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Abstract 

 

The study is concerned with theoretical examination of thermo-acoustic instabilities in 

combustors and focuses on recently discovered flame intrinsic modes. These modes differ 

qualitatively from the thoroughly studied acoustic modes in a combustor. Despite being 

intensely studied, primarily numerically and experimentally, their properties remain poorly 

understood. Here an analytical investigation produced a comprehensive picture of the 

properties of linear intrinsic modes within the framework of a one-dimensional model of 

closed-open and open-open combustors with temperature and cross-section jump across 

the flame, and a linear n   law of heat release, where n  is interaction index and   is the 

time lag. It has been shown there is always an infinite number of intrinsic modes present. 

In the limit of small n  the frequencies of these modes depend neither on the properties of 

the combustor nor on the position of the flame. For small n  these modes are strongly 

damped and they become unstable only if n  exceeds a certain threshold. Remarkably, on 

the neutral curve the intrinsic modes become completely decoupled from the environment. 

The main results of the study follow from the discovered decoupling on the neutral curve 

and include explicit analytic expressions for the exact neutral curve on the n   plane, 

and for the growth/decay rate dependence on the parameters of the combustor. A new type 

of thermo-acoustic instability has been discovered. The instability occurs out due to 

coupling between intrinsic and conventional acoustic modes. Unstable or weakly decaying 
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coupled acoustic modes behave exactly like an intrinsic mode, which increases the possible 

number of unstable intrinsic modes. The overall picture of intrinsic mode instabilities 

found for ideal boundary conditions has been shown to be robust with respect to 

modifications of the end boundary conditions. The explicit corrections to the position of 

the neutral curve and growth/decay rate have been found. The analytical results have been 

verified by numerics. 
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Chapter 1 

 

Introduction 

 

1.1. Fundamentals of thermo-acoustics 

A major proportion of the energy produced in the modern era comes from the 

combustion of fossil fuels, which is also a dominant contributor to air pollution. Air 

pollution is one of the major environmental threats to our industrialized society. 

Control of air pollution has been a major concern for the European Union, since the 

late 1970s. Substantial efforts to curb the emissions of pollutants, such as Sulphur and 

Nitrogen Oxides, have ensured that the serious urban smog and acid rains that we 

used to witness in the past, do not currently occur at the same rate and intensities. But 

even after so much effort, as per the European Commissions’ report,  

‘Every year, more than 400 000 people in the EU die prematurely due to the 

consequences of air pollution: this is more than 10 times the toll of road traffic 

accidents. Another 6.5 million people fall sick as air pollution causes diseases such 

as strokes, asthma, and bronchitis. Air pollution also harms our natural environment, 

impacting both vegetation and wildlife: almost two-thirds of Europe’s ecosystems are 

threatened by the effects of air pollution’.  

[http://ec.europa.eu/environment/air/cleaner_air/].  

http://ec.europa.eu/environment/air/cleaner_air/
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A parameter called ‘Air Quality Index’ (AQI) is used by governments to 

communicate to people how polluted the current air is and what the forecast for 

pollution is [https://www.airnow.gov/index.cfm?action=aqibasics.aqi]. The increase 

of AQI means a large percentage of the global population will experience adverse 

health effects. In the United States, the AQI is monitored based on five criteria 

pollutants under ‘Clean Air Act’. These are: ground-level ozone, particulate matter, 

carbon monoxide, sulfur dioxide, and nitrogen dioxide. For countries in the European 

Union, the Common Air Quality index offers information regarding the hourly, daily 

and annual air quality. Three major pollutants (PM10, NO2 and O3), as well as three 

additional pollutants (CO, PM2.5 and SO2), are used to monitor air pollution across 

Europe [http://www.airqualitynow.eu/about_indices_definition.php]. The Central and 

State Pollution Control Board of India [http://www.cpcb.nic.in/] monitors eight 

pollutants (PM10, PM2.5, NO2, SO2, CO, O3, NH3 and Pb), whereas the Ministry of 

Environmental Protection (MEP) of China monitors five pollutants (PM10, SO2, NO2, 

O3, CO) for measuring the level of air pollution.  

[https://web.archive.org/web/20041018003319/http://www.sepa.gov.cn/quality/backg

round.php]. Clearly, different countries use different parameters to measure air 

pollution. At the same time, developed and developing countries can no longer ignore 

their responsibility in controlling air pollution. It is a matter of concern for our planet 

and not just for individual countries. 

As mentioned already, the main contributor to air pollution is combustion of fossil 

fuels, the primary source of energy in modern day combustors, which adds pollutants 

like the oxides of nitrogen (NOX) to the environment. In modern day, combustors are 

used in various applications, e.g. in industrial power plants, rockets, and so on. 

https://www.airnow.gov/index.cfm?action=aqibasics.aqi
http://www.airqualitynow.eu/about_indices_definition.php
http://www.cpcb.nic.in/
https://web.archive.org/web/20041018003319/http:/www.sepa.gov.cn/quality/background.php
https://web.archive.org/web/20041018003319/http:/www.sepa.gov.cn/quality/background.php
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Figure 1.1: A schematic layout of an industrial gas turbine combustor. 

 

Figure 1 shows a schematic layout of an industrial power plant combustor of the type 

used to produce electricity. There is a compressor at the upstream of the combustion 

chamber to supply air at high pressure. From a parallel fuel supply line fuel is 

supplied into the system. The air and fuel after being mixed in a premixed chamber 

go through the process of combustion, which gives rise to a flame. The hot products 

of combustion eventually go to the downstream nozzle (not shown in the figure) and 

hit the turbine blades. The rotating turbine shaft is coupled to a generator, which 

eventually produces electricity. Hence, for electricity production in a power plant, 

proper functioning of a combustion chamber is mandatory.  

Due to strict pollution norms, combustors are compelled to reduce NOX by reducing 

the temperature during combustion. Hence, lean premixed pre-vaporized (LPP) 

combustors were introduced [Warren (1966), Lee and Wimmer (1968)]. In LPP 

combustors, the equivalence ratio (ratio of the actual fuel/air ratio to the 

stoichiometric fuel/air ratio [McAllister et al. (2011)]) is kept close to lean 

flammability limit, which ensures the presence of large excess of air as a dilutant to 

minimize flame and exhaust temperature. Apart from the reduction in pollutant 



4 
 

formation, lean combustors, also, provide higher combustion efficiency. However, it 

comes at a cost of increased likelihood of ‘combustion instability’ during the 

combustion process [Putnam (1971), McManus et al. (1993)]. In thermo-acoustic 

combustion instability the flame heat release is coupled to one of the acoustic modes 

of the combustor, which gives rise to an increase of acoustic pressure within the 

combustor. Apart from that, there is one more mechanism via which combustion 

instability can occur. In this route, the flame heat release is coupled to one of the 

hydrodynamic modes of the combustor. 

Thus, the instability mechanism within a practical combustion system takes place due 

to the three-way coupling of hydrodynamics, acoustics and the combustion (or the 

flame) itself, as sketched in figure 2 [Altunlu et al. (2014), Lieuwen et al. (2001)].  

 

 

Figure 1.2: Three-way coupling between acoustic, flow perturbations and flame heat release 

rate perturbations in a combustion chamber [Altunlu et al. (2014), Lieuwen et al. (2001)] 

 

As the already mentioned combustion instability is an undesirable phenomenon, as in 

large-scale gas turbine engines these instabilities entail growing heat release and 

pressure oscillation. These self-sustained, high amplitude instabilities can cause 

acoustic, mechanical and thermal loads to the combustor and its related parts, higher 
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pollutant emission, and even flame extinction. Such effects are extremely undesirable 

for an engine performance. Even though various active [Poinsot et al. (1988), 

Langhorne et al. (1990), Culick et al. (1991), Candel (1992)] and passive [Richards et 

al. (2003), Zhao and Morgans (2009), Noiray et al. (2009a), Noiray and Schuermans 

(2012)] measures are available to control combustion instabilities, the fundamental 

mechanisms of combustion instability are still a topic of on-going research.  

The first observation on combustion instability was made by Higgins (1777) in the 

form of a ‘singing flame’. Later Le Conte (1958) discovered a ‘dancing flame’ where 

musical beats were found to oscillate a flame in synchrony. For a vertical tube with 

both ends open, Rijke (1859) showed that sound can be produced by placing heated 

metal gauze inside the tube. The sound was heard, only when the gauze was kept in 

the lower half of the tube, specifically at a distance of a quarter of the tube length 

from the bottom. The basis of this ‘flame heat release-acoustics interaction’ was 

explained by Lord Rayleigh (1878), he formulated what is now known as the 

Rayleigh criterion. According to this criterion,  

‘If heat is periodically communicated to, and abstracted from, a mass of air vibrating 

in a cylinder bounded by a piston, the effect produced will depend upon the phase of 

the vibration at which the transfer of heat takes place. If heat is given to the air at the 

moment of greatest condensation or to be taken from it at the moment of greatest 

rarefaction, the vibration is encouraged. On the other hand, if heat is given at the 

moment of greatest rarefaction, or abstracted at the moment of greatest 

condensation, the vibration is discouraged.’ 

Mathematically, the acoustic pressure oscillation p , with time period T , can grow in 

a combustor with volume V (control volume), with a heat release oscillation q , if it 

satisfies the Rayleigh criterion as follows, 
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0 0

( , ) ( , ) 0
T V

p x t q x t dvdt    .
 

x  is the spatial coordinate. This integral is spatial ( dv  represents elementary volume) 

as well as temporal ( t  is time), which means that for a different flame location and 

time period, energy can be added or removed from the system, resulting in 

destabilizing or stabilizing the system. The Rayleigh Criterion implies that a thermo-

acoustic instability can be optimally controlled by having heat release oscillations 180 

degrees out of phase with pressure oscillations at the same frequency. If we consider 

the effect of energy dissipation in the system as well, the corresponding Rayleigh 

Criteria will take the following form, 

0 00 0

( , )( , ) ( , )
T VT V

x t dvdtp x t q x t dvdt       . 

To control combustion driven oscillations, a thorough understanding of the linear 

[Kim and Santavicca (2009)] and non-linear [Powell E. A. (1970), Zinn and Powell 

(1971)] dynamics of flame is needed. These linear processes determine the frequency 

and growth rate of the inherent disturbances of the combustor [Bellows et al. (2006)]. 

For higher amplitude oscillations, the non-linear processes kick in and take control of 

the combustion system, producing phenomena like the limit cycle of a self-excited 

oscillation. This concept of advent of the limit cycle [Strogatz (1994), Rabinovich and 

Trubetskov (1989), Kosztin (2013)] can further be clarified by figure 3 [Bellows et al. 

(2006)], where for an acoustic disturbance of amplitude A , the driving and damping 

processes within a combustor are described by hypothetical functions ( )L A  and 

( )D A , respectively. The growth or decay of A  depends on the relative magnitude of 

driving and damping. The amplitude grows if the driving process dominates and 

decays if the damping dominates. At low amplitude oscillation, ( )L A  can be 
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approximated as a linear function. Prediction of limit cycle amplitude will further call 

for non-linear characteristics of ( )L A  and ( )D A . Figure 3 depicts a situation when 

( )L A  saturates, but ( )D A  remains linear, and at the limit cycle, these two curves 

cross each other. 

 

Figure 1.3: Dependence of acoustic driving, ( )L A  and damping, ( )D A  processes on the 

amplitude of acoustic oscillations, A  [Bellows et al. (2006)]. These two curves cross at the 

limit cycle. 

 

1.2. Brief overview of the background research in thermo-

acoustic instability 

1.2.1. Root cause of thermo-acoustic instability 

The root cause of the thermo-acoustic instability is assumed to be the coupling of 

flame heat transfer, acoustics, and hydrodynamics of the combustion chamber. 

However, the mechanisms are still an on-going topic of research. In the literature, two 

specific mechanisms of combustion instability have been identified: (i) equivalence 

ratio fluctuation and input mass flux fluctuation [Lieuwen and Zinn (1998), 

Paschereit et al. (1999a)] and (ii) vortex shedding at the tip of the flame holder 

[Schadow and Gutmark (1992), Poinsot et al. (1987), Poinsot and Veynante (2004)] 
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1.2.1.1. Thermo-acoustic instability due to equivalence ratio fluctuation 

Equivalence ratio fluctuation as the cause of heat release rate oscillation can be found 

in the work of Lieuwen and Zinn (1998) for a very lean premixed combustion system. 

Their consideration is based on time lag theory, which describes the effect of the 

phase difference in a combustor. In a practical situation, any acoustic oscillation 

present in the pre-mixer causes variation in the mass flux of air and the fuel supply, 

which leads to equivalence ratio fluctuation (refer figure 4). This equivalence ratio 

fluctuation is convected downstream to the flame, inducing flame heat release 

fluctuation. This creates a convective time lag. This quantity is given by 

conv iL u  , where 
iL  is the distance from the fuel injector to flame front and u  is 

the average flow velocity at the inlet [Lieuwen et al. (2001), Lieuwen (2003), 

Lieuwen et al. (2008)]. In addition to this, there is another time lag, known as a 

chemical time lag, 
chem , which is the time for the air-fuel mixture to burn completely 

and generate the combustion products. Thus, the total time lag (
total conv chem    ) 

is the transport time for oscillations from the injection point of air/fuel mixture, to the 

point when the air/fuel mixture burns at the flame front. Usually, the chemical time 

lag is order of magnitudes smaller than the convective time lag [Lieuwen and Zinn 

(1998)]. If heat release oscillation, induced by this equivalence ratio fluctuation at 

flame, is in phase with pressure oscillation at the flame, it will amplify the oscillation. 

If it is out of phase, oscillations will decay. It is assumed that the acoustic pressure 

oscillation in the combustion chamber causes velocity fluctuations and no change in 

flow variables, such as density and temperature. The equivalence ratio can be 

controlled to oscillate between two limits, to avoid thermo-acoustic instabilities, as 

observed in the work of Richards et al. (1999).  
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Figure 1.4: Mechanism for combustion instability due to equivalence ratio fluctuation 

[Lieuwen and Zinn (1998)] 

 

1.2.1.2. Thermo-acoustic instability due to Vortex rollup 

Thermo-acoustic instabilities can also come into the picture, due to the large-scale 

coherent vertical structures, arising because of flow separation at the tip of the flame 

holder, as observed in the work of Dec et al. (1991). These flow instabilities are often 

referred to as vortex rollup. The combustion interacts with the unstable fluid flow as 

it moves downstream causing heat release fluctuations. The resulting acoustic field 

interacts with the flow oscillations at the boundary layer separation at the flame 

holder tip. Vortex shedding frequencies, in general, are much lower than the reaction 

rates during combustion.  

In diffusion-type flames (in flames where the oxidizer mixes with the fuel by 

diffusion e.g. a candle) setup, large-scale coherent structures control the mixing 

between fuel and air. In a premixed flame (this flame is a result of the combustion 

between a premixed mixture of fuel and oxidiser, e.g. flame in LPP gas turbine and 

Spark Ignition engines) setup, these structures control the mixing between fresh air-
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fuel mixture and hot combustion products [Paschereit et al. (1999b)]. A possible 

mechanism of vortex rollup, as a cause of combustion instability, can be found from 

Schluter (2001) [figure 5]. As per Schluter (2001) [and also Poinsot et al. (1987)], the 

vortex rollup near the burner captures some unburnt fresh gasses inside, increasing 

the flame surface area dramatically. This mechanism eventually leads to an 

enhancement of heat release rate, as heat release rate is found to be proportional to the 

flame surface area [Merk (1957), Boyer and Quinard (1990), Dowling (1999)]. The 

heat release fluctuation gives rise to acoustic perturbation after some time lag. The 

acoustic perturbation triggers subsequent vortex rollup in the shear layer at the tip of 

the burner. 

 

Figure 1.5: Schematic of large scale vortices as a driver of combustion instabilities [Schluter 

(2001)] 

 

In general, the noise radiated from a combustor consists of a direct and an “indirect” 

component. Direct combustion noise is created due to isentropic pressure waves, 

produced by the unsteady heat release, a mechanism already explained in this section. 

Apart from that, there is indirect noise, also known as entropy noise [Dowling and 

Mahmoudi (2015)], which is caused by entropy waves that are perturbations in the 
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hot gas temperature. These are generated by the heat release of the flame via 

equivalence ratio fluctuations. A feedback mechanism can be formed if such a 

perturbation is convected into a choked or nearly choked nozzle at the combustor exit, 

where it is reflected as a pressure wave. The possible sources of direct and indirect 

combustion noise are further explained by the sketch in figure 6 [Dowling and 

Mahmoudi (2015)]. Combustion noise is found to be the third major contributor after 

fan and jet noise, in the context of turbojet engine noise [Dowling and Mahmoudi 

(2015)]. 

 

Figure 1.6: Generation of direct and indirect combustion noise in aero-engines [Dowling and 

Mahmoudi (2015)] 

 

1.2.2. Modeling of flame and acoustics in combustion chamber 

1.2.2.1. The modeling of flame 

The theoretical modeling of the flame in a combustion system is an essential part of 

understanding the underlying mechanism of thermo-acoustic instability. However, 

theoretical modeling is restricted by the intrinsic nonlinear nature of the combustion 

process [Khanna (2001)]. Attempts have been made to identify the effect of flame 

heat release on velocity fluctuations through a mathematical parameter called flame 
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transfer function [Ducruix et al. (2000), Schuller et al. (2002, 2003), Polifke and 

Lawn (2007)], which is widely used for linear stability analysis of combustors. The 

flame transfer function (FTF) is the ratio of the heat release rate perturbation (Q ) to 

acoustic velocity perturbation (u ), both normalized with respect to mean quantities (

Q  and u ), 

 Q Q f u u   

A Fourier transform of the above equation transforms it to the frequency domain, 

     Q Q FTF u u        

 FTF   is known as the ‘flame transfer function’ and is usually expressed as 

     expFTF G i       , where  G   is the gain and     is the phase of the 

flame transfer function. The flame modeling, with the help of the flame transfer 

function, can be pinned down to several publications. The concept of the transfer 

function of flames was introduced in the work of Merk (1957), where the concept was 

used to analyze unstable combustion of laminar premixed flame. Experimental 

measurement of the FTF is done by taking luminescence signal of the excited OH 

(OH*) molecule, within the flame, as a representation of heat release rate, whereas, 

the velocity is recorded directly or by hot wire anemometry. The FTF is obtained at 

discrete frequency steps, with external excitation generated from a loudspeaker 

[Freitag (2009)]. References to the earlier works on the FTF measurements for a swirl 

stabilized burner, can be found in Buechner et al. (1993) and Khanna et al. (2001, 

2002) (also referred as Flame Response Function). Previously, Bloxsidge and 

Dowling (1988) developed a flame transfer function that relates the fluctuation in 

local heat release rate per unit length of the flame, to the mean heat release rate at that 

location, the Strouhal number, and a time delay. They also studied the flame 
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dynamics of afterburners, where the combustion zone length was a significant 

fraction of the acoustic wavelength. The combustion process was modeled as a 

distributed source, with low instability frequency (20-90 Hz) supposedly appearing 

due to flow instabilities. 

The concept of the flame transfer function was also used in the work of Fleifil et al. 

(1996) on laminar conical flames, where the steady field was modeled as a Poiseulle 

flow and the flame dynamics were derived by linearizing about the mean flame shape. 

When subjected to an acoustic wave at a given frequency, the solution generated 

temporal and spatial flame displacement with respect to mean position. Attention has 

been paid to model conical flames using the flame transfer function in different 

research works of Cuquel et al. (2011-2013). They described (2013a) the impact of 

flame base dynamics on the non-linear frequency response of conical flames. 

Unsteady heat transfer between the flame base and burner lips was considered to 

model the flame base response. This analysis demonstrates the important role of 

flame foot oscillations to control the saturation of the Flame Transfer Function phase 

lag. They also made a theoretical and experimental study of the flame transfer 

function of confined premixed conical flames (2011). The response of conical 

premixed flames to velocity perturbations for different flow operating conditions and 

burner nozzle geometries were examined. Afterwards, Campa et al. (2010) identified 

the influence of the flame and burner transfer matrix on thermo-acoustic combustion 

instability modes. They developed a 3-D finite element code, to predict acoustically 

driven combustion instability. The heat release was predicted by the n   flame 

transfer function model. The code could predict the frequency, as well as the growth 

rates at the onset of combustion instability, when assuming linear acoustic behavior.  
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Flame modeling can also be performed with the help of a ‘flame describing function’ 

(that is a velocity amplitude dependent flame transfer function), as found from the 

work of Noiray (2007), Noiray et al. (2008, 2009b) and Boudy et al. (2011). In their 

work [Noiray et al. (2009b)], a method was developed to estimate the noise level of 

unstable combustion based on the flame describing function. It has been shown that 

non-linear phenomena such as frequency shift, triggering or hysteresis may be 

predicted by an analytical model, based on the flame describing function. 

Subsequently, triggering phenomenon was also explained by Boudy et al. (2011). 

Cuquel et al. (2013b) explained the prediction technique of the non-linear dynamics 

of a multiple flame combustor, by coupling the describing function methodology with 

a Helmholtz solver. Later, Campa et al. (2013) identified the influence of nonlinear 

flame models (using a nonlinear flame transfer function) on bifurcation process and 

limit cycles in gas turbine combustors. A simple cylindrical and a simple annular 

configuration of a combustor system was examined. The bifurcation diagrams of 

these flame models were obtained considering interaction index as the control 

parameter. The influence of time delay on both the hopf and fold bifurcation point 

was found. Previously, Bellows et al. (2006) identified the effect of imposed acoustic 

oscillations on the non-linear flame transfer function of a lean, premixed flame in a 

swirl-stabilized combustor. Both CH* oscillation amplitude and phase were found to 

have a strong dependence on imposed velocity. Different mechanisms were found to 

be responsible at different frequencies and flow rates. At low flow rates, the non-

linear amplitude of CH* varied greatly with driving frequency, whereas, for high flow 

rates, the non-linear amplitude was independent of driving frequency. Two 

parameters: vortex rollup and flame lift-off, played a crucial role in controlling the 

saturation mechanism of the flame transfer function. 
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1.2.2.2. The acoustic modeling of combustion chamber  

It has been mentioned previously that in a practical combustor, acoustics, flame and 

hydrodynamics are strongly coupled. Therefore, a combustor should be tested for a 

wide range of operating conditions to ensure its stability. Experiments and high 

fidelity direct numerical simulations are, in principle, capable of providing this 

stability testing. Nonetheless, these methods are generally time consuming and 

expensive. To tackle this problem, low order models are developed to predict stability 

features of the system with reasonable accuracy. These analytical models are easy to 

handle and can often be checked for accuracy aposteriori against the high-fidelity and 

comprehensive numerical simulations of the combustion systems. A very brief review 

of the literature from the analytical modeling of combustion systems can be cited in 

this regard. 

Hubbard and Dowling (2001) developed a theory able to describe low-frequency 

acoustics in complicated combustor geometry of industrial gas turbines. Two main 

types of acoustic resonances have been identified: a “plenum” mode and another 

combustor mode (plenum represents the chamber volume at the upstream region of 

flame). Combustion chamber temperature did not seem to alter the plenum mode. It 

was observed that any Helmholtz resonator fitted upstream of the flame, altered the 

plenum mode if the resonator is tuned to the plenum mode. However, the resonator 

did not significantly alter the resonant modes of the combustion chamber. Later, 

Dowling and Stow (2003) performed linear acoustic analysis of gas turbine 

combustors. The coupling between heat input and unsteady flow had a crucial effect 

on modal frequency. The effect of mean temperature jump across the combustion 

zone was found to be significant for the modal frequency. However, mean flow 
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effects were not severe for Mach numbers less than 0.2. The modal coupling took 

place when the combustor geometry was not axisymmetric.  

Hathout et al. (2000) have adopted a lumped parameter approach, to develop a 

reduced order model for flame dynamics, combining the effect of flame area 

oscillation and equivalence ratio fluctuation. It has been shown that the acoustic mode 

determines the heat-acoustic coupling mechanism. Schuermans et al. (1999) 

developed an analytical model of a burner with premixed swirl stabilized flame. The 

model is based on Bernoulli’s equation, derived for the incompressible isentropic 

flow of an ideal gas through the burner. The model assumes that the acoustic 

fluctuations develop an equivalence ratio fluctuation, which propagates downstream 

of the injector to the flame, ultimately leading to a time lag. The altered heat release 

rate couples with combustion chamber acoustics and generates pressure oscillations.  

Sujith (2001) and Sujith et al. (1995) found exact analytical solutions for one-

dimensional sound propagation through a combustion zone, accounting for the effect 

of mean temperature gradient and oscillatory heat release. Using appropriate 

transformations, solutions were derived for the case of an exponential mean 

temperature gradient in terms of Bessel functions. A low order network model for 

combustor was developed by Mukherjee et al. (2014), where the vicinity of the flame 

holder was modeled as a lumped inertance. It was found that the temperature jump 

across the flame increased the modal frequency of the system, whereas the effect of 

the cross-section jump across flame is less straightforward. This feature was 

explained using pressure profile of modes. It was shown that the cross-section jump, 

when introduced at the point of increasing pressure (as per mode shape), decreases 

the modal frequency, whereas the cross-section jump, introduced at the point of 

reducing pressure (as per mode shape), increases the modal frequency. 
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Modeling of the flame is an essential component of analytical models of combustors. 

The flame modeling techniques have been covered briefly in § 2.2. However, it 

assumed that the flame behaves as a compact element. Some works discuss the 

condition under which the flame can be treated as compact, as well as the condition 

for which the mean flow of the system can be neglected. Dowling (1995) dealt with 

various flow effects on thermo-acoustic oscillations. It was found that one must be 

cautious when neglecting the mean flow, to avoid coupling of the entropy wave to the 

acoustic field. Under certain conditions, a relatively high Mach number flow can lead 

to significant drop in thermo-acoustic oscillation frequencies. The condition at which 

an axially distributed heat source can be treated as a compact source has been 

identified. It was observed that due to the small length scale, entropy waves are 

affected much more by axial heat distribution than acoustic waves. At low Mach 

number, or for mean temperature ratio close to unity, acoustic waves are not 

perturbed by entropy waves. Under these conditions, the heat source can be treated as 

a compact source. In this regard, Kato et al. (2005), using a 1-D linear model, 

concluded that instead of treating the flame as fixed and lying on a single axial flame, 

the level of accuracy of combustion oscillation frequencies is increased, if the flame 

heat release is modeled by some spatial distribution function. The spatial distribution 

function was assumed to depend on operation conditions such as the equivalence ratio 

and flow velocity. 

Crocco and Cheng (1956) introduced a simple linear heat release model in terms of 

time lagged acoustic velocity perturbation ( ) ( )q t nu t   , where n is the interaction 

index and   is the time lag between the heat release and the velocity perturbation. 

Sirignano W. (document link is in the references) explained the effect of nonlinear 

combustion instability on the liquid propellant rocket. Using time lag theory by 
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Crocco and Cheng, the stability limits for longitudinal, transverse, as well as, radial 

acoustic modes were identified. As per the reported observation, at very low time 

lags, the system also retains stability for high interaction indexes. The applicability 

and limitations of a linear theory to predict thermo-acoustic oscillation frequency has 

been discussed by many authors. In particular, Lores M. E. (1972) performed a 

theoretical study of non-linear longitudinal combustion instability in liquid propellant 

rocket engines. As per their observation, the limit cycle oscillations of longitudinal 

instabilities are discontinuous waves. Near the linear stability limit, small amplitude 

oscillations can be observed. The oscillation becomes discontinuous as amplitude 

increases. Moreover, it was also observed, to second order in velocity, that the 

nonlinearities of the system do not change the regions of instability predicted by 

linear analysis. Following this, Dowling (1997) found that the non-linearity in the 

self-excited oscillations in a ducted flame originates from the saturation in the heat 

release rate. The work also explained why linear theory provides a good prediction of 

the frequency of oscillation and the mode shape. 

Different modeling techniques to identify the effect of the flame, as well as the 

acoustic boundary conditions of the combustor on the combustor stability behavior, 

have been carried out by Schuller et al. (2009-2012). Schuller et al. (2009) tried to 

model non-linear boundary conditions using an Impedance Describing Function 

(IDF), which depends on pressure perturbation level or velocity fluctuation level. 

According to this work, the stability of the system is dependent, not only on the 

nonlinear response of the flame, but also on the non-linear response of the boundary 

conditions. Later, Schuller et al. (2012) defined an acoustic coupling index, 

dependent on the area ratio and the characteristic impedance ratio between the 

upstream and the downstream of the flame, to identify low-frequency acoustic 
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interactions in a generic combustion system. It was identified that the low-frequency 

combustion instabilities lock on to the plenum or upstream combustor mode and is 

weakly dependent on the changes downstream of the flame region.  

The majority of the instabilities in practical combustors come in the form of limit 

cycles [Nayfeh and Mook (1995)], the frequency of which can be calculated with 

reasonable accuracy using low order analytical models [Lieuwen and Yang (2005)]. 

However, thermo-acoustic oscillations are often associated with transient energy 

growth, where, under certain conditions, limit cycles can be triggered to higher. 

Nagaraja et al (2009) studied the various aspects of transient energy growth during 

combustion instabilities. The Galerkin technique was used to simplify governing 

acoustic equations in the duct in the presence of localized heat source, modeled by the 

n   law. The transient energy growth was estimated by singular value 

decomposition. A parametric study was also performed, to identify the influence of 

the system parameters on the maximum transient energy growth. In a previous work, 

Balasubramanian and Sujith (2008) explained the non-normal and non-linear 

combustion-acoustic interaction for the diffusion flames. Non-normality aspects in 

thermo-acoustics are also discussed by Mariappan (2012). 

In the work on transient energy growth and triggering in a horizontal Rijke tube, 

Juniper (2011) explained the link between linear transient growth (Balasubramanian 

and Sujith (2008)) and non-linear triggering (Ananthakrishnan et al., (2000)). It was 

found that both non-linearity and non-normality contribute to the transient growth. 

Two types of non-linear optimal initial states were found. The first had strong energy 

growth during the first period of fundamental mode but lost energy thereafter. The 

second initial state caused weak energy growth in the first period and retained high 

energy thereafter for a longer time. Thus, the second initial state causes triggering 
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from low energy to high energy in self-sustained oscillations. An experimental 

validation of this theoretical work can be found in Mukherjee et al. (2015), where 

they studied non-linear dynamics of a ducted V-flame in a laminar combustor. It was 

observed through non-linear time series analysis [Abarbanel et al. (1993), Cao 

(1997)] that due to the change of flame location within the combustor, a low 

amplitude limit cycle can be triggered to a high amplitude limit cycle. The high-speed 

flame images captured, provided substantial evidence of contorting and stretching of 

the flame surface during this transition from the low to high amplitude limit cycle, 

indicating an increase of heat release rate of the flame during high amplitude limit 

cycle. In an earlier work, Zhao Dan (2012) predicted the transient growth of flow 

disturbances in triggering Rijke tube combustion instability. The effect of the 

interaction index (n) of the n   law on maximum acoustic energy growth rate was 

highlighted. From this observation, the maximum growth rate is greater than 1 for an 

interaction index of 1.5, and the maximum growth rate is infinite for an interaction 

index of 7.5. 

1.2.3. Instability features of different flame shapes used in gas turbine 

combustors and other applications 

We have mentioned in the § 2.1, that there are two basic types of flames: diffusion 

and premixed. In addition to this, different flame shapes, allow flames to be further 

classified into various categories, i.e. conical flame, V-flame, flat flame, and M-

flame. Some comparative studies have also been made to examine their performance.  
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1.2.3.1. Conical flame vs. V flame 

Conical and V-flames are the most widely used flame shapes in the industrial 

combustors. A comprehensive study on these two flame shapes can be found from the 

literature. 

Schuller et al. (2003) developed a unified model to predict the laminar flame transfer 

functions and compared the dynamics of a conical and a V-flame. This model is 

based on the linearization of the G-equation for an inclined flame, including the 

convective effect of the flow modulations propagating upstream of the flame. It has 

been shown that the flame dynamics are governed by two parameters, a reduced 

frequency and the ratio of flame burning velocity to the mean velocity. It has also 

been observed that a V-flame behaves as an amplifier in a certain range of 

frequencies. Such flames are more susceptible to combustion instabilities than conical 

flames.  

The research of Durox et al. (2005-2009) also focuses on V-flames. Durox et al. 

(2005) performed analysis on an inverted conical flame, anchored on a rod at the exit 

of an unconfined burner. Transfer function measurement identified that these flames 

are sensitive to low-frequency acoustic excitations and behave like amplifiers over 

the broad frequency range. They also observed that the flame wrinkling, caused due 

to vortex structures developing in the shear layer between the jet and surrounding 

medium, led to strong rolling up of the flame and mutual annihilation of neighbouring 

reactive elements. These processes resulted in rapid variations in the flame surface 

area. Recently, Durox et al. (2009a) performed an experimental investigation of 

nonlinear flame transfer functions for different geometries. They identified that the 

gain of a V-flame transfer function reaches a value of 3.5 within a range of 
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frequencies. Whereas the gain, for conical flames, does not exceed 1 and does not 

exceed 2 for M flames. 

In an earlier experimental work of Blackshear (1952) on conical flames in a Rijke 

tube, it was suggested that the flame speed has a strong impact on the phase lag 

between heat release and velocity perturbation, and thus on the damping 

characteristics of the flame dynamics. The other forms of flame are flat flame and 

unconfined flame. We mention a few works concerned with these flame types.  

Markstein (1964) performed perturbation analysis of flat flames. In this work, the 

acceleration of the fluid column around the wrinkled flame was modeled as a second 

order oscillator, which forced the flame to respond at a sub-harmonic frequency. Sub-

harmonic frequencies like this were explained by Saunders et al. (1999) for a Rijke 

tube. In the work on flat flames by Markstein (1952) showed that it is impossible to 

realize a truly flat flame sheet because of the non-uniformity of the mean flow. An 

oscillation in velocity field, in which the flame is anchored, would fluctuate the flame 

surface. The stretching and contorting of the flame sheet alters the flame propagation 

speed, which is directly related to the rate of combustion and therefore the heat 

release. This surface area variation, due to local velocity perturbations, can provide a 

mechanism for self-sustained thermo-acoustic oscillations. Peerlings et al. (2013) 

studied whether the chemi-ionisation process, present in flames, can be used as an 

indicator of the thermo-acoustic response of flames. The thermo-acoustic response of 

flat and Bunsen-type flames was determined at equivalence ratios ranging from lean 

to rich, as well as at various flow velocities. The maximum value of the gain of the 

transfer function was observed to be 3 for flat flames and 1.3 for Bunsen-type flames.  

There was also an effort to analyze thermo-acoustic oscillations of unconfined flames. 

For example, Durox et al. (2009b) verified the Rayleigh criteria for self-sustained 
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thermo-acoustic oscillations of unconfined flames. An acoustic energy balance was 

approximately obtained, in which the Rayleigh source term subtracted by damping 

losses determined the far field acoustic radiation level. Moreover, it was found that 

the pressure perturbations inside the burner, just upstream of the flame region, are 

nearly in phase with the flame heat release rate perturbations, an observation that 

might not be valid for confined flames all the time. In a different work, an 

experimental study on collapsing cylindrical flames was performed by Durox et al. 

(2001). 

1.2.4. Computational and experimental work in thermo-acoustics 

 There is an extensive literature on computational and experimental works in the field 

of thermo-acoustic oscillations. We list the key ones.  

Truffin et al. (2002) performed acoustic analysis to evaluate the transfer matrix of the 

burner. The interaction index (n) and time lag ( ) in the n   flame modeling have 

been evaluated by Large Eddy Simulation and these results were compared with the 

experimental results. Large Eddy simulation (LES) is a high-fidelity numerical 

method for turbulence, capable of predicting combustion processes. The simulation of 

turbulent flows can be accurately performed for all length and time scales by Direct 

Numerical Solution (DNS) of the Navier-Stokes equation. DNS, however, is a 

computationally expensive method. LES, on the other hand, is performed by the low-

pass filtering of the Navier-Stokes equation and thus eliminating the computationally 

expensive small length scale components. In addition to this, there is the Reynolds 

Averaged Navier-Stokes equation (RANS), which is a time-averaged equation for the 

motion of the fluid flow. However, RANS simulations could be more sensitive to the 

choice of turbulent models than LES. Poinsot and Selle (document link is provided in 

the reference) focussed on the importance of LES and acoustic codes to predict 



24 
 

coupled acoustic fields in gas turbine combustors, as compared to a classical RANS 

technique. They analyzed two swirl-stabilized combustor models for both reacting 

and non-reacting flow cases. With the LES technique, it was identified that a strong 

precessing vortex core developed for non-reacting flow, which disappeared with the 

advent of combustion. Different works on LES can be listed in this context as well.   

Martin et al. (2004) analyzed self-excited combustion instability in a lab-scale, swirl-

stabilized, turbulent combustor, using a full compressible LES, Helmholtz analysis 

and budget of acoustic energy. Helmholtz analysis exactly identified the modes 

appearing during the instability. On the other hand, the budget acoustic energy 

explained that the Rayleigh criterion is not the only or even largest term in the 

acoustic energy equation. Acoustic energy losses at combustor outlet are equally as 

important as its amplitude, in the identification of oscillation frequency. Previously, 

Varoquie et al. (2002) performed experimental analysis and large eddy simulation to 

determine the response of non-premixed flames subjected to acoustic forcing. They 

identified that complete simulations were impossible on combustion instabilities since 

it involves acoustic waves through the whole system. Therefore, large eddy 

simulations were used to identify the parameter values in a n   model. These 

parameters were incorporated in a global acoustic model of the system, to check the 

possibility of impending combustion instability. In another work, Roux et al. (2008) 

performed LES to simulate the reacting flow field in a ramjet-like combustor. The 

predictions made were in good agreement with experiments. 

