of the

instantaneous values of parameters τ i and σ i. The calculation of A is a challenge when using
the FDF in time-domain simulations because it is unknown before the simulation is run and
is rather the output of the simulation. In this work, the instantaneous value of A is computed
as the maximum value of the normalized amplitude of velocity oscillations max(|u′

r |)/ūr

in a window of time that precedes the current instant of the simulation. Each time step
of the UIR to be used in Equation (17) is recalculated based on the current amplitude of
velocity perturbations A. This approach is robust and computationally inexpensive. The
time window is taken as 25 m/s, which allows the normalized amplitude of the velocity
oscillations to be computed for frequencies higher than 20 Hz. Smaller lengths of the time
window may be required if the dynamics of the thermo-acoustic system are very fast and
the unstable frequency of the pressure oscillations is high. Examples of A time histories for
a stable and for unstable cases are presented in the next section.

For each set of parameters, the simulation is run for 1.0 s, which is enough to reach
either saturation to limit-cycle pressure oscillations or zero pressure fluctuations. Additional
excitation as shown in Figures 7 and 8 is added to the velocity at the reference position
for the first texc = 0.1 s. The normalized amplitude of the excitation is 1%. In this way, we
simulate the noise produced by turbulent combustion. After 0.1 s until 1.0 s, the system is
left to evolve by itself without external excitations. The maximum amplitudes of velocity
oscillations at the reference position are measured in the window 0.9–1.0 s and plotted. The
FFT of the velocity time history is performed and the dominating frequencies of oscillation
are reported.
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Figure 18. Velocity perturbations at the reference position with Lc.c. = 0.3 m. (Colour online)
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Figure 19. Velocity perturbations at the reference position with Lc.c. = 0.7 m. (Colour online)

5.2. Results of network model simulations

An unstable frequency at 101.3 Hz was detected in the experiments of Tay-Wo-Chong et
al. [16] with a combustor length of 0.7 m. With the length of combustor equal to 0.3 m, the
set-up was stable [45]. We have performed corresponding simulations and have found that
the set-up is stable with a combustion chamber length of Lc.c. = 0.3 m (see Figure 18), and
with a combustion chamber length of Lc.c. = 0.7 m the set-up is unstable (see Figure 19)
as in experiments of Tay-Wo-Chong and Polifke [45]. The FFTs of the velocity oscillations
for the two cases are shown in Figure 20. In Figure 19 it is possible to see how the nonlinear
flame model works: first perturbations grow exponentially and then they saturate to a certain
level.
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Figure 20. FFT of velocity perturbations at the reference position.

A parametric study with combustion chamber lengths in the range 0.3–0.95 m in steps
of 0.05 m has been performed. With the URANS FDF model used (see Section 4.1), the
set-up is predicted to be stable for Lc.c. = 0.3,. . . , 0.5 m and unstable for Lc.c. = 0.55,. . . ,
0.95 m (see Figure 21). With the hybrid experimental–URANS FDF model (see Section
4.2) the set-up is predicted to be stable for Lc.c. = 0.3,. . . , 0.35 m and unstable for Lc.c. =
0.4,. . . , 0.75 m (see Figure 21). The saturation amplitude of velocity oscillations at the
reference position is higher with the hybrid FDF model due to the higher experimental
FTF gain (see Figure 16). Higher saturation amplitudes result in slightly higher unstable
frequencies, as explained further. For the Lc.c. values presented in this work, the velocity
perturbations saturate at amplitudes lower than 70% – the maximum excitation amplitude
used in the FDF calculations. The computed unstable frequency corresponds to the one
observed in experiments. Unfortunately, the amplitudes of acoustic oscillations are not
available from the experiment.

The following acoustic frequencies are computed in network model simulations without
an active flame: 50 and 283 Hz and its harmonics, 956 and 1157 Hz and its harmonics.
The first indicated frequency is produced by a Helmholtz resonance of the plenum and the
burner tube. The second one corresponds to the quarter-wave mode of the combustor.
The third and the last acoustic frequencies are the half-wave modes of the burner tube and
of the plenum respectively. The unstable frequency computed with the active flame and
reported in Figure 21 does not correspond to any of these frequencies but is the so-called
Intrinsic Thermo-Acoustic (ITA) mode [5,49]. The frequency and stability of the ITA mode
are influenced by the acoustics of the system as noted by Iurashev et al. [50].

Then, the results of linear and weakly nonlinear analyses are compared using the FTF and
the FDF computed numerically. In the linear analysis, there is no limit amplitude of acoustic
oscillations because they grow (or decay) exponentially. It is possible to calculate the growth
rate of velocity fluctuations from time-domain simulations assuming the following law for
its development:

u′(t) =
n∑

i=1

Ui sin(2πfit + φi)e
αi (t−texc), (18)

where fi is one of the frequencies of pressure oscillations after texc, n is the number of
frequencies of pressure oscillations after texc, Ui is the amplitude of velocity oscillations at
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Figure 21. Amplitudes of velocity perturbations at the reference position in network model simu-
lations and their dominant frequencies using two FDFs: the pure URANS FDF model described in
Section 4.1 and the hybrid experimental–URANS FDF model described in Section 4.2.

fi at the time texc, φi is the phase of the pressure oscillations at fi, and αi is the growth rate
of the mode fi.