On the experimental front, Matveev (2003) performed experiments with an 

electrically heated Rijke tube, with the mean flow provided by a blower, to identify 

transition to instability and excited regimes. He developed a mathematical model, 

incorporating the heat transfer effect, to calculate stability boundaries, limit cycles, 
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and history dependent effects. On a different note, efforts have been made to 

understand the non-linear dynamics of ducted flames. Some of them can be listed 

here. Karimi et al. (2007) determined experimentally the transfer function of a ducted 

laminar premixed flame, by measuring the heat release modulation. They also 

calculated the velocity perturbations at the tip of the flame holder. In addition, Karimi 

et al. (2009) performed the experimental study of the dynamics of a conical, ducted, 

laminar, premixed flame, subjected to acoustic excitation of various amplitudes. The 

flame transfer function was measured over a range of forcing frequencies and 

equivalence ratios. Kabiraj et al. (2012a) [also, Kabiraj (2012)] identified a quasi-

periodic route to chaos for combustion instability in a ducted, laminar, premixed, 

conical flame. Following this, Vishnu (2013) made an experimental study on 

combustion instability on a lab-scale model of a ducted, laminar, premixed, V-flame 

combustor. The thermo-acoustic system was found to bifurcate from a stable state to 

an unstable regime, characterized by interesting dynamical states. The dynamical 

states observed in the experiments are, Steady stateFrequency lockedquasi-

periodicPeriod 3Chaos. Kabiraj (2012b) also explained intermittency and a 

route to chaos in thermo-acoustic oscillations. 

1.3. Intrinsic flame instability in the context of thermo-acoustics 

So far, we have explained thermo-acoustic instabilities caused by three-way coupling 

between combustor acoustics, flow perturbation, and flame heat release perturbation. 

However, recently, a major shortcoming of the established paradigm has been 

identified by Hoeijmakers et al. (2014), Hoeijmakers (2014) and Bomberg et al. 

(2015). Hoeijmakers et al. (2014) suggested that the flame subsystem in a combustor 

can give rise to a completely new family of modes, which are often referred to as the 

flame intrinsic thermo-acoustic modes. Although, it would be more appropriate to call 
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them intrinsic thermo-acoustic modes of the flame and its nearby environment. For 

brevity, throughout the paper, we will just call them intrinsic modes. Thus, a set of 

intrinsic modes (which might be unstable) can exist in a combustor, apart from the 

conventional acoustic modes. This is further illustrated in figure 7, which depicts that 

there is no acoustic reflection coming from the ends of the tube, when a flame 

subsystem (flame + air/fuel supply line) is kept in a theoretically infinite tube. 

However, as the aforementioned literature indicates, even in this kind of environment, 

the flame subsystem can give birth to a set of modes devoid of acoustic effects.  

 

 

Figure 1.7: Schematic of a tube, with a flame under the anechoic boundary conditions inside 

it. As per Hoeijmakers et al. (2014) flame subsystem (flame + air/fuel supply line) in this 

environment can become unstable too, even though the contribution from tube acoustics is 

absent. Note that the complete flame subsystem is not depicted in this figure, but can be 

referred from figure 4.  

 

Hoeijmakers et al. (2014) considered an n   resonator model with different degrees 

of transparency at the ends and numerically evaluated intrinsic mode frequencies. 

Their analytical analysis was confined to an infinite system: the implicit dispersion 

relation for the flame in an infinite system was found to be, 1 ( ) 0F     , 

where, ( )F   is the flame transfer function,   is the jump in specific acoustic 

impedance and   is the jump in temperature across the flame. The real parts of the 

intrinsic mode frequencies for an infinite system were found to be  2k   , 

where   is the time lag and k  is an integer. The threshold of instability was found in 
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terms of the temperature jump. The analytical results were complemented by 

numerical analysis of a single intrinsic mode in a resonator. A possible physical 

explanation for the origin of flame intrinsic modes, was suggested to be the flame 

reaction on the acoustic velocity fluctuations, created by its own heat release 

fluctuation. In other words, the flame and its adjacent environment might create its 

own local, potentially unstable, feedback loop.  

Independently, Bomberg et al. (2015) demonstrated the existence of the intrinsic 

mode, both experimentally and theoretically. In the theoretical work, the presence of 

these intrinsic modes was found by analyzing the system stability, using the flame 

transfer matrix. In the experiments, two different setups were used: laminar flame 

holder-stabilized and turbulent swirl-stabilized burner. The experimentally observed 

thermo-acoustic instability frequency closely matched the calculated frequency of the 

flame intrinsic modes. Thus, it was concluded that the common assumption made in 

thermo-acoustic instabilities: that the flame heat release always locks onto one of the 

acoustic modes, needs to be critically reconsidered on a case-by-case basis.  

In a parallel study by Emmert et al (2015), the stability of intrinsic modes is 

investigated from the viewpoint of a balance of the acoustic energy across the flame. 

The experiments by Bomberg et al. (2015), along with direct numerical simulations 

(DNS) by Courtine et al. (2014), Courtine et al. (2015) and Silva et al. (2015), where 

a flame placed in an acoustically anechoic environment, have confirmed that the 

intrinsic thermo-acoustic feedback is a genuine physical phenomenon, and not just a 

spurious by-product of simplistic models. Courtine et al. (2015) pointed out that the 

theoretical predictions of the stability and the frequency of intrinsic modes strongly 

rely on the determination of the Flame Transfer Function. Instability frequencies and 

spatial structures of the modes predicted theoretically, were captured by DNS with 
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good accuracy when flames with sufficient confinement (small cross-section ratio 

between the injection duct and combustion chamber) were considered. It was further 

confirmed that intrinsic thermo-acoustic modes are more unstable in confined 

combustion chambers. A recent study by Emmert et al. (2015) has shown that a sum 

of acoustic and intrinsic thermo-acoustic modes constitutes the complete set of eigen-

modes of a combustor. A numerical procedure has been developed to compute the 

acoustic and intrinsic eigen-modes of a combustor. It was noted that it is sometimes 

difficult to distinguish the intrinsic and acoustic modes, solely, by comparing their 

mode shapes. It has also been found that increased acoustic losses at the end of the 

combustor may destabilize the combustion system, due to intrinsic flame instability. 

A similar observation has been made by Hoeijmakers et al. (2016) from an 

experimental study, which shows that intrinsic mode instabilities could be present in 

combustion systems, despite significant acoustic losses. This finding also highlights 

that the effectiveness of passive thermo-acoustic damping devices will be restricted 

by intrinsic stability properties of the flame. 

1.4. State-of-the-art and scope of present work 

The literature review in the previous section identifies and firmly establishes the 

presence of flame intrinsic modes within combustors. These modes have been 

neglected for decades in the study of thermo-acoustic instability. Despite this, the 

study of the literature is predominantly confined to the computational and 

experimental domain. The only analytical study performed in the field so far, 

considers an anechoic chamber. It has also been speculated that the derivation of 

analytical expression of intrinsic modes needs the anechoic boundary condition 

[Emmert et al. (2015)]. Due to this, the literature does not shed any light as to how the 
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intrinsic modes exist within a combustor under application (that is when we consider 

acoustic reflections from the ends of the combustor) and how many potential intrinsic 

modes are present in the system. For an anechoic boundary condition, it has been 

shown [Hoeijmakers et al. (2014)] that intrinsic modes can become unstable for 

certain flame parameters. Whether the criterion is the same for a practical combustor, 

is an unanswered question, requiring investigation. Courtine et al. (2015) mention that 

acoustic reflection from the ends of the combustor can further facilitate the instability. 

But the analytical criterion for which this phenomenon occurs is still unknown. The 

intrinsic modes (whenever they might exist) definitely coexist with an infinite number 

of acoustic modes within a combustor. However, how this coexistence takes place 

and whether under some conditions these modes can couple with each other, are 

important unanswered questions in the context of thermo-acoustic instability. All of 

these unanswered questions call for the development of a comprehensive analytical 

model, to describe the presence of intrinsic modes and their relation to classical 

acoustic modes within a combustor, as well as the instability criterion for the intrinsic 

modes. 

Once the reality of the intrinsic modes has been established beyond any doubt, 

naturally, the following questions come to the fore. It would be highly desirable to 

have an analytical criterion for the appearance of unstable intrinsic modes in a 

combustor and to also know the boundaries and topology of the instability domain in 

the multidimensional parameter space of a combustor. Besides, the effects of the 

combustor properties (e.g., flame location, boundary conditions at the ends, and 

parameters of the cross-section and temperature jumps) on the flame intrinsic mode 

growth rates and positions must be studied. To grasp the stability behavior of intrinsic 

modes in a multidimensional parameter space, via numerics, might be extremely 
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time-consuming, if not impossible. It is also a matter of fundamental importance to 

find how these intrinsic modes live together with the conventional acoustic modes. A 

comprehensive picture of all forms of instability, due to acoustic and intrinsic modes, 

is needed for better understanding of combustion instability. The present work 

addresses all these aspects. 

Here we consider a standard 1-D acoustic model of a combustor with closed-open and 

open-open end conditions with a heat source inside. The heat release rate is modeled 

by the linear n   law [Croco and Cheng (1956)]. Within the framework of this 

simplified model, we provide an overall picture of the intrinsic modes and explicit 

analytical expressions for the parameters of the intrinsic modes (growth rates, neutral 

curves, frequencies of unstable modes) for the whole range of the system parameters. 

We also show that whatever the properties of the 1-D combustor, including the end 

conditions, there is always an infinite number of intrinsic modes present. For small n

, we derive explicit universal dispersion relation for intrinsic modes. These modes 

strongly decay for small n , which makes them practically impossible to observe. In 

closed-open combustors these modes can become unstable with increase of n . The 

main discovery is that on the neutral curve the transcendental dispersion relation can 

be factorized for ideal closed-open and open-open combustors. We call this 

phenomenon decoupling. Factorization means that the intrinsic modes become 

completely decoupled from the environment, i.e. it does not feel the properties of the 

combustor. This allows us to treat this problem analytically and to derive all the 

characteristics of intrinsic mode instabilities. The instability domain geometry proved 

to be so complicated that it would have been close to impossible to retrieve it 

numerically. For the situations where the intrinsic mode frequencies are very close to 

those of the acoustic modes, we show that strong coupling is possible. We consider 



31 
 

this scenario thoroughly. The effect of different boundary conditions, like non-ideal, 

closed-open, or open-open, on the intrinsic flame instability is also considered.  

The structure of the thesis: The thesis is organized as follows: In chapter 2, we 

develop a mathematical model to describe the intrinsic flame instability of a 1-D 

combustor with closed-open end conditions, assuming a linear n   flame model 

and considering the cross-section and temperature jump across the flame. We find the 

analytical solutions for the principle parameters describing combustion instability, 

which are the instability frequency and growth rate. At the same time, we offer a 

comprehensive intrinsic instability diagram considering multiple intrinsic modes. We 

reiterate that at present all known analytical results for intrinsic modes are confined to 

anechoic environment only. In chapter 3, we describe a new form of instability that 

arises due to the coupling of intrinsic flame modes and conventional acoustic modes, 

and thus we provide an overall picture of thermo-acoustic instability that is 

subdivided into three categories: acoustic mode instability, intrinsic mode instability 

and instability due to the coupling of intrinsic and acoustic modes. In chapter 4, we 

extend the analysis developed in chapter 2 for a combustor with open-open end 

conditions and identify the salient difference between the intrinsic flame instability of 

a closed-open and an open-open combustor. In chapter 5, we consider cases where 

the end conditions of the combustors are imperfect (not perfectly closed or open) and 

show that the analytical solutions of chapter 2 and 4 are robust. In chapter 6, we 

summarize the main results and identify a few domains where the current work could 

be extended into. 

Throughout this thesis, we use the following convention while referring to equations, 

figures, and sections.  
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(a) If a section is numbered as section (X.Y) where X is the chapter number and Y is 

the section number, we refer to it as Y within the same chapter, whereas, 

otherwise we refer to it as section Y of chapter X.  

(b) If an equation or figure is numbered as (X.Y), where X is the chapter number and 

Y is the equation or figure number, we refer it as equation (Y) or figure (Y) 

within the same chapter, whereas, otherwise we refer to it as equation (X.Y) or 

figure (X.Y). 
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Chapter 2 

 

Intrinsic flame instabilities in combustors: analytic 

description of a 1-D closed-open combustor model 

 

2.1. Introduction 

Combustion instabilities can be observed in many systems such as liquid and solid 

propellant rockets, jet engines, ramjets, and industrial power plants. Combustion 

instability comes to the fore if the gain mechanisms associated with the non-steady 

combustion process are larger than the various loss mechanisms, due to viscous 

effects, heat transfer, particle relaxation and radiation damping [Poinsot et al. (1986)]. 

The prediction of gain processes driving combustion instability are, in general,  

diverse and complex as multiple phenomena should be taken into consideration: (i) 

the interaction between the flame and the turbulent length scales of the reacting and 

burnt gases, (ii) the interaction between the flame and the acoustics of the combustion 

chamber, (iii) the possible coupling between entropy waves caused by the hot spots 

generated by the flame and the acoustic waves produced by the non-homogeneities in 

the mean flow [Silva et al. (2014)]. It has been common to assume that thermo-

acoustic instabilities are triggered by the coupling of flame heat release and one of the 

acoustic modes. The acoustic modes exist even in the absence of the flame. Thus, the 
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overwhelming majority of studies of combustor instabilities in the last few decades 

has focused on the understanding of the acoustic modes, e.g. Lieuwen and Yang 

(2005), Poinsot and Veynante (2011), Schuller et al. (2012) and Dowling et al. (1995, 

2003).  

However, recently, a major limitation of the existing notion has been reported by 

Hoeijmakers et al. (2014) as mentioned in § 3 of chapter 1. Hoeijmakers et al. (2014) 

reported that the flame subsystem (Flame and air/fuel supply line) in a combustor can 

give rise to a completely new family of modes, which are often referred to as the 

flame intrinsic modes. Thus, a set of intrinsic flame modes (having the potential to 

become unstable) can exist in a combustor, apart from the conventional acoustic 

modes. The analytical analysis of Hoeijmakers et al. (2014) was confined to a system 

with non-reflecting end conditions. The governing dispersion relation for the flame in 

a non-reflecting acoustic environment was found to be, 1 ( ) 0F     , where 

( )F   is flame transfer function,   is the ratio of specific acoustic impedance and   

is the jump in temperature across the flame. The real parts of the intrinsic mode 

frequencies for an infinite system were found to be  2k   , where   is the 

time lag and k  is an integer. Independently, Bomberg et al. (2015) identified the 

existence of the intrinsic mode in two different experimental setups: laminar flame 

holder-stabilized and turbulent swirl-stabilized burner. The experiments by Bomberg 

et al. (2015), along with direct numerical simulations (DNS) by Courtine et al. 

(2014), Courtine et al. (2015) and Silva et al. (2015), where a flame is placed in an 

acoustically non-reflecting environment, have confirmed that the intrinsic thermo-

acoustic feedback is a genuine physical phenomenon, and not just a spurious by-

product of simplistic models. Thus, the standard notion that in thermo-acoustic 
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instabilities the flame heat release always locks onto one of the acoustic modes, needs 

to be critically reconsidered on a case-by-case basis. 

Once the reality of the intrinsic modes has been established beyond any doubt, the 

following natural questions come into the picture. It would be highly desirable to 

have an analytical criterion on the appearance of unstable intrinsic modes in a 

combustor and to also know the boundaries and topology of the instability domain in 

the multidimensional parameter space of a combustor. Besides, the effects of the 

combustor properties (e.g., flame location, boundary conditions at the ends, and 

parameters of the cross-section and temperature jumps) on the intrinsic mode growth 

rates and positions must be studied. To grasp the stability behavior of intrinsic modes 

in a multidimensional parameter space, via numerics, might be extremely time-

consuming, if not impossible. Overall, an integrated picture of the instabilities of 

acoustic and intrinsic modes is needed. The present work addresses this need by 

focusing on the intrinsic mode part of the picture.  

Here we consider a standard 1-D acoustic model of a closed-open combustor with a 

heat source. The heat release rate is modeled by the linear n   law [Crocco and 

Cheng (1956)]. A closed-open assumption for acoustic ends of the combustor is 

suitable for analytical study purpose. The closed upstream of the combustor implies 

choked inlet nozzle for low Mach number [Lamarque and Poinsot (2008)]. Whereas, 

open downstream of the combustor implies that the flow goes into the open 

atmosphere, the reflection coefficient of which can be found from Munjal et al. 

(1987). However, in practical gas turbine assembly, there is a compressor assembly in 

the upstream and turbine assembly in the downstream of the combustor, imposing 

certain limitations on the perfectly closed or perfectly open assumption of acoustic 

ends. A detailed analysis on impedances at acoustic boundaries can be found from 
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Lamarque and Poinsot (2008), Silva et al. (2014), and Marble and Candel (1977). 

However, in the present context, within the framework of this simplified closed-open 

combustor model, we can provide an overall picture of the intrinsic modes and 

explicit analytical expressions for the parameters of the intrinsic modes (growth rates, 

neutral curves, frequencies of unstable modes) for the whole range of the system 

parameters.  

The chapter is organized as follows. In § 2 we introduce our model of a closed-open 

combustor with the n   law of heat release and derive a dispersion relation for 

small amplitude oscillations. The dispersion relation considers the effects of the 

cross-section and temperature jumps across the flame. It forms the basis of the 

subsequent analysis. In § 3, we derive an analytical expression for the intrinsic modes 

in the limit of a small interaction index, n. In this limit, the intrinsic modes are 

heavily damped. Their frequencies are described by the same analytical expression as 

for the case of an infinite tube found by Hoeijmakers et al. (2014). The distinctive 

features of acoustic and intrinsic modes are also highlighted and discussed using 

numerical results. In § 4 we describe decoupling of the intrinsic modes from their 

environment on the neutral curve and exploit it to derive explicit analytical 

expressions for the exact intrinsic mode neutral curve, separating stability/instability 

domains on the n   plane and the growth rate near the neutral curve. We also find 

the exact intrinsic mode frequencies on the neutral curve. The analytical results are 

then compared with numerical simulations within the framework of the dispersion 

relation obtained in § 2 and a very good agreement is demonstrated. In § 5 we 

examine the dependence on parameters (location of the flame, the cross-section and 

temperature jump) of the intrinsic modes. Finally, in § 6, we summarize our advance 
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in the understanding of intrinsic modes in a combustor and outline the outstanding 

questions.  

 

2.2. 1-D mathematical model of a closed-open combustor 

            Throughout this chapter, we will focus on the analytical study of flame 

intrinsic modes in a common 1-D model of the acoustic closed-open combustor. The 

previous analytical studies by Hoeijmakers et al. (2014) were performed for a tube 

with anechoic boundary condition. The results of the only analytical study of intrinsic 

flame modes by Mukherjee et al. (2016) will be presented in the next section. The 

acoustic modes in a combustor were extensively studied [see e.g., Lieuwen T., and 

Yang V. (2005)]. Here we adopt the basic acoustic model from Schuller et al. (2012). 

The analytical approach we put forward here can also be extended to more 

complicated combustor setups. However, for simplicity, we will restrict the current 

analysis to the simplest case of a closed-open combustor. The 1-D analytical 

formulation based upon the n   model provides an efficient versatile tool, enabling 

us to analyze the combustor modes and provides a valuable insight into the stability 

behavior of these modes in multi-dimensional parameter space. 

            Figure 1 provides a schematic sketch of a closed-open combustor with a 

compact heat source at qx x , with x  being the longitudinal coordinate, with the 

origin at the closed end of the combustor. 1
A , 2

A / 1
B , 2

B  are the pressure amplitudes 

for the forward/backward travelling waves in the upstream and downstream region, 

respectively. The cross-sectional area jumps across the flame, from 1
S  to 2

S . The 

mathematical model is based on the following assumptions: 
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(i)             We assume a 1-D acoustic model and thus the wave is assumed to 

propagate only in the axial direction (x). Any wave propagation in the transverse 

direction (y and z) is neglected in the model. 

(ii) The end conditions of the combustor are assumed to be ideal, i.e. one end is 

ideal-closed and another end is ideal-open. 

(iii) The flame is assumed to lie on a single hypothetical axial plane. Any 

distribution of the flame (heat release) in the axial direction is not considered for the 

time being. 

(iv) The flame heat release rate is modeled by the linear n   law [Crocco and 

Cheng (1956)] 

(v) Effect of mean flow and the subsequent hydrodynamic instabilities are 

ignored in this model. We also neglect the effect of turbulence in the model. 

(vi) In actual combustors, there is a distribution in temperature across the length 

of the combustor. To simplify our analytical model, we ignore this distribution of 

temperature and assume the mean temperature to jump from 1
T  to 2

T  across the 

flame. 

 

Figure 2.1: Schematic sketch of a combustor with closed-open end conditions. The combustor 

has a cross-sectional area jump at the flame location qx x . Thick brown arrows symbolize 

the forward/ backward traveling waves upstream/downstream of the flame. Yellow region 

marks the domain of higher temperature after the temperature jump across the flame. 
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The acoustic pressure and particle velocity at the upstream region and at the 

downstream region of the combustor can be written as harmonic functions in the 

space and time domain [e.g., Kinsler et al. (2000)]: 

  1 1
1 1 1,

ik x ik x i tp x t Ae B e e   
  
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1 1

1 1
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,

ik x ik x i t
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(2.1)    

  2 2
2 2 2,
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

 


 
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 
.             

(2.2) 

The wave numbers 
i

k  ( i =1,2) upstream and downstream of the flame can be 

presented as
 1 1
k c and 

2 2
k c , where   is the complex frequency, 1

c , 2
c  

represents the speed of sound and 1
 , 2

  are the mean densities upstream and 

downstream of the flame respectively. We assume ideal boundary conditions at the 

two ends,  

at 0x  ,  1 1 1 0 1A B R  ,
 
and,           

at x L   2 2 2 1ikL ikLB e A e R L    .                        (2.3, 2.4) 

When the mean flow is neglected, the 1-D continuity equation, momentum equation, 

and entropy equation, can be written as follows  

Continuity equation:          0
u

t x




 
 

 
,                                                  (2.5) 

Momentum equation:        
1

0
u p

t x

 
 

 
,                                                  (2.6) 

Entropy equation:                
s

T
t

q





.                                                       (2.7) 

 ,q x t  is the heat release rate perturbation per unit mass,   and T  are the mean 

density and mean temperature respectively.  



40 
 

By definition, change of entropy can be written as, t
t

t

dq
ds

T
  [Sonntag et al. (2002)], 

where the subscript ‘t’ represents the total value (i.e. mean + perturbed value) of the 

thermodynamic state variables. From the first law of thermodynamics we know, 

t t t tdq du p dv  , where 
tv  is the total specific volume (i.e. volume per unit mass) 

and the change of specific internal energy (i.e. internal energy per unit mass) is given 

as, 
t v tdu c dT . Making use of these equations, we can rewrite t

t

t

dq
ds

T
  as,  

t
t v t

t t

dT R
ds c dv

T v
  . 

Integrating both sides of this expression we arrive at an equation for total entropy, 

   ln lnt v t ts c T R v  . Further, by making use of ideal gas equation, 
t t tp v RT  or 

t t tp RT , we can derive the final expression for entropy in terms of 

thermodynamic state variables 
tp  and 

t , 

ln t
t v

t

p
s c





 
 
 

. 

As mentioned previously, the total values of these thermodynamic state variables 

comprise both mean and perturbed values. Differentiating both sides of the total 

entropy equation ln t
t v

t

p
s c





 
 
 

 with respect to time, ‘t’ and assuming that the 

mean values of all the thermodynamic state variables are constant with respect to 

time, we obtain, 

1
v

s p
c

t p t t

 



  
 
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Making use of (8), equation (7) yields, 

v

p

T p
c

t c T p t
q
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 
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. 

Differentiating both sides of this equation with respect to time, ‘t’ provides us the 

following, 

2 2
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 
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Further, differentiating equation (5) with respect to ‘t’ and equation (6) with respect 

to ‘x’, and thereafter subtracting one equation from the other leads us to,  

2 2

2 2

p

t x

 


 
.                                                  (2.10) 

Using equation (9) in equation (10) and making use of  1pc R   , or, 

 2
1pc T c   , we arrive at the final simplified form of the wave equation for a 

combustor with the flame heat release rate perturbation, 

 2 2

2 2 2 2

1 1p p

c t x c t

q    

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 .                                    (2.11) 

Equations (6) and (11) can be simplified assuming 
i te 

 dependence of p , u  and q  

for a thin flame configuration depicted here in figure 1 (recall that we assume the 

flame to lie on single axial hypothetical plane in our model. In other words, the flame 

can be treated as infinitely thin). Equation (6) when integrated across the flame 

thickness x  provides the following, 

1
0

q

q

x x

x

p
dx

x
i u







 


 
 
 

 , 

which can be simplified as, 
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   2 1

1
0x p pi u


     .                                   (2.12) 

For an infinitely thin flame 0x  , hence, equation (12) reduces to the following, 

1 2p p .                                                   (2.13) 

This offers us a continuity of acoustic pressure across the thin flame configuration. 

Moreover, using equation (6), equation (11) can be restructured as, 

 2 2

2 2 2

1 1p

c t x t c t

qu  


   


   
 .                                (2.14) 

Equation (14) when integrated across the flame thickness x  provides us another 

jump condition across the flame in the harmonic domain. To this end, we assume the 

form  qQ x xq S   , Q  is the heat release rate perturbation (recall that q  is 

the heat release rate perturbation per unit mass). This leads us to the following,  

   
 

  2

2 2

1 1
q q

q q

q

x x x x

x x

dx Q dx
c x c

S p i i x x
u 


  

  
 




   
 

 
 

  , 

which can further be simplified to, 

    
 

 2

1 1

22 1
2 2 1 12 2

2 2 1 1

1S S
p x i S u S u i Q

c c c


  

  


    

 
   

 
.     (2.15) 

For infinitely thin flame 0x  , and thus equation (15) reduces to the following 

jump condition of flow velocity across the flame, 

 
1 1 2 22

1 1

1

c
S u Q S u






 .                                      (2.16) 

The pressure and flow rate balance at the flame location, 
q

x x , thus, can be 

obtained from (13) and (16) [see Dowling et al. (1995), Bauerheim et al. (2015) for 

further details]. 



43 
 

Here, ( )Q t  is the heat release rate perturbation at 
q

x x  and   represents the ratio of 

specific heats of air (
p v

c c ) [Sonntag et al. (2002)]. It is assumed that the heat source 

acts like a monopole with a volume outflow   2

1 11 Q c   [Dowling et al. (1995), 

and also shown in equation (16)]. The linear heat release law can be assumed to be of 

the form, [see e.g., Truffin et al. (2002); Truffin and Poinsot (2005)] 

      2

1 1 1 11Q t S c nu t     .                             (2.17) 

Here, n  and   are the interaction index and time lag respectively. The rate of heat 

release fluctuations, Q , is assumed to be proportional to the local velocity upstream 

of the flame, 1
u , with a time lag,  . In the frequency domain, this can be written as 

[Truffin and Poinsot (2005)],  

      2

1 1 1 11 iQ S c ne u     .                             (2.18) 

In the normalized form (i.e. heat release rate perturbation and velocity perturbation 

both normalized by the mean quantities), equation (18) yields an expression of the 

flame transfer function, as explained in § 2.2.1 of chapter 1,   i
FTF ne 

  . Thus, 

n  and   provide information on the gain and the phase of the flame transfer function 

respectively. The set of homogeneous equations for 1
A , 1

B , 2A  and 2
B , (3), (4), (13) 

and (16) is usually presented in the matrix form [e.g., Schuller et al. (2012); Munjal 

and Mukherjee (2010, 2011)]  
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

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. (2.19) 
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However, here it becomes essential to use a compact dispersion relation. The compact 

form of dispersion relation provides the basis of all analytical derivations in the 

subsequent sections. For a nontrivial solution of the eigen-value problem (19) to exist, 

the determinant of the 4 4  matrix in (19) has to be zero, which yields  

      

        
2 1 1 2

2 1 1 2

1 2 2 1 2

1 2 2 1 2 1 2

1 cos

1 cos 2 sin sin 0

q

q q q

i

S S c c

S S c c

k k x k L

k L k k x ne k x k x L

 

 

     

        .     

(2.20)
               

 

We denote the function on the left-hand side of transcendental equation (20) as 

 f  . Further, for brevity, we will refer to  f   as ‘detuning’. Thus, dispersion 

relation (20) can be re-written compactly as,  

    0f   .                                                  (2.21) 

The dispersion relation can be simplified for special cases worth considering in detail. 

When there is no cross-section and temperature jump across the flame, that is 
1 2

S S  

and 
1 2

T T , and thus 
1 2

c c , 
1 2
   and 

1 2
k k k  , the dispersion relation (20) 

reduces to 

 cos sin sin 0
q q

i
kL ne kx k x L


   .                       (2.22) 

The dispersion relation (22) can be further simplified, when the flame is located 

exactly in the center of the combustor, i.e. at 2
q

x L , 

 cos 2
i i

kL ne ne
 

  .                                    (2.23) 

The dispersion relation (20), (22) and (23) prescribes the eigen-frequencies   of the 

system in implicit form. Equation (20) describes the most general case (a closed-open 

combustor with a cross-section and temperature jump across the flame), while 
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equations (22) and (23) are the reduced versions of (20) for special cases. The real 

part of   is the frequency and the imaginary part is the growth/decay rate. Since the 

dispersion relation in the form (20) is more amenable for analytical study than the 

commonly used matrix formulation (19), we employ it as the starting point for our 

subsequent analysis. For an insight into the physics of flame intrinsic modes, the 

particular simplifications of the dispersion relation (22), (23) will be also used. There 

is no general method enabling one to solve transcendental equations of this type 

[Kreyszig (2011)]. However, as we show in § 4, the dispersion relation can be 

factorized on the neutral curves, which allows us to find the neutral curve exactly and 

approximate solutions in its vicinity. 

2.3. The place of intrinsic modes in the general picture of the 

combustor modes 

In this section, we derive analytical expressions for the intrinsic mode frequency and 

decay rate in the limit of small n , for a closed-open combustor and numerically 

validate the formula [Also presented in the work of Mukherjee et al. (2016)]. 

2.3.1. Analytical expression for intrinsic modes in the limit of small n  

To introduce this idea, we start with the simplest form of the dispersion relation, 

namely, (23), which provides an implicit expression for all the modes present in the 

combustor. The presence of flame intrinsic modes different from the conventional 

acoustic modes, has been established recently [Hoeijmakers et al (2014)]. The 

intrinsic modes observed in experiments and simulations, see e.g. [Bomberg et al. 

(2015), Courtine et al. (2015), Silva et al. (2015)], were both stable and unstable 

modes. These modes seemingly appear out of nowhere. To understand better the 

place of intrinsic modes in the big picture, it is desirable to know whether these 
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modes exist when they are not unstable, and if this is the case, where in the complex 

plane are their frequencies. In this section, we address these questions for the case of 

a closed-open combustor in the limit of a weak flame. From the simplified dispersion 

relation (23) it is easy to see that for 0n   there are only two sets of roots: 

(i)             the conventional acoustic modes specified by the condition cos 0kL  , and,  

(ii) a new set of roots with large negative imaginary part (this is, |
i

e


|>>1, or, 

in other words, the strongly damped modes). This can be explained as follows. For 

nonzero coskL , there is only one possibility for equation (23) to have solutions, that 

is the numerator must be (1)O . This implies that when n  is small, 
i

e


 has to be 

large (  1O n ). We now apply the same reasoning to the general case. 

To find the roots of the full dispersion relation (20) in the limit of small n , we 

simplify the trigonometric expressions in (20) using Euler’s formula, that is 

 cos 2i ie e    , and  sin 2i ie e i    , and divide both sides of the 

resulting equation by

 

 1 2 2qi k k x k L
e

 
 
 

 
. This leads to the following expression,
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 
 
 
 

  

      .    

(2.24) 
 

By the same reasoning (as for the simplified dispersion relation considered above), 

the new set of roots (intrinsic modes) for the full dispersion relation (20), must have a 

large negative imaginary part. Thus, for these new roots, all the exponents in (24), 

(that is   2 12 q qi k x L k x  , 
12 qik x  and  22 qik x L ) are highly negative as well. 
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Hence, for small n ,  
12

0qik x
e


 , 
 22

0
qik x L

e


 , 
 2 12

0
q qi k x L k x

e

 
 
 

 
 . Then 

dispersion relation (24) assumes the simplified form, 

   2 1 1 2 1 2 1 0iS S c c ne        .                         (2.25) 

The general solution of equation (25) is 

      2 1 1 2 1 22 1 ln 1ii m i S S c c n         , 

Which instantly provides us with an explicit expression for the modal frequency, in 

the asymptotic limit of small n ,  

         

      

2 1 1 2 1 22 1 ln 1

2 1 ln

i

i

m i S S c c n

m i n

     

  

     

  
.      (2.26a,b) 

where 
im  is the mode number of the flame intrinsic modes.

 
This expression (26a) is 

identical to the result found by Hoeijmakers et al. (2014) for an infinite tube with a 

flame inside. Thus, in the limit of small n , intrinsic modes for 1-D closed-open 

combustor have the same frequencies as those in the infinite tube. We stress that the 

frequencies given by (26a) do not depend on any parameters of the combustor, 

including the end conditions. Note that the intrinsic modes have their own mode 

numbers, completely independent of the mode numbers of the acoustic modes.  

From equation (26b) it is also easy to see that in the limit of small n , there is always 

an infinite number of intrinsic modes present in the system for any n  and  . The real 

part of the flame intrinsic mode frequency depends only on the time lag alone and is 

given by the expression,   2 1
i

m   . The decay rates, however, do not depend on 

the mode number (
im ). Decay rates are inversely proportional to   and 

logarithmically dependent upon n  , the temperature jump and cross-section jump of 

the combustor. In the asymptotic limit of small n , the flame intrinsic modes are 
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strongly damped and independent of the characteristics of the combustor and flame 

position. Since the decay rate is high, the intrinsic modes to leading order in 
1ik L

e


, 

do not feel the combustor boundaries. This explains why the result coincides with 

those for the infinite tube. The practical implication of strong damping of the intrinsic 

modes in combustors with weak flames, is that this feature makes it practically 

impossible to observe their manifestations in such regimes. 

Thus, for small but non-zero n , there is always an infinite number of flame intrinsic 

modes present in a combustor, just as there is an infinite number of acoustic modes 

present in a combustor. However, in contrast to nearly neutral acoustic modes, for 

small n , all these modes are strongly damped. They cease to exist for n =0, while 

acoustic modes do not. We have established that in the limit of small n  these modes 

are equally spaced and their frequencies are determined only by the time lag   and, 

correspondingly, do not depend at all on other characteristics of the system. We will 

show below that the intrinsic modes become unstable only once the value of n  

exceeds a certain threshold. Their behavior near the neutral curve will be studied in § 

4. In of itself, the dispersion relation behavior in the limit of small n  is only 

important in the context of outlining the general picture of intrinsic modes. But its 

significance becomes apparent in § 4 since the frequencies of intrinsic modes on the 

neutral curve prove to coincide exactly with the real parts of the eigen-values found in 

the small n  limit. 

2.3.2. Understanding the stability behavior of intrinsic modes 

Here we examine the features of the full dispersion relation (20) numerically. As an 

example, we consider a combustor with the parameters of the test rig at IIT Madras 

[Vishnu et al. (2015)]: the length L  is 0.75 m, the cross-section S is 0.0016 m2, the 
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temperature T is constant throughout the duct and equal to 297 K when there is no 

flame.  

 

Figure 2.2: Sketch of the experimental setup [Vishnu et al. (2015) and Mukherjee et al. 

(2015)]. The glass duct, marked by thick blue line shows combustor wall. The upper end of 

the glass duct is open and the lower end is flanged (closed). The flame sits on the tip of a 

brass rod (shown by thick black line), concentric to the glass duct. There is a hollow mild 

steel rod (shown by thin blue line) concentric to this glass duct. Supply of air-fuel mixture 

comes via this mild steel rod. The flame can be traversed across the glass duct using a 

traversing mechanism (not shown in the figure). The figure is not to scale. 

 

Figure 2 provides a sketch of the setup. The actual setup consists of a glass duct 

(shown by thick blue line) with the top end open and the bottom end closed. 

Concentric to the duct there is a thin brass rod (shown by the black line), at the tip of 

which the flame sits. There is a hollow mild steel rod (shown by thin blue line) 

concentric to this brass rod, through which air/fuel mixture comes in. In the actual 

setup, there is a substantial temperature jump across the flame. However, for 

simplicity, we ignore this temperature jump in most of our numerical and analytical 

study, except in § 5, where we focus on the effect of the temperature jump across the 

flame on intrinsic flame instability. The flame in the setup can be traversed across the 

length of the glass duct. For most of our analysis, we assume the flame to be located 

at . However, we stress that the specific parameters of the combustor are 2
q

x L
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immaterial for our study and they are used for illustration only. If the 1-D model 

idealization and the ideal end conditions assumptions remain valid, our analytical 

model is independent of the combustor specific properties and dimensions. 

A valuable insight into the nature of the intrinsic modes can be gained through a set 

of contour plots of the absolute value of function  f  , prescribed in the full 

dispersion relation (20, 21). On the complex   plane, these plots show the topology 

of  f   with both the frequencies and the growth/decay rates of the modes at the 

same time. They also facilitate a comparative study of acoustic and intrinsic modes. 

In figures 3-5, acoustic modes are marked with diamonds, while intrinsic modes are 

shown by triangles. The acoustic mode frequencies are  (2 1) 2
a

m c L  (for 
a

m = 

0, 1, 2…) [Kinsler et al. (2000)] and have zero growth rates in figure 3. The 

instability domain is marked in yellow. The iso-lines in the figures 3-5 present the 

mapping of the absolute value of detuning function  f   onto the complex   

plane. The innermost closed loops of the iso-lines represent the solution region for 

modal frequency  . The number of frequencies in the system far exceeds the number 

of acoustic modes, as was also noted by Emmert et al. (2016) in their analysis of a 

premixed combustor.  

To show in the same figure the iso-lines of detuning  f  for both acoustic and 

intrinsic modes with a huge difference in the decay rates, we split figure 3 into two 

panels: for small interaction index n  ( n =0.025) and time lag,  , equal to 3 ms. In 

the chosen frequency range, there are three intrinsic modes with strong decay rates, as 

shown in the bottom panel. These modes are equally spaced and the frequencies of 

these modes are well predicted by (26a). The upper panel shows acoustic modes, 
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which are neutral for the chosen n  and  . When, in figure 4, n  is increased from 

0.025 to 1.0, the decay rates of the intrinsic modes significantly decrease. 

 

 

 

Figure 2.3: Contour plot of detuning  f   for 0.025n   and 3.0   ms. The 

parameters used for this plot are: the length L  is 0.75 m, the cross-section S is 0.0016 m2, the 

temperature T is assumed constant throughout the duct and equal 297 K. The flame is located 

at 2
q

x L , 1
c = 2

c =345 m/s. The two sections are parts of the same contour plot. The 

domain of instability is marked in yellow. Blue diamonds and orange triangles represent the 

acoustic and intrinsic modes respectively. 
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Figure 2.4: Contour plot of  f   for 1.0n  , 3.0   ms. Notation and other parameters 

are the same as in Fig 3. 

 

 

Figure 2.5: Contour plot of  f   for 5.0   ms and 1.0n  . Notation and other 

parameters are the same as in Fig.3. 

 

 

Comparison of figures 4 and 5 shows that increasing   from 3 ms to 5 ms reduces 

the intrinsic mode frequency. At some threshold value of n , these intrinsic modes 

become unstable. For example, the fourth intrinsic mode at 4398 rad/s becomes 

unstable when n  is 1.0. Further numerical simulations (not shown here) indicate that 
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all intrinsic modes become unstable upon exceeding a certain n -threshold that will be 

predicted analytically in § 4.2.  

To summarise, we can say that the intrinsic modes are strongly damped in the limit of 

small n  and in this range, are easily distinguishable from acoustic modes. On the 

complex   plane, the modes could be always distinguished by tracing their position 

by varying n . The frequency of the intrinsic modes depends primarily on   and does 

not depend on any parameters of the combustor. We stress that the frequency depends 

on n  very weakly (except for intrinsic-acoustic mode coupling scenario, which will 

be discussed, in detail, in chapter 3). In contrast, the intrinsic mode stability is 

strongly dependent on n . These modes become unstable upon exceeding a certain 

threshold value of n . 

2.3.3. Maps of acoustic and intrinsic modes on the n   plane 

The similarities and the differences between acoustic and intrinsic modes can also be 

elucidated by a set of maps on the n   plane. These maps offer us a lucid picture of 

the evolution of intrinsic modes in the parameter space, also serving as a validation 

tool for our analytical results of § 3.1. Figures 6 and 7 give examples of such kinds of 

maps for acoustic and intrinsic modes. The acoustic modes are indicated by diamonds 

and intrinsic modes by circles. These modal frequencies are tracked down manually 

on the complex frequency plane (as shown in contour plots 3-5) by changing 

parameters n  and  .  
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Figure 2.6: Map of acoustic (diamonds) and intrinsic (circles) modes: modal frequency vs. 

time lag   for n =0.01, 0.25, 1.0. Solid lines i(1), i(2), i(3), i(4) and i(5) show the analytical 

solution (26a) for the first, second, third, fourth and fifth intrinsic modes, respectively, for 

small n . Other parameters are the same as in Fig.3. 

 

Figure 2.7: Maps of acoustic (diamonds) and intrinsic modes (circles): modal frequency vs. 

interaction index n . Solid lines i(1), i(2), i(3), i(4) and i(5) show the analytical solution (26a) 

for the first, second, third, fourth and fifth intrinsic modes, respectively,  for small n . The 

plot is for:  =5 ms and two different combustor lengths: L = 0.75m,
 
0.375m. The numerical 

solutions for the first, second, third and fourth acoustic modes are represented by a(1), a(2), 

a(3) and a(4), respectively, for L = 0.75m, whereas, the numerical solutions for the first and 

second acoustic modes are represented by b(1) and b(2), respectively, for L = 0.375m. Other 

parameters are the same as in Fig.3. 
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In figure 6, the time lag,  , varies from 1 ms to 5 ms. Three different values of n  are 

considered: n = 0.01, 0.25 and 1.0 and the corresponding modal frequencies are 

obtained using contour plots. The numerical results are compared with the analytical 

solution (26a). The flame intrinsic mode frequencies have a (1/ ) dependence well 

outside the limit of small n , which is shown by solid line hyperbolae. For this case, 

the key numerical observation is that a substantial variation of n  hardly alters the 

intrinsic mode frequencies.  

In figure 7,   is fixed at 5 ms and n  is varied from 0 to 1.5. The corresponding 

modal frequencies are obtained from the contour plots, similar to figures 3-5. When 

the flame is not present in the system, (that is, 0n  ), the intrinsic modes are absent, 

while the frequencies of the acoustic modes are  (2 1) 2am c L  (for 
a

m =0, 1, 2…) 

for a closed-open combustor. As we increase n , the flame intrinsic modes emerge. 

The intrinsic mode frequencies are weakly dependent on n  [when there is no 

coupling with the acoustic modes]. In the range of n  considered here, the overall 

change of the intrinsic mode frequency is less than 5%. To illustrate the weak 

dependence of intrinsic mode frequencies on the combustor length, figure 7 presents 

results for two different combustor lengths.  

Thus, we can confirm that the evolution of intrinsic modes on the n   plane is 

indeed completely independent of the acoustic modes in the range of small n . 

Crucially, the analytical prediction of the intrinsic mode frequencies (26a), obtained 

in the asymptotic limit of small n , is found to be a very good approximation for a 

wide range of n . 
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2.4. Intrinsic mode instability: neutral curves and growth rates   

Hoeijmakers et al. (2014) found intrinsic modes to be unstable for some values of n  

and  . Small n  limit of the dispersion relation (26b) also suggests that the decay rate 

of intrinsic modes is logarithmically dependent on n . As n  increases, the decay rate 

decreases and at some threshold value of n , the decay rate crosses zero, making the 

intrinsic mode unstable. Here, in § 4.1, we will derive an exact analytical expression 

for the intrinsic mode frequency at the neutral curve. Then, in § 4.2, we will find the 

exact threshold value of n  for intrinsic mode instability, that is, we will find the 

neutral curve in the n   parameter space. In § 4.3 we derive the growth/decay rates 

near the neutral curve. The geometry of instability domains for each mode proved to 

be quite complicated. Hence, to simplify handling of an infinite number of modes, we 

introduce bounds for the stability domain in § 4.4 and derive a simple estimate for the 

largest growth rate in § 4.5. 

2.4.1. The frequency of the intrinsic modes at the neutral curve  

In the previous section, we have found the intrinsic mode frequency in the limit of 

small n . Here we derive the exact frequency at the neutral curve on the n   plane. 

2.4.1.1. Decoupling on the neutral curve  

The intrinsic modes found analytically for small n , can be traced numerically for 

arbitrary n . At first, we denote 
c

i  as the discrepancy between the eigen-frequency 

i  and 
0

i , the small n  prediction given by a real part of (26a). However, we stress 

that we do not a priori assume 
0c

i i   to be small in our analysis. Thus, for any n , 

 
0

i

c

i iRe     , where superscript i  denotes the intrinsic modes. For any value of 

n , the intrinsic mode frequency,  , can be written as,    i i iRe iIm    , or 
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   0 c

i i ii iIm      . On substituting this presentation of i  into the full 

dispersion relation (20), we can re-write it as, 

           
 

   
    

1

2

0 0

0

0

0

1 21 cos 1 cos

2 sin

sin 0

q

q

c c

i i i
c

c

c

i i

i

i

i i i i

i iIm
i i

i i

x c

x L c

iIm iIm

ne iIm

iIm

   

 





       

 

 

 
 
 

 



      

  

   ,    
(2.27) 

where  , 1  and 2  are, 

2 1 1

1 2 2

S c

S c






  
  
  

, 
2 1 2

1

1 1
q

L

c c c
x
 

 
 

   and 
2 1 2

2

1 1
q

L

c c c
x
 

 
 

  .     (2.28) 

By virtue of the real part of (26a), we have, 0 1
ii

e
 

  . Substitution of this identity 

into (27) simplifies it further. By definition,  iIm   is equal to zero for the 

threshold value of n , i.e.   0iIm    at 
th

in n . This specifies the neutral curve. 

Thus, on the neutral curve, the imaginary part of (27) reduces to, 

      1 2
2 sin sin sin 0

q qcth

i i
in k x k x L    .               (2.29) 

It is easy to see that this equation is factorized. It is satisfied when just one multiplier 

containing 
c

i  vanishes, that is,   

 sin 0
c

i   .                                            (2.30)  

This gives us an explicit expression for 
c

i , 

    
c

i m   ,                                               (2.31) 

where m  is an integer (not to be confused with the intrinsic mode number im ). Once 

c

i  is obtained via (31), the frequency for the neutral intrinsic mode can be calculated 
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using its definition  
0

i

c

i iRe     , which yields (on the neutral curve 

 i iRe  ), 

    2 1i im m       .                              (2.32) 

Because of extensive (but not comprehensive) numerical analysis of the full 

dispersion relation (20), we hypothesize that the modulus of integer m  in (31) does 

not exceed unity, since 1m   would imply 2
c

i   . Recall, that according to 

(26b), the real parts of the frequencies of two neighbouring intrinsic modes, in the 

limit of small n , are separated by a factor of 2  . Hence, any discrepancy 

exceeding 2  , will imply the change of the mode number. For example, if the 

third intrinsic mode has the frequency discrepancy exceeding 2  , it would have 

become the second intrinsic mode, while the second intrinsic mode would have 

become third intrinsic mode. Thus, these modes will exchange their identities. So far, 

in numerics, we have not seen a single instance of such an exchange. Therefore, we 

assume 
c

i  to be restricted by the condition prohibiting such an exchange of 

identities, 2 2
c

i       .                                               

According to (31), on the m =0 part of the neutral curve in the n   plane, 
c

i =0, 

that is, the frequency exactly equals the value predicted in the limit of small n . This 

remarkable coincidence will be discussed in the next section. Apart from the m =0 

option, the assumption prohibiting the exchange of identities condensed into 

condition 2 2
c

i        leaves only two other possibilities: m = 1. This 

corresponds to an intrinsic mode frequency shift by a factor    on either side of 
0

i

. 
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2.4.1.2. Why is the instability frequency independent of the combustor 

parameters on the neutral curve? 

We have found an unexpected remarkable exact result. On the neutral curve, the 

instability frequency is completely independent of all the parameters of the combustor 

we consider in our model (the length, the flame location, the cross-section jump and 

the temperature jump) except for the time lag  . Here we briefly discuss possible 

mathematical and physical reasons for such unusual behavior. 

It is easy to see from (29) that at the neutral curve the intrinsic mode deviation, 
c

i
 , 

from 
0

i , i.e. its frequency in the asymptotic limit of 0n  , is completely 

decoupled from the flame location and temperature jump, because of the equation 

factorization. Note also that the effect of cross-section jump does not even feature in 

this equation. This makes the intrinsic mode frequency completely independent of the 

environment on the neutral curve. In the segment of the neutral curve corresponding 

to 0
c

i   , the eigen-frequency is exactly equal to 
0

i  and in the segments 

corresponding to 
c

i
    and 

c

i    , there is a frequency deviation of    and 

   respectively, when compared to 
0

i . There is, however, a qualitative 

difference between the eigen-frequencies in the asymptotic limit of small n  and the 

eigen-frequencies on the neutral curve. In the limit of small n , the intrinsic modes are 

so strongly damped that they do not feel the combustor end conditions.  Hence, they 

also do not feel the length of the combustor, as well as the position of the flame. We 

stress that as per (26b), neither the real part of i , nor its imaginary part feels the 

parameters of the combustor (except  ) in the limit of small n .  It can be seen from 

the contour plots in figures 3-5, that as n  is increasing, the real part of the eigen-
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frequency, Re i , for a given combustor, is hardly changing. Hence, the real part 

remains insensitive to all parameters of the combustor (except  ), while the decay 

rate depends on all the characteristics of the chosen combustor. When on the complex 

i  plane, as we approach the neutral curve (from either side), the intrinsic modes 

growth/decay rate, by definition, tends to zero. Hence, given that on the neutral curve 

even the weak dependence of Re i  vanishes, the dependence of i  on the flame 

location, cross-section and temperature jump also vanishes. To explain why the 

dependence of Re i  on all parameters but   vanishes on the neutral curve, consider 

our simplified dispersion relation (23) which we repeat for convenience 

 cos 2
i i

kL ne ne
 

  . By definition, on the neutral curve, the eigen-frequency 

, , is real.  Since k c  and the speed of sound c  is also real, this requires 

cos kL  to be real as well. This is possible only if 
i

e


 is real, which implies 

 sin 0  , resulting in the solution, 
c

i m   , where m is an integer. The same 

type of reasoning applies to the general form of the dispersion relation (20). 

The decoupling phenomenon is not confined to the specific closed-open combustor 

we were examining. It can be shown that the decoupling (or the factorization) holds 

for other types of combustors of arbitrary length, cross-section and temperature jump 

with perfectly closed or perfectly open end conditions.  

2.4.2. Instability threshold for the intrinsic modes  

Here we derive an explicit expression for n  as a function of  , where the intrinsic 

mode becomes unstable. We will refer to this specific function as 
th

in . On this basis, 

for each intrinsic mode, we will draw a set of neutral curves, i.e. the boundaries of 

stability domains in the n   plane. These neutral curves will be analyzed below, to 

provide an insight into the stability behavior of intrinsic modes.  
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2.4.2.1. The neutral curve: Exact solution 

Making use of 0 1
ii

e
 

  , the real part of (27) on the neutral curve can be written as,  

         
      1 2

0 01 2

cos sin sin 0

1 cos 1 cos

2 q q

c c

cth

i i i i

ii k x k x Ln 

       

  

     

,

 

which directly yields the threshold  
th

in ,  

         
      1 2

0 01 2

2cos sin sin

1 cos 1 cos

q q

c c

th

c

i i i i

i

i k x k x L
n

 

       




    
,           (2.33) 

where  , 1  and 2  are provided by (28). Primarily, we examine a special case of 

2
q

x L . In this case, expression (33) can be significantly simplified. For the 

segments of the neutral curve corresponding to 0
c

i   , 
c

i
    and 

c

i    , 

we find 

     2cos 2 1 cos cos 2 1 1i

cth

ii iL
m m

c

L
m m

c
n






 


 

    
       

     
 .    (2.34) 

Where m  is 0, +1 and -1 for the neutral curve segments 0
c

i   , 
c

i
    and 

c

i     respectively. The neutral curve for the second intrinsic mode (
i

m =1) is 

shown in figure 8 (a) as a typical example. Figure 8 (a) has two notable features. 

There is a narrow island of instability shown to the left and a large instability domain 

confined by neutral curve loop on the right-hand side, hereinafter referred to as 

‘neutral loop’ or just ‘loop’ for brevity. The right-hand side loop has three distinct 

segments. They correspond to the branches, 0
c

i
   , 

c

i
     and 

c

i
     (blue, 

red and green respectively).  
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(a) 

 
(b) 

Figure 2.8: Neutral curve and stability domain on the n   plane for the second intrinsic 

mode (
i

m =1). Both figures are the same but on a different scale. In figure (b), the interval in 

  is different, showing domains for the smaller time lag. The instability domain is marked in 

yellow. The segments 0
c

i
   , 

c

i
    and 

c

i
     of the neutral curve are indicated by 

arrows (blue, red and green  respectively). The solid lines show segments of the neutral curve 

for the second intrinsic mode and the dashed lines show their continuations, which are also 

exact solutions of (34). We interpret them as neutral curves for acoustic modes coupled to the 

intrinsic mode. The hatched area indicates the domain with multiple instability islands, 

narrowing as  decreases. These islands are difficult to plot so they are not shown. The 

parameters are the same as in figure 3. 

 



63 
 

Feature–wise, the pattern of the instability island on the left is the same as the larger 

loop on the right. Moreover, this pattern is repetitive (with diminishing width) 

towards the left (this is evident from figure 8 (b) drawn for smaller time lags). To 

avoid cluttering the figure, we hid these patterns under hatched lines. As these loops 

become thinner, they still manifest themselves as a combination of ,  

and  segments of the neutral curve. The ‘instability domain’ is marked in 

yellow. Each neutral loop composed of the neutral curve segments ,  

and  confines the instability domain from below. 

For any specific loop, the solid lines represent the neutral curve for intrinsic modes 

and the dashed lines show their continuations. These continuations are due to the 

neutral curves for acoustic modes being coupled to intrinsic modes, as these dashed 

lines correspond to exact neutral solutions of the full dispersion relation (20), deeply 

embedded into the intrinsic mode stability domain. This interpretation is supported by 

numerical observations, discussed below in § 4.2.2. Detailed analysis as to how 

intrinsic and acoustic mode live together in a combustor will be discussed in chapter 

3. The neutral curves segments, corresponding to  and , yield higher 

values of  when compared to the  segment. The islands of instability in the 

left-hand corner of figure 8 (a) (and of 8 (b)) manifest a strong coupling between 

acoustic and intrinsic modes. While discussing figure 8, we should mention that there 

also are nearly vertical, isolated segments of the neutral curve that we have opted not 

to show in the figure (but will be discussed in chapter 3). These segments correspond 

to  and  segments, located between the large loop on the right and 

0
c

i
  

c

i
  

c

i
   

0
c

i
  

c

i
  

c

i
   

c

i
  

c

i
   

th

in 0
c

i
  

c

i
  

c

i
   
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the first small loop on the left of the figure and are due to acoustic modes being 

coupled with intrinsic modes. 

 

Figure 2.9: Neutral curve and stability domain on the n   plane for the first intrinsic mode 

(
i

m =0). Notations and other parameters are the same as in figure 8. The neutral segment 

corresponding to 
c

i
     does not feature here. 

 

Note that for the first intrinsic mode ( =0), the neutral curve segment  is 

very peculiar. According to (34),  is infinite, while (26a) predicts zero frequency. 

The first intrinsic mode, nonetheless, has neutral loop segments  and , 

which confine the instability region that overlaps with the small neutral loops on the 

left for second intrinsic mode, as can be seen from figure 9. 

According to (33), (34), 
th

in  can be either positive or negative. Of course, only 

positive 
th

in have physical sense. Correspondingly, figure 8 is plotted showing only 

positive 
th

in . However, a helpful insight can be gained by looking at the neutral curve 

continuation behavior in the unphysical domain. Figure 10 pictures the same 

i
m

c

i
   

th

in

0
c

i
  

c

i
  
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instability domain on the “extended”  n   plane, i.e. with negative 
th

in  included. 

The neutral curve segments ( 0
c

i
   , 

c

i
    and 

c

i
    ) extend into the 

negative n -region and intersect with each other. These intersections are calculated 

numerically (refer to Appendix I, § AI.1). Thus, a positive 
th

in  exists only in certain 

bands of   (see Appendix II, § AII.1 for details). The figure shows links between the 

seemingly disjointed neutral curve segments presented in Figure 8.  

 

 

Figure 2.10: Neutral curve and stability domain for the second intrinsic mode (
i

m =1) on the 

“extended” n   plane. Notations and parameters are the same as in figure 8.  

 

To give a better overall idea of the geometry of the instability domain with more than 

one mode, we first consider just the first three modes (that is for =0, =1 and 

=2) simultaneously. Figure 11 illustrates the general tendencies: (i) as the mode 

number  increases, the neutral curve loop shifts to the right; (ii) the span of the 

i
m

i
m

i
m

i
m
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islands of instability on the left also increases; (iii) the segments corresponding to 

 and  become less steep for higher modes. 

 

Figure 2.11: The neutral curves and stability domain on the n   plane for the first (
i

m =0), 

second (
i

m =1) and third (
i

m =2) intrinsic modes, shown by numbers 1, 2 and 3 (Red, blue 

and magenta respectively). The common domain of instability for the first and second modes 

is marked in lime in right hatching and indicated by (i) (lime) and for the second and third 

intrinsic modes it is yellow and indicated by (ii). Horizontal hatching indicated by (iii) (gold), 

brown domain indicated by (iv) and lavender indicated by (v) correspond to the non-

overlapping domains of instability for the first, second and third intrinsic modes respectively. 

The parameters are the same as in figure 8. 

 

Note that the characteristic values of 
th

in  are smaller, when compared to the threshold 

values of n  for an infinite tube [Hoeijmakers et al. (2014)]. For an infinite tube, 

according to equation (26a),    
2 1 1 2 1 2

1
th

i
n S S c c   , which yields 2

th

i
n   

for a uniform tube, i.e., if we assume, for simplicity, 2 1
S S =1, 

1 2
  =1 and 1 2

c c

=1. For a combustor, 
th

in  can be substantially smaller. The values for 
th

in  for a 

c

i
  

c

i
   
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closed-open combustor, as shown in figures 8, 9 and 11, lies in the range of 0.4 to 1. 

The observation that, in a combustor, the intrinsic modes can become unstable at a 

much lower value of n , might have major practical implications.  

2.4.2.2. Numerical validation of the analytical predictions for the neutral curve 

Here we will corroborate the numerical and analytical results of § 4.2.1 for 
th

in , 

focusing on the accuracy of the analytical predictions for the examples considered in 

figures 8 and 11. Figure 12 shows a sample comparison of the analytical prediction of 

th

in  given by (34) with that of the exact numerical solution of (20) for 
i

m =1. The plot 

demonstrates that the numerical solution corroborates very well with the analytical 

prediction. At present, to plot the exact numerical solution, we manually track the loci 

of acoustic and intrinsic modes on the n   plane, by gradually increasing n . In this 

way, we ascribe identities to the modes, labelling them as intrinsic or acoustic.  

 

Figure 2.12: Neutral curve: comparison of analytical and numerical results for 
i

m =1. Solid 

and dashed lines show the analytical solutions for intrinsic and acoustic modes respectively. 

Numerical solutions are shown by green circles and red squares. The parameters are the same 

as in figure 8. 
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Figure 12 also confirms the overall analytical picture. The instability domain has two 

distinctly different regions on the n   plane: the narrow islands of instability on the 

left and the main instability domain on the right. For the neutral curve on the right of 

figure 12, the analytical prediction of 
th

in , for the intrinsic modes, exactly coincides 

with the numerical solution. As mentioned in § 4.2.1, the combination of neutral 

curves 0
c

i
   , 

c

i
    and 

c

i
    , is a repetitive pattern for any mode. Even 

though the numerical solution exactly matches the analytical prediction, on the left 

side region of the n   plane, it is difficult to identify the nature of these modes 

without extra analysis. A simple technique to identify the nature of the modes will be 

explained in § 6 of chapter 3.  

Thus, here we have derived an explicit exact analytical expression (33) for the neutral 

curves on the n   plane. A set of neutral curves has been drawn for each mode. 

Figures 8, 9 and 11 give a good idea of the geometry of the instability domains. The 

neutral curves have, qualitatively, two different regions. A region on the left, i.e. 

towards smaller values of  , comprises of loops with diminishing   widths, made of 

strongly coupled acoustic-intrinsic modes. On the other hand, the region on the right 

exhibits a single large loop. The neutral curve has three distinct segments 

corresponding to 0
c

i
   , 

c

i
    and 

c

i
     in n   space. The 

c

i
    and 

c

i
     segments predict higher values of 

th

in  compared to 0
c

i
    segments. 

These segments are initially steep, becoming less steep as the mode number, 
i

m , 

increases. For higher values of 
i

m , the span of the neutral curve segment 0
c

i
    

becomes wider, moving further to the right in n   space. Analytically, we can find 

the loci of the intersection points of the neutral curve segments ±
c

i
    and 0

c

i
  
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. The analysis is, however, cumbersome and does not result in an easy to use formula. 

To get tractable formulae we look for asymptotic behavior for large and small  . 

 

2.4.2.3. Neutral curve asymptotics for small and large   

Here we examine the neutral curve behavior for large and small  , which will 

provide us with compact formulae for 
th

in  at the intersection points of neutral curve 

segments ±
c

i
   , and 0

c

i
   , in the limit of large and small  .  

(a) Asymptotics for small   

It can be seen from figures 8 and 11 that the instability islands on the left-hand side 

are quite narrow and the boundaries corresponding to 
c

i
     are almost vertical. 

This trend continues further to the left, as this pattern of neutral curves is repetitive. 

As these islands of instability become increasingly narrow, it becomes more difficult 

to accurately resolve them numerically. In this section, we make use of this 

narrowness of neutral curve loops and derive an approximate expression for the width 

of the instability domains bounded by these loops.  

It can be shown (see Appendix II, § AII.1), that the maximum value of 
th

in  for the 

0
c

i
    segments of the neutral curve is 1 (when, 

2 1
S S =1, 

1 2c c =1, 
1 2  =1 and 

2qx L ). We will use this to find   that correspond to maximum 
th

in  for 0
c

i
   . 

Moreover, we can find the half width of the neutral loop for the small   regime, by 

estimating the distance (in terms of  ) between the position of the local maximum of 

th

in  and the intersection points of 0
c

i
    and 

c

i
    . Here we will not seek exact 

analytical expressions for the intersection points of the segments 0
c

i
    and 
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c

i
    . Instead, assuming the neutral curve segments 

c

i
     to be vertical, and 

the intersection point of 0
c

i
    and 

c

i
     to correspond to 

th

in =1, we can derive 

an analytical estimate for the half width of the neutral loop. Since the neutral curve 

segments 
c

i
     are assumed to be vertical, the neutral curve loop width is 

independent of the 
th

in  on 
c

i
     segments.  

First, we find the location of   corresponding to 
th

in =1 on the neutral curve segment 

0
c

i
   . Let us call it 

1 . Requiring 
th

in =1, we immediately get from equation (34)  

cos 1   ,                                                    (2.35) 

where    12 1im L c    . The solution of (35) is 

 2 1m   , m = 0,1,2,…                                   (2.36) 

where m  is the loop number of the neutral curve segment 0
c

i
   , with m =0 being 

the rightmost loop. As we show in Appendix II, m  must be restricted to odd integers 

only, i.e., 2 1m j  , because only for these loops is 
th

in  positive, whereas for the 

loops corresponding to even integers 2m j , 
th

in  is negative. Therefore, these 

intersection points should not be considered. Making use of (36), we arrive at a 

simple expression for 
1 , corresponding to the local maximum of 

th

in  on 0
c

i
   , 

         1 2 1 2 1
i

m m L c    .                                (2.37) 

We introduce 
 2 




 and 
 2 




 as the values of   at the intersections of 
th

in =1 with 

the 
c

i
     segments of the neutral curve. From (34) we find, 

     cos 1 3  .                                                (2.38) 
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Solving (38) yields, 

         2 0.392m   .                                         (2.39) 

Then for 
c

i
    and 

c

i
    , we have      2

2 2im L c
 

  
 

   and 

     2
2 im L c

 
  

 
 . Using (39) we find the points of the segment 

intersections, 
 2 




and 
 2 




  

        2
2 2 2 0.392

i
L c m m





    and 

      2
2 2 0.392

i
L c m m





  .                         (2.40 a, b) 

The distance between 
1 , specified by (37), and 

2 , given by (40 a, b), is the half 

width of the neutral loop in the asymptotic limit of small  , 
    12 
  

 
   . 

On making use of (40a) and (40b) the solution for  



  reads, 

 

 
  

2 1.216 1.608

2 1 2 0.392

i
m mL

c m m






 

 


 and 

 

 
  

2 1.216 0.392

2 1 2 0.392

i
m mL

c m m





 
 

 
.                         (2.41 a,b) 

This expression can be further simplified for higher values of m : 

    1 2L c m





  . This gives us the half width of the neutral loop for small   

and large m . Recall, that the central point of the neutral loop is given by (47).  

Thus, we derived a simple expression for the neutral loop width, valid for large m  

and small  . The loop width is independent of the mode number of the intrinsic 

mode and is inversely proportional to the loop number m . This quantifies how the 

instability island width tends to zero as 0  . Since, as 0  , the density of the 
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loops increases, it would be almost impossible to correctly capture this behavior 

numerically. 

(b) Asymptotics for large   

As figure 11 suggests, the largest neutral curve loop shifts towards larger values of  , 

with an increase of the mode number. In this section, we will find asymptotics of 
th

in  

for large time lag  , that is  >> L c . The large   assumption provides a way to 

explicitly find the intersection points for the neutral curve segments 0
c

i
    and 

c

i
     belonging to the largest loop, as shown in figure 8. At the intersection, 

th

in  

simultaneously satisfies equations for the neutral curve segments 0
c

i
    and 

c

i
      given by (44).  

Although the range of  , for which this large   analysis is valid, might be too high 

from a practical combustor perspective, it is important to have an overall picture of 

the stability domain. The analysis addresses this need. The part of the domain which 

has a large   is also interesting, because the lowest threshold and the highest growth 

rates occur there, which might serve as upper bounds for key characteristics of 

practical combustors. We also mention that, as we show below, simple formulae, 

obtained using large   asymptotics, work remarkably well, far beyond the domain 

their formal applicability.  

The analysis (carried out in Appendix III, § AIII.1) yields an explicit expression for 

the normalized time lag, 
n (

n c L   ), written as 
 ,0n 




, to stress the fact that 

it corresponds to the intersection point of 0
c

i    and 
c

i   , valid for large  ,  


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         ,0 ,0
4 3 2 1

i

n
m m

 
 

 
   .                          (2.42) 

Here,  ,0
m


= 0,1,2,… , where  ,0

m


 is the intersection point number of the neutral 

curve segments 0
c

i    and 
c

i   , with  ,0
m


=0 being the rightmost 

intersection point, while 
i

m  is the mode number. Similar consideration of the 

intersections of the neutral curve segments 0
c

i    and 
c

i     yields,  

       ,0 ,0
4 1 2 1

i

n
m m

 
 

 
   .                           (2.43) 

Here  ,0
m


 is an integer, indicating the intersection point number of the neutral 

curve segments 0
c

i    and 
c

i    , with  ,0
m


=0 being the rightmost 

intersection point, while 
i

m  is the mode number. The 
th

in  corresponding to (42) and 

(43) can be given as,  

 
   

,0
2sin 3 8 sin 3 8 1

i i

th

i
n m m


 


    ,  

 
   

,0
2sin 8 sin 8 1

i i

th

i
n m m


 


    .               (2.44, 2.45) 

This expression quantifies how 
 ,0th

i
n


and 

 ,0th

i
n


 tend to zero as 

i
m  increases. A 

comparison of (44) and (45) shows that 
   ,0 ,0th th

i i
n n

  
 . Thus, the intersection 

points of neutral curve segments 0
c

i    and 
c

i    , correspond to a lower value 

of 
th

in  when compared to the intersection of neutral segments 0
c

i    and 
c

i   . 



74 
 

Thus, to avoid dealing with large  ,0
m


,  ,0

m


 and large   regimes head on, we 

found a simple analytical description of the points of intersection of the segments of 

neutral curves 0
c

i    and 
c

i   , as well as 0
c

i    and 
c

i    , assuming 

large  . At the intersection of neutral curve segments, 
th

in  decreases with the 

increase of mode number. 
th

in at the intersection of 0
c

i    and 
c

i    is always 

larger than 
th

in  at the intersection of 0
c

i    and 
c

i    . The extreme right 

intersection point of 0
c

i    and 
c

i     (that is, the intersection of the large loop 

with  ,0
0m


 , as given by (43)) corresponds to the lowest value of 

th

in  for any 

fixed mode number. These asymptotics proves to be extremely useful for finding the 

bounds of the instability domain in § 4.4 and in estimating the maximal growth rate in 

§ 4.5.   

2.4.3.  The growth/decay rates near the neutral curve 

In the context of intrinsic mode instability, the growth rate is of prime interest. The 

derivation of growth/decay rate directly from the original dispersion relation (20) for 

all values of n  on the n   plane, is very challenging and hardly a priority. For large 

deviations from the neutral curve, the mode in question is either strongly decaying, 

therefore playing little role in the dynamics of the system, or has too high growth 

rates, implying that the linear theory we adopted quickly ceases to be applicable. 

Thus, only the growth/decay rates near the neutral curve are of true interest.  

2.4.3.1. Analytical expression for the growth rate 

Thanks to the discovered phenomenon of decoupling on the neutral curve, in the 

previous section we established the exact location of the neutral curve on the n   
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plane. Here, exploiting the decoupling and proximity to the neutral curve, we will 

find, analytically, the growth/decay rate in the curve vicinity. To this end, consider a 

point ( n , ) on the n   plane, near the neutral curve, for a particular mode 
i

m , 

denoting the deviation from the curve as 
1

in , i.e. 
1th th

i i in n n n  . The eigen-

frequency at the chosen point ( n , ) differs from its value on the neutral curve 
0

i  for 

the same  . We denote this deviation as 
1

i . Assume that the real part of 
1

i  is small 

and of little interest near the neutral curve. This implies that 
1

i  represents the 

growth/decay rate. A priori this assumption is difficult to justify rigorously. However, 

the fact that the real part of eigen-frequency on the 0
c

i    segments of the neutral 

curve is  identical to case for the limit of small n , suggests that 
1

i  has a negligibly 

small real part. This assumption, as we show below, is also supported by numerics.                

Hence, 
1th

i in n n  , 
0 1

i i    . Substituting this expansion of n  and   into the 

original dispersion relation (20) and neglecting higher order terms in 
1

i  in sin and 

cos function expansion, we obtain, 

             
         

         

0 1 0 0 1

0

1 0 1 0

0 0

1 1 1

2 2 2

1 1 1 2 2 0 2

1

1

1 cos sin 1 cos sin

2 1 sin cos

sin cos 0

i

th q q q

q q q

i i i i i i

ii i i i i i

i i i

x c x c x c

x L c x L c x L c

n n i e
 

             

    

    

    

   

 

 

. (2.46) 

Subtracting the original dispersion relation (20) for 
0

i   from this form (46), we 

obtain a perturbed form of the dispersion relation (20), which yields an explicit 

analytical expression for the growth/decay rate 
1

i ,  
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    
       

1 2

1 1 2 2

0

1 0 0

1

0 0

2 sin sin

1 sin 1 sin

q q

iii i i

i

i i

n e x c x L c
 

 

       




    
 

 .              (2.47) 

where,  

    
      

       

0 0

0 0

0 0

2

1 2

2 2

0

1

1

1

sin sin

2 cos sin

sin cos

q

q q

q q

i

i i
q

i i i
q

i i
q

th

i

x L c

x c x L c

x L c x L c

i x c

n e x c

x c



  

 

 

 
 
 

  
 
  
 

 



. 

while  , 1  and 2  are given by (28). It can be verified by direct calculation of 
1

i , 

that its real part is, indeed, insignificant, as was assumed. Thus,  
11

ii
Im    and will 

be treated as the growth/decay rate. We stress that, in contrast to the frequencies on 

the neutral curve, according to (47), 
1

i  depends on all combustor parameters. 

Equation (47) is valid for the neutral segment 0
c

i   . A similar exercise can be 

carried out for other neutral segments 
c

i     as well. 

Thus, we have derived an explicit expression for the intrinsic mode growth/decay 

rates near the neutral curve on the n   plane. For simplicity, only the first order 

term in 
1

in  has been presented. Higher order corrections in 
1

in  could be found in a 

similar fashion. The justification of our a priori assumption and the accuracy of the 

analytical results will be demonstrated by comparison with the numerical solution in 

§ 4.3.2. The formula above gives the growth/decay rates for each intrinsic mode. In 

principle, by considering all the modes, we can find the absolute maximum growth 

rate or the minimum decay rate for any point ( n , ) on the n   plane. In practice, it 

might be difficult to deal with an infinite number of modes so alternatives are needed. 
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2.4.3.2. Numerical validation of analytical expression 

Here we validate the analytical growth rate given by (47) with the numerical solution 

of (20). The comparison will also give us an idea of the range of applicability and 

accuracy of our analytical approach. 

Figure 13 shows a comparison of the analytical prediction of the growth rates given 

by (47) with that of the numerical results for 
i

m =1 and  = 6 ms. Near 
th

in  (0.98 for 

this case), analytical and numerical predictions agree quite well. However, as we 

move away from 
th

in , the analytical prediction starts to deviate from the numerical 

results. We can therefore conclude that the analytical prediction for the growth rate is 

in good agreement with the numerical solution near 
th

in , where it is of most interest. 

Expectedly, as we move away from the vicinity of 
th

in , the accuracy of approximate 

solution (47) decreases. However, we stress that a massive twenty percent deviation 

from 
th

in  results only in smaller than two percent discrepancy of the growth/decay 

rate. Recall also that our approximate solution (47) is a just the leading order term of 

expansion in 
1

in  (the departure of n  from 
th

in ). Taking into account the next terms of 

the expansion would have further improved the accuracy. However, we do not pursue 

this line here.  
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Figure 2.13: Growth rate for 
i

m =1 at  = 6 ms: comparison of the analytical result (47) and 

numerical solution of the original dispersion relation (20). A solid blue line and red circles 

show the analytical and numerical solutions respectively. The instability domain is marked in 

yellow. The parameters are the same as in Fig.8. 

 

It has been thoroughly checked that the analytical prediction of the growth rate (47) 

works very well for all , including near intersections of different segments of the 

neutral curve. A couple of such examples are depicted by figures 14 (a) and (b), 

which are applicable for =1 at (a) = 5.435 ms (the intersection point of neutral 

loop segment  and  for the extreme right neutral loop) and (b) = 

10.2 ms (the intersection point of the neutral loop segment  and  

for the extreme right neutral loop). The numerical results for growth rate agree quite 

well for both intrinsic and coupled acoustic mode (details of coupling will be in 

chapter 3) near the  (0.89 and 0.6 respectively for figures 14 (a) and (b)). 



i
m 

0
c

i  
c

i   

0
c

i  
c

i   

th

in
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(a) 

 
(b) 

Figure 2.14: Growth rate for 
i

m =1 at (a)  = 5.435 ms (the intersection point of neutral loop 

segment 0
c

i    and 
c

i    for the extreme right neutral loop) and (b)  = 10.2 ms (the 

intersection point of neutral loop segment 0
c

i    and 
c

i     for the extreme right 

neutral loop): comparison of analytical result (47) and numerical solution of the original 

dispersion relation (20). Blue continuous and red dotted lines are analytical solutions for 

intrinsic and coupled acoustic modes respectively. Magenta and green circular dots are their 

numerical counterparts. The instability domain is marked in yellow. The parameters of the 

system are the same as in Fig.8.  
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2.4.4. Bounds on the stability domain  

In § 4.3 we mentioned a potential difficulty in finding the boundary of stability 

domain and growth/decay rates for any point on the n   plane, when all the modes 

are considered. The small loops, on the left of the neutral curves for higher modes, 

overlap with the large loop of the neutral curves for lower modes, creating an 

extremely intricate picture of overlapping loops of different, often incomparable, 

widths for various modes. So, here we suggest an alternative, a “short-cut”. Instead of 

dealing with intricately curved stability domain specified by contributions of an 

infinite number of modes, we coarse-grain the stability behavior of all the intrinsic 

modes and develop an “integral” stability map. This provides an upper and lower 

bound of the stability domain on the n   plane. Figure 15 introduces the concept of 

a stability envelope for the intrinsic modes. For the sake of simplicity, only the 

intrinsic modes one to six are shown in the figure. Only the outermost stability loops 

for each mode are plotted; as, discussed in the previous section, the outermost 

stability loops correspond to the minimum value of 
th

in . The dash-dotted black line 

indicates the upper bound of the stability envelope and the dashed black line shows 

the lower bound of the stability envelope. The short thin dashed pink line shows the 

analytical prediction (45) of the lower bound. Thus, there exist three distinctly 

different regions of the coarse-grain stability: 

i. For any point on the n   plane below the lower bound of the stability envelope, 

all the intrinsic modes are linearly stable. 

ii.  For any point on the n   plane above the upper bound of the stability envelope, 

all the intrinsic modes are linearly unstable.  

iii.   For any point on the n   plane in between the upper and lower bound of the 

stability envelope, the intrinsic modes can be linearly stable (for n   values falling 
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into the white region) or unstable (for n   values corresponding to the yellow 

region). For the points lying in the yellow region within the stability envelope,  the 

maximum growth rate is roughly proportional to the vertical distance of the point 

from the lower bound of the stability envelope (this distance can be interpreted as 
1

in  

in (46)). Similarly, for the points lying in the white region above the lower stability 

envelope, the maximum decay rate is proportional to the vertical distance of the point 

from the upper bound of the stability envelope. This domain needs extra analysis, 

which is carried out in the next section. 