The frequencies of oscillations and their growth rates are computed by approximating
the time history of pressure oscillations by Equation (18) using the least-squares method.
In the simulations presented in this work, either one or no unstable frequency per run is
detected, thus n = 1 for all simulations in the network model. Positive values of the growth
rate parameter α indicate that the system is unstable, and negative values of α mean that
the system is stable.

In the case of Lc.c. = 0.65 m, when in weakly nonlinear simulation velocity oscillations
at the reference position saturate at 10% (see Figure 21), the linear and weakly nonlinear
analysis predict the same frequency of oscillations (see Figure 22). In the weakly non-
linear analysis, while increasing stability parameter Lc.c., amplitudes of oscillations grow
(see Figure 21), the phase of the FDF changes (see Figure 10) that results in the changing
of the frequency of oscillations (see Figure 22). However, in the linear analysis, the phase
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Figure 22. Unstable frequencies of velocity perturbations at the reference position calculated by
linear and weakly nonlinear analyses.

of the FTF remains the same and the predicted unstable frequency does not depend on the
stability parameter Lc.c.. Thus, it is evidenced that if one would like to predict correctly the
frequency of the unstable ITA mode, the nonlinear analysis should be performed.

6. Conclusions

In this work, a three-step analysis of combustion instabilities in the time domain has been
proposed. The first step consists in obtaining the flame describing function of the system
by means of URANS simulations with the FSC model implemented in OpenFOAM R©. The
FSC model used is extended with respect to the standard one to take into account the
effect of heat losses and strain on the flame, which is particularly important for the burner
considered. The second step is to approximate the FDF obtained at the first step with an
appropriate analytical model. The third step is to perform time-domain simulations using
a wave-based approach implemented in Simulink R© with the FDF model from the second
step.
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The main scope of the present work is to show that the number of CFD simulations for
the FDF calculation can be reduced if the proposed FDF model is utilized. Thus, the weakly
nonlinear analysis of combustion instabilities in gas turbines would require less effort.

This three-step approach has been applied to the BRS test rig and it is shown that the
proposed approach can be used successfully for the stability analysis. For conditions when
the test rig was unstable in experiments, the proposed stability analysis also predicts the set-
up to be unstable. The computed unstable frequency corresponds to the unstable frequency
observed in the experiments, which is not a pure acoustic mode of the system but is an
intrinsic thermo-acoustic mode. We have shown that if the unstable acoustic perturbations
at the ITA frequency saturate at high amplitudes, a nonlinear analysis should be used to
predict this frequency correctly.

As a future development of this work, we plan to take into consideration entropy
wave propagation, which is important for technically-premixed flames. The approach will
be tested on an industrial set-up where amplitudes of pressure oscillations are available.
Moreover, implementation of the network model in a Simulink R© environment permits the
testing of not only passive dampers of undesirable pressure oscillations, such as Helmholtz
resonators, but active tools as well (e.g. a controller connected to a siren or an active fuel
flow control).
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Appendix A. Matrices for jump conditions between network model sections
Matrices for jump conditions between sections for the case of area decrease [44] are

Fdecr =

⎡
⎢⎣

Sd

c̄s,d

(1 + Md )
Su

c̄s,u

(1 − Mu)

1

ρ̄d

[1 + Md (1 + ζdecr)] − 1

ρ̄u

(1 − Mu)

⎤
⎥⎦ ,

Kdecr =

⎡
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Su

c̄s,u

(1 + Mu)
Sd

c̄s,d

(1 − Md )

1

ρ̄u

(1 + Mu) − 1

ρ̄d

[1 − Md (1 + ζdecr)]

⎤
⎥⎦ ,

where S is the cross-sectional area, M is the mean Mach number, and ζ is the coefficient of pressure
losses.

Matrices for jump conditions between sections for the case of area increase [44] are

Fincr =

⎡
⎢⎣

Sd

c̄s,d

(1 + Md )
Su

c̄s,u

(1 − Mu)

1

ρ̄d

(1 + Md ) − 1

ρ̄u

[1 − Mu(1 − ζincr)]

⎤
⎥⎦ ,

Kincr =

⎡
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Su

c̄s,u

(1 + Mu)
Sd

c̄s,d

(1 − Md )

1

ρ̄u

[1 + Mu(1 − ζincr)] − 1

ρ̄d

(1 − Md )

⎤
⎥⎦ .

Matrices for jump conditions between sections for the case of temperature jump with active flame
and constant cross-sectional area [44] are

J =
⎡
⎣ (1 + 2Md + M2

d ) −(1 − 2Mu + M2
u)[

c̄s + γ ū

γ − 1
+ 3ū2

2c̄s

+ ū3

2c̄2
s

]
d

−
[

c̄s − γ ū

γ − 1
+ 3ū2

2c̄s

− ū3

2c̄2
s

]
u

⎤
⎦ ,

H =

⎡
⎢⎢⎣

(1 + 2Mu + M2
u) −(1 − 2Md + M2

d ) 0[
c̄s + γ ū

γ − 1
+ 3ū2

2c̄s

+ ū3

2c̄2
s

]
u

−
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γ − 1
+ 3ū2

2c̄s

− ū3

2c̄2
s

]
d

1

S

⎤
⎥⎥⎦ ,

where γ is the heat capacity ratio.
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