 

Figure 2.15: Neutral curve and stability domain on the n   plane for the first six intrinsic 

modes. The instability domain is marked in yellow. The black dashed line that connects the 

intersections, indicated by circles, shows the instability domain lower envelope, which is the 

locus of the lowest threshold of instability for each mode. Below this envelope, all points on 

the n   plane are guaranteed to be stable. A short dashed thin pink line shows the 

analytical prediction (45) of the lower bound. The black dash-dotted line is the locus of the 

maximal threshold of instability for each mode. Above this line, all points on the n   plane 

are unstable. Between the dash-dotted and the dashed line, there is a conditional instability 

domain. Stability at any point ( n , ) lying between these two lines depends on whether the 

point is in the white or the yellow region. Hatched area indicates the domain with multiple 

instability islands of decreasing scale, which are not shown. Also not shown, are the narrow 

loops due to higher modes. For simplicity, only the big right loop of the neutral curves for 

each mode was plotted, since these loops provide the minima of 
th

in . The parameters used are 

the same as in Fig.8. 
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The point we want to reiterate here, is that the large  asymptotics formulae (43, 45), 

for the lower bound of the stability envelope, provides a good accuracy even far 

beyond the range of its formal validity. 

 

2.4.5. Estimates of the maximal growth rates 

In of itself, the distance to the bounds of the stability envelope can provide only 

qualitative tendencies of the intrinsic mode growth/decay rates as a function of the 

parameters of the system. To quantify the growth/decay rates, we need to know the 

mode number of the dominant mode. To this end, we can employ the large   

asymptotics (42-45), which were found to work surprisingly well for the whole range 

of  , exceeding L c  . Thus, for example, for a given  , the lower bound of the 

stability domain will be determined by the mode i
m  specified (approximately) by 

(43). In the generic case, any given   specifies the two nearest mode numbers (see 

Fig AIII.1a and the follow-up discussion). As can be seen from figures 11 and 15, all 

modes with numbers below those of these two modes are stable (for large n ) for this 

  and thus, their growth rates need not be considered. As a result, the maximal 

growth rate can be easily estimated using (47), by applying it to just these two modes. 

It can be shown that all the higher modes have smaller growth rates and, therefore, 

can be ignored.  

We further elaborate on this point with the use of figure 16. Let us consider stability 

at a sample point on the n   plane, choosing, say, n =0.9 and  =16.5 ms (the point 

is indicated by the diamond). On the n   plane, according to our large   

asymptotics (43), the chosen value of  ,  =16.5 ms falls somewhere in between the 

values of   that correspond to the minima of 
th

in for the second and third modes. 


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Hence, figure 16 depicts just these two intrinsic modes in the form of their large loops 

of the neutral curve. As has been found in § 4.2.3 (b), 
th

in  is minimal for the extreme 

right intersection point of 0
c

i    and 
c

i    . Thus, the large neutral curve loop 

on the right corresponds to the dominant intrinsic mode instability. Any instability 

corresponding to the smaller loops of overlapping higher order modes will be weaker. 

Hence, the maximum growth rate will be determined by proximity to the large neutral 

curve loop on the right. This will form the basis of our maximum growth rate estimate 

at a particular point on the n   plane. The dashed vertical purple line represents the 

formal (optimistically interpreted) threshold of applicability of the large   

asymptotics, L c  . As showed in Appendix III, the large   asymptotics can be 

used with high confidence for all   exceeding this threshold. For the particular 

example indicated by the diamond ( n =0.9,  =16.5 ms), the second intrinsic mode 

according to (47) has a negative growth rate, while the actual growth rate of the third 

intrinsic mode is 23 rad/s. Thus, for any   exceeding L c  , we can pinpoint the 

particular mode which has the greatest growth rate and find it using the explicit 

expression (47). It has been checked by direct calculation that all higher intrinsic 

modes either have smaller growth rates than the third intrinsic mode or remain stable. 

Note that had we taken the distance (along the vertical) between the diamond and the 

dashed green line in figure 16 as an estimate of 
1

in , the maximum growth rate would 

have been 69 rad/s (assuming 0.4
th

in   in (47)). 

Thus, the coarse-grained stability diagram is helpful for a rough instant 

stable/unstable answer. For a realistic estimate of the maximal growth rate or minimal 

decay rate, one must first identify the most unstable mode, using either (43) or figure 

(AIII.1a). 



84 
 

 

 

Figure 2.16: Neutral curve and stability domain on the n   plane for two intrinsic modes 

i
m =1, 2. This figure shows a subset of curves from figure 15. Note that the lower bound of 

instability is shown by a dashed green line. The diamond indicates the chosen sample point 

n =0.9 and  =16.5 ms on the n   plane. The dashed vertical purple line, L c  , is 

the threshold in   above which the large   assumption applies.  

 

2.5. Dependence of intrinsic mode stability on the cross-

section/temperature jumps and flame location 

Equation (26a) describes how the dispersion relation for strongly decaying intrinsic 

modes depends on the cross-section jump and temperature jump in the range of small 

n . In this section, we will find how 
th

in  and the growth rate depend on the main 

parameters of our combustor model: (i) cross-section jump, (ii) temperature jump and 

(iii) flame location. 

Figure 17 (a) illustrates the dependence of the neutral curve main loop on cross-

section jump, plotted on the basis of (33). It presents two different cases of cross-

section jump: 
2 1

S S =1 and 
2 1

S S =2. Brown and lavender mark the instability 
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domains for each case, with the common domain being marked in yellow. In all 

subsequent figures, the common instability domain is also marked in yellow. It can be 

seen, from figure 17 (a), that the span of the largest instability domain on the right is 

wider for lower values of cross section jump, whereas the peak 
th

in  remains the same. 

Figure 17 (b), generated for two different time lags of 7 and 9 ms for 1
i

m  , shows 

that the 
th

in  reduces with respect to cross-section jump, when the time lag is 9 ms, 

whereas 
th

in  attains a constant value with respect to cross-section jump, when the 

time lag is 7 ms. Hence, cross-section jump might reduce 
th

in  or keep 
th

in  constant 

dependent upon the circumstances. 

 

Figure 2.17 (a): Effect of cross-section jump on the stability domain for 1
i

m  . The plot is 

based on (33) and shows no jump (
2 1

S S =1) and (
2 1

S S =2) cross section jump 

configurations. The instability domains for the cases 
2 1

S S =1 and 
2 1

S S =2 are indicated 

by lavender (ii) and brown (iii) respectively. The common instability domain for these two 

cases is marked in yellow and indicated by (i). Other parameters and notations are the same 

as in Fig.8. 
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Figure 2.17 (b): Effect of cross-section jump (
2 1

S S ) on 
th

in , for 1
i

m  . The blue 

continuous line and the red dotted line represent two different time lags of 7 and 9 ms. Other 

parameters are the same as in Fig.8. 

 

The effect of temperature jump on 
th

in ( ) is slightly different. Figure 18 (a) and (b), 

plotted on the basis of (33), compares two different cases of temperature jump: for 

2 1
T T =1 (or, 

2 1
c c =1) and 

2 1
T T =4 (or, 

2 1
c c =2). These two different cases are 

shown for the flame locations (a) 2
q

x L  (=0.375m)
 
and (b) 3

q
x L  (0.25m), 

respectively. Figure 18 (a) shows that temperature jump stretches the neutral curve 

main loop slightly to the left but, at the same time, the span reduces on the right-hand 

side. The peak of neutral curve segment 0
c

i
    attains higher value. Thus, for this 

case, the 
th

in  increases with respect to temperature jump in the low time lag region of 

the neutral curve.  
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Figure 2.18 (a, b): Effect of temperature jump on stability domain for 1
i

m  . The plot is 

based on (33) and shows configurations with no jump, i.e.  
2 1

T T =1 (or, 
2 1

c c =1)) and with 

2 1
T T =4 (or, 

2 1
c c =2)) temperature jump. Figures (a) and (b) are for two flame locations 

2
q

x L
 
and 3

q
x L . The instability domains for the cases 

2 1
c c =1 and 

2 1
c c =2 are 

indicated by brown (iii) and lavender (ii) respectively. The common instability domain for 

these two cases is marked in yellow and indicated by (i). Other parameters and notations are 

the same as in Fig.8. 
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Figure 2.18 (c): Effect of temperature jump (
2 1

T T ) on 
th

in , for 1
i

m  . The blue continuous 

line and the red dotted line represent two different time lags of 6 and 5 ms, at flame locations 

2
q

x L
 
and 3

q
x L  respectively. Other parameters are the same as in Fig.8. 

 

The observations are slightly different for a different flame location, as shown in 

figure 18 (b). The figure shows that the temperature jump reduces the span of the 

neutral loop on either side and shifts the peak of the neutral loop down at the same 

time. This means that for this case the 
th

in  decreases with respect to temperature jump 

for all time lags shown in the figure. The fact that temperature jump in figure 18 (a) 

moves the intrinsic instability domain to the lower time lag region, makes it an 

important aspect. In most of the practical combustor applications, time lag is small, 

meaning, as per figure 18 (a), at elevated temperature, not only the small neutral 

loops on the left, but also the large neutral loop on the right could play a crucial role 

in defining intrinsic instability of practical combustors. Figure 18 (c) depicts two 

cases of different time lags of 6 and 5 ms at flame locations 2
q

x L
 
and 3

q
x L  

respectively, for 1
i

m  . 
th

in  increases with respect to temperature jump, when the 
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time lag is 6 ms at 2
q

x L . However, 
th

in  reduces with respect to temperature jump 

when the time lag is 5 ms at 3
q

x L . Hence, the temperature jump has the potential 

to increase or decrease 
th

in . 

Figure 19 (a), plotted on the basis of (33), demonstrates the effect of flame location 

on 
th

in ( ). The figure is drawn for two different flame locations, 
q

x =0.375m and 

0.25m. Figure 19 (a) shows that as the flame location shifts away from the middle of 

the combustor (that is 
q

x = 0.375m), the neutral curve stretches to the left and the 
th

in  

increases for all time lags shown in the figure. Moreover, it can be shown (refer to 

Appendix IV, § AIV.I), that in the absence of cross-section and temperature jump, the 

flame location yielding the minimal 
th

in , is at the middle of the combustor. The 

minimal 
th

in  flame location is independent of cross section jump and depends only on 

the temperature jump across the flame (refer to Appendix IV). In this context, note 

that the function on the right-hand side of equation (33) is symmetric with respect to 

2
q

x L . Thus, we can only focus on one-half of the combustor for the analysis of 

the effect of the flame location. Figure 19 (b), drawn for two different time lags of 7 

and 9 ms for 1
i

m  , further validates the observations made from figure 19 (a). 

Figure 19 (b) shows that the minima of 
th

in , with respect to the flame location, for 

both time lags lie at 2
q

x L  (=0.375m for this case). The time lag of 9 ms lowers 

the 
th

in  further, compared to the time lag of 7 ms. 
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Figure 2.19 (a): Effect of the flame location on the stability domain for 1
i

m  . The plot is 

based on (33) and shows two flame locations: 
q

x =0.375m and 0.25m. The instability 

domains for the cases 
q

x =0.375m and 
q

x =0.25m are indicated by brown (iii) and lavender 

(ii) respectively. The common instability domain for these two cases is marked in yellow and 

indicated by (i). Other parameters and notation are the same as in Fig.8. 

 

 

Figure 2.19 (b): Effect of flame location (
q

x ) on 
th

in , for 1
i

m  . The blue continuous and 

the red dotted lines are for two different time lags of 7 and 9 ms. Other parameters are the 

same as in Fig.8. 

 

A similar analysis can be performed for the growth rates as well. Figures 20 (a), (b) 

and (c) show the effect that cross-section jump, temperature jump, and flame location 
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respectively, have on the growth rate. Growth rates are calculated using the analytical 

result (47). Figure 20 (a) shows two different cases for time lag, 7ms, and 9ms (the 

flame is at 
q

x =0.375m), where, cross-section jumps of 
2 1

S S =1 and 
2 1

S S =2 are 

introduced for each case. The growth rate hardly depends on cross section jump for 

the time lag of 7 ms but becomes more dependent with the increase of the cross-

section for the time lag of 9 ms. Figure 20 (b) shows two different cases for time lag, 

6 ms (the flame is at 
q

x =0.375m) and 5 ms (the flame is at 
q

x =0.25m), where, 

temperature jumps of 
2 1

T T =1 (or, 
2 1

c c =1) and 
2 1

T T =4 (or, 
2 1

c c =2), are 

introduced for each case. The account of temperature jump reduces the growth rate 

for a time lag of 6 ms and increases it significantly for a time lag of 5 ms. Figure 20 

(c) shows two different cases of flame locations: 
q

x =0.375m and 
q

x =0.30m at time 

lag = 6 ms. Shifting the flame location from 
q

x =0.375m (or 2
q

x L ) to 
q

x

=0.30m, reduces the growth rate. This is a general trend, as it has been mentioned in 

this section already, that the critical location from the intrinsic instability perspective 

is the middle of the closed-open combustor, in the absence of temperature jump. 

Thus, by manipulating the system parameters, such as cross section jump, 

temperature jump, and flame location, one can increase/decrease the 
th

in  and 

decrease/increase the growth rate, and hence dampen/instigate the intrinsic mode 

instability. 



92 
 

 

 

Figure 2.20: Effect of cross-section expansion and temperature jump on growth rates for 

1
i

m   (based on (47)). (a) Two different time lags (7 and 9 ms) are indicated by solid and 

dashed lines. Two values of the cross section jump (
2 1

S S =1 and 
2 1

S S =2) are marked 

blue and green. (b) Two different time lags at different flame locations (6 ms at 
q

x =0.375m 

and 5 ms at 
q

x =0.25m) are plotted by solid and dashed lines. The growth/decay rate 

dependence on n , for two values of temperature jumps 
2 1

T T =1 (or, 
2 1

c c =1) and 
2 1

T T

=4 (or, 
2 1

c c =2) are marked in blue and green. (c) Two values of flame locations 
q

x

=0.375m and 
q

x =0.30m at time lag = 6 ms are marked in blue and green. Other parameters 

and notation are the same as in Fig.8. The domain of instability is marked in yellow. 

 

2.6. Concluding remarks 

In the present work, we have analytically examined flame intrinsic modes, within the 

framework of the simplest 1-D acoustic model of a combustor with n   heat 
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release. In this case, we considered a closed-open combustor, despite our approach 

being applicable to other configurations of combustors as well The main results can 

be summarized as follows: 

(i)           We answered an outstanding question as to where unstable intrinsic flame 

modes come from. Our analysis shows that for any nonzero n  and  , there are 

always an infinite number of intrinsic modes present in a closed-open combustor. 

This should also hold for any combustor. For small values of n , a simple explicit 

dispersion relation (26a) describes a set of strongly damped modes. To leading order, 

the real parts of the frequencies     Re 2 1i im    , where im  is the mode 

number, do not depend on the characteristics of the combustor and the flame position. 

This is in contrast with the acoustic modes, whose frequencies are primarily 

determined by the combustor length, L (  (2 1) 2
a a

m c L   (for 
a

m =0, 1, 2…) for 

a closed-open combustor).  For small n , the decay rate of the intrinsic modes does 

not depend on the mode number and is inversely proportional to  . The decay rate 

logarithmically depends on n . For the weak flame regime, characterized by small n , 

the heavily damped nature of these modes makes it practically impossible to detect 

them in combustion systems. The strong decay also makes these modes insensitive to 

the flame location and the specific properties of the combustor boundaries. Hence, to 

leading order, the modes in any combustor coincide with the intrinsic modes in the 

infinite tube with anechoic boundary conditions as described by Hoeijmakers et al. 

(2014). With the increase of n , the real part of the frequency shifts only very slightly 

(when there is no coupling with acoustic modes), thus remaining insensitive to all 

parameters of the system but  . In contrast to this, the imaginary part depends on all 

parameters of the combustor and varies significantly.  
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(ii) For each intrinsic mode for any  , there is a threshold value of n  above 

which the mode becomes unstable. The threshold depends on the characteristics of 

the combustor and the flame position, as explicitly given by expression (33). For each 

intrinsic mode, the convoluted neutral curve, separating stability and instability 

domains, is made of segments of three types, specified by the equations 0
c

i
   , 

c

i
    and 

c

i
    , where 

c

i  is the discrepancy between the real part of the 

frequency on the neutral curve and the real part of the frequency in the limit of small 

n . The intricate shape of the instability domain, composed of an infinite number of 

loops of various scales, has been revealed. Remarkably, on the long stretches of the 

neutral curve, with the lowest threshold in n , the frequency exactly equals the real 

part of the frequency in the limit of small n . On the neutral curve, the instability 

frequency is independent of the flame location and the combustor parameters (except 

 ) and the mode completely decouples from the environment. This astonishing 

analytical result has been validated numerically. The fact that the frequencies of 

marginally unstable intrinsic modes are determined solely by  , suggests that there 

are natural oscillations in the subsystem fuel injector-flame, determined by the ratio 

of the distance from the fuel injector to flame front and the flow velocity.  

(iii) Crucially, the threshold value of n  is much smaller for a closed-open 

combustor when compared to the case with the anechoic boundary condition 

[Hoeijmakers et al. (2014)]. Thus, in a combustor, intrinsic modes can become 

unstable at a much lower value of n  on the n   plane. The analytical results for the 

neutral curve are exact and could be used as a test case for complex software 

packages. 

(iv) The growth/decay rates near the neutral curve have been found analytically 

and validated numerically. A stability envelope has been introduced, to provide a 
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coarse-grained stability diagram on the n   plane with all intrinsic modes taken 

into account. Below this stability envelope, all modes are stable; above this envelope, 

all modes are unstable; and within the stability envelope, we have conditional 

stability domain. A simple technique has been developed to estimate the maximal 

growth rate at any point on the n   plane. 

(v) The dependence of the instabilities on the key parameters of the combustor 

(the flame location, the cross-section, and the temperature jumps across the flame) 

has been described analytically. On this basis, by manipulating the system parameters 

like cross section jump, temperature jump, and flame location, one can increase/lower 

the 
th

in  and increase/decrease the growth rate, hence preventing/instigating the 

intrinsic mode instability. 

(vi) The question regarding when acoustic modes and when intrinsic modes 

dominate combustion instability remains unanswered. Both scenarios are possible. 

Obviously, the intrinsic modes are dominant when all acoustic modes are decaying. 

Such a possibility is illustrated in figure 21. A sample contour plot of detuning 

 f   is drawn for  =2.2 ms, n =1.1 for the combustor parameters, specified in 

figure 3. The first and second intrinsic mode (marked by triangles) are unstable in this 

parameter range, whereas all the acoustic modes (marked by diamonds) decay 

simultaneously, making the intrinsic mode the main factor in combustion instability.  
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Figure 2.21: Contour plot of detuning  f   for 2.2   ms and n =1.1. The domain of 

instability is marked in yellow. Blue diamonds and orange triangles represent the acoustic 

and intrinsic modes respectively. Other parameters are the same as in Fig.3. 

 

The present chapter was confined to the analytic study of linear intrinsic flame modes 

per se, within the framework of the simplest n   model of a combustor and from 

our perspective, it answered all the questions we aimed at within the framework of 

this setting. Once the clarity within the framework of linear models is achieved, a 

study of nonlinear dynamics of intrinsic modes and their nonlinear interactions with 

acoustic modes will be a natural next step opening a vast new field.  

 

 

 

 



97 
 

 

Chapter 3 

 

Coupling of acoustic and intrinsic modes in a 1-D 

combustor model: a new mechanism of the thermo-

acoustic instability 

 

3.1. Introduction 

In chapter 2 we have found the main features and stability pattern of flame intrinsic 

modes, within the framework of a generic linear n   model of a closed-open 1-D 

combustor. The consideration was based on the key assumption that the intrinsic 

modes and acoustic modes do not couple with each other. This assumption is too 

restrictive. It is obvious that in a practical combustion system, under certain 

conditions, the intrinsic modes and acoustic modes will have similar frequencies and 

thus, might strongly interact with each other. To our knowledge, the interaction of 

intrinsic and acoustic modes has not been considered in the literature. Here we study 

the linear coupling of these modes for the first time. In this chapter, we will consider 

acoustic mode-intrinsic mode interaction for the case of a 1-D closed-open combustor 

and show that it is important in the big picture of combustor thermo-acoustic 

instabilities. 
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Generally, in a combustor, both the acoustic and intrinsic modes can become 

unstable, giving rise to the following two qualitatively different scenarios of 

instability, 

i. Acoustic mode becoming unstable at zero threshold, 0a
thn  , with instability 

frequency of  0 2 1
2

a a c
m

L


    for a closed-open combustor, (where am =0, 1, 2…, 

while superscript a  denotes acoustic mode); 

ii. Intrinsic mode becoming unstable at 
i

thn , predicted by equation (2.33), with 

instability frequency given by equation (2.32); 

The first type of instability has been studied quite widely in the literature and has 

been the focus of research in combustion for the past few decades. A good account of 

the work can be found in the text book of Lieuwen T., and Yang V. (2005) and 

Poinsot T. and Veynante D (2011)). Nonetheless, for consistency, a brief overview of 

this kind of instability will be provided in § 2. The second type of instability 

represents the case when an intrinsic mode is uncoupled. This case has been worked 

out, in detail, in chapter 2. Another important aspect is that in the first type of 

instability, the flame heat release rate and the acoustic pressure are in phase with each 

other, as shown in figure 1 (a) and 1 (b). The ‘Rayleigh Index’ (

0 0

( , ) ( , )a

T V

R p x t q x t dvdt    , where the acoustic pressure oscillation is p , the time 

period is T , combustor volume is V (control volume) and the heat release oscillation 

is q ) is positive for this case. When, the flame heat release rate and acoustic pressure 

are out of phase with each other, as illustrated in figure 1 (a) and 1 (c), the Rayleigh 

index is negative, which implies the acoustic mode decay and hence, the first type of 

instability does not occur. However, as we show below, such an acoustic mode might 
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become unstable due to coupling with one of the intrinsic modes in close vicinity (in 

the frequency domain). When the Rayleigh index is positive, the first type of 

instability inevitably occurs. However, when the first type of instability is not 

possible due to out of phase relationship between the flame heat release and acoustic 

pressure, the new type of instability, that is instability due to intrinsic mode-acoustic 

mode coupling, comes into the picture.  

 

Figure 3.1: Mode shape of (a) acoustic pressure, velocity fluctuation and (b, c) flame heat 

release rate fluctuation [Polifke (2009)]. In (b) acoustic pressure fluctuation is in phase with 

the flame heat release rate fluctuation, indicating growth of acoustic mode. On the other hand, 

in (c) acoustic pressure fluctuation is out of phase with the flame heat release rate fluctuation, 

indicating decay of acoustic mode. 

 

Our current effort will be focused on this new type of instability, where acoustic 

modes do interact with intrinsic modes and become unstable at a different frequency 

compared to the case (i). It will be shown, later in this chapter, that this scenario is 

difficult to track down, as the identity of such an acoustic mode is lost once it 

becomes unstable and it tends to behave exactly like an intrinsic mode. Coupling 

between modes has been a topic of interest in different research fields, as for 

example, in plasmas, in ocean waves, where surface waves can couple with internal 

gravity waves under certain circumstances (e.g. Soloviev and Lukas (2014), Craik 
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(1985), Watson et al. (1976), Watson (1990)). Throughout this chapter, we will 

restrict our analytical and numerical models to a closed-open combustor, the model of 

which has been introduced in Chapter 2. 

The chapter is organized as follows. In § 2, examples of numerical evidence of 

intrinsic-acoustic mode coupling are provided. Contour plots of the full dispersion 

relation are used to demonstrate the coupling. In § 3, a comparative study of the 

pressure and velocity profiles of the coupled intrinsic and acoustic modes will be 

made, where the salient features of the mode shapes will be highlighted. In § 4, the 

pressure and velocity profiles of the intrinsic and acoustic modes, with no coupling, 

are discussed. Some light will also be shed on the aspect of why mode shapes do not 

provide conclusive evidence on the nature of the modes. In § 5, a new form of 

instability, due to the linear coupling of intrinsic and acoustic modes, will be 

introduced. This form of instability is different from the two other types of 

combustion instabilities studied in the literature, i.e. pure acoustic mode instability, 

pure intrinsic mode instability. In § 6, we derive a simple mathematical model which 

captures the main features of the intrinsic and acoustic mode coupling. In the simplest 

model of coupling, the governing equation obtained, by reduction of the full 

dispersion, is quadratic. The four types of coupling in this system are identified. In § 

7, a numerical examination within the framework of the full dispersion relation is 

performed, to check the accuracy of the simple model developed in § 6. For better 

accuracy, in § 8, the quadratic model developed in § 6, is improved by incorporating 

the higher order terms. Thus, we arrive at a quartic equation for the coupled modes, 

an increase in complexity compared to the quadratic equation of § 6. In § 9, a further 

numerical examination is performed to examine the accuracy of the quartic equation 

model. In § 10, we provide a complete picture of the coupling near the intersection 
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points of the neutral curve segments.  The evolution of one type of coupling into 

another is also discussed. In § 11, the domain on the neutral curve where intrinsic-

acoustic mode coupling occurs is identified. In § 12, we focus on the limitations of 

the quadratic equation for the coupling description developed in § 6 and elaborate on 

the scenarios when the quartic equation model of § 8 should be used, rather than the 

quadratic equation model of § 6. In § 13, we formulate concluding remarks and 

outline the scope of future work.   

3.2. Evidence of intrinsic-acoustic mode coupling in contour plots of 

dispersion relation equation detuning  

In chapter 2 (fig 2.3), we have seen an example where the first intrinsic mode is 

largely decaying in the limit of small n  and as n  is increased, the first acoustic mode 

becomes unstable, whereas the first intrinsic mode remains stable. Further 

observation shows that the first acoustic mode becomes unstable at the frequency of 

the first intrinsic mode. In this section, we will examine this phenomenon in detail.  

Here we consider a situation where we gradually increase n  and track down the loci 

of the first intrinsic mode and first acoustic mode on the complex frequency plane. To 

show this, figure 2 (a), (b) and (c) present contour plots of the detuning function 

prescribed by the full dispersion relation (2.20) for  =3 ms, 2qx L  and 

neglecting the effect of cross-section and temperature jump across the flame. In figure 

2, the acoustic and intrinsic modes are indicated by blue diamonds and orange 

triangles respectively. The instability domain is marked in yellow. Figure 2 (a) shows 

the case when n =0.25 and the first acoustic mode decays, whereas the decay rate of 

the first intrinsic mode reduces (compared to an uncoupled intrinsic mode). With the 

increase of n , the first acoustic and the first intrinsic mode frequencies come close to 
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each other. In figure 2 (b), n  is increased to 0.5, keeping  =3 ms. The decay rate of 

the first acoustic mode increases further, whereas the decay rate of the first intrinsic 

mode reduces. Thus, these two modes come closer to each other in the complex 

frequency plane. Another important aspect is the crossover of frequency, that is, the 

frequencies of the first acoustic and first intrinsic modes cross each other and the first 

acoustic mode attains higher frequency than the first intrinsic mode. One important 

point, with figures 2 (a) and (b), is that the decay rate of the first intrinsic mode is 

always lower than the decay rate of the first acoustic mode, even if they come very 

close to each other on the complex frequency plane. In figure 2 (c), n  is further 

increased to 0.8, keeping   the same. It can be seen that the first acoustic mode 

comes to the neutral line and tends to become unstable at this value of n , at the same 

frequency of first intrinsic mode in the asymptotic limit of small n  (as per figure 

2.10). The decay rate of the first intrinsic mode is reduced further, but the mode does 

not cross the neutral line.  

 

Figure 3.2: Contour plot of f  for 0.25n  , 0.5n  , 0.8n   at 3.0   ms. Other 

notations and parameters are the same as in Fig.2.8. 



103 
 

Figure 2 illustrates the basic scenario of intrinsic-acoustic mode coupling when, due 

to a gradual increase of n , the initially decaying acoustic mode becomes unstable at 

the frequency of the intrinsic mode in the limit of small n . It is not easy to establish 

the true identity of the mode on the neutral curve. Here, we manually track down the 

acoustic and intrinsic mode on the complex frequency plane, while gradually 

increasing n . 

3.3. Pressure and velocity profiles of acoustic and intrinsic modes 

As it was discussed in the previous section, the identities of the coupled modes are 

not straightforward to find out when these modes are close to each other. It might be 

possible to reveal the identity of the modes through a detailed study of their pressure 

and velocity profiles as the solutions “move” on the n   plane because of varying 

value of n .  

From equations (2.1, 2.2), by making use of (2.3, 2.4), the pressure and velocity 

profiles upstream of the flame can be written as 

   1 12 cosp x B kx  and                                          (3.1) 

     1 12 sinu x i c B kx .                                       (3.2) 

We have omitted the time dependence of pressure and velocity in equations (1, 2), as 

compared to the equations (2.1) and (2.2). Clearly, from (1), we find a cosinusoidal 

distribution of pressure and a sinusoidal distribution of velocity in the axial direction, 

x. The pressure distribution downstream of the flame has the following form, 

    2 22 sin
ikL

p x ie B k x L


   ,                                (3.3) 

where 2B  in (3) is related to 1B  in (1) and (2) as  

    2 1cos sinq q

ikL
B ie kx k x L B  

  .                          (3.4) 
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Making use of (4), the pressure distribution downstream of the flame, as given by (3), 

can be restructured as, 

         2 12 cos sin sinq qp x B kx k x L k x L   
  .                 (3.5) 

The corresponding velocity profile downstream of the flame can be shown to have the 

form, 

      2 22 cos
ikL

u x c e B k x L


   .                             (3.6) 

Again, similar to the previous case, making use of (4), equation (6) can be rearranged 

as, 

           2 12 cos sin cosq qu x i c B kx k x L k x L    
  .          (3.7) 

Equations (1) and (5) together, provide the acoustic pressure distribution across the 

length of the combustor. Similarly, (2) and (7) combined, provide the acoustic 

velocity distribution across the length of the combustor. Indeed, the expressions (1), 

(2), (5) and (7) describe complex quantities, as  r imk c i c     . To 

support this statement, the trigonometric expressions in (1) and (2) can be written as, 

         cos cos cos sin sinr im r imkx x c i x c x c i x c     , 

         sin sin cos cos sinr im r imkx x c i x c x c i x c     .     (3.8) 

 cos imi x c  and  sin imi x c  in equation (8) can be expanded as per Euler’s 

formula to show the purely real and purely imaginary nature of  cos imi x c  and 

 sin imi x c , respectively, 

   cos 2im im

im

x c x c
i x c e e

  
  , 

   sin 2im im

im

x c x c
i x c e e i

  
  .                           (3.9) 
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Making use of (8) and (9), we arrive at the following expressions of  1p x  and 

 1 xu  as per (1) and (2), to confirm our earlier statement that indeed  1p x  and 

 1 xu  are complex quantities, i.e. they have amplitude and phase. 

       1 1 cos sinim im im imx c x c x c x c
r rp x B x c e e i x c e e

   
 

 
    

  , 

       1
1 cos sinim im im imx c x c x c x c

r r

B
u x x c e e i x c e e

c

   
 



 
    

  . 

(3.10) 

Using equations (5) and (7) the same can be shown for  2p x  and  2 xu . At this 

point, we can study the pressure and velocity profiles of intrinsic and the coupled-

acoustic modes based on equations (1), (5), (2) and (7). Figures 3-9 show such 

pressure and sample velocity profile plots for the acoustic and intrinsic modes for the 

same value of   ( =3 ms), as shown in the example (figure 2) of § 2. The first 

intrinsic and first acoustic modes are coupled in this case. The red dashed and blue 

solid lines represent the intrinsic and acoustic modes respectively. The effects of 

cross-section and temperature jump across the flame are neglected here. Panels (a) 

and (b) show acoustic pressure and velocity amplitude respectively, whereas panels 

(c) and (d) represent acoustic pressure and velocity phase respectively (As per 

equation (10), pressure and velocity are complex quantities). 

In figure 3, n  is infinitesimally small, so the intrinsic mode is heavily decaying. 

Therefore, it does not feel the boundaries of the combustor, as can be seen from the 

pressure profile. The acoustic mode, in contrast, is determined by the combustor 

boundaries and has zero phase. As n  is increased to 0.1, figure 4 shows that the 

intrinsic mode becomes less localized and starts feeling the combustor boundaries. 

However, this mode is still heavily decaying. The decay rate of the intrinsic mode 
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reduces and it comes closer to the acoustic mode. The acoustic mode keeps on being 

determined by the combustor boundaries. There is a jump in the velocity profile at the 

flame location ( 2qx L ), as it is an obvious effect of the flame acting as a 

monopole source (see equation (2.16)).  As the n  is increased further to 0.3 in figure 

5, acoustic and intrinsic mode come closer to each other. The acoustic mode decay 

increases, whereas the decay rate of the intrinsic modes reduce. A hump is visible in 

the pressure profile of the intrinsic mode. The phase angle for the intrinsic mode 

pressure remains higher than that of the acoustic mode. At n =0.4, shown in figure 6, 

the acoustic mode and intrinsic mode attain almost equal frequency, and thus the 

frequencies start “crossing” each other. The intrinsic mode still maintains a higher 

decay rate than the acoustic mode. An apparent dip is visible in the acoustic mode 

pressure profile, but the pressure and velocity profiles for the acoustic and intrinsic 

modes look almost identical. This might serve as a strong evidence of coupling.  

As n  is increased to 0.5, as shown in figure 7, acoustic and intrinsic mode 

frequencies cross each other and, for the first time, the acoustic mode attains higher 

frequency than the intrinsic mode. Interestingly, the decay rate for both the intrinsic 

and acoustic mode reduces. The gap between the hump in the pressure profile for 

intrinsic mode and dip in the pressure profile of acoustic mode becomes more 

prominent. The intrinsic mode pressure profile maintains a higher phase angle than 

the acoustic mode pressure profile. The jump in velocity amplitude at the flame 

location is stronger for the acoustic mode compared to the intrinsic mode. Figure 8 

shows that the increase of n , to 0.7, brings the acoustic mode particularly close to the 

neutral line, and the intrinsic mode tends to come closer to the neutral line as well. 

The difference between the pressure profile hump and dip for these two modes 

becomes more prominent. As in figure 9, the acoustic mode becomes unstable at the 
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frequency of the intrinsic mode in the asymptotic limit of small n , whereas the 

intrinsic mode comes closer to the neutral curve. The phase angle for the acoustic 

mode becomes zero again, whereas the intrinsic mode pressure profile manifests 

higher phase angles. The difference between pressure profile hump and dip for these 

two modes remains substantial like in figures 7 and 8. The jump in velocity amplitude 

at the flame location is stronger for acoustic mode, just like previous two cases. The 

discontinuity in the velocity profiles at the flame location is a consistent feature for all 

these figures. 

We have thus performed a comparison of the pressure profiles of a coupled pair of an 

intrinsic and acoustic mode. A coupled acoustic mode decays for small n  and then, 

both the acoustic mode and intrinsic mode approach the neutral line with the increase 

of n . From the point when the frequencies of the two modes cross on the complex 

frequency plane, the pressure and velocity profiles of acoustic and intrinsic modes 

appear almost identical. This is the most important observation of the pressure profile 

study. The difference between the pressure profiles of two modes become more 

prominent with an increase of n .  
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Figure 3.3: (a, b) Normalized pressure, velocity amplitude and (c, d) pressure, velocity phase, 

in radians, of intrinsic mode and acoustic modes, based on equations (1), (5), (2) and (7), for 

2qx L , n =10-30,  =3ms, 
a =720- i *0 rad/s, 

i =1040- i *27000 rad/s. The red 

dashed and blue solid lines represent the intrinsic and acoustic modes respectively. The 

pressure profile shows a strongly decaying intrinsic mode on either side of the flame and 

thus, the intrinsic mode does not feel the boundaries of the combustor. The same trend is also 

true for the velocity profile for intrinsic mode. The phase of the acoustic mode is zero. The 

effect of cross-section and temperature jump across the flame has been neglected here. 
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Figure 3.4: (a, b) Normalized pressure, velocity amplitude and (c, d) pressure, velocity phase, 

in radians, of intrinsic and acoustic modes, based on equations (1), (5), (2) and (7), for 

2qx L , n =0.1,  =3ms, 
a =730- i *20 rad/s, 

i =980- i *950 rad/s. Other 

parameters and notations are the same as in figure 3. The acoustic mode feels the combustor 

boundary while the intrinsic mode only starts to feel combustor boundary. The intrinsic mode 

is still heavily decaying on either side of the flame. 
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Figure 3.5: (a, b) Normalized pressure, velocity amplitude and (c, d) pressure, velocity phase, 

in radians, of intrinsic and acoustic modes, based on equations (1), (5), (2) and (7), for 

2qx L , n =0.3,  =3ms, 
a =770- i *80 rad/s, 

i =890- i *500 rad/s. Other 

parameters and notations are the same as in figure 3. Both the acoustic and intrinsic mode feel 

the combustor boundaries. 
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Figure 3.6: (a, b) Normalized pressure, velocity amplitude and (c, d) pressure, velocity phase, 

in radians, of intrinsic and acoustic modes, based on equations (1), (5), (2) and (7), for 

2qx L , n =0.4,  =3ms, 
a =830- i *140 rad/s, 

i =820- i *350 rad/s. Other 

parameters and notations are the same as in figure 3. The real parts of the acoustic and 

intrinsic mode frequencies are almost the same. The crossing of the acoustic and intrinsic 

modes starts at this point. The intrinsic and acoustic mode pressure and velocity profiles 

appear almost identical at this point. 
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Figure 3.7: (a, b) Normalized pressure, velocity amplitude and (c, d) pressure, velocity phase, 

in radians, of intrinsic and acoustic modes, based on equations (1), (5), (2) and (7), for 

2qx L , n =0.5,  =3ms, 
a =950- i *120 rad/s, 

i =680- i *290 rad/s. Other 

parameters and notations are the same as in figure 3. The acoustic and intrinsic modes have 

already crossed each other at this point. The intrinsic mode however, maintains a larger decay 

rate than the acoustic mode. In the pressure profile of the intrinsic mode, there is a hump, 

whereas for the acoustic mode we find a dip at the flame location. The jump in velocity 

amplitude at the flame location is stronger for the acoustic mode. 
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Figure 3.8: (a, b) Normalized pressure, velocity amplitude and (c, d) pressure, velocity phase, 

in radians, of intrinsic and acoustic modes, based on equations (1), (5), (2) and (7), for 

2qx L , n =0.7,  =3ms, 
a =1020- i *30 rad/s, 

i =580- i *260 rad/s. Other 

parameters and notations are the same as in figure 3. After crossing, the acoustic and intrinsic 

mode frequencies are far apart in this case. The intrinsic mode maintains a larger decay rate 

than the acoustic mode. The hump in the intrinsic mode and dip in the acoustic mode pressure 

profiles become more prominent at the flame location. The jump in velocity amplitude at the 

flame location is stronger for the acoustic mode. 
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Figure 3.9: (a, b) Normalized pressure, velocity amplitude and (c, d) pressure, velocity phase, 

in radians, of intrinsic and acoustic modes, based on equations (1), (5), (2) and (7), for 

2qx L , n =0.8,  =3ms, 
a =1050+ i *0 rad/s, 

i =550- i *250 rad/s. Other 

parameters and notations are the same as in figure 3. The acoustic mode becomes marginally 

stable at this point, whereas the intrinsic mode maintains a large decay rate. In this case also, 

the hump in the intrinsic mode and dip in the acoustic mode pressure profiles remain 

prominent at the flame location. The phase angle of the acoustic mode becomes zero again. 

The jump in velocity amplitude at the flame location is stronger for the acoustic mode. 

 

3.4. Close proximity of pressure profiles between acoustic and 

intrinsic modes during coupling 

In § 3, we have noted that in the limit of small n, pressure profiles of acoustic and 

intrinsic modes are clearly distinguishable. However, the same may not be valid when 

these modes approach the neutral curve. In § 3, we have examined the nature of 

pressure and velocity profiles of intrinsic and acoustic modes when they couple with 
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each other. In this section, we first explore a slightly different scenario. We analyze 

the pressure and velocity profiles of acoustic and intrinsic modes when we do not 

have any coupling of modes, and thus we have pure acoustic and pure intrinsic 

instability. Later, moving forward from this point, we provide an overall explanation 

of why mode shapes might not distinctively reveal individual identities of acoustic 

and intrinsic modes. 

Figures 10 and 11 illustrate a scenario of pure acoustic mode instability for a fixed 

time lag ( =4.5 ms), where the first acoustic mode becomes unstable (as it satisfies 

the positive Rayleigh index criterion). The pressure profile of the acoustic mode 

behaves in a similar manner to a classical first acoustic mode of a closed-open 

combustor. The decaying intrinsic mode for n =0.3, as shown in figure 10, has a 

sharp hump (at the flame location 2qx L ) in the pressure profile. The jump in the 

velocity amplitude is also prominent, for the intrinsic mode, at the flame location. As 

n  is increased from 0.3 to 5.0, we cannot spot any noticeable and qualitative change 

in the pressure profile of the intrinsic mode. Thus, we can identify some distinction 

between the mode shapes of acoustic and intrinsic mode for this case, where pure 

acoustic mode instability prevails. 
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Figure 3.10: (a, b) Normalized pressure, velocity amplitude and (c, d) pressure, velocity 

phase, in radians, of intrinsic and acoustic modes, based on equations (1), (5), (2) and (7), for 

2qx L ,  =4.5 ms, n =0.3, 
a =780+i *30 rad/s, 

i =500- i *460 rad/s. Other 

parameters and notations are the same as in figure 3. For this n , the acoustic mode grows, 

whereas the intrinsic mode manifests large decay. This is a scenario of pure acoustic mode 

instability. Figures (a) and (c) demonstrate distinctive humps for the intrinsic modes, as 

compared to mild dips for the acoustic modes. 
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Figure 3.11: (a, b) Normalized pressure, velocity amplitude and (c, d) pressure, velocity 

phase, in radians, of intrinsic modes, based on equations (1), (5), (2) and (7), for 2qx L , 

 =4.5 ms, n =5.0, 
i =250- i *140 rad/s. The intrinsic mode maintains a decaying nature, 

similar to figure 10. However, here it comes closer to the neutral line.  Compared to figure 

10, the increase of n  does not introduce any noticeable change in the mode shapes of the 

intrinsic mode. Other parameters and notations are the same as in figure 3. 

 

Similarly, in figures 12 and 13 we observe pure intrinsic mode instability. The same 

case is also depicted in the concluding section of chapter 2 (fig 2.21). As per figure 

12, at  =2.2 ms, n =0.4, both the acoustic and intrinsic modes decay in the complex 

frequency plane. The pressure profile of the acoustic mode resembles the classical 

first acoustic mode of a closed-open combustor, whereas for the intrinsic mode, the 

pressure profile manifests a prominent dip at the flame location 2qx L . The jump 
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in the velocity profile is also quite prominent for the decaying intrinsic mode. As we 

increase n  to 1.1, the intrinsic mode becomes unstable, whereas, the acoustic mode 

decays. Figure 13 represents this case. The figure shows that the acoustic mode 

retains a visually identical profile of that of a classical first acoustic mode for a 

closed-open combustor. However the dip in the intrinsic mode pressure profile 

becomes more prominent. The jump in the velocity profile for the intrinsic mode at 

the flame location, retains its distinction. Thus, we can distinguish the mode shapes of 

acoustic and intrinsic modes in this scenario, where pure intrinsic mode instability 

exists. 

This distinctive nature of the mode shapes might not exist when two modes couple in 

the complex frequency plane. It is expected, during coupling, that the modes come 

close to each other in the complex frequency plane. In other words, their frequencies 

are very close to each other. It is a matter of interest to find out what the patterns of 

the mode shapes are when two modes with closely spaced frequencies come close to 

each other. It is also a matter of interest to find out whether we can find any 

distinctive features of the mode shapes for closely spaced modes. Figure 14 is 

dedicated for that purpose. Figure 14 (a) and 14 (c) represent the pressure and 

velocity amplitudes of three marginally unstable intrinsic modes. The first two modes 

have smaller frequencies than the first acoustic mode frequency of a closed-open 

combustor, whereas the third mode has the same frequency as that of the first acoustic 

mode frequency of closed-open combustor without a flame and temperature jump. 

Visually, all three modes have similar mode shapes. Figure 14 (b) and 14 (d) 

represent pressure and velocity amplitudes of four marginally unstable intrinsic 

modes. The first three modes have smaller frequencies than the second acoustic mode 

frequency of closed-open combustor, whereas the fourth mode has the same 
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frequency as that of the second acoustic mode frequency of closed-open combustor 

without a flame. The shapes of the first three modes are visually similar in nature and 

contain a mixed behavior of both the first and second acoustic modes of a closed-

open combustor. This trend continues in an identical manner, for higher frequency 

modes. Hence, when modes come very close to the neutral line in the complex 

frequency plane and close to each other, it is hard to distinguish them purely by 

looking at their mode shapes. 

 

Figure 3.12: (a, b) Normalized pressure, velocity amplitude and (c, d) pressure, velocity 

phase, in radians, of intrinsic and acoustic modes, based on equations (1), (5), (2) and (7), for 

2qx L ,  =2.2 ms, n =0.4, 
i =1420- i *520 rad/s, 

a =690-i *100 rad/s. Both the 

acoustic and intrinsic modes decay for this value of n . Pressure amplitude and phase show a 

distinctive dip and hump for the intrinsic mode, compared to the acoustic mode. Other 

parameters and notations are the same as in figure 3. 
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Figure 3.13: (a, b) Normalized pressure, velocity amplitude and (c, d) pressure, velocity 

phase, in radians, of intrinsic and acoustic modes, based on equations (1), (5), (2) and (7), 

2qx L ,  =2.2 ms, n =1.1, 
i =1430+ i *40 rad/s, 

a =540- i *160 rad/s. Compared to 

figure 12, an increase of n  makes the intrinsic mode unstable, whereas the acoustic mode 

decays. This is a scenario of pure intrinsic mode instability. The pressure and velocity 

profiles are distinctively different for this case. Other parameters and notations are the same 

as in figure 3. 
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Figure 3.14: (a) Normalized pressure amplitude and (c) Normalized velocity amplitude of 

intrinsic modes, based on equations (1), (5), for three different frequencies (1) 
i =320+ i

*10 rad/s, (2) 
i =520+ i *10 rad/s, (3) 

i =720+ i *10 rad/s, showed by the dashed-dotted 

red line, dashed red line and continuous blue line respectively. Frequency (3) is the first 

acoustic mode frequency of closed-open combustor and the frequencies for (1) and (2) are 

less than that of (3). The mode shapes for (1) and (2) are similar to that of (3). 

(b) Normalized pressure phase and (d) Normalized velocity phase of intrinsic modes, based 

on equations (1), (5), for four different frequencies (4) 
i =1000+i *10 rad/s, (5) 

i =1500+

i *10 rad/s, (6) 
i =1900+ i *10 rad/s, (7) 

i =2170+ i *10 rad/s, represented by the dashed-

dotted red line, dashed red line, dotted red line and continuous blue line respectively. 

Frequency (7) is the second acoustic mode frequency of a closed-open combustor and 

frequencies for (4), (5) and (6) are less than that of (7). Mode shapes of (4), (5) and (6) have 

mixed behavior of both mode (3) and (7). This figure is for 2qx L . 

 

Therefore, we have seen that the comparison of mode shapes could be a reliable 

option when modes do not couple with each other and we have a pure acoustic and 
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pure intrinsic mode instability. However, when intrinsic and acoustic modes couple to 

each other and they come close to each other in the complex frequency plane, their 

mode shapes are often hardly distinguishable, as witnessed from figures 3-9 and 

explained in figure 14. An identical observation of this limitation of mode shapes to 

identify the acoustic and intrinsic modes has also been reported by Emmert et al. 

(2016). 

3.5. Three types of instability in a combustor: flame-acoustic 

coupling; the complete picture 

In the introductory section, it was mentioned that, as per the literature, in a classical 

combustor setup, there are two distinctly different forms of linear instability, due to 

the presence of a flame:  

i. A classical acoustic mode instability occurs when one of the acoustic modes 

couples with flame heat release and becomes unstable. The route is well studied (e.g., 

Lieuwen T., and Yang V. (2005), and Poinsot T. and Veynante D (2011)) and will be 

very briefly discussed here for the sake of completeness. 

ii. An intrinsic flame mode instability occurs when one of the flame intrinsic modes 

becomes unstable without affecting any of the acoustic modes. This form of 

instability has been discussed in greater detail in chapter 2 for a closed-open 

combustor. 

Apart from these two forms of instability, here we describe a third form of instability, 

not reported so far in the literature to the best of our knowledge. This is a coupled 

intrinsic-acoustic mode instability, which occurs when a decaying acoustic mode 

(because of the negative Rayleigh index) couples with one of the intrinsic modes 
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(with a frequency close to the acoustic mode) and becomes unstable. This is the 

salient discussion point for this chapter.  

The key question is when does an intrinsic mode becomes important. An intrinsic 

mode matters in two different types of situations: when the intrinsic modes grow, 

while the acoustic modes decay (an example of which is provided in the concluding 

section of chapter 2, Fig. 2.21) and when acoustic and intrinsic modes are strongly 

coupled in such a way that the intrinsic mode triggers instability of an acoustic mode, 

which otherwise, according to the Rayleigh instability criterion, should be decaying. 

In the following sections, we give a brief overview of these three types of combustor 

instabilities. 

3.5.1.   Instability of acoustic modes uncoupled from the intrinsic modes – the 

instability of the first type 

First, we provide a brief overview of the classical acoustic mode instability. This kind 

of instability occurs when acoustic pressure is in phase with flame heat release and a 

detailed discussion of it is can be found in [Lieuwen T., and Yang V. (2005), and 

Poinsot T. and Veynante D (2011)]. However, for the sake of completeness, we 

briefly review this type of instability. We are interested in a simple expression for the 

growth rate of acoustic mode when it becomes unstable at 0a

th
n   (where superscript 

a  represents acoustic modes). For simplicity, we are going to start with the 

dispersion relation (2.23) for 2
q

x L , instead of the general equation (2.20), in § 

2.2. 

For acoustic modes, when 0n , the growth rates are asymptotically small, i.e. for, 

0n ,   0aIm   , where superscript a  represents acoustic modes. For this 

limiting case, equation (2.23) simplifies to, 



124 
 

cos
2

iL n
e

c
 

 
 

 .                                           (3.11) 

The acoustic mode frequency 
a  can be written as,    a a aRe iIm    , 

where  aRe   is the instability frequency and  aIm   is the growth rate. For any 

value of n , the real part  aRe   is assumed to have a small deviation a
c  to the 

value predicted in the limit of small n , that is 0
a  (this is the classical acoustic mode 

frequency of a closed-open combustor). It is straightforward to calculate these 

instability frequencies of the acoustic mode, 0
a , because of the flame heat release 

effect. For the acoustic modes of a combustor without a flame, these frequencies are 

given as [Kinsler et al. (2000)] 

  0 2 1
2

a a c
m

L


   .                                          (3.12) 

The real part  aRe   can be written as,   0
a a a

cRe     , which enables us to 

present equation    a a aRe iIm     as,    0
a a a a

c iIm      . By 

substituting this expression for   into equation (11), we get, 

        00
cos

2

a a a
c

a a
c

a
i iImiIm L

c

n
e

       
 
 

    
 
  

 , 

Which can be further expanded into the following form, 

       

       

0 0

0 0

cos cos sin sin

cos sin
2

a

a a a a
c c

a a a a
c c

a a

Im

L iIm L L iIm L

c c c c

e i
n  

     

     


               
       

              

    
 

.    (3.13) 
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Assuming smallness of  aIm  , we can approximate the trigonometric terms in (13) 

as,   cos 1aiIm L c   and     sin a aiIm L c iIm L c  , and also 

 
1

aIm
e

 
 . This will simplify equation (13) further. The real part of equation (13) 

then becomes,  

 
  0

0cos cos
2

a a
c a a

c

L n

c

 
  

 
 
 
 


  .                            (3.14) 

And the imaginary part of equation (13) assumes the following form, 

 
 

  0

0sin sin
2

a

a a
c a a

c

LL n
Im

c c


 
  

 
 
 
 


   .                  (3.15) 

The real part (14) can be further simplified to, 

   0 0 0 0cos sin cos sin
2

a a a a a a
c c

L L L n

c c c
        
     
        

   ,         (3.16) 

 which leads us to the following expression for a
c , 

 

   

0

0

cos

2
sin 1

a

a

a
c

a m L

n c

 


  


 

.                                    (3.17) 

The equation for the imaginary part (15) can be further rearranged as,  

       0 01 sin cos
2

a
a

a a a
c

m nc
Im

L
       

  
   .                (3.18) 

Substituting  a
c , given by (17), into (18), yields the final expression for the growth 

rate for 0n  and a central flame location (i.e. 2
q

x L ), 

 
   

   

0

0
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1 sin

22 sin 1

a
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nc ncIm

LL

nc


  
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 
 
 
 

 
 

 
.                             (3.19) 
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Hence, the growth rate for the unstable acoustic modes, subjected to the type (i) 

instability (classical acoustic mode instability), can be predicted by equation (19). 

This formula is valid for a special case of 2
q

x L  and no cross-section and 

temperature jump. However, a similar exercise can be performed for any generalized 

value of flame location, cross-section, and temperature jump. The formula can be 

given as, 

 a N DIm   ,                                           (3.19 a) 

Where, N and D  are given as, 
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Here,  , 1  and 2  are constants specified by equation (2.28), whereas 
3

  and 
4

  

are as follows: 3

1

qx

c
   and 

 
4

2

qx L

c



 . 

In figure 15, the growth rate (19) is plotted against time lag for the first 3 acoustic 

modes (that is, 
am =0, 1, 2). At first glance the pattern seems to be complicated: at 

=6.6 ms all acoustic modes grow simultaneously, whereas, at  =2.2 ms and  =11 

ms, all acoustic modes decay. A detailed discussion can be found in e.g. Poinsot T. 

and Veynante D (2011), and Lieuwen T., and Yang V. (2005). A similar result like 

figure 15 and the corresponding discussions can also be found from Bauerheim et al. 

(2016), for azimuthal combustion instability modes in annular chambers. The intrinsic 

modes are likely to be dominant when all acoustic modes decay. For example, figure 

2.11 shows that both the second and third intrinsic modes (
im =1 and 

im =2) become 

unstable at  = 11 ms, whereas the second intrinsic mode (
im =1) becomes unstable 

at  = 2.2 ms, making intrinsic modes the key driver of combustion instability. This 

has also been verified with the help of the contour plot of figure 2.21, which showed 

that the first and second intrinsic mode become unstable in this parameter range, 

whereas all the acoustic modes decay simultaneously, making the intrinsic mode a 

sole driver of combustion instability. 
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Figure 3.15: The growth rates for the first three acoustic modes, corresponding to 
am =0, 1, 2 

(for 0.1n  , c =345 m/s, L =0.75 m in equation (19)). Equation (19) is applicable for the 

special case of 2qx L .  The domain of instability is marked in yellow. In the close vicinity 

of 6.6 ms, all three acoustic modes grow simultaneously, whereas in the vicinity of 2.2 ms 

and 11 ms, all of these modes decay simultaneously. 

 

3.5.2. Instability of the intrinsic modes – the instability of the second type 

The dependence on the n -threshold and growth rate for instabilities of flame intrinsic 

modes for a closed-open combustor, has been discussed in detail in chapter 2. It has 

also been pointed out in the previous section that when acoustic modes decay, the 

intrinsic modes are the sole drivers of the combustor instability. 

3.5.3. Instability of the acoustic modes coupled with intrinsic modes – the 

instability of the third type 

This particular type is due to linear coupling between the acoustic and intrinsic 

modes. Due to the out of phase relation between acoustic pressure and flame heat 

release rate, acoustic modes decay in certain domains on the n  plane. In such a 

domain, the first type of instability cannot occur. The decaying acoustic modes can be 
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affected by one of the decaying flame intrinsic modes and as a result become 

unstable. It is important to understand the details of the coupling phenomenon. So, 

here, similar to § 4 of chapter 2, we evaluate the instability frequency, the threshold 

value of n  and the growth rate for the coupled acoustic-intrinsic modes. Again, as in 

the previous section, our analytical approach is confined to the linear setting only. 

3.5.3.1. Instability frequency 

The deviation of the real part of instability frequency from its value at n =0, for the 

case when the acoustic mode is coupled with one of the intrinsic modes, can be found 

as follows.  

Substitution of     0
a a a

c iIm       into equation (2.20) leads to, 
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 
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    
 
  

 
 
 
  

      

  


  

.    

(3.20) 

Here,  , 1  and 2  are constants specified by equation (2.28). By definition, the 

growth rate for acoustic modes  aIm   is zero on the neutral curve on the n   

plane, i.e.   0aIm    at 
a

thn n . Then on the neutral curve, the imaginary part of 

equation (20) takes the form, 

       1 20
2 sin sin sin 0q q

a a a
cth

in k x k x L     .            (3.21) 
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The obvious solution of this equation for the acoustic mode is 0a

th
n  . Acoustic 

modes might become unstable at 0a

th
n  , the instability of type (i). However, 

equation (21) also suggests a second set of solutions for the acoustic modes, due to 

vanishing of the second multiplier,  

  0
sin 0a a

c    .                                       (3.22) 

Equation (22) can be rearranged as, 

0
a a
c m      ( m  is an integer) 

or, 0
a a
c m      .                                         (3.23a, b) 

Equation (23) provides us with an explicit solution for the correction to the real part 

of frequency, for the case when acoustic mode is coupled with one of the intrinsic 

modes, as follows,  

 2 1
2

a

c

am c
m

L

 



    ( m  is an integer).                       (3.24) 

Once 
a

c  is known from (24), the frequency of marginal instability follows from the 

expression,   0
a a a

cRe     . 

3.5.3.2. The threshold value of n  for coupled intrinsic-acoustic mode instability 

Using equation (24), the real part of equation (20) can be rewritten for the neutral 

curve as follows, 

         
      1 2

0 1 0 2

cos sin sin 0

1 cos 1 cos

2 q q

a a a a
c c

a a
cth k x k x Ln  

       

 

     
.               (3.25) 

The explicit solution for the acoustic mode instability threshold (
a

thn ) can be derived 

from equation (25) on the neutral curve,  
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         
      
0 0

1 2

1 2

2cos sin sin

1 cos 1 cosa a a a

c c
a

th a

c q qk x k x L
n

 

       




    
.            (3.26) 

where,  , 1  and 2  are given by equation (2.28). Equation (26) is similar to 

equation (2.33) for the case of intrinsic modes. The only differentiating term is 
a

c  

instead of 
i

c  in equation (2.33). Thus,  when a mode becomes unstable on the  

plane, it might not be possible to say confidently, without extra analysis, whether the 

mode is acoustic or intrinsic.  

3.5.3.3. The growth rate prediction for the acoustic modes 

Similar to § 4 of chapter 2, the growth rate for the acoustic modes can be found by 

making use of an expansion with respect to the deviation from the neutral curve on 

the n   plane. Because equations (2.33) and (26) are identical, the growth rate for 

the coupled acoustic mode will be governed by an equation identical to (2.47), with 

the intrinsic mode characteristics being replaced by acoustic mode characteristics. 

The analytical expression of acoustic and intrinsic modes originates from the same 

dispersion relation (2.20). Thus, there can be cases when either acoustic or intrinsic 

modes can become unstable at the same threshold value of n , making it difficult to 

be sure in their identity at the point of instability. Unless we track down their 

trajectory manually in the n   parameter space, it is hard to comprehend which 

mode is becoming unstable. 

 

 

n 
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3.6. Mathematical model of coupling: Evaluation of coupled mode 

frequencies 

In this section we try to understand intrinsic-acoustic mode coupling and describe it 

by employing a simple mathematical model. We will try to solve the dispersion 

relation in the vicinity of the acoustic mode, when an intrinsic mode comes close to 

the chosen acoustic mode in the n   space. Thus, we identify the locus of the 

acoustic and the intrinsic mode that interacts with it in the n   space. We also 

discuss the stability behavior of these modes and understand under which scenarios 

either the acoustic mode alone or both acoustic and intrinsic modes become unstable. 

3.6.1. Derivation of governing dispersion relation for coupling 

It is reasonable to assume that with a small change of parameters, the acoustic modes 

do not deviate far from the neutral curve (in terms of decay rate). Hence, assuming 

the deviation of the frequency to be characterized by a small parameter   and 

using our original dispersion relation (2.20), we can find the locus of the acoustic 

mode, as well as the nearby intrinsic modes. It can be further elucidated as to whether 

we have pure acoustic mode instability, pure intrinsic mode instability or coupled 

acoustic mode-intrinsic mode instability. When 0

a  represents the frequency of the 

acoustic mode of the closed-open combustor in the absence of a flame, the perturbed 

frequency in the vicinity of the neutral curve can be written as 0

a a    . In the 

present context, we assume the perturbation   to be small compared to 0

a .  

By substituting the ansatz 0

a a     into the general dispersion relation (2.20), 

we re-write it as follows, 
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.         (3.27) 

Assuming small values of   and neglecting all the terms higher than order 2, the 

trigonometric terms in the expression (27) can be expanded as, 

    1
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cos 1 2      , 

    sin       .                              (3.28a,b,c,d) 

Making use of these truncated expansions (28) in the dispersion relation (27) enables 

us to re-structure it as follows, 
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Neglecting all the terms of   higher than order 2, this equation can be written as a 

quadratic equation, 

   
2

0A B C      .                                   (3.30) 
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Then its solution can be written in the standard form as follows, 
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Where, the coefficients, A , B  and C  in (30) and (31) are, 
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For the special case with the flame in the middle of the combustor, that is 2qx L , 

and cross-section and temperature jumps neglected, the coefficients A , B  and C , 

as per (32), reduce to, 
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By using (30), the correction to the frequency is obtained. The two frequencies (of 

acoustic mode and nearby intrinsic mode) can be obtained using the relation: 

0

a a    . This approach thus helps us to find whether, in the n   space, any 

of the intrinsic modes are in the vicinity of the acoustic mode and whether they 

interact with it.  

Further examples show that strong mode-coupling occurs for finite n  close to the 

threshold value. For small n , the acoustic mode decays (if the Rayleigh index is 

negative) and does not feel the intrinsic mode. For subcritical and threshold values of 

n , it interacts with the intrinsic mode that comes closer in the n   space and 

becomes unstable at the same frequency as that of the intrinsic mode, whereas the 

intrinsic mode either becomes unstable or remains stable for large n . Once unstable 

or close to being unstable, the acoustic mode seems to lose its identity and behaves 

exactly like the intrinsic mode it interacts with. This aspect will be discussed in 

greater details in the next section. As mentioned in §5.3, as the coupled acoustic 

mode behaves exactly like an intrinsic mode when it is close to becoming unstable, 

from now on we will refer to such coupled modes as coupled intrinsic modes. 

However, to mark the “initial” identity of these modes, i.e. identity for small n , we 
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use additional identifiers: coupled intrinsic mode (‘born acoustic’ or in short BA) and 

coupled intrinsic mode (‘born intrinsic’ or in short BI). This nomenclature 

convention will be followed in the rest of the work. It is also possible to analytically 

find the value of n  (see Appendix V) for which the coupled modes have equal real 

frequencies (but different decay rate) on the complex frequency plane. Therefore, the 

point where their paths on the complex frequency plane start to cross each other can 

also be found. However, this crossing does not take place for all types of coupling. 

The picture will be made clearer in the next section, where we describe different 

types of acoustic mode-intrinsic mode coupling. 

3.6.2. Four types of intrinsic-acoustic mode coupling: Loci of acoustic and 

intrinsic modes in n   space 

The analytical solution derived in the previous section provides an explicit solution 

for the acoustic mode and the nearby intrinsic mode. These solutions can be plotted 

on the n   plane and we can perform a visual inspection as to whether the acoustic 

mode and intrinsic mode come close to one another and engage in the coupling. 

These kinds of plots can be generated for any chosen acoustic mode with any given 

value of  . For a specific  , n  will be increased in small steps from zero to some 

finite value and the corresponding acoustic and nearby intrinsic mode frequencies can 

be calculated using (30). Finally, these values can be plotted on a complex frequency 

plane thus, obtaining the loci of the acoustic and intrinsic modes on the complex 

frequency plane with n  treated as a parameter. 
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Figure 3.16: Loci of the coupled modes for 2qx L ,  =5 ms, 
am =1, 

im =1. n  is varied 

from 0.0 to 1.0. Plots are generated with the help of quadratic equation (30). Coupled intrinsic 

modes (BA) and (BI) are represented by continuous blue and dashed red lines respectively. 

Yellow colour represents the domain of instability. The brown arrow indicates the frequency 

of acoustic mode ( 0

a ) of the closed-open combustor in the absence of a flame. This is the 

first type of coupling, where the coupled intrinsic mode (BI) becomes unstable at 0
c

i   , 

whereas the coupled intrinsic mode (BA) tends to become unstable at a higher frequency 

corresponding to 
c

i   . The mode numbers of the modes involved in coupling are same 

in this case. The effects of cross-section and temperature jump across the flame are not 

considered here. 

 

Figure 16 shows an example of such a plot for the second acoustic mode (
am =1), 

when  =5 ms and flame is at 2qx L . The domain of instability is marked in 

yellow. The arrow indicates the frequency of the acoustic mode ( 0

a ) of the closed-

open combustor in the absence of a flame. The effects of cross-section and 

temperature jump across the flame are not considered for all subsequent plots. The 

figure illustrates coupling between the second acoustic and the second intrinsic mode 

(
im =1). Thus, in this particular case, the mode numbers for the acoustic and intrinsic 

modes involved in coupling are the same. Coupled intrinsic modes (BA) and (BI) are 
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represented by continuous blue and dashed red lines respectively. Figure 16 makes it 

obvious that as n  increases from 0 to 1.0, the coupled intrinsic mode (BA) initially 

decays in the complex frequency plane and tends to become unstable at a frequency 

predicted by 
c

i   , whereas the coupled intrinsic mode (BI) becomes unstable at 

the same frequency predicted for it in the asymptotic limit of small n  (i.e. at a 

frequency corresponding to 0
c

i   ). Numerical validation of this and all subsequent 

plots will be given in the next section. Indeed, the coupled intrinsic mode (BI) 

becomes unstable at a much lower threshold of n  than coupled intrinsic mode (BA), 

as seen by the neutral curve 2.12 in chapter 2. We name this form of coupling as the 

first type of coupling, where coupled intrinsic mode (BI) attains instability at a 

frequency corresponding to 0
c

i    and the coupled intrinsic mode (BA) becomes 

unstable at a frequency corresponding to 
c

i    (or 
c

i    ). 

Another type of coupling is illustrated in figure 17, which is generated for the second 

acoustic mode (
am =1), when  =4.8 ms and flame is at 2qx L . This figure also 

shows coupling between the second acoustic mode and the second intrinsic mode, 

similar to figure 16. As we increase n  from 0 to 1.0, the coupled intrinsic mode (BA) 

becomes unstable at 0
c

i   , whereas the coupled intrinsic mode (BI) tends to 

become unstable at a higher frequency corresponding to 
c

i   . We name this 

scenario as the second type of coupling. The n -threshold for instability is higher for 

the coupled intrinsic mode (BI) than for the coupled intrinsic mode (BA). In §2.4, we 

mentioned that near the intersection of the segments of the neutral curve intrinsic and 

coupled-acoustic modes invariably change their identity. Figures 16 and 17 support 

this statement. It is obvious that a slight alteration of   from 5 to 4.8 ms changed the 

type of intrinsic-acoustic mode coupling from the first to second. 
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Figure 3.17: Loci of the coupled modes for 2qx L ,  =4.8 ms, 
am =1, 

im =1. n  is 

varied from 0.0 to 1.0. Plots are based on quadratic equation (30). This is the second type of 

coupling, where the coupled intrinsic mode (BA) becomes unstable with 0
c

i   , whereas 

the coupled intrinsic mode (BI) tends to become unstable at a higher frequency corresponding 

to 
c

i   . The mode numbers of the modes involved in coupling are same in this case. 

Other parameters and notations are the same as in figure 16. 

 

Figure 3.18: Loci of the coupled modes for qx =0.3 m,  =4.85 ms, 
am =1, 

im =1. n  is 

varied from 0.0 to 2.5. Plots are generated with the help of quadratic equation (30). This is the 

third type of coupling, where the coupled intrinsic mode (BI) becomes unstable with 

0
c

i   , whereas the coupled intrinsic mode (BA) tends to remain asymptotically stable at a 

frequency corresponding to  1
sin 0

q
k x  , as per equation (2.29). The mode numbers of 

the modes involved in coupling are the same in this case. Other parameters and notations are 

the same as in figure 16. 
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There are two more types of coupling possible, in addition to the first two types 

shown in figures 16 and 17. Figures 18 and 19 illustrate these two new types of 

coupling. Both figures are generated for the second acoustic mode (
am =1) when the 

flame is at qx =0.3 m. Figure 18 is for  =4.85 ms, whereas figure 19 is for  =4.75 

ms. It can be seen from figure 18, that as n  is varied from 0 to 2.5, the coupled 

intrinsic mode (BI) becomes unstable at 0
c

i   , whereas the coupled intrinsic mode 

(BA) tends to remain asymptotically stable at a frequency corresponding to 

 1
sin 0

q
k x  , as per equation (2.29). We interpret this as the third type of 

coupling, where despite mode coupling, we find only one unstable mode, whereas the 

other mode remains asymptotically stable at a frequency corresponding to 

 1
sin 0

q
k x   or   2

sin 0
q

k x L  , as per equation (2.29). A closer observation 

of equation (2.29) shows that even though we considered the primary solution 

 sin 0
c

i    to define our neutral curve, we have two more solutions corresponding 

to  1
sin 0

q
k x   or   2

sin 0
q

k x L  . Both these solutions correspond to 

thn   as per (2.33), thus they do not manifest themselves on the neutral curve. 

When this form of coupling occurs on the neutral curve, we might be tempted to 

misinterpret them as pure intrinsic mode instability and assume that there is no 

coupling. But this is not the case. A simple test to distinguish between uncoupled 

domain (manifesting pure intrinsic instability) and third or fourth types of coupled 

domain will be suggested here. If the range of thn  values for instability in the domain 

is found to be very close to zero, we interpret it as a coupled domain. Because of the 

strongly decaying nature of intrinsic modes, they cannot be unstable at such small thn , 
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for any practical range of  . If thn , within the domain, is on the higher side i.e. 

(O(1)), then we interpret it as an uncoupled domain with pure intrinsic instability. 

Another form of coupling can be seen in figure 19, where an increase of n  from 0 to 

2.5 makes the coupled intrinsic mode (BA) unstable at 0
c

i   , whereas the coupled 

intrinsic mode (BI) tends to remain asymptotically stable at a frequency 

corresponding to  1
sin 0

q
k x   as per equation (2.29). We interpret it as the fourth 

type of coupling. Another important aspect of figures 18 and 19 is that as we reduce 

  from 4.85 ms to 4.75 ms, the type of coupling changes from the third to fourth.  

 

 

Figure 3.19: Loci of the coupled modes for qx =0.3 m,  =4.75 ms, 
am =1, 

im =1. n  is 

varied from 0.0 to 2.5. Plots are generated with the help of quadratic equation (30). This is the 

fourth type of coupling, where the coupled intrinsic mode (BA) becomes unstable with 

0
c

i   , whereas the coupled intrinsic mode (BI) tends to remain asymptotically stable at a 

frequency corresponding to  1
sin 0

q
k x  , as per equation (2.29). The mode numbers of 

the modes involved in coupling are the same in this case. Other parameters and notations are 

the same as in figure 16. 
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We have thus observed four main types of intrinsic-acoustic mode coupling: 

i. In the first type of coupling, the coupled intrinsic mode (BI) becomes unstable at 

a frequency predicted by 0
c

i   , whereas the coupled intrinsic mode (BA) becomes 

unstable at a frequency predicted by either 
c

i    or 
c

i    . Figure 16 

illustrates this type of coupling. 

ii. In the second type of coupling, the coupled intrinsic mode (BA) becomes unstable 

at a frequency predicted by 0
c

i   , whereas the coupled intrinsic mode (BI) 

becomes unstable at a frequency predicted by either 
c

i    or 
c

i    . Figure 17 

illustrates this type of coupling. 

iii.   In the third type of coupling, the coupled intrinsic mode (BI) becomes unstable 

with 0
c

i   , whereas the coupled intrinsic mode (BA) tends to remain 

asymptotically stable at a frequency corresponding to  1
sin 0

q
k x   or 

  1
0sin qk x L  , as per equation (2.29). Figure 18 illustrates this type of 

coupling. 

iv.   In the fourth type of coupling, the coupled intrinsic mode (BA) becomes 

unstable with 0
c

i   , whereas the coupled intrinsic mode (BI) tends to remain 

asymptotically stable at a frequency corresponding to  1
0sin

q
k x   or 

  1
0sin qk x L  , as per equation (2.29). Figure 19 illustrates this type of 

coupling. 

It is worth mentioning that all these types of coupling are independent of the 

individual mode numbers for the acoustic and intrinsic modes. The mode numbers for 

the acoustic and intrinsic modes can be the same or different for all these coupling 

types.  
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Thus, we have developed a compact and ‘easy to deal with’ quadratic equation model 

to generate the solutions for the acoustic and intrinsic modes involved in coupling. 

We can, also investigate, with the help of that equation, whether intrinsic and acoustic 

modes arrive at the close vicinity of each other in the complex frequency plane. The 

four types of coupling have been identified in this regard, based on the instability 

frequencies of the coupled modes. These four types of coupling are independent of 

the individual mode numbers of the acoustic and intrinsic modes. In the §s 10 and 11, 

it will be shown that by the slight tweaking of combustor parameters, it is possible to 

find the first and/or second type, as well as the third and/or fourth type of instability 

in the same neutral curve of an intrinsic mode. Once a mathematical model is 

developed, the numerical examination of its validity becomes the next logical step, 

with the topic being covered in § 6.1.  

3.7. Numerical validation of the analytical solution predicted by the 

quadratic equation model 

In this section, the analytical solution obtained, as per equation (30) in § 6, will be 

verified with the numerical result as per equation (2.20). Figures 20-26 represent the 

comparison of analytical and numerical results. The dashed red and continuous blue 

lines represent the analytical solutions for coupled intrinsic mode (BI) and (BA) 

respectively. The magenta circular and green diamond dots represent their numerical 

counterparts respectively, found by direct solution of equation (2.20). The instability 

domains are marked in yellow. The brown arrow represents the frequency of acoustic 

mode ( 0

a ) of the closed-open combustor in the absence of a flame. The effect of 

cross-section and temperature jumps will not be considered here, as also mentioned in 

§ 6. 
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Figures 20-23 present a numerical validation of cases considered in figures 16-19 

respectively. Figure 20, illustrating the first type of coupling, shows a good 

correspondence between analytical and numerical results for the coupled intrinsic 

mode (BA), whereas for the coupled intrinsic mode (BI), predictions do not seem to 

be that accurate. However, the analytical solution manages to accurately capture the 

instability frequency of the coupled intrinsic mode (BI) on the complex frequency 

plane. For numerical solutions, n  is varied from (a) 0.0 to 1.0 and (b) 0.0 to 4.0. For 

analytical solutions, n  is varied from 0.0 to 1.0 for both (a) and (b). For  exceeding 

1.0 our analytical solution deviates drastically from the numerical solution, because 

the key assumption of the smallness of   ceases to be valid. Since one of the 

coupled modes exhibits strong growth rate, while the other is decaying, the value of 

  is no longer small. This trend is captured in figure 20 (b). Thus, the quadratic 

analytical model (30) predicts a slightly lower instability frequency for the coupled 

intrinsic mode (BA), as is evident from 20 (b). This is a general limitation of the 

quadratic analytical model (30): for too large n , the deteriorates. A similar 

observation can be made by considering figure 21, which illustrates the second type 

of coupling. The quadratic analytical model (30) seems to accurately track the 

trajectory of the numerical solution and instability frequency for the coupled intrinsic 

mode (BA). However, for the coupled intrinsic mode (BI) the same thing cannot be 

said. Figure 21 (b) shows that coupled intrinsic mode (BI) becomes unstable at too 

high n , indicating the possible advent of nonlinearity into the system, due to the 

strongly growing coupled intrinsic mode (BA). Eventually, this reduces the prediction 

accuracy of the analytical model (30) for the coupled intrinsic mode (BI). 

n
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Figure 3.20: Numerical validation of analytical solution (30) for 2qx L ,  =5 ms, 
am =1, 

im =1 (as shown in figure 16). Analytical solutions of coupled intrinsic modes (BA) and (BI) 

are represented by continuous blue and dashed red lines respectively. The green diamond and 

magenta circular dots represent their numerical counterparts, respectively by direct solution 

of equation (2.23). Yellow colour represents the domain of instability. The brown arrow 

represents the frequency of acoustic mode ( 0

a ) of the closed-open combustor in the absence 

of a flame. For numerical solutions, n  is varied from (a) 0.0 to 1.0 and (b) 0.0 to 4.0. For 

analytical solutions, n  is varied from 0.0 to 1.0 for both (a) and (b). For   higher than 1.0, 

the analytical solution deviates drastically from the numerical solution. This trend is captured 

in figure (b). This is the first type of coupling. As per numerical results of figure (b), the 

coupled intrinsic mode (BI) becomes unstable with 0
c

i   , whereas the coupled intrinsic 

mode (BA) becomes unstable at a higher frequency corresponding to 
c

i   . 

 

 

 

 

 

 

 

 

 

n
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Figure 3.21: Numerical validation of analytical solution (30) for 2qx L ,  =4.8 ms, 
am

=1, 
im =1 (as shown in figure 17). For numerical solutions, n  is varied from (a) 0.0 to 1.0 

and (b) 0.0 to 10.0. For analytical solutions, n  is varied from 0.0 to 1.0 for both (a) and (b). 

This is the second type of coupling. As per numerical results of figure (b), the coupled 

intrinsic mode (BA) becomes unstable with 0
c

i   , whereas the coupled intrinsic mode 

(BI) becomes unstable at a higher frequency corresponding to 
c

i   . Other parameters 

and notations are the same as in figure 20. 

 

 

Figure 3.22: Numerical validation of analytical solution (30) for qx =0.3 m,  =4.85 ms, 
am

=1, 
im =1 (as shown in figure 18). For numerical solutions, n  is varied from (a) 0.0 to 2.5 

and (b) 0.0 to 7.5. For analytical solutions, n  is varied from 0.0 to 2.5 for both (a) and (b). 

For    higher than 2.5, the analytical solution deviates drastically from the numerical 

solution. This trend is captured in figures (a) and (b). This is the third type of coupling. As 

per the numerical results of figure (b), the coupled intrinsic mode (BI) becomes unstable with 

0
c

i   , whereas the coupled intrinsic mode (BA) tends to remain asymptotically stable at a 

frequency corresponding to  1
sin 0

q
k x  , as per equation (2.29). Other parameters and 

notations are the same as in figure 20. 

n
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A numerical validation for the third and fourth types of coupling is given in figures 

22 and 23. We consider the cases depicted in figures 18 and 19. Figure 22 shows that 

analytical model (30) offers good prediction accuracy for the instability frequency of 

the coupled intrinsic mode (BI), even though it fails to track the locus of the mode in 

the complex frequency plane with good accuracy. The locus of coupled intrinsic 

mode (BA) is captured accurately by the analytical model (30), where figure 22 (b) 

shows that this mode remains stable for n =7.5, at a frequency corresponding to 

 1
sin 0

q
k x   as per equation (2.29). Further increase of n  (not shown here) does 

not allow this mode to cross the neutral line of instability. Indeed, this mode remains 

asymptotically stable for large n  and for this case we obtain only one unstable 

solution (i.e. coupled intrinsic mode (BI)).  Close observation of figure 23 shows that 

the analytical model (30) tracks the loci of both the coupled intrinsic modes (BA) and 

(BI) with a good accuracy. The instability frequency for the coupled intrinsic mode 

(BA) is predicted accurately. The other solution of the coupled intrinsic mode (BI) 

remains asymptotically stable for large n , as can be seen from 23 (b), hence we also 

only obtain one unstable solution for this case. 
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Figure 3.23: Numerical validation of analytical solution (30) for qx =0.3 m,  =4.75 ms, 
am

=1, 
im =1 (as shown in figure 18). For numerical solutions, n  is varied from (a) 0.0 to 2.5 

and (b) 0.0 to 12.5. For analytical solutions, n  is varied from 0.0 to 2.5 for both (a) and (b). 

This is the fourth type of coupling. As per the numerical results of figure (b), the coupled 

intrinsic mode (BA) becomes unstable with 0
c

i   , whereas the coupled intrinsic mode 

(BI) tends to remain asymptotically stable at a frequency corresponding to  1
sin 0

q
k x  , 

as per equation (2.29). Other parameters and notations are the same as in figure 20. 

 

In general, because, for small n  the intrinsic modes are far away from the boundary 

of stability, the small   assumption in equation (30) is not valid for the intrinsic 

mode in the limit of small n . As n  approaches the threshold of instability, the 

intrinsic mode approaches the neutral curve and thus, the accuracy of prediction of 

intrinsic mode frequency goes up. 

Analytical model (30) can also be tested for accuracy for the coupling of acoustic 

modes with higher order intrinsic modes. Here we examine coupling with the third 

intrinsic mode (
im =2). Figures 24-26 provide numerical validation for intrinsic -

acoustic mode coupling, observed for the third intrinsic mode, near the point of 

intersection of the neutral curve segments 0
c

i    and 
c

i   , of the main neutral 

loop on the extreme right of the neutral curve. The three figures are for time lag 

values chosen to be very close to the point of intersection of neutral segments 



149 
 

0
c

i    and 
c

i    (that is  =8.25 ms). These figures are for  =7.9, 7.8 and 7.7 

ms respectively. It is obvious that figure 24 illustrates the first type of coupling, 

whereas figures 25 and 26, which are for slightly lower values of  , divulge the 

second type of coupling. Thus, this is an example where a slight alteration of   near 

the point of intersection of neutral curve segments changes the type of coupling. This 

eventually leads to the change of identities of acoustic/intrinsic modes on the same 

neutral curve. This phenomenon has been mentioned in § 4.2 in chapter 2. A detailed 

discussion on this topic of the change of the type of coupling near the neutral curve 

segment intersection points will be provided in § 10.  

The common aspect of these three figures is that the level of accuracy for the 

prediction of the locus of coupled intrinsic mode (BA) is very high. The same thing 

cannot be claimed for the coupled intrinsic mode (BI) though. The prediction 

accuracy is poor for the loci of the coupled intrinsic modes (BI) in all three cases 

when the coupled intrinsic mode (BI) stays away from the instability boundary. In 

figure 26, our analytical model, as per equation (30), entirely fails to catch the locus 

of the coupled intrinsic mode (BI). The reason for this has been already highlighted in 

this section. The coupled intrinsic mode (BA) in figure 24 and coupled intrinsic 

modes (BI) in figures 25 and 26, manifest instability at n =2.0, 2.5 and 3.0 

respectively, as per the numerical results. The corresponding instability frequencies 

are not captured accurately by the analytical solution (30), due to the other growing 

mode resulting in large  . Barring this scenario, the prediction of the analytical 

model (30) is quite accurate near the neutral line for any n , as long as the assumption 

of small   holds.  
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Figure 3.24: Numerical validation of analytical solution (30) for 2qx L ,  =7.9 ms, 
am

=1, 
im =2. For numerical solutions, n  is varied from (a) 0.0 to 1.0 and (b) 0.0 to 2.0. For 

analytical solutions, n  is varied from 0.0 to 1.0 for both (a) and (b). For    higher than 1.0, 

the analytical solution deviates drastically from the numerical solution. This trend is captured 

in figures (a) and (b). This is the first type of coupling. As per the numerical results of figure 

(b), the coupled intrinsic mode (BI) becomes unstable with 0
c

i   , whereas the coupled 

intrinsic mode (BA) becomes unstable at a higher frequency corresponding to 
c

i   . 

Other parameters and notations are same as in figure 20. 

 

 

Figure 3.25: Numerical validation of analytical solution (30) for 2qx L ,  =7.8 ms, 
am

=1, 
im =2. For numerical solutions, n  is varied from (a) 0.0 to 1.0 and (b) 0.0 to 2.5. For 

analytical solutions, n  is varied from 0.0 to 1.0 for both (a) and (b). This is the second type 

of coupling. As per the numerical results of figure (b), the coupled intrinsic mode (BA) 

becomes unstable with 0
c

i   , whereas the coupled intrinsic mode (BI) becomes unstable 

at a higher frequency corresponding to 
c

i   . Other parameters and notations are the 

same as in figure 20. 

n
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Figure 3.26: Numerical validation of analytical solution (30) for 2qx L ,  =7.7 ms, 
am

=1, 
im =2. For numerical solutions, n  is varied from (a) 0.0 to 1.0 and (b) 0.0 to 3.0. For 

analytical solutions, n  is varied from 0.0 to 1.0 for both (a) and (b). This is the second type 

of coupling. As per the numerical results of figure (b), the coupled intrinsic mode (BA) 

becomes unstable with 0
c

i   , whereas the coupled intrinsic mode (BI) becomes unstable 

at a higher frequency corresponding to 
c

i   . Other parameters and notations are the 

same as in figure 20. 

 

Hence, we can conclude that the prediction accuracy of our analytical model (30) is 

quite high when tracking down the locus of the coupled intrinsic mode (BA) on 

complex frequency plane. However, because the coupled intrinsic mode (BI) stays far 

away from the neutral curve for small values of n , the small   assumption in 

equation (30) is not valid for the coupled intrinsic mode (BI) in the limit of small n . 

Hence, the locus of the coupled intrinsic mode (BI) on the complex frequency plane 

is not captured with a high fidelity on multiple instances. This calls for an 

improvement of the over-simplified analytical model that led to a quadratic equation. 

The inclusion of higher order terms in the equation should improve the accuracy of 

prediction and hence address this issue. This idea will be discussed in greater detail in 

the next section. For large n , if there is one strongly growing mode out of the two 



152 
 

coupled modes, this violates the assumption of linearity, which eventually prohibits 

us from accurately obtaining the instability frequency of the other mode for larger n . 

3.8. Inclusion of higher order terms in the analytical model to 

increase the accuracy of modal frequency prediction 

So far, we have used the quadratic equation (30) to deal with the acoustic-intrinsic 

mode coupling. As we have seen from the numerical validation section, even though 

the accuracy of the prediction of our analytical model is good enough for the coupled 

intrinsic modes (BA), it is not good enough for the coupled intrinsic modes (BI). In 

general, intrinsic modes that stay away from the acoustic modes and from the 

boundary of stability on the n   plane make it difficult for the quadratic equation 

(30) to track down its locus accurately on the n   plane. Hence, to increase the 

accuracy level of the analytical model, we are going to derive another equation to 

describe coupling by considering the higher order terms of  . 

To start, we include higher order terms of sine and cosine expansion and neglect 

anything higher than order 4 for  . For simplification, we consider the flame to 

reside in the middle of the combustor (i.e. 2qx L ) and ignore the cross-section and 

temperature jump across the flame. Thus, equivalent to equations (28), we can write, 

      1

2 42 4

1 1cos 1 2 24          , 

      1 1

33
1sin 6         , 

      
2 42 4cos 1 2 24          , 

      
3 3sin 6          .                          (3.34) 
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Making use of the sine and cosine expansions, as per (34), we can arrive at a quartic 

equation to define the coupling of modes in a similar way to the quadratic equation 

(30), 

       
4 3 2

0A B C D E           .             (3.35) 

The coefficients of this quartic equation are: 
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.               (3.36) 

Thus, equation (35) can be solved to obtain four solutions: one for the acoustic mode 

and another for the intrinsic mode in close vicinity of the acoustic mode. Indeed, 

equation (35) gives rise to 4 solutions, but, as it will be shown in the next section, two 

of these solutions need not be considered.  

Thus, to enhance the accuracy level of our analytical model, we have developed a 

quartic equation in  , in contrast to the quadratic equation in   (30). The 

outcome of this higher order analytical model will be discussed in the next section, 

where this analytical model is compared to the numerical result. 
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3.9. Numerical validation of the analytical solution predicted by the 

quartic equation 

In this section we will redo the plots of figures 20-21 and 24-26, but this time using 

the analytical solution prescribed by equation (35). We will also perform a 

comparative study of figures 20-21 and 24-26 to check whether the inclusion of 

higher order terms in the analytical model enhances the prediction accuracy 

(particularly for the coupled intrinsic modes (BI)). Figures 27-31 represents these 

kinds of plots. For generating numerical data, the same method as prescribed in figure 

20-21 and 24-26 has been adopted. Moreover, the notations and parameters used in 

figures 27-31 are the same as in figures 20-21 and 24-26. 

A close look at figures 27-31 will tell us that the figures manifest a good 

correspondence between the analytical and numerical solutions, both for the coupled 

intrinsic modes (BA) and for the coupled intrinsic modes (BI) (unlike the previous 

case). The analytical solution for the coupled intrinsic modes (BI) closely follows the 

locus as predicted by the numerical solution, even for the cases where coupled 

intrinsic modes (BI) stay far away from the neutral line. For example, in figures 27 

and 28, the analytical solution as per (35) closely follows the numerical solution of 

coupled intrinsic mode (BI) and in figure 27 it follows the apparently twisted locus of 

coupled intrinsic mode (BI) (which was not captured with analytical solution (30)). 

Similar observations can be made for figures 29-31, where the analytical solution as 

per (35) is corroborated well by the numerical solution. Figures 29-31 correspond to 

the same three cases as prescribed in figures 24-26. Indeed, the inclusion of higher 

order terms in the analytical model has greatly enhanced the accuracy of prediction 

for the loci of coupled intrinsic modes (BI). It is also worth noting that the prediction 

accuracy for the loci of the coupled intrinsic modes (BA) remains good, just like the 
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previous case. However, it is not an important factor to know the loci of the coupled 

intrinsic modes (BI) too accurately, when it stays too far away from the line of 

stability. But, in some cases, if that knowledge becomes important, our current model 

as per (35) can capture that information with very high fidelity. Just like the analytical 

model (30), in the case for large n , if there is one strongly growing mode out of the 

two coupled modes, the linearity assumption is violated.  This eventually prohibits us 

from accurately obtaining the instability frequency of the other mode in the limit of 

large n . This can be visualized in panel (b) in figures 27-31, where the analytical 

solutions have been provided only until the limit of linearity. 

 

Figure 3.27: Numerical validation of analytical solution (35) for 2qx L ,  =5 ms, 
am =1, 

im =1 (as shown in figure 16). For numerical solutions, n  is varied from (a) 0.0 to 1.0 and 

(b) 0.0 to 4.0. For analytical solutions, n  is varied from 0.0 to 1.0 for both (a) and (b). For  

 higher than1.0, the analytical solution does not capture the trend evident from numerical 

solution. This is the first type of coupling. As per the numerical results of figure (b), the 

coupled intrinsic mode (BI) becomes unstable with 0
c

i   , whereas the coupled intrinsic 

mode (BA) becomes unstable at a higher frequency corresponding to 
c

i   . Other 

parameters and notations are same as in figure 20. 

n
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Figure 3.28: Numerical validation of analytical solution (35) for 2qx L ,  =4.8 ms, 
am

=1, 
im =1 (as shown in figure 17). For numerical solutions, n  is varied from (a) 0.0 to 1.0 

and (b) 0.0 to 10.0. For analytical solutions, n  is varied from 0.0 to 1.0 for both (a) and (b). 

This is the second type of coupling. As per the numerical results of figure (b), the coupled 

intrinsic mode (BA) becomes unstable with 0
c

i   , whereas the coupled intrinsic mode 

(BI) becomes unstable at a higher frequency corresponding to 
c

i   . Other parameters 

and notations are the same as in figure 20. 

 

 

Figure 3.29: Numerical validation of analytical solution (35) for 2qx L ,  =7.9 ms, 
am

=1, 
im =2. For numerical solutions, n  is varied from (a) 0.0 to 1.0 and (b) 0.0 to 2.0. For 

analytical solutions, n  is varied from 0.0 to 1.0 for both (a) and (b). This is the first type of 

coupling. As per the numerical results of figure (b), the coupled intrinsic mode (BI) becomes 

unstable with 0
c

i   , whereas the coupled intrinsic mode (BA) becomes unstable at a 

higher frequency corresponding to 
c

i   . Other parameters and notations are the same as 

in figure 20. 
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Figure 3.30: Numerical validation of analytical solution (35) for 2qx L ,  =7.8 ms, 
am

=1, 
im =2. For numerical solutions, n  is varied from (a) 0.0 to 1.0 and (b) 0.0 to 2.5. For 

analytical solutions, n  is varied from 0.0 to 1.0 for both (a) and (b). This is the second type 

of coupling. As per the numerical results of figure (b), the coupled intrinsic mode (BA) 

becomes unstable with 0
c

i   , whereas the coupled intrinsic mode (BI) becomes unstable 

at a higher frequency corresponding to 
c

i   . Other parameters and notations are the 

same as in figure 20. 

 

 

Figure 3.31: Numerical validation of analytical solution (35) for 2qx L ,  =7.7 ms, 
am

=1, 
im =2. For numerical solutions, n  is varied from (a) 0.0 to 1.0 and (b) 0.0 to 3.0. For 

analytical solutions, n  is varied from 0.0 to 1.0 for both (a) and (b). This is the second type 

of coupling. As per the numerical results of figure (b), the coupled intrinsic mode (BA) 

becomes unstable with 0
c

i   , whereas the coupled intrinsic mode (BI) becomes unstable 

at a higher frequency corresponding to 
c

i   . Other parameters and notations are the 

same as in figure 20. 
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Thus, we have seen that the inclusion of higher order terms into our analytical model 

greatly improves the prediction accuracy of the loci of the coupled intrinsic modes 

(BI) in the complex frequency plane. The prediction accuracy is improved even when 

the coupled intrinsic mode (BI) stays well away from the line of stability. The quartic 

equation (35) also predicts the locus of coupled intrinsic mode (BA) quite efficiently, 

just like the quadratic equation (30). A comparative study of the performance of the 

quadratic equation (30) against the quartic equation (35) will be made in § 12. 

3.10. The complete picture of the intrinsic-acoustic mode coupling 

near the intersection of neutral curve segments 

It has been mentioned previously in § 4.2 of chapter 2 that the domain close to the 

neutral curve segment intersection points manifest strong coupling between intrinsic 

and acoustic modes. This statement has also been validated by figure 2.12 in chapter 

2, where it was shown that near the intersection points of the neutral curve segments 

coupled acoustic and intrinsic modes invariably change their identity. This 

phenomenon will be discussed in this section with the help of a few examples. For all 

the figures in this section, we consider the flame to reside at 2qx L  and no cross-

section and temperature jump across the flame. We make use of the quartic equation 

(35) to attain better accuracy. 

3.10.1. Coupling near neutral segment intersections for the second intrinsic 

mode 

This example will be cited for the points of intersection of neutral curve segments 

0
c

i    and 
c

i   , as well as 0
c

i    and 
c

i     for the rightmost neutral 

loop of the second intrinsic mode. We will try to identify what type of coupling exists 
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at these points of intersection and how the intrinsic-acoustic mode coupling is 

affected if the   is slightly altered from the points of intersection. 

3.10.1.1. Coupling at the point of intersection of the extreme right neutral loop 

segments 0
c

i    and 
c

i    

Primarily, we focus on the intrinsic-acoustic mode coupling at the points of 

intersection of the extreme right neutral loop segments 0
c

i  
 
and 

c

i   , that is 

 =5.425 ms. This situation is captured in figure 32 (a). For all the subsequent 

figures, the coupled intrinsic modes (BA) and (BI) are represented by continuous blue 

and dashed red lines respectively. Yellow colour marks the domain of instability. The 

brown arrow indicates the frequency of acoustic mode ( 0

a ) of the closed-open 

combustor in the absence of a flame. 

Figure 32 (a) shows that for this value of , as the value of  is increased, the 

second intrinsic mode arrives in the close vicinity of the second acoustic mode on the 

complex frequency plane. They engage in the first type of coupling, the coupled 

intrinsic mode (BI) becomes unstable following  and the coupled intrinsic 

mode (BA) becomes unstable at a still higher frequency corresponding to . 

For this case, the threshold value of  is the same for both coupled modes, as can 

also be seen from figure 2.12. 

In the subsequent two sections, we will deviate the  value slightly from the point of 

intersection of neutral curve segments  and  to either side, to find 

out what kind of impact it has on the intrinsic-acoustic mode coupling scenario. 

 n

0
c

i  

c

i  

n



0
c

i  
c

i  
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Figure 3.32: Loci of the coupled modes for 2qx L , 
am =1, 

im =1, when (a)  =5.425 

ms; (b)  =5.3 ms and (c)  =5.5 ms. The value of   for (a) corresponds to the intersection 

point of the largest neutral loop segments 0
c

i    and 
c

i    on the extreme right of the 

second intrinsic mode neutral curve, whereas (b) corresponds to a point slightly left and (c) 

corresponds to points slightly right of this intersection point respectively. n  is varied from 

0.0 to 0.9. Plots are generated with the help of quartic equation (35). Coupled intrinsic modes 

(BA) and (BI) are represented by solid blue and dashed red lines respectively. The domain of 

instability is marked in yellow. The brown arrow represents the frequency of acoustic mode (

0

a ) of the closed-open combustor in the absence of a flame. (a), (b) and (c) illustrate the 

first type of coupling, where the coupled intrinsic modes (BI) become unstable with 

0
c

i   , whereas, the coupled intrinsic mode (BA) become unstable at a higher frequency 

corresponding to 
c

i   .  
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3.10.1.2. Coupling to the left of the point of intersection of extreme right neutral 

loop segments 0
c

i    and 
c

i    

Primarily, we consider a set of points on the neutral curve to the left of the 

intersection point mentioned in § 10.1.1. Figure 32 (b) shows the intrinsic-acoustic 

mode coupling scenario for  =5.3 ms.  

It is obvious from figure 32 (b) that the second intrinsic and second acoustic mode 

couple with each other via the first type of coupling. The coupled intrinsic mode (BI) 

becomes unstable at a frequency corresponding to 0
c

i    and the coupled intrinsic 

mode (BA) becomes unstable at a still higher frequency corresponding to 
c

i   . 

The threshold of instability for the coupled intrinsic mode (BA) is higher than that of 

the coupled intrinsic mode (BI). The scenario changes slightly, as shown in figure 17, 

for a lower value of   ( =4.8 ms), which changes the coupling type from the first to 

second. The coupled intrinsic mode (BA) becomes unstable, corresponding to 

0
c

i    at a much lower threshold of n , compared to the coupled intrinsic mode 

(BI) that becomes unstable at a frequency corresponding to 
c

i   . The 

corresponding n -threshold values are provided by figure 2.12 of Chapter 2. 

Thus, as we move to the left of the intersection point mentioned in § 10.1.1, we find a 

transition from the first type to the second type of coupling. In general, the coupled 

intrinsic modes (BA) tend to become unstable at much lower n -threshold values 

compared to the coupled intrinsic mode (BI). 
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3.10.1.3. Coupling to the right of the point of intersection of extreme right 

neutral loop segments 0
c

i    and 
c

i    

Now we can shift our attention to the right of the intersection point prescribed in § 

10.1.1. Figure 32 (c) shows the coupling phenomenon in this domain for a time lag of 

 =5.5 ms. 

The figure makes it obvious that in this case we have the first type of coupling. The 

coupled intrinsic mode (BI) becomes unstable with 0
c

i    and the coupled intrinsic 

mode (BA) becomes unstable at a higher frequency, predicted by 
c

i   . The 

threshold in n  for the coupled intrinsic mode (BA) is lower than that of the coupled 

intrinsic mode (BI). This trend remains consistent if we keep on moving further to the 

right of the neutral curve until we reach the boundary of linear coupling. Most 

importantly, unlike § 10.1.2, the first type of coupling at no point transmutes into the 

second type of coupling. 

 We can therefore say that on the right-hand side of the intersection point mentioned 

in § 10.1.1, we always have the first type of coupling, within the boundary of linear 

coupling. In this domain, the coupled intrinsic mode (BA) tends to become unstable 

at a much lower threshold value of n , compared to the coupled intrinsic mode (BI). 

3.10.1.4. Coupling at the point of intersection of extreme right neutral loop 

segments 0
c

i    and 
c

i     

An analysis similar to that of §s 10.1.1-10.1.3 can also be conducted at the 

intersection point of the neutral curve segments 0
c

i    and 
c

i     for the 

extreme right neutral loop of the second intrinsic mode. This intersection lies at 

=10.2 ms. Figure 33 illustrates the coupling scenario for this intersection point. 
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Figure 33 (a) shows that for this  , the second intrinsic mode comes into the close 

vicinity of the first acoustic mode. In fact, it has been checked numerically that for 

the extreme right intersection point of the neutral curve, the intrinsic mode always 

couples with the first acoustic mode. Figure 33 (a) shows evidence of the first type of 

coupling, where the coupled intrinsic mode (BI) becomes unstable at a frequency 

corresponding to 0
c

i   , whereas the coupled intrinsic mode (BA) becomes 

unstable at a lower frequency given by 
c

i    . These modes both become 

unstable at the same threshold value of n . 

In the subsequent two sections, we will alter the   values slightly on either side of 

the intersection point of the neutral curve segments 0
c

i    and 
c

i     and find 

out how this changes the intrinsic-acoustic mode coupling scenario. 
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Figure 3.33: Loci of the coupled modes for 2qx L , 
am =0, 

im =1, when (a)  =10.2 ms; 

(b)  =10.0 ms; (c)  =10.4 ms and (d)  =11.2 ms. The   value for (a) corresponds to the 

intersection point of the largest neutral loop segments 0
c

i    and 
c

i     on the 

extreme right of the second intrinsic mode neutral curve, whereas (b) corresponds to a point 

slightly left and (c) and (d) correspond to points slightly right of this intersection point 

respectively. n  is varied from 0.0 to 0.9. Plots are generated with the help of quartic equation 

(35). Coupled intrinsic mode (BA) and (BI) are represented by continuous blue and dashed 

red lines respectively. Yellow colour represents the domain of instability. The brown arrow 

represents the frequency of acoustic mode ( 0

a ) of the closed-open combustor in the absence 

of a flame. (a), (b) and (c) represent the first type of coupling, where the coupled intrinsic 

modes (BI) become unstable with 0
c

i   , whereas the coupled intrinsic mode (BA) 

become unstable at a lower frequency corresponding to 
c

i    . (d) represents the second 

type of coupling, where the coupled intrinsic mode (BA) becomes unstable with 0
c

i   , 

whereas the coupled intrinsic mode (BI) tends to become unstable at a lower frequency 

corresponding to 
c

i    . Thus, the type of intrinsic-acoustic mode coupling can change 

near the point of intersection of neutral curve segments. 
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3.10.1.5. Coupling to the left of the point of intersection of extreme right neutral 

loop segments 0
c

i    and 
c

i     

In this section we analyze the domain on the left-hand side of the intersection point 

described in § 10.1.4. Figure 33 (b) illustrates coupling in such a domain for   =10 

ms. 

Figure 33 (b) shows the first type of coupling, where the coupled intrinsic mode (BI) 

becomes unstable at a frequency corresponding to 0
c

i   , whereas the coupled 

intrinsic mode (BA) becomes unstable at a lower frequency corresponding to 

c

i     and at a lower value of n -threshold compared to the coupled intrinsic 

mode (BI). This trend remains consistent in this domain and the coupling type does 

not get transformed from the first to the second. 

Thus, in the domain to the left of the intersection point prescribed in § 10.1.4, there 

exists the first type of coupling and the coupled intrinsic mode (BA) becomes 

unstable at a lower value of n -threshold compared to the coupled intrinsic mode 

(BI). 

3.10.1.6. Coupling to the right of the point of intersection of extreme right 

neutral loop segments 0
c

i    and 
c

i     

We now shift our attention to the right side of the domain of the point of intersection 

prescribed in § 10.1.4. The coupling phenomenon in this domain is elucidated with 

the help of figures 33 (c) and 33 (d), drawn for time lag values of 10.4 ms and 11.2 

ms respectively. 

Figure 33 (c), which is in the immediate vicinity of the intersection point mentioned 

in § 10.1.4, shows the first type of coupling, just like figures 33 (a, b). The coupled 
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intrinsic mode (BA) becomes unstable at a higher n -threshold than the coupled 

intrinsic mode (BI). The scenario changes completely when we move further to the 

right of the coupling domain, where as per figure 33 (d), at  =11.2 ms, we observe 

the second type of coupling. The coupled intrinsic mode (BA) becomes unstable at a 

frequency corresponding to 0
c

i    and the coupled intrinsic mode (BI) tends to 

become unstable at a still lower frequency corresponding to 
c

i    . The coupled 

intrinsic mode (BA) becomes unstable at a much lower n -threshold value than the 

coupled intrinsic mode (BI). These observations are consistent with the numerical 

verification shown in figure 2.12 in chapter 2. 

Thus, to the right of the intersection point described in § 10.1.4, the coupling domain 

possesses both first and second types of coupling. In the immediate vicinity of the 

intersection point, we find the first type of coupling, where the n -threshold for the 

coupled intrinsic mode (BI) is lower than the coupled intrinsic mode (BA). Further to 

the right we observe the second type of coupling, where the coupled intrinsic mode 

(BA) becomes unstable at much lower n -threshold than the coupled intrinsic mode 

(BI). 

In this section, we have presented a comprehensive picture of the types of coupling 

near the points of intersection of the neutral loop segments. It has been found that for 

the neutral loop on the extreme right:  

i. the coupling domains to the left of the first intersection point (between 0
c

i    

and 
c

i   ) and on the right of the second intersection point (between 0
c

i    and 

c

i    ) demonstrate both first and second types of coupling, and 

ii.  the coupling domains on the right of the first intersection point and on the left of 

the second intersection point only demonstrate the first type of coupling. 
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Hence, our mathematical model based upon the quartic equation has been proved to 

be able to provide a clear picture of the intricate behavior of the intrinsic-acoustic 

mode coupling domains near the intersections of the neutral curve segments. 

Something worth noting is that near the intersection points of neutral curve segments 

we not only we observe the first and second types of coupling but also the third and 

fourth types of coupling. For example, from figures 18 and 19 we have seen that for 

qx =0.3 m,  =4.85 ms the second intrinsic mode and the second acoustic modes 

couple in the type 3 route. For qx =0.3 m,  =4.75 ms the second intrinsic mode and 

the second acoustic modes couple in the type 4 route. Both these points lie on the left-

hand side of the intersection of neutral lines 0
c

i    and 
c

i    of the extreme 

right neutral loop of second intrinsic mode when the flame is at qx =0.3 m. On the 

left-hand side of the intersection of neutral lines 0
c

i    and 
c

i    for the 

extreme right neutral loop, when the flame is at qx =0.3 m, there is also the presence 

of first and second types of coupling. This feature will be shown in the next section. 

Thus, in the coupling domains of neutral curves, we can have all four types of 

coupling present, for certain combustor parameters (like flame location, cross-section 

and temperature jump across flame). 

3.11. Intrinsic-acoustic mode coupling on the n   plane  

3.11.1. The domain of coupling on the n   plane 

Examples of typical intrinsic mode stability maps on the n   plane were presented 

in figures 2.8 and 2.11. In this section, we identify the domains on the n   plane 

where intrinsic-acoustic mode coupling exists. In the domain where the coupling 
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exists, two solutions are dragged close to each other. Hence on the n   plane, we 

find two co-existing solutions instead of one.  

In all cases, it is straightforward to identify the domain on the n   plane where two 

solutions co-exist, as illustrated below by figures 34 and 35. Both figures are drawn 

for the second intrinsic mode. Figure 34 and 35 correspond to two different flame 

locations 2qx L  and qx =0.3 m. We neglect the effect of cross-section and 

temperature jump across the flame. The hatched area indicates the domain with 

multiple instability islands, narrowing with the decrease of  . In figure 34 (a) we 

show just the large neutral curve loop on the extreme right and in 34 (b) we show 

another loop to its immediate left. The blue, red and green lines correspond to the 

segments 0
c

i
   , 

c

i
    and 

c

i
     of the neutral curve respectively. Brown 

and lavender mark the stability domain of the intrinsic and coupled acoustic modes 

respectively. Yellow marks the instability domain due to the first and second types of 

coupling between intrinsic and coupled acoustic mode, whereas pink marks the 

instability domain due to the third and fourth type of coupling. The domains enclosed 

by the thick purple vertical lines represent the domain of coupling, where two 

solutions exist for a particular value of  . These bounded regions can be seen, for 

example, near the first and second points of intersections of the neutral loop segments 

for the extreme right neutral loop. In all other domains outside this coupling domain, 

there is either no solution (that is linear stability for intrinsic mode) or only one 

solution (that is linear instability for intrinsic mode alone). Similar bounded domains 

of coupling can also be seen in figure 34 (b), where the bounded domains have also 

been marked for smaller loops. For this case, there are multiple thin coupling domains 

in short span of  . This is an intricate coupling scenario, which is otherwise very 

hard to capture using numerical analysis.  
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Another important aspect is that near the intersection points of neutral curve 

segments, one mode (either intrinsic or acoustic) becomes unstable at smaller (or 

sometimes much smaller) values of n , whereas the other mode becomes unstable at 

higher (or sometimes much higher) values of n . In the linear analysis of most 

practical systems, the solutions lying on the 
c

i
    and 

c

i
     lines, above the 

points of intersection with 0
c

i
   , may not be feasible, because too high values of n  

in practical combustors will correspond to non-linear regimes, breaking the validity of 

our current linear analysis. However, any solution lying at or below the point of 

intersections will be of major interest and of practical significance. It has also been 

shown in § 10 that near the points of intersection of neutral segments, the intrinsic 

and coupled acoustic modes, invariably change their identity (also evident from 

numerical solutions of figure 2.12).  
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(a) 

 
(b) 

Figure 3.34: Neutral curve and stability domain on the n   plane for the second intrinsic 

mode (
im =1). Figures (a) and (b) differ only in scale. Figure (a) focuses on the extreme right 

neutral loop. Figure (b) focuses on the first neutral loop to the left of the extreme right neutral 

loop. Blue, red and green lines correspond to the segments 0
c

i
   , 

c

i
    and 

c

i
     

of the neutral curve respectively. The instability domain for intrinsic mode and coupled 

acoustic modes are marked in brown and lavender respectively. The common domain of 

instability for intrinsic and coupled acoustic modes is marked in yellow. This is also the 

domain of the first and second types of coupling. The domain bound by thick purple vertical 

lines near the point of intersection of neutral curve segments represent the domain boundary 

of intrinsic-acoustic mode linear coupling. Figure (a) shows two distinct coupling domains 

near intersections of the neutral curve segments. Figure (b) presents multiple coupling 

domains in short intervals within the same neutral loop. Other parameters and notation are the 

same as in Fig.2.8.  
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Figure 3.35: Neutral curve and stability domain on the n   plane for the second intrinsic 

mode (
im =1) for qx =0.3 m. This figure focuses on the extreme right neutral loop only. 

Notations and other parameters are the same as in figure 34. Yellow colour represents the 

domain of the first and second types of coupling between intrinsic and acoustic modes. Pink 

colour represents the domain of the third and fourth types of coupling between intrinsic and 

acoustic modes. Near the right intersection point of neutral lines, there is a coupling domain 

where the first and second types of coupling exist. Near the left intersection point, the 

coupling type changes to the third and fourth types from the first and second types.  

 

A similar observation can also be made regarding figure 35, where all four types of 

coupling are visible. It has been mentioned at the end of § 10, that near the 

intersection of neutral curve segments, the first and second types of coupling can 

transmute into third and fourth types of coupling, as is also evident from figure 35. 

Visual inspection of the third and fourth types of coupling domains in the neutral 

curve may prompt one to misinterpret it is an uncoupled domain, as we see only one 

unstable solution, whereas the other solution remains asymptotically stable for large 

n . However, there is a test criterion that we can apply to distinguish between an 

uncoupled domain (manifesting pure intrinsic instability) and the third or fourth types 

of coupling. If the range of n -threshold values for instability in the domain is very 

close to zero, then it must be a coupled domain. The strongly decaying nature of 
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intrinsic modes prohibits it to be unstable at such small n -threshold values for a 

practical range of  . If the n -threshold within the domain is on the higher side 

(O(1)), then it is a  domain of uncoupled pure intrinsic instability. Thus, a slight 

tweaking of combustor parameters could make all four types of coupling visible on 

the neutral curve. 

Therefore, it is possible to identify the domain of coupling solely by making a visual 

inspection of the neutral curves of any intrinsic mode. Within the domain of coupling, 

there are always two solutions for a particular value of  : one is coupled intrinsic 

(BI) and another one is coupled intrinsic (BA). All four types of coupling can be 

visible by a slight alteration in combustor parameters. Also, near the point of 

intersection, the type of coupling can change with a slight perturbation in  . 

3.11.2. Significance of isolated 
c

i
    and 

c

i
     neutral curve segments in 

the stability map 

It was mentioned in the discussion of figure 2.8 that there are infinitely many isolated 

almost-vertical lines due to 
c

i
    and 

c

i
     neutral curve segments located 

between the neutral curve loops. It was also mentioned that these are predominantly 

the lines of coupling between intrinsic and acoustic modes. This subsection is 

dedicated to a detailed discussion of their role. 
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Figure 3.36: The neutral curve on the n   plane for the second intrinsic mode (
im =1). 

Parameters and notations are the same as in Fig.2.8. The figure shows that there are isolated 

almost-vertical lines representing neutral curve segments 
c

i
    and 

c

i
    , lying on 

either side of the main neutral loop. These lines are the lines of coupling due to intrinsic-

acoustic mode interaction. 

 

We start with a discussion of the neutral curves for the second intrinsic mode, plotted 

in figure 36. It can be seen from figure 36 that on both sides of the main neutral curve 

loop there are isolated almost-vertical lines corresponding to 
c

i
    and 

c

i
    . 

We know that for 
c

i
    and 

c

i
     neutral curve segments to exist, a 

corresponding coupling segment 0
c

i
    must also exist. An acoustic mode cannot 

have a    frequency shift in the absence of any intrinsic modes nearby. Thus, it 

leads to the next question: what is the significance of these lines and do they matter in 

the stability diagram at all? 

To answer this question, consider figures 37 and 38. In figure 37 there are 4 panels, 

each of them showing the neutral curves for one intrinsic mode. The four panels are 

of the same scale and represent, from top to the bottom, the first (
im =0), second (

im
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=1), third (
im =2) and fourth (

im =3) intrinsic modes respectively. To maintain the 

simplicity of the diagram, only two neutral loops from the extreme right are depicted. 

In figure 38, all of these neutral curves for these modes overlap, generating a 

combined stability picture. From figure 37 we can see that on either side of the main 

neutral loop of the extreme right, there are isolated vertical/semi-vertical lines due to 

c

i
    and 

c

i
    . The most critical aspect is that the 

c

i
    line for any 

mode is equivalent to the 
c

i
     line of the immediate higher order mode. For 

example, the isolated line, due to 
c

i
    on the extreme right of the first intrinsic 

mode, manifests once again in the stability diagram of the second intrinsic mode as a 

c

i
     line for the main neutral loop on the extreme right. This gives us an idea 

that these two lines might indeed be one and should hence show for those modes 

where they find an intersection with the neutral line 0
c

i
    and not for other modes, 

where it exists as an isolated line. Besides, from the intrinsic-acoustic mode coupling 

perspective, isolated 
c

i
    and 

c

i
     lines are absurd. This statement is also 

verified by figure 38. From figure 38 we see that all 
c

i
    and 

c

i
     lines find 

intersections with the 0
c

i
    neutral line, making the intrinsic-acoustic mode 

coupling scenario possible. The only isolated line shown in figure 38 is the green line, 

which is part of the fifth intrinsic mode (not shown in this figure). 
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Figure 3.37: Neutral curve on the n   plane for the first (
im =0), second (

im =1), third (

im =2) and fourth (
im =3) intrinsic mode, shown separately in panels (a), (b), (c) and (d) but 

on the same   scale. Other parameters and notation are the same as in Fig.2.8. The figure 

shows that there are isolated, almost-vertical, lines representing neutral curve segments 

c

i
    and 

c

i
    , lying on either side of the main neutral loop for each mode. These 

lines are the lines of coupling due to intrinsic-acoustic mode interaction and thus they should 

coexist with neutral curve segment 0
c

i
   . This will lead to the existence of two solutions 

for the same  . The neutral curve segment 
c

i
     for a higher order mode is equivalent to 

the neutral curve segment 
c

i
    for the next lower order mode. This observation is 

consistent for all 4 figures above. This indicates that the isolated, almost-vertical, lines, due to 

c

i
    and 

c

i
     , are the same for the subsequent two modes. 
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Figure 3.38: The neutral curve on the n   plane for the first (
im =0), second (

im =1), 

third (
im =2) and fourth (

im =3) intrinsic mode combined. Blue, red, cyan and magenta lines 

correspond to the neutral curves for the first, second, third and fourth intrinsic modes 

respectively. The hatched area indicates the domain with multiple instability islands that 

narrow as   decreases. Other parameters and notation are the same as in Fig.2.8. The figure 

shows that there are no isolated, almost-vertical, neutral curve segments 
c

i
    and 

c

i
     lying anywhere (except the green line, which represents neutral curve segment for 

fifth intrinsic mode (
im =4)). This makes it self-evident that the neutral curve segment 

c

i
     for the higher order mode is equivalent to the neutral curve segment 

c

i
    for 

the immediate next lower order mode, as claimed in figure 37. Thus, the isolated neutral 

curve segments lose identity when all modes overlap to generate an integrated stability 

diagram. This observation has been checked for consistency by considering more than 4 

modes. 

 

Thus, we have managed to answer the outstanding question of why we see isolated 

almost-vertical lines due to  and  in the stability diagrams of 

intrinsic modes. We can conclude that any isolated line of this kind belongs to either 

an immediate higher or an immediate lower order intrinsic mode, where it finds an 

intersection with the corresponding  neutral line, making the intrinsic-acoustic 

mode coupling feasible. When all modes overlap onto each other, these isolated lines 

appear as part of the neutral loops of immediate higher or lower order mode. 

c

i
  

c

i
   

0
c

i
  
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3.12. Comparison of quartic equation against the quadratic equation 

model 

The study in § 10 has been based upon quartic equation (35). There is a specific 

reason behind giving preference to the quartic equation (35) over the quadratic 

equation model (30). Here this issue will be discussed in further detail. It has been 

mentioned before that despite having an apparent simplicity to deal with, the 

quadratic equation lacks accuracy in terms of tracking the trajectory of the intrinsic 

mode far away from the neutral curve. However, this is not the only problem. Near 

the intersection points of neutral curve segments, when we try to deal with the matter 

of intrinsic-acoustic mode coupling using the quadratic equation (30), we often find 

that the locus of the intrinsic mode is often wrongly tracked down, with the quadratic 

equation giving a false impression that the intrinsic modes are growing, when in fact 

these modes are decaying. Apart from this, there are also cases when the quadratic 

equation (30) fails to accurately predict the intrinsic mode frequency on the neutral 

curve. These aspects will be discussed in detail in the subsequent subsection, where 

we consider different time lag domains for the second and third intrinsic modes and 

show that the performance of the quadratic equation indeed deteriorates drastically. 

In the first case, we consider three different time lag domains for the second intrinsic 

mode, to compare the performance of the quadratic equation (30) and the quartic 

equation (35). Figures 39 (a)- 39 (c) show three such figures for the second intrinsic 

mode. Figure 39 (a), (b) and (c) are for time lag values corresponding to the first 

intersection point (between 0
c

i    and 
c

i   ) of the neutral loop segments on 

the extreme right ( =5.425 ms) and two points slightly left ( =5.3 ms) and right (

=5.5 ms) of the first intersection point respectively. In all three cases, the second 
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intrinsic mode comes near to the second acoustic mode. Thus, we capture the 

complete coupling region in the vicinity of the first intersection point of the extreme 

right neutral loop. The most important aspect of figure 39 (a) is that the locus of the 

coupled intrinsic mode (BI) on the n   plane is predicted to be in the unstable 

domain on the plane. This is wrong, as shown by the analytic prediction by quartic 

equation (35) (also validated numerically, but not shown here). Moreover, figure 39 

(a) clearly shows that the quadratic equation, also fails to predict the instability 

frequency of the coupled intrinsic mode (BI) for this case. Similar observations can 

also be made for figures 39 (b) and 39 (c), where we see that figure 39 (b) predicts the 

instability frequency of the coupled intrinsic (BI) mode with poor accuracy, whereas 

figure 39 (c) predicts the growth of the coupled intrinsic mode (BI) instead of decay. 

Their counterparts, based on quartic equation (35), predict the instability frequencies 

with good accuracy, as well as predicting the decay of these modes.  

A similar comparison can also be carried out for the third intrinsic mode. Figure 39 

(d)corresponds to a time lag value slightly to the right of the first intersection point of 

the neutral loop segments, 0
c

i    and 
c

i   , on the right, for the third intrinsic 

mode. This is  = 8.4 ms. The third intrinsic mode comes near to the second acoustic 

mode. It is obvious from this figure that the quadratic equation (30) fails to predict the 

instability frequency of the coupled intrinsic mode (BI) by a large margin. In contrast, 

the quartic equation (35) does a much better job. The actual value of the instability 

frequency of the coupled intrinsic mode (BI) can be computed from equation (2.32) in 

chapter 2. This prediction can be used as a tool to check the accuracy of the coupling 

models (30) and (35). 
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Figure 3.39: Loci of the coupled modes for (a)  =5.425 ms, 
am =1, 

im =1; (b)  =5.3 ms, 

am =1, 
im =1; (c)  =5.5 ms, 

am =1, 
im =1 and (d)  =8.4 ms, 

am =1, 
im =2. All these 

plots are for 2qx L . n  is varied from 0.0 to 0.9. Plots are simultaneously generated with 

the help of quadratic equation (30) and quartic equation (35). Coupled intrinsic mode (BA) 

and coupled intrinsic mode (BI) are represented by continuous magenta and dashed green 

lines respectively, depicting the prediction by the quadratic equation (30). Coupled intrinsic 

mode (BA) and coupled intrinsic mode (BI) are represented by continuous blue and dashed 

red lines respectively, depicting the prediction by quartic equation (35). In most of the cases, 

blue and magenta lines almost overlap with each other. Yellow colour represents the domain 

of instability. The brown arrow represents the frequency of acoustic mode ( 0

a ) of the 

closed-open combustor in the absence of flame. These cases represent the first type of 

coupling, where the coupled intrinsic mode (BI) becomes or tends to become unstable with 

0
c

i   , whereas the coupled intrinsic mode (BA) becomes or tends to become unstable at a 

higher frequency corresponding to 
c

i   . The loci of the coupled intrinsic modes (BA) 

are captured properly by equation (30), whereas the loci of the coupled intrinsic mode (BI) 

are not captured properly, showing the limitations of the quadratic equation (30). For all these 

cases, the quartic equation (35) offers a better quality of prediction (also validated 

numerically, but not shown here). 
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Thus, we have made a point that the accuracy of the quadratic equation (30) decreases 

drastically in the close vicinity of the intersection of the neutral curve segments. The 

quadratic equation either fails to predict the instability frequency of the coupled 

intrinsic mode (BI) with a good level of accuracy or predicts the growth of the 

coupled intrinsic mode (BI) instead of decay. In contrast, the quartic equation (35) 

does a much better job near the neutral curve intersection points and hence should be 

used as a preferred choice to predict intrinsic-acoustic mode coupling in this domain. 

3.13. Conclusions 

We have derived an analytical model of linear coupling of acoustic-intrinsic modes 

for a closed-open combustor. The phenomenon of the coupling of acoustic-intrinsic 

modes had not been considered in the literature and our model is the first 

mathematical model able to capture the main features of the coupling. To derive the 

model, we perturbed the original dispersion relation (2.20) in the vicinity of an 

acoustic mode and tried to find whether there is an intrinsic mode nearby in the n   

space with which it can couple. In that process, we identified a new form of 

instability not reported so far in the literature, to the best our knowledge. This form of 

instability is neither pure acoustic nor pure intrinsic, rather a product of a coupling 

between the conventional acoustic and recently discovered intrinsic modes 

[Hoeimakers et al. (2014)]. As the simplest model, we came up with a quadratic 

equation that provided the basis of our analysis of mode coupling. The roots of the 

quadratic equation correspond to the frequency and decay/growth rate for the coupled 

modes. We have tracked the loci of these roots in the n   space and identified their 

qualitative behavior. We can summarize our advancement in the intrinsic-acoustic 

mode coupling scenario in the following way: 
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i.  The intrinsic-acoustic mode coupling scenario is possible when acoustic pressure 

and flame heat release are out of phase with each other (that is, the Rayleigh index is 

negative), which forces the acoustic mode to decay for small values of n . This is a 

scenario when classical combustion instability is not possible. As the value of n  is 

increased, the intrinsic mode decay rate reduces and comes near to the acoustic mode, 

which gives rise to the four different possibilities of intrinsic-acoustic mode coupling. 

In all these scenarios, the acoustic mode that is coupled to the intrinsic mode stops 

behaving like an acoustic mode and displays all the features of an intrinsic mode. 

Therefore, we refer to the intrinsic and coupled acoustic modes as coupled intrinsic 

modes and to distinguish them based on their origin, we named them ‘born acoustic’ 

(BA) and ‘born intrinsic’ (BI). The four types of coupling between intrinsic and 

acoustic modes are as follows: 

1. In the first type of coupling, the coupled intrinsic mode (BI) becomes unstable at 

a frequency predicted by 0
c

i   , whereas the coupled intrinsic mode (BA) becomes 

unstable at a frequency predicted by either 
c

i    or 
c

i    .  

2. In the second type of coupling, the coupled intrinsic mode (BA) becomes unstable 

at a frequency predicted by 0
c

i   , whereas the coupled intrinsic mode (BI) 

becomes unstable at a frequency predicted by either 
c

i    or 
c

i    .  

3. In the third type of coupling, the coupled intrinsic mode (BI) becomes unstable 

with 0
c

i   , whereas the coupled intrinsic mode (BA) tends to remain 

asymptotically stable at a frequency corresponding to  1
sin 0

q
k x   or 

  1
0sin qk x L   as per equation (2.29).  
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4. In the fourth type of coupling, the coupled intrinsic mode (BA) becomes unstable 

with 0
c

i   , whereas the coupled intrinsic mode (BI) tends to remain 

asymptotically stable at a frequency corresponding to  1
0sin

q
k x   or 

  1
0sin qk x L   as per equation (2.29).  

ii.   The regions of the neutral curve close to the intersection of the neutral curve 

segments 0
c

i    and 
c

i   , as well as 0
c

i    and 
c

i    , show strong 

evidence of coupling. Near these intersections, we find two sets of solutions for the n

-threshold for a given  . In general, the larger values of n -threshold correspond to 

the coupled intrinsic mode (BI) and the smaller values correspond to the coupled 

intrinsic mode (BA). Thus, for a weak flame with low interaction index, even though 

the intrinsic mode does not become unstable on its own, it triggers the instability of 

one of the nearby acoustic modes. However, close to the intersection of neutral curve 

segments, coupled modes invariably change their identity. Close to the neutral curve 

intersection, the n -threshold for the coupled intrinsic mode (BA) is higher than the 

n -threshold of the coupled intrinsic mode (BI). As we move further away from the 

neutral curve segment intersection point, the n -threshold for the coupled intrinsic 

mode (BI) becomes higher than that of the coupled intrinsic mode (BA). Apart from 

the vicinity of the neutral curve segment intersection, the neutral loops on the left-

hand side of the stability plots (corresponding to small   values) demonstrate strong 

coupling. 

iii.     We have verified our result by numerics and the accuracy of our analytical result 

is found to be good. The accuracy of prediction is good, as we stay close to the 

neutral line of stability, where the actual acoustic mode-intrinsic mode coupling takes 

place. However, as we try to extend our linear analysis for regions far away from the 
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neutral line, the accuracy level of the analytical model drops. The quartic equation 

model (35) proved to perform much better than the quadratic equation (30) and 

should therefore be utilized where the accuracy of analytical prediction is of 

paramount importance. 

In our present analysis, we have confined our attention to the linear coupling of 

acoustic and intrinsic modes. Due to the nonlinearity present in the heat release rate 

oscillation, we will also have non-linear coupling in a practical combustion system. 

Study of non-linear acoustic mode-intrinsic mode coupling lies beyond the scope of 

the present work. 
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Chapter 4 

 

Flame intrinsic instability for combustors with open-

open end conditions 

 

4.1. Introduction: Decoupling of intrinsic mode instability 

frequency from combustor parameters on the neutral curve 

In chapter 2 we described flame intrinsic instability via an analytical and numerical 

route for the case of a closed-open combustor. The analytical analysis was based on 

the result of equation (2.29), which shows that on the neutral curve, the intrinsic 

mode frequency is the same as the frequency in the asymptotic limit of small n . It 

also showed that on the neutral curve, intrinsic instability frequency is independent of 

the combustor parameters (like flame location, cross-section and temperature jump), 

even though the neutral curve itself depends on these parameters. This prompts the 

following questions: 

i. Why is the intrinsic instability frequency independent of the combustor parameters 

on the neutral curve? 

ii.  Are there any other end conditions of the combustor for which this kind of 

decoupling of intrinsic instability frequency from the combustor parameters on the 

neutral curve takes place?  
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The first question has been answered briefly in § 4.1.2 of chapter 2. The detailed 

physical explanation of this phenomenon is still a matter of investigation. The second 

question can be answered with the help of generalized dispersion relation when 

 1 0R  and 
2
( )R L  are retained in the original form in equations (2.3) and (2.4), 

             
        

1 1 2 2

1 2 2 1

1 2 2 1

2 1 1 2

1 0 1 0

0 0 0

ii i i i

i i i i

R R L R L R

R L R R R L

e e e e ne

e e e e

   

   

 
 

 

    

   
 

.   

    (4.1)

 

where  , 1  and 2  are given by equation (2.28). Clearly, when  1 0 1R   and 

2
( ) 1R L   , equation (1) is simplified to equation (2.20). Making use of 

   0 c

i i ii iIm      , like we did in § 4.1.1 of chapter 2, the exponential terms 

in the equation (1) can be expanded as, 

          1 1

10 11

0 0

Im Im
cos sin

i i i i
c

c c

iik i i i i
i

ie e e
    

     
 
 
 

  
    .      

 (4.2) 

Making a substitution as per equation (2) in equation (1), the resultant equation can 

be further simplified at the neutral curve. At the neutral curve, the growth rate is 

equal to 0,   0iIm   , when i
thnn  , and thus,  

0 c

i i i    . The real part of 

equation (1) at the neutral curve can be written as, 

                 

                

                

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 1 0 cos 1 0 cos

cos 1 0 cos 0 cos
0

sin 1 0 sin 0 sin

i i

i i

i i

i
c

i
th i

c

R R L R L R

R R L R L R
n

R R L R L R

   

   

   

 

 

 

    

   
  
    
 

.       

    (4.3) 

And, the imaginary part of equation (1) can be written as, 
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                 

                

                

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 1 0 sin 1 0 sin

cos 1 0 sin 0 sin
0

sin 1 0 cos 0 cos

i
c

i
th

i
c

R R L R L R

R R L R L R
n

R R L R L R

   

   

   

 
 
 
  

    

  
 

   

.  

        (4.4) 

In general, solving equations (3) and (4) is not straightforward. The equations can be 

solved analytically under some assumptions on  1 0R  and 
2
( )R L . One of the 

options was used in § 4.1 of chapter 2 for the case of a closed-open combustor. It is 

obvious that for an ideal closed-open combustor,  1 0 1R   and 
2
( ) 1R L   . In that 

case, the equations simply return to the form prescribed by equations (2.33) and 

(2.29). Equation (2.29) shows that on the neutral curve, the intrinsic instability 

frequency becomes independent of the combustor parameters. Interestingly however, 

these are not the only end conditions for which this kind of decoupling of instability 

frequency from combustor parameters takes place. A close observation of equations 

(3) and (4) suggests that this kind of decoupling can also occur for different end 

conditions. For example, when  1 0 1R    and 
2
( ) 1R L   , that is when both ends 

of the combustor are open, equation (3) also manifests decoupling of the intrinsic 

instability frequency from the combustor parameters. An identical thing happens 

when both ends of the combustor are closed, that is  1 0 1R   and 
2
( ) 1R L  . But 

clearly, this particular scenario is of little practical interest for the present design of 

combustors. Nonetheless, it should not be neglected as there might be possible 

applications of this case in other fields of interest. We will, however, refrain from the 

analytical study of this case for the time being. For decoupling, , in either equation (3) 

or (4), other terms, apart from one term containing  or  , need to 

vanish. Thus, we only get certain combinations of  1 0R  and 
2
( )R L  for which 

 sin i
c   cos i

c 
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multiple multipliers, containing  1 0R  and 
2
( )R L  terms in equations (3) or (4), 

vanish. These combinations are: (i)  1 0 1R  ,
2
( ) 1R L   , (ii)  1 0 1R   , 

2
( ) 1R L    and (iii)  1 0 1R  , 

2
( ) 1R L  . Any other combination of reflection 

coefficients (including the ones with imaginary parts due to acoustic losses at the 

ends) prohibits decoupling on the neutral curve. 

Hence, we have identified that the phenomenon of the decoupling of intrinsic 

instability frequency from the combustor parameters is not restricted to closed-open 

combustors alone. This phenomenon exists for another type of combustor design. For 

example, a combustor with open-open end condition. Thus, it is possible to find the 

key properties of the flame intrinsic mode (that is instability frequency, the n -

threshold for instability, growth rate) for a combustor with open-open end conditions. 

This chapter is dedicated to that study. 

The current chapter is organized as follows: In § 2 we develop the mathematical 

model to derive the acoustic dispersion relation for a combustor with open-open end 

conditions, assuming cross-section and temperature jump across the flame. We also 

show the existence of two solutions, similarly to § 3.1 of chapter 2, and the similarity 

of the intrinsic flame mode expression in the asymptotic limit of small n  for any 

combustor. In § 3 we consider the decoupling of the intrinsic mode from the 

combustor parameters for the case of an open-open combustor. Then, we derive the n

-threshold for the intrinsic mode to become unstable, which leads to neutral curves on 

n   plane. Further, we arrive at an expression of linear growth/decay rate for the 

intrinsic mode near the neutral curve. The numerical validation of the analytical 

results of § 3 is performed in § 4, where we also examine the acoustic and intrinsic 

modes in the complex frequency plane. In § 5, we study the effect of various 
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combustor parameters such as flame location, cross-section jump and temperature 

jump on the neutral curves and growth rates. Similar to chapter 3, we explain the 

intrinsic mode-acoustic mode coupling phenomenon for a combustor with open-open 

end conditions in § 6. We also identify a special flame location within the combustor, 

where acoustic and intrinsic modes are naturally decoupled from each other. In § 7, 

we highlight the salient similarities and differences between the flame intrinsic 

instability of a closed-open combustor and that of a combustor with open-open end 

conditions. Finally, we make some concluding comments in § 8.  

4.2. Mathematical model for a combustor with open-open end 

conditions: Derivation of the dispersion relation 

In chapter 2, we focused on the analytic study of flame intrinsic instability for a 

closed-open combustor. In this chapter, we focus our attention on the study of 

intrinsic flame instability for a combustor with open-open end conditions. Again, as 

we came across in a short discussion in § 1 of chapter 2, the open end assumption for 

the acoustic end of a combustor is an idealization, which has its own limitations for 

practical gas turbine combustor assembly [Lamarque and Poisnot (2008)]. However, 

this simplified assumption is suitable to delve into the basic physics of the intrinsic 

flame modes inside the combustor. Hence, we confine our study to the 1-D analytical 

formulation of an open-open combustor, based upon the n   model and develop 

physical insight into the stability behavior of flame intrinsic instability in multi-

dimensional parameter space, in a similar fashion to the closed-open combustor. In 

the interim stages, we identify and discuss the salient similarities and differences 

between the stability behavior of intrinsic flame modes for a closed-open and an 

open-open combustor. 
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            Figure 1 provides a schematic sketch of an open-open combustor with a 

compact heat source at qx x , with x  being the longitudinal coordinate with the 

origin at the left open end of the combustor. 1
A , 2

A / 1
B and 2

B  are the pressure 

amplitudes for the forward/backward going waves in the upstream and the 

downstream region respectively. The mean temperature is assumed to jump from 1
T  

to 2
T  across the flame. The cross-sectional area jumps across the flame from 1

S  to 2
S . 

The effect of mean flow is neglected in this analysis. 

 

Figure 4.1: Schematic sketch of a combustor with open-open end conditions. The combustor 

has a cross-sectional area jump at the flame location qx x . Thick brown arrows symbolize 

the forward/ backward traveling waves upstream/downstream of the flame. A shaded yellow 

region marks the domain of higher temperature after the temperature jump across the flame. 

 

The acoustic pressure and particle velocity at the upstream region and at the 

downstream region of the flame can be written with the help of equations (2.1) and 

(2.2). However, the boundary condition on the left will be different to the one in § 2 

of chapter 2. For open-open combustor, the boundary conditions at two ends can be 

represented as follows: 

                                             at 0x  ,  1 1 1 0 1A B R   ,
 
and 
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             at x L ,  2 2 2 1ikL ikLB e A e R L    .                    (4.5, 4.6) 

The pressure and mass balance at 
q

x x  can be written in an identical way to 

equations (2.13) and (2.16) and the heat release rate at 
q

x x  is given by ( )Q t . 

Similar to § 2 of chapter 2, it is assumed that the heat source acts like a monopole 

with a volume outflow   2

11 Q c  , where   represents the ratio of specific heats 

of air (
p v

c c ). The linear heat release law can be assumed to be of the n   form 

specified in equation (2.17) [Truffin and Poinsot (2005)]. Here, n  and   are the 

interaction index and time lag respectively. In the frequency domain, this can be 

written as per the form provided in equation (2.18). The set of homogeneous 

equations for 1
A , 1

B , 2A  and 2
B  is presented in the following matrix form similar to 

equation (2.19). 

1 1 2 2

1 1 2 2

2 2

2 1 1 2 1 1

1 2 2 1 2 2

1

1

2

2

1 1 0 0
0

0
1 1

0

0
0 0

q q q q

q q q q

ik x ik x ik x ik x

ik x ik x ik x ik x

i i

ik L ik L

S c S c

S c S c

A
e e e e

B

Ae e e e
ne ne

B
e e

 

 

 

 

 



 
    
    

   
             
                          
  

 

   


 







 

. (4.7) 

We hereafter arrive at a compact dispersion relation, which provides the basis of all 

analytical derivations in the subsequent sections. For a nontrivial solution of the 

eigen-value problem (7) to exist the determinant of the  matrix in (7) must be 

zero, which yields  

      

        
2 1 1 2

2 1 1 2

1 2 2 1 2

1 2 2 1 2 1 2

1 sin

1 sin 2 cos sin 0

q

q q q

i

S S c c

S S c c

k k x k L

k L k k x ne k x k x L

 

 

     

        .   

(4.8)
 

4 4
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We denote the function on the left-hand side of transcendental equation (8) as 

detuning  g  . Thus, dispersion relation (8) can be re-written compactly as,  

    0g   .                                                      (4.9) 

The dispersion relation can be simplified for special cases, when there is no cross-

section and temperature jumps across the flame, that is 
1 2

S S  and 
1 2

T T , and thus 

1 2
c c , 

1 2
   and 

1 2
k k k  . Eventually, the dispersion relation (8) reduces to 

 sin sin 0cos
q q

i
kL ne kx k x L


   .                        (4.10) 

The dispersion relation (10) can be further simplified, when the flame is located 

exactly in the center of the combustor, i.e. at 2
q

x L . This case will be examined in 

§ 6.4. 

A solution of the dispersion relation (8) and (10) generates the eigen-frequencies  

of the system. Equation (8) describes the most general case (an open-open combustor 

with a cross-section and temperature jump across the flame), while equation (10) is 

the reduced versions of (8) for special cases. The real part of   is the frequency and 

the imaginary part is the growth/decay rate. The nature of this dispersion relation (8) 

and (10) makes them convenient for analytical study. There is no method to directly 

solve these transcendental equations for all combustor parameters. However, as 

explained in § 4.1 of chapter 2, these equations allow factorization on the neutral 

curve and we can extract useful information about modal frequency and growth rate 

near the neutral curve. 

 

 

 


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4.2.1. Acoustic and flame intrinsic modes in a combustor with open-open end 

condition  

As we have shown in § 3 of chapter 2, in the asymptotic limit of small n  there are 

always an infinite number of strongly decaying flame intrinsic modes in a closed-

open combustor. These modes are independent of the acoustic modes and in the limit 

of small n , these modes do not feel the combustor boundaries and other parameters 

of the system. It is important to understand whether these features hold for the other 

types of combustor as well. We use the generalized dispersion relation (1) as the 

starting point for our subsequent analysis. It is important to remember that there is no 

general method enabling one to solve transcendental equations of this type. However, 

with the assumption that intrinsic flame modes have large decay rates in the 

asymptotic limit of small n  (as observed in  § 3 of chapter 2 for a closed-open 

combustor, manifested in the mode shapes for small n  in  § 3 of chapter 3 and also 

will be shown numerically in the subsequent sections of the current chapter), we will 

be able to obtain an analytical expression for the intrinsic mode frequency in the  

limit of small n  for any combustor with the n   flame model. 

We start the analytical study in this section with the generalized dispersion relation 

(1). Multiplying both sides of (1) by

 

1ie
, we arrive at,

 

 

                 
            

1 2 1 21

1 2 1 21

1 2 2 1

2 1 1 2

2

2

1 0 1 0

0 0 0

ii ii

i ii

R R L R L R

R L R R R L

e e e ne

e e e

    

   

 

 

 
 

 

    

   
.     

(4.11)

 

By the same reasoning (as for a closed-open combustor in § 3.1 of chapter 2 and also 

supported by the mode shapes examined in § 3 of chapter 3), the solution for the 

intrinsic modes for the full dispersion relation (8) must have a large negative 
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imaginary part. Thus, for these new roots, all the exponents in (11) (that is, 12i  , 

1 2
i  

 
 
 
 

  and 
1 2

i  
 
  
 

) are highly negative as well. Hence, for small n ,  

12
0

i
e


 , 

 1 2 0
i

e
  

 , 
 1 2 0

i
e
  

 . 

Then dispersion relation (11) reduces to the following simplified form that exhibits 

decoupling of intrinsic modes in the limit of small n  from the effect of combustor 

end conditions  1
0R  and 

2
( )R L , 

     1 21 0 0ine R R L 
    .                            (4.12) 

Equation (12) is indeed consistent with our observations of mode shapes made in § 3 

of chapter 3, where we found that in the limit of small n , intrinsic modes are so 

localized that they do not feel the acoustic boundaries. Equation (12) leads us to an 

explicit dispersion relation for intrinsic modes in the limit of small n , valid for any 

combustor, 

 1 0ine     .                                             (4.13) 

Equation (13) generates the explicit solution for intrinsic mode frequency in the 

asymptotic limit of small n  as follows, 

             2 1 ln 1 2 1 lni im i n m i n                .   (4.14)
 

Here,  is the mode number of the flame intrinsic modes. As expected, the 

expression for the modal frequency of any combustor in the limit of small n , as given 

by equation (14), is the same as equation (2.26) for a closed-open combustor and the 

result provided by Hoeijmakers et al. (2014) for an infinite tube with a flame inside. 

The salient features of (14) are that the modal frequencies for the intrinsic mode do 

not depend on any parameters of the combustor including the end conditions. Another 

salient feature is that the intrinsic modes have their own mode numbers, completely 

im
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independent of the mode numbers of the acoustic modes. In the limit of small n  there 

is always an infinite number of intrinsic modes present in the system for any n  and 

 . In the limit of small n , these modes are equally spaced. The real part of the flame 

intrinsic mode frequency depends solely on the time lag and is given by the 

expression,   2 1
i

m   . The decay rates are independent of the mode number (

im ), inversely proportional to  and logarithmically dependent on n  and the 

temperature and cross-section jump of the combustor. These modes are heavily 

damped in the asymptotic limit of small n .Therefore, they do not feel end conditions 

of the combustor, also evident from equation (12). Hence, we can say that feature-

wise, the intrinsic modes behave exactly in a similar manner for any combustor in the 

asymptotic limit of small n . 

In summary, we have obtained an analytical expression for the frequencies of the 

intrinsic modes for any combustor in the asymptotic limit of small n . In this 

asymptotic limit, intrinsic modes are independent of the end conditions of the 

combustor. These modes are infinite in number, independent from the acoustic modes 

and strongly damped in the asymptotic limit of small n . They can become unstable 

only once the value of n  exceeds a certain threshold. The stability features and 

growth rates for the intrinsic modes will be discussed in the subsequent sections for 

the open-open combustors. 

4.3. Intrinsic flame instability: Neutral curves and growth rates 

In the previous section, we mentioned that in the limit of small n  the flame intrinsic 

modes are strongly decaying. However, as we increase n , the decay rate decreases, 

reaching zero at some threshold value of n , making the intrinsic mode unstable. It is 
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possible to find the instability frequency, the threshold of n  for instability and the 

growth rate for flame intrinsic modes. This section is dedicated to this. In § 3.1, we 

find the exact analytical expression for the intrinsic mode frequency at the neutral 

curve. Then, in § 3.2, we will find the exact threshold value of n  for intrinsic mode 

instability and also find the neutral curve in the n   parameter space. Finally, in § 

3.3, we evaluate the linear growth/decay rates near the neutral curve. 

4.3.1. Decoupling on the neutral curve  

On the complex frequency plane, the intrinsic mode locus can be tracked as we 

increase n  and at certain threshold value of n , these modes become unstable. Let us 

now denote 
c

i  as the discrepancy between the eigen-frequency i  and 
0

i , the small 

n  prediction given by a real part of (2.26). Like in § 4.1 of chapter 2, here we do not 

a priori assume 
0c

i i   to be small in our analysis. In a similar way to § 4.1 of 

chapter 2, we can use the following expression of i  in the dispersion relation (8), 

   0 c

i i ii iIm      , 

and thus, the complete dispersion relation (8) can be re-written as, 

           
 

   
    

1

2

0 0

0

0

0

1 2sin sin

cos

1 1

2

sin 0

q

q

c c

i i i
c

c

c

i i

i

i

i i i i

i iIm
i i

i i

x c

x L c

iIm iIm

ne iIm

iIm

   

 





       

 

 

 
 
 

 



      

  

   .   
(4.15) 

where  , 1  and 2  are given by equation (2.28). We can use the identity, 

0 1
ii

e
 

   and simplify equation (15) further. By definition,  iIm   is equal to zero 

for the threshold value of n , i.e.   0iIm    at 
th

in n . This specifies the neutral 
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curve, as already mentioned in § 4.1 of chapter 2. Thus, on the neutral curve, the real 

part of (15) reduces to, 

      1 2
2 sin sin 0cos

q qcth

i i
in k x k x L    .                  (4.16) 

It is easy to see that this equation is factorized. It is satisfied when just one multiplier 

containing 
c

i  vanishes, that is,   

 sin 0
c

i   .                                            (4.17)  

This gives us a simple explicit expression for 
c

i , 

    
c

i m   ,                                               (4.18) 

where m  is an integer (not to be confused with the intrinsic mode number im ). 

Making use of  
c

i , as per (18), the frequency for the neutral intrinsic mode can be 

calculated using  
0 c

i i i
eR     , which leads to (on the neutral curve 

 i ieR   ), 

    2 1i im m       .                               (4.19) 

Again, based on extensive (but not comprehensive) numerical analysis of the full 

dispersion relation (8), we hypothesize that 2
c

i   , otherwise any 
c

i  deviation 

2   would correspond to a change of modal identity. Therefore, we assume 
c

i  to 

follow a similar condition to one for a closed-open combustor, prohibiting such an 

exchange of identities, 

2 2
c

i       . 

According to (18), on the m =0 part of the neutral curve on the n   plane, =0. 

This suggests an identical frequency corresponding to the value predicted in the limit 

c

i
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of small n . As per the explanation in the previous paragraph, apart from the m =0 

option, we have only two other possibilities, namely m = 1, which means an 

intrinsic mode frequency shift by a factor    on either side of 
0

i . 

4.3.2. The threshold of n  for intrinsic instability: Exact solution for the 

neutral curve 

The exact solution for the threshold of n  (
th

in ) for the intrinsic mode to become 

unstable in the n   plane will be derived in this section. For each intrinsic mode, 

we generate neutral curves, which represent the boundaries of stability domains on 

the n   plane.  

Making use of equation (18) for 
c

i
 , the imaginary part of (15) on the neutral curve 

can be rewritten as, 

         
      1 2

0 01 2sin sin

cos cos sin 0

1 1

2 q q

c c

cth

i i i i

ii k x k x Ln 

       

  

     

,              (4.20)

 

which yields us the threshold 
th

in ,  

         
      1 2

0 01 2sin sin

2cos cos sin

1 1

q q

c c

th

c

i i i i

i

i k x k x L
n

 

       




    
,           (4.21) 

where  , 1  and 2  are provided by (2.28). Primarily, we examine the same special 

case of 2
q

x L  as for closed-open combustors. In this case, expression (21) can be 

significantly simplified. For the segment of the neutral curve corresponding to 

0
c

i   , we find 

 0,
2

th

in  .                                                  (4.22) 


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For the segments of the neutral curve corresponding to 
c

i
    and 

c

i     the 

expressions for 
th

in  take the form  

 ,
2

th

in

  , and 

 ,
2

th

in

  .                            (4.23 a,b) 

Thus, when the flame is located in the middle of the combustor with open-open end 

conditions, the threshold of n  is clearly independent of the flame location and attains 

a constant value of 2 on the neutral line segment 0
c

i   . Of course, at this flame 

location, the threshold of n  is negative on the neutral line segments 
c

i
    and 

c

i     as per equation (23). This aspect is completely different when compared 

to the combustor with closed-open end conditions, where the threshold of n  depends 

on the flame location in the middle of the combustor as well, an observation that was 

made in § 4.2 of chapter 2. Equation (21) stipulates that the threshold of n  is 1 when 

0
q

x   on the neutral curve segment 0
c

i    and -1 on the neutral curve segments 

c

i
    and 

c

i    . Thus, the threshold of n  increases as the flame is moved 

away from the flame location 0
q

x   to 2
q

x L . This is indeed a general trend and 

it will be shown in the subsequent sections, as we move the flame location from 

 to 
q

x L , the maximum value of the n -threshold on the neutral loop on the 

extreme right increases.  

Figure 2 (a) shows a neutral curve for the second intrinsic mode of an open-open 

combustor when the flame is situated at 3
q

x L . The blue, red and green are used 

to plot the neutral curve segments corresponding to 0
c

i   , 
c

i
    and 

c

i     respectively. The continuous lines indicate intrinsic modes and the dashed 

0
q

x 
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lines are for the coupled acoustic modes. However, near the intersection points of 

neutral line segments, the modes invariably change their identity, which will be 

validated in the numerical section. Indeed, this aspect is similar to that of a combustor 

with closed-open end conditions discussed in § 4.2 of chapter 2. The yellow area 

represents the instability domain for the intrinsic mode. The hatched area indicates 

the domain with multiple instability islands, narrowing as  decreases. It can be seen 

that there are some apparent similarities between the neutral curves for the second 

intrinsic mode for a combustor with open-open end conditions and closed-open end 

conditions. Each neutral loop is a combination of neutral segments 0
c

i
   , 

c

i
    

and 
c

i
    , except the loop on the extreme right, which is created by a 

combination of 0
c

i
    and 

c

i
    (the segment corresponding to 

c

i
     does 

not feature in this loop). Moreover, in contrast to figure 2.8, the n -threshold saturates 

for higher time lags, making the intrinsic instability a possibility for any mode for 

large  . This feature is distinctively different from a combustor with closed-open end 

conditions, where each mode becomes linearly stable when the time lag exceeds a 

certain value. The n -threshold value at the point of saturation can be seen to be 

higher than that of a combustor with closed-open end conditions, where the maximum 

n -threshold was found to be 1 when the flame is located at 2
q

x L . Indeed, in the 

case of open-open end conditions, the saturated values of n -threshold can be 

obtained from equation (21) under the assumption of large time lag. With the 

assumption that  sin    and  cos 1  , for small  , the saturated value of n -

threshold comes out to be, 

   

 
1 2 2

2

1 1

q
th

i
c

x L
n

    


  
.                             (4.24) 
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It can further be shown from (24) that the saturated value of n -threshold increases as 

q
x  increases. 

 

Figure 4.2(a): Neutral curve and stability domain on the n   plane for the second intrinsic 

mode (
i

m =1) of an open-open combustor. The instability domain is marked in yellow. Blue, 

red and green lines correspond to the segments 0
c

i
   , 

c

i
    and 

c

i
     of the 

neutral curve respectively. The solid lines show segments of the neutral curve for the second 

intrinsic mode. The dashed lines show their continuations which are also exact solutions of 

(21); we interpret them as neutral curves for acoustic modes coupled to the intrinsic mode. 

The hatched area indicates the domain with multiple instability islands, narrowing as 
decreases. The specific values of the parameters used are the parameters of the test rig at IIT 

Madras (Vishnu et al. (2015), Vishnu (2013)): the length L  is 0.75 m, the cross-section S is 

0.0016 m2, the temperature T is assumed as constant throughout the duct and equal to 297 K 

(We neglect temperature jump across flame for this figure). The flame is located at 3
q

x L

, 1
c = 2

c =345 m/s. 

 

Figure 2 (b) is an extension of figure 2 (a) showing that the neutral loops on the left of 

the neutral curve are indeed a repetitive structure. In figure 2 (a) we have shown only 

two neutral loops, whereas in figure 2 (b) we have shown 3 neutral loops. Similar to 

the combustor with closed-open end conditions, in the case of the combustor with 

open-open end conditions there are an infinite number of smaller neutral loops on the 

left of these three loops in figure 2 (b). This infinite number of closely spaced loops is 
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hidden by hatched lines. All the subsequent discussions will be mainly focused on the 

neutral loop existing on the extreme right. 

 

Figure 4.2(b): Neutral curve and stability domain on the n   plane for the second intrinsic 

mode (
i

m =1) of an open-open combustor. The figure is the same as figure 2 (a) but on a 

different scale. The figure is extended to show more of the domains with multiple instability 

islands, narrowing as  decreases.  

 

 

Figure 4.2(c): Neutral curve and stability domain on the n   plane for the second intrinsic 

mode (
i

m =1) of an open-open combustor. The figure is the same as figure 2 (a) but on a 

different scale. This figure is intended to depict that the n -threshold attains negative values 

for certain time lags. However, as n -threshold cannot practically be a negative number, the 

negative portion of the neutral loop segments will be truncated in all the subsequent figures. 
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At this point, it is important to mention that like for the closed-open combustor, the 

analytical solution (21) can also generate a negative n -threshold for open-open 

combustors. This aspect is illustrated by figure 2 (c), which extends figure 2 (a) into 

the domain of negative n . Obviously, the negative n -threshold is non-physical, but 

an extended n   plane gives a better idea of how segments of the neutral curve are 

related. However, from now on we will concentrate only on the positive part of the 

n   plane. 

Figures 3 (a) and (b) show the neutral curves for the second intrinsic mode of an 

open-open combustor for two different flame locations, 0.1
q

x   m and 0.4
q

x   m 

respectively. In comparison to figure 2, figures 3 (a) and 3 (b) differ in a couple of 

notable features. The first distinctive feature is the shape of the neutral curve 

corresponding to 0
c

i
   . In figure 2 (a), the neutral curves corresponding to 0

c

i
    

have finite values of n -threshold, whereas in figure 3 (a), the neutral loop on the left 

and for 3 (b), the neutral loop on the right are not confined and bounded everywhere. 

Theoretically, this indicates that there is an infinite value of n -threshold for certain 

time lags. Another important distinctive feature of figures 3 (a) and (b) is the domain 

of coupling of the intrinsic and acoustic mode. The domain of coupling is much 

narrower (bounded by two red lines due to 
c

i
   ) compared to figure 2, where 

there is only one neutral line due to 
c

i
    on the extreme right neutral loop and the 

domain of coupling is all the way from the left of the neutral segment 
c

i
    to the 

left end of the extreme right neutral loop. Indeed, the flame location 3
q

x L  is a 

special case when the domain of coupling is not narrow and there exists only one 

neutral curve segment  
c

i
    on the extreme right neutral loop. For all other flame 
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locations, two neutral curve segments 
c

i
    exist, making the domain of coupling 

much smaller. It is important to mention at this point that by the domain of coupling, 

we mean type 1 and 2 coupling as explained in chapter 3. Apart from these two types, 

one would suspect that would also have coupling types 3 and 4 in combustors, details 

of which will be discussed in § 6. Moreover, the maximum n -threshold in figure 3 

(b) (for 0.4
q

x   m) is higher than in 2 (a) (for 3 0.25
q

x L   m), which is again 

higher than in figure 3 (a) (for 0.1
q

x   m). Hence the maximum -threshold 

increases as 
q

x  increases. 

Figure 4 shows the neutral curve for the first intrinsic mode when . Clearly, 

according to equation (21)   as  for the first intrinsic mode. Hence, 

just like a closed-open combustor, for an open-open combustor the  neutral 

curve segment does not constitute a boundary of the stability domain for the first 

intrinsic mode. As explained in the previous paragraph, for any flame location 

, there exist two neutral curve segments due to  on the extreme 

right neutral curve, making the domain of intrinsic mode-acoustic mode coupling 

much narrower than that of the case when . The complete coupling picture 

will be presented in § 6. 

n

3
q

x L

th

in 
c

i   

c

i   

3
q

x L
c

i
  

3
q

x L
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(a) 

 

(b) 

Figure 4.3: Neutral curve and stability domain on the n   plane for the second intrinsic 

mode (
i

m =1) of an open-open combustor. The flame is located at (a) 0.1
q

x   m and (b) 

0.4
q

x   m. The instability domain is marked in yellow. The hatched area indicates the 

domain with multiple instability islands, narrowing as  decreases. Other parameters and 

notations are the same as in figure 2 (a). 
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Figure 4.4: Neutral curve and stability domain on the n   plane for the first intrinsic mode 

(
i

m =0) of an open-open combustor. Blue and red lines correspond to the segments 0
c

i
    

and 
c

i
    of the neutral curve respectively. The instability domains for intrinsic modes 

are marked in yellow. The hatched area indicates the domain with multiple instability islands, 

narrowing as   decreases. Other parameters are same as in figure 2 (a). 

 

 

Figure 4.5: The neutral curves and stability domain on the n   plane for the first (
i

m =0), 

second (
i

m =1) and third (
i

m =2) intrinsic modes of an open-open combustor. Red, blue and 

magenta colour represent the neutral curves for the first, second and third intrinsic modes 

respectively. The common domain of instability for the first and second modes is marked in 

lime, for the second and third intrinsic modes, it is marked as yellow and for first and third 

intrinsic modes is marked as blue-gray. The light-yellow colour represents the domain where 

all three modes are unstable. Gold, light turquoise, and lavender colour mark the non-

overlapping domains of instability for the first, second and third intrinsic modes respectively. 

The notation and parameters are the same as in Fig.2. 
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Indeed, we can overlap the neutral curves for multiple intrinsic modes to get an idea 

about the overall instability domain similar to the case of the closed-open combustor. 

Figure 5 shows such a multi-mode instability map. We show the first (
i

m =0), second 

(
i

m =1) and third (
i

m =2) intrinsic modes using red, blue and magenta lines 

respectively. The figure illustrates that (i) as the mode number 
i

m  increases, the 

neutral curve main loop shifts to the right; (ii) the span of the islands of instability on 

the left increases; (iii) the segments corresponding to 
c

i
    and 

c

i
     become 

less steep for higher modes.  These tendencies are identical to those exhibited in 

figure 2.11 for a closed-open combustor. Another important aspect is the domain 

marked in light yellow in the asymptotic limit of large  . This domain represents the 

common instability domain for the first three intrinsic modes. This feature is 

undoubtedly different from the case of a closed-open combustor, where there is no 

common domain of instability for all intrinsic modes (see figure 2.11 for example) 

and for very large  , any intrinsic mode becomes linearly stable. For an open-open 

combustor, the intrinsic modes are potentially unstable even for the large time lag. 

The threshold of n  also tends to decrease for higher order modes in the asymptotic 

limit of large   and the corresponding 
th

in can be calculated using formula (24). 

Moreover, figures 2-5 suggest, that the characteristic values of 
th

in  are smaller than 

the threshold values of n  for an infinite tube [Hoeijmakers et al. (2015)], an 

observation also made in § 4.2 of chapter 2 for a closed-open combustor. Hence, the 

intrinsic modes can become unstable at a much lower value of n  than the theoretical 

prediction for an infinite tube.  

Thus, we have arrived at an explicit analytical expression (21) for the neutral curves 

on the n   plane for an open-open combustor, similar to a closed-open combustor 
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discussed in § 4.2 of chapter 2. There are some apparent similarities between the 

neutral curves for intrinsic modes in a closed-open and open-open combustor. For an 

open-open combustor, the neutral curves for the flame intrinsic modes have two 

qualitatively different regions. The region on the left, i.e. for smaller values of  , 

comprises loops of reducing   widths, made of strongly coupled acoustic-intrinsic 

modes. Also, the region on the right exhibits a single large loop which stretches to 

infinity in  . This is unlike the large neutral loop for a closed-open combustor, which 

ceases to exist above a certain time lag, making the mode linearly stable for large  . 

For an open-open combustor, the neutral curve has three distinct segments 

corresponding to 0
c

i
   , 

c

i
    and 

c

i
     in the n   space, apart from the 

first intrinsic mode, where the neutral curve segments due to 
c

i
     do not exist, as 

it predicts zero frequency and infinite 
th

in as per (21). The 
c

i
    and 

c

i
     

segments predict higher values of 
th

in  compared to the 0
c

i
    segments. These 

segments become less steep as the mode number, 
i

m , increases. Unlike a closed-open 

combustor, for an open-open combustor we have a domain in the asymptotic limit of 

large   on the n   plane, where the really large number of intrinsic modes are 

linearly unstable. The second intersection point that we see for a closed-open 

combustor of the neutral lines 0
c

i
    and 

c

i
     does not exist for the large 

neutral curve loop of an open-open combustor. We can also analytically find the 

locations of the intersection points of the neutral curve segments ±
c

i
    and 

0
c

i
    in a similar manner to that of § 4.2 of chapter 2 and Appendix I. 
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4.3.3. Growth rate of intrinsic modes 

The growth rate is the key element that we need to explain in combustion instability. 

Again, for the same reason as § 4.3 of chapter 2, we concentrate on the growth/decay 

rates near the neutral curve only.  

We consider a point ( n , ) on the n   plane located very close to the neutral curve 

for a specific mode 
i

m . The deviation from the neutral curve is denoted by 
1

in , 

hence, 
1th th

i i in n n n  . Similar to § 4.3 of chapter 2, the eigen-frequency in the 

chosen point ( n , ) differs from its value on the neutral curve 
0

i  for the same  . 

This deviation is denoted as 
1

i . As per numerical observation, close to the neutral 

curve, the real frequency only marginally shifts. Therefore, we assume that the real 

part of 
1

i  is negligibly small compared to its imaginary part and of little interest near 

the neutral curve. The imaginary part of 
1

i , on the other hand, represents the 

growth/decay rate. For any frequency perturbation 
1

i , due to deviation 
1

in  near the 

neutral curve, we can write the following condition, 

When, 
1th

i in n n  , 
0 1

i i    . 

For simplicity, we only consider the first order term in 
1

in . Higher order corrections 

in 
1

in  can be dealt with in an identical manner. We refrain from that exercise for the 

time being. Substituting these expressions for n  and   into the original dispersion 

relation (8) and neglecting higher order terms in 
1

i  in the sin and cos function 

expansions we obtain, 
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(4.25) 

Neglecting higher order terms in 
1

i  and subtracting the original dispersion relation 

(8) for 
0

i   from (25), we obtain a perturbed form of the dispersion relation (8), 

which directly yields an explicit analytical expression for the growth/decay rate 
1

i ,  
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where,   is, 
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while  , 1  and 2  are given by (2.28). Through a numerical examination of 

multiple examples, it has been observed that the real part of 
1

i  is indeed 

insignificant, as was assumed in the beginning of this derivation. Thus,  
1 1

i i
Im   

and represents the growth/decay rate. The equation (26) shows a dependence on the 

combustor parameters, which is the same as for closed-open combustors. 

Thus, we have found an explicit formula for the intrinsic mode growth/decay rates 

near the neutral curve on the n   plane. The growth rate formula has retained 

dependence on various combustor parameters. For simplicity, we only consider the 

first order term in 
1

in . Nonetheless, higher order corrections in 
1

in  are straightforward 
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analytical extensions. The accuracy of the analytical results using first order terms in 

1

in  will be demonstrated by comparison with the numerical solution in § 4.  

4.4. Numerical validation 

In this section, the analytical results of § 3 will be validated numerically. Here we 

examine the full dispersion relation (8) numerically. We consider the parameters of 

the test rig at IIT Madras (Vishnu et al. (2015), Vishnu (2013)): the length L  is 0.75 

m, the cross-section S is 0.0016 m2, the temperature T is assumed constant throughout 

the duct and equal to 297 K (however in § 5, we incorporate the effect of temperature 

jump). The flame is located at 2
q

x L . The same parameters were used for plotting 

all the stability diagrams.  

4.4.1. Place of acoustic and intrinsic modes on the complex frequency plane 

In § 3.2 of chapter 2, we have demonstrated the usefulness of the contour plots of 

frequency detuning as a method to identify the loci of the acoustic and intrinsic 

modes on the complex frequency plane as we increase n . These kinds of plots are 

effective in finding, not only the relative positions of acoustic and intrinsic modes on 

the complex frequency plane for different n , but also the frequencies at which these 

modes become unstable. The contour plots are made using the absolute value of 

detuning function  g   prescribed in the full dispersion relation (8, 9). Figures 6-8 

are such contour plots for an open-open combustor. Basic features of contour plots 

like these have already been explained in § 3.2 of chapter 2 for a closed-open 

combustor. 

In figures 6-8, acoustic modes are marked with blue squares, while intrinsic modes 

are shown by orange triangles. The instability domain is marked in yellow. The 
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acoustic mode frequencies are  a
m c L  (for 

a
m = 0, 1, 2…) and have almost zero 

growth in figure 6, because the n  selected ( n =0.025) is very close to zero. The iso-

lines of the absolute value of the function  g   onto the complex   plane in figures 

6-8 provide the view of the whole plane. The innermost closed loops of the iso-lines 

are the solutions for modal frequency  .  

Figure 6 is split into two panels to represent the acoustic and intrinsic modes 

separately. The intrinsic modes are strongly decaying when n =0.025,  thus making it 

reasonable to represent the acoustic and intrinsic modes in two separate panels. The 

time lag selected for this figure is 3 ms. The intrinsic modes in the lower panel are 

equally spaced in this limit of n , as predicted by equation (20). This feature is the 

same as that of a closed-open combustor. In contrast, the acoustic modes in the upper 

panel have equal spacing but a different distribution pattern than for a closed-open 

combustor. The fundamental frequency of an open-open combustor is twice as big 

than for a closed-open combustor. We also have both odd and even harmonics in an 

open-open combustor, whereas the closed-open combustor only supports the odd 

harmonics [Kinsler et al. (2000)]. All these features are well captured in contour plots 

6-8 and figures 2.3-2.5 in § 3.2 of chapter 2. In figure 6, in the chosen frequency 

range, there are three intrinsic modes with strong decay rates, as shown in the bottom 

panel. In figure 7, when n  is increased from 0.025 to 1.1, the first intrinsic and the 

second acoustic mode become unstable. The decay rates for all other intrinsic modes 

reduce significantly. All these features are consistent with what we observed for a 

closed-open combustor in § 3.2 of chapter 2. 
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Figure 4.6: Contour plot of detuning  g   for 0.025n   and 3.0   ms. Other 

parameters are the same as in Fig.2. Two sections are parts of the same contour plot. The 

domain of instability is marked in yellow. Blue squares and orange triangles represent the 

acoustic and intrinsic modes respectively. 

In figure 8, when we increase the time lag further from 3 to 5 ms, the intrinsic mode 

frequency reduces, as is predicted by equation (14). The first acoustic and the third 

intrinsic modes have become unstable for this time lag. The extensive numerical 
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simulations show that all the intrinsic modes have the potential to become unstable 

beyond a certain threshold of , as predicted by equation (21). In some cases, the 

acoustic mode can also become unstable at one of the nearby frequencies of the 

intrinsic mode in the complex frequency plane. For example, in figure 7, the second 

acoustic mode becomes unstable at the second intrinsic mode frequency. Clearly, this 

is an intrinsic-acoustic mode coupling scenario, a phenomenon that has been 

explained in chapter 3 for a closed-open combustor. We will shed some light on this 

intrinsic-acoustic mode coupling phenomenon in § 6, in the context of an open-open 

combustor. 

Thus, like § 3.2 of chapter 2, we have shown a set of contour plots for an open-open 

combustor for different time lags and have shown that contour plots are effective for 

compact visual representation of stable/unstable modes on the complex frequency 

plane. Increasing n  seems to reduce the decay rate of the intrinsic modes, whereas 

increasing   reduces the frequencies of the intrinsic mode. All the intrinsic modes 

show a tendency to become unstable beyond a certain threshold value of n . In 

addition, for some  , intrinsic modes can also couple to one of the acoustic modes in 

their close vicinity in the complex frequency plane. 

n
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Figure 4.7: Contour plot of detuning  g   for 1.1n  , 3.0   ms. Notations and other 

parameters are the same as in Fig 6.  

 

 

Figure 4.8: Contour plot of detuning  g   for 5.0   ms and 1.1n  . Notations and 

other parameters are the same as in Fig.6.  
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4.4.2. Numerical validation of the neutral curves 

            The analytical results for the neutral curve shown in figure 2 will be 

corroborated numerically in this section. Figure 9 shows a sample comparison of the 

analytical prediction of 
th

in , given by equation (21), with that of the exact numerical 

solution for 
i

m =1 at 3
q

x L . The analytical solutions for the intrinsic and coupled 

acoustic modes are represented by continuous and dashed blue lines respectively. 

Their numerical counterparts are represented by green circles and red squares 

respectively. Figure 9 shows good correspondence between the analytical and 

numerical results. The individual identity of acoustic and intrinsic mode can be traced 

numerically, by increasing the value of n  in small increments, tracking their locus in 

the complex frequency plane. Alternately, we can use simple analytical models for 

coupling as described in chapter 3. Figure 9 proves that for both the narrow islands of 

instability on the left and the main instability domain on the right, the numerical 

results corroborate well with the analytical solution of (21). Extensive numerical 

simulations, for small  , also prove that the combination of neutral curves 0
c

i
   , 

c

i
    and 

c

i
    , is indeed a repetitive pattern for any mode. Near the point of 

intersection of neutral lines, coupled-acoustic and intrinsic modes invariably change 

their identity, some instances of which can be found from figure 9. A comprehensive 

model for intrinsic mode-acoustic mode coupling will be useful to explain this 

phenomenon. It is important to recall that this kind of switching of modal identity has 

been observed for a closed-open combustor as well (refer to figure 2.12). 



216 
 

 

Figure 4.9: Neutral curve: comparison of analytical and numerical results for 
i

m =1. Solid 

and dashed lines show the analytical solutions for intrinsic and acoustic modes respectively. 

Numerical solutions are shown by coloured symbols: by green circles and red squares. 

Notation and other parameters are the same as in Fig.2. 

 

4.4.3. Numerical validation of the growth rate 

The explicit expression for the intrinsic mode growth rate, as per equation (26), is 

based on a first order perturbation in n . It is important to validate this assumption 

numerically. Moreover, the range in which this growth rate formula is applicable, is 

also a matter that will be established numerically. 

Figure 10 shows a comparison of the analytical prediction of the growth rates given 

by (26), with that of the numerical results for 
i

m =1 and  = 9 ms. Near 
th

in  (1.05 for 

this case), that is, near the neutral line of stability, analytical and numerical 

predictions match up quite nicely. However, as we move away from the neutral line, 

analytical predictions deviate from the numerical results. The prediction is quite good 

within a band of thirty percent shift of n  near the neutral line. Beyond this range, 

modes are either stable or linear theory does not hold. It is also of interest to check 
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whether formula (26) works well at the point of intersection of neutral curve 

segments, that is, in the domain of intrinsic-acoustic mode coupling. Figure 11 

presents the comparison of analytical and numerical results at  = 8 ms (that is, at the 

point of intersection of neutral curve segments 0
c

i
    and 

c

i
   ) for the first 

intrinsic mode. In this case,  we also see that the numerical and analytical results are 

in good agreement with each other near the 
th

in  (0.85 for this case). We can therefore 

conclude that the analytical prediction for the growth rate is in good agreement with 

the numerical solution in the vicinity of 
th

in : where it is of most interest. Our 

approximate solution (26) considers only the leading order term of expansion in 
1

in  

(the departure of n  from 
th

in ). The single order expansion provides a good level of 

accuracy near the neutral line for all the cases we have studied so far. If we look for 

higher orders of accuracy in some scenarios, we need to consider a higher order 

expansion in 
1

in  in our perturbation equation. This, however, will not be carried out 

in the present work.  

Hence, we can confirm that the compact analytical prediction of the linear growth rate 

(26) works very well for all  , including in the vicinity of intersections of different 

segments of the neutral curve. The growth/decay rate depends on various combustor 

parameters. A parametric study of the growth rate and neutral curves will be 

performed in the next section. 
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Figure 4.10: Growth rate for 
i

m =1 at  = 9 ms: comparison of the analytical result (26) and 

numerical solution of the original dispersion relation (8). The blue line and red circles show 

the analytical and numerical solution respectively. The instability domain is marked in 

yellow. The parameters of the system are the same as in Fig.2. 

 

 

Figure 4.11: Growth rate for 
i

m =1 at  = 8 ms (at the point of intersection of neutral curve 

segments 0
c

i
    and 

c

i
   ): comparison of the analytical result (26) and numerical 

solution of the original dispersion relation (8). The notations and other parameters of the 

system are the same as in Fig.10. 
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4.5. Effect of parameters (flame location, cross-section jump, 

temperature jump) on stability behavior of intrinsic modes 

As per equation (21), the threshold of n  depends on various combustor parameters. 

The same thing can be said about the growth rate, as per equation (26). In this section, 

we try to identify how 
th

in  and growth rate depend on the three main parameters of an 

open-open combustor model: (i) cross-section jump, (ii) temperature jump and (iii) 

flame location. It is also of significant interest to find out whether, for a certain 

parameter domain, the n -threshold can decrease or growth rate can increase, in other 

words, intrinsic mode instability is triggered. 

Figure 12 (a) illustrates the effect of cross-section jump on the neutral curve main 

loop, plotted on the basis of (21). This figure shows two different cases for the cross-

section jump: (i) =1 and (ii) =2. Lavender colour marks the instability 

domain for =1. The common domain of instability is marked in yellow. In all 

subsequent figures, the common instability domain is also marked in yellow. It can be 

seen from the figure that the inclusion of cross-section jump lifts the overall neutral 

curve and shifts it slightly to the right. This means that the -threshold of intrinsic 

instability is lifted due to cross-section jump. Figure 12 (b) shows the change of -

threshold due to the inclusion of cross-section jump for three different time lag values 

of 8ms, 8,7 ms, and 10 ms. These three lines are represented by blue, green and red 

respectively. Clearly, the red, green and blue curves have an upward slope, zero 

slope, and downward slope respectively. This means that the -threshold increases at 

=10 ms, reduces at =8 ms and remains constant at =8.7 ms. These observations 

can also be made visually from figure 12 (a). Thus -threshold can either be 

2 1
S S

2 1
S S

2 1
S S

n

n

n

  

n
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increased, decreased or kept constant due to the inclusion of cross-section jump in the 

system. 

 
(a) 

 
(b) 

Figure 4.12 (a): Effect of cross-section jump on the stability domain for 
i

m =1. The plot is 

based on (21) and shows no jump (
2 1

S S =1) and with (
2 1

S S =2) cross-section jump 

configurations. Lavender colour marks the instability domains for the case 
2 1

S S =1. The 

common instability domain for these two cases is marked in yellow. (b): The threshold of n  

as a function of cross-section jump for 
i

m =1. Blue, green and red lines correspond to n -

threshold values for time lag= 8ms, 8.7 ms, and 10 ms respectively. For both figures, other 

parameters and notation are the same as in Fig.2. 
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(a) 

 
(b) 

Figure 4.13(a): Effect of temperature jump on stability domain for 1
i

m  . The plot is based 

on (21) and shows configurations with no jump, i.e.  
2 1

T T =1 (or, 
2 1

c c =1)) and with 

2 1
T T =2.25 (or, 

2 1
c c =1.5)) temperature jump. Lavender and pink mark the instability 

domains for the cases 
2 1

c c =1 and 
2 1

c c =1.5 respectively, with the common instability 

domain being marked in yellow. (b): The threshold of n  as a function of temperature jump 

for 1
i

m  . Blue, green and red lines correspond to n -threshold values for time lag= 8ms, 9 

ms, and 12 ms respectively. For both figures, other parameters and notation are the same as in 

Fig.2. 
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The effect of temperature jump on 
th

in  ( ) is slightly different. Figure 13 (a), plotted 

on the basis of (21), compares two different cases of temperature jump: (i) for 
2 1

T T

=1 (or, 
2 1

c c =1) and (ii) 
2 1

T T =2.25 (or, 
2 1

c c =1.5). The lavender and pink colour 

represent the instability domains due to these two cases. The temperature jump lifts 

the neutral curve and stretches the span of the neutral loop to the left. Hence, the 

inclusion of temperature jump in the system increases the 
th

in  for all time lags. This 

statement can further be verified with the help of figure 13(b), which represents the 

effect of temperature jump on n -threshold for three different time lags of 8, 9 and 12 

ms. It can be clearly seen that for all three of these time lags, the n -threshold 

monotonically increases with respect to temperature jump. Thus. temperature jump 

increases the n -threshold for intrinsic instability in an open-open combustor. 

Figure 14(a), plotted on the basis of (21), demonstrates the effect of flame location on 

 ( ). The figure is drawn for two different flame locations, =0.25 m and 0.35 

m. Lavender colour represents the instability domain for =0.25 m. The neutral 

curve shifts slightly up as the flame is shifted from =0.25 m to =0.35 m. In 

other words, the -threshold increases as the flame is moved from =0.25 m to 

=0.35 m. This is a generalized trend that can also be seen in figure 14(b). In figure 

14(b), for three different time lags of 8 ms, 9 ms, and 12 ms, we find that as  

increases, the -threshold increases, indicating that the small  values in an open-

open combustor correspond to the critical region from an intrinsic instability 

perspective. For a closed-open combustor, it was shown that in the absence of cross-

section and temperature jump, the flame location yielding the minimal  is at the 

th

in 
q

x

q
x

q
x

q
x

n q
x

q
x

q
x

n q
x

th

in
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middle of the combustor. This statement is not valid for an open-open combustor, 

where there are no minima of  in the middle of the combustor, because  has a 

constant value of 2, as per (22). 

 
(a) 

 
(b) 

Figure 4.14(a): Effect of flame location on stability domain for 1
i

m  . The plot is based on 

(21) and shows two flame locations: 
q

x =0.25m and 0.35m. Lavender marks the instability 

domains for 
q

x =0.25m. The common instability domain for these two cases is marked in 

yellow. (b): The threshold of n  as a function of flame location for 1
i

m  . Blue, green and 

red lines correspond to n -threshold values for time lag= 8ms, 9 ms, and 12 ms respectively. 

For both figures, other parameters and notation are the same as in Fig.2. 

th

in
th

in
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A similar parametric study can be performed for the growth rates of the intrinsic 

modes. Figure 15 (a), (b) and (c) show the effect on the growth rate of cross section 

jump, temperature jump, and flame location respectively. Growth rates are calculated 

using the explicit analytical solution (26). Figure 15 (a) shows two different cases for 

time lag, 8 ms and 12 ms, where cross-section jumps of 
2 1

S S =1 and 
2 1

S S =2 are 

introduced for each case. The growth rate decreases due to cross section jump for 

both time lags (8 ms and 12 ms). Figure 15 (b) shows the growth rate for time lag = 9 

ms, where temperature jumps of 
2 1

T T =1 (or, 
2 1

c c =1) and 
2 1

T T =2.25 (or, 
2 1

c c

=1.5) are introduced for each case. The introduction of temperature jump reduces the 

growth rate for a time lag of 9 ms. Figure 15 (c) shows the growth rate for time lag = 

9 ms for two different flame locations of 
q

x =0.25 m and 
q

x =0.35 m. This figure 

makes it clear that the growth rate decreases as 
q

x  is increased from 0.25 m to 0.35 

m. It means that the intrinsic flame instabilities will be critical for small values of 
q

x , 

an observation which is the opposite for a closed-open combustor, where the most 

critical point for intrinsic instability situates at the middle of the combustor. 

Thus, by selecting the right system parameters, such as cross section jump, 

temperature jump, and flame location, we will be able to increase/decrease the 
th

in  

and decrease/increase the growth rate, hence dampening/instigating the intrinsic mode 

instability. The flame location for small 
q

x  is found to be most critical for intrinsic 

flame instability. 
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                                 (a)                                                                   (b) 

 

(c) 

Figure 4.15: Effect of cross-section jump, temperature jump and flame location on growth 

rates for 1
i

m   (based on (26)). (a): Two different time lags (8 and 12 ms) are indicated by 

solid and dashed lines. Two values of cross section jump (
2 1

S S =1 and 
2 1

S S =2) are 

marked in blue and red. (b): Two values of temperature jumps 
2 1

T T =1 (or, 
2 1

c c =1) and 

2 1
T T =2.25 (or, 

2 1
c c =1.5) are marked in blue and red for time lag=9 ms. (c): Two values 

of flame locations 
q

x =0.25 m and 
q

x =0.35 m at time lag = 9 ms are marked in blue and red. 

Other parameters and notation are the same as in Fig. 2. Yellow colour marks the domain of 

instability. 
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4.6. Coupling of intrinsic and acoustic modes for a combustor 

with open-open end conditions 

It has been discussed in § 1 of chapter 3 that when the Rayleigh index is negative, the 

decaying acoustic mode might couple to one of the intrinsic modes in its close 

vicinity in the complex frequency plane. We have provided a comprehensive picture 

for the coupling in a closed-open combustor. It was shown that once coupled to the 

intrinsic mode, the acoustic mode completely loses its identity and starts to behave as 

an intrinsic mode. The coupled modes were thus referred to as coupled intrinsic 

modes. However, to distinguish between the acoustic and intrinsic mode in terms of 

their origin, we used the terminologies coupled intrinsic mode (born intrinsic or BI) 

and coupled intrinsic mode (born acoustic or BA). In this section we carry out a 

similar analysis for an open-open combustor. Primarily, we develop a simple 

mathematical model of linear coupling. Following this, we perform a numerical 

validation of our analytical model. Through this exercise, we mathematically identify 

the nature of the coupled modes when an acoustic mode is triggered by an intrinsic 

mode to instability. We use the same nomenclature as in chapter 3 to define the 

coupled modes. 

4.6.1. Mathematical model of linear coupling 

Like in § 6 of chapter 3, where we developed a mathematical model of coupling for a 

closed-open combustor, in this case it is also assumed that on the complex frequency 

plane, the acoustic modes do not depart far (in terms of decay/growth rate) from the 

neutral curve We therefore perturb the solution of acoustic modes by a small 

parameter  . This technique of perturbation enables us to find not only the locus 

of the acoustic mode, but also the locus of the nearby intrinsic mode. The perturbed 
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form of the frequency is as follows, where 0

a  is the modal frequency of the open-

open combustor without a flame, 

0

a a    . 

On substituting this ansatz, the generalized dispersion relation (8) can be written as, 
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Assuming small values of  , and thus neglecting all the terms higher than order 2, 

the trigonometric terms in the above expression can be written as per equation (3.28). 

With these replacements, the dispersion relation (27) can be re-written in the 

following way, 
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Neglecting all the terms of   higher than order 2, the equation (28) can be 

simplified to the following quadratic equation, 
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The analytical solution for the quadratic equation (29) can be written as follows, 
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Where, the coefficients, A , B  and C  are, 
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Once the correction to the frequency is obtained, using formula (30), the two 

frequencies (of coupled modes) can be obtained using 0

a a    . The solutions 

tell us, whether, in n   space, any of the intrinsic modes are in the vicinity of the 

acoustic mode and whether they interact with it. In the subsequent section, we 

perform some case studies in different parts of the neutral curve and identify different 

types of coupling. It is important to remember that the intrinsic-acoustic mode 

coupling does not exist on every part of the neutral curve. It is only near the point of 

intersection of neutral curve segments that we find intrinsic-acoustic mode coupling. 

In other sections of the neutral curve, there exists only one solution for the intrinsic 

mode. 

4.6.2. Four types of intrinsic mode-acoustic mode coupling: Loci of the 

coupled modes in the n   space 

The analytical solution (30), derived in the previous section, provides an explicit 

solution for the acoustic mode and the nearby intrinsic mode. Like we did in § 6 of 

chapter 3 for a closed-open combustor, in the case of an open-open combustor we can 

also perform visual inspection on the loci of coupled modes on the complex 

frequency plane, as we change the parameter n . Therefore, we can find the identity 

of these modes when they cross the neutral line of stability. We focus on the domain 

near a particular acoustic mode on the complex frequency plane for a specific value 

of  . We then find the loci of coupled modes in that domain as a function of 

parameter n . Figures 16-19 present plots of this kind. 

Figures 16-19 are plots focused near the domain of the second acoustic mode (
am

=1). Figures 16-17 are made for the flame location 
q

x =L/3 and for two different 

values of  :  =7.5 ms and  =7.4 ms respectively. Figures 18-19 are made for the 
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flame location 
q

x =0.35 m and for two different   values:  =7.1 ms and  =7.0 ms 

respectively. Summarizing the observations made in figures 16-19 we can distinguish 

four different types of coupling, similar to § 6 of chapter 3. They are: 

i. The first type of coupling: the coupled intrinsic mode (BI) becomes unstable at a 

frequency predicted by 0
c

i   , whereas the coupled intrinsic mode (BA) becomes 

unstable at a frequency predicted by either 
c

i    or 
c

i    . Figure 16 

illustrates this type of coupling. 

ii.  The second type of coupling: the coupled intrinsic mode (BA) becomes unstable 

at a frequency predicted by 0
c

i   , whereas the coupled intrinsic mode (BI) 

becomes unstable at a frequency predicted by either 
c

i    or 
c

i    . Figure 17 

illustrates this type of coupling. 

iii.   The third type of coupling: the coupled intrinsic mode (BI) becomes unstable at 

0
c

i   , whereas the coupled intrinsic mode (BA) tends to remain asymptotically 

stable at a frequency corresponding to  1
cos 0

q
k x   or   1

0sin qk x L  , as per 

equation (16). Figure 18 illustrates this type of coupling. 

iv.   The fourth type of coupling: the coupled intrinsic mode (BA) becomes unstable 

at 0
c

i   , whereas the coupled intrinsic mode (BI) tends to remain asymptotically 

stable at a frequency corresponding to  1
cos 0

q
k x   or   1

0sin qk x L  , as per 

equation (16). Figure 19 illustrates this type of coupling. 

In all these examples of coupling, the second acoustic mode couples with the second 

intrinsic mode. In figure 16 for  =7.5 ms, the second intrinsic mode decay rate 

decreases with the increase of n , while the second acoustic mode initially decays 
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with an increase of . At a threshold value of n , both these coupled modes become 

unstable. While the coupled intrinsic mode (BI) becomes unstable, corresponding to 

0
c

i   , the coupled intrinsic mode (BA) becomes unstable at a higher frequency, 

corresponding to 
c

i   . This is the first type of intrinsic-acoustic mode coupling. 

On the neutral curve in figure 2, this coupling point exists slightly left of the 

intersection point of neutral lines 0
c

i    and 
c

i   .  

 

Figure 4.16: Loci of the coupled modes for  =7.5 ms, 
q

x =0.25 m, 
am =1, 

im =1. n  is 

varied from 0.0 to 0.75. Plots are generated on the basis of quadratic equation (30). Coupled 

intrinsic mode (BA) and coupled intrinsic mode (BI) are represented by a dotted red line and 

continuous blue line respectively.  The domain of instability is marked in yellow. The brown 

arrow indicates the frequency of acoustic mode (
0

a ) of the open-open combustor in the 

absence of a flame. This is an example of the first type of coupling, where the coupled 

intrinsic mode (BI) becomes unstable at 0
c

i   , whereas the coupled intrinsic mode (BA) 

tends to become unstable at a higher frequency corresponding to 
c

i   . In this case, the 

mode numbers of the acoustic and intrinsic modes involved in coupling are the same. Other 

parameters are the same as in figure 2. 

 

When  is lowered slightly, to =7.4 ms, we get to see the second type of coupling, 

visible in figure 17. Here the coupled intrinsic mode (BA) becomes unstable, 

corresponding to , whereas the coupled intrinsic mode (BI) becomes unstable 

n

 

0
c

i  
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at a higher frequency, corresponding to . Thus, due to a slight alteration of 

, the coupled modes change their identity on the neutral line. This point has also been 

highlighted in figure 9, where we performed numerical validation of the neutral 

curves. Clearly, on the right-hand side of the coupled domain (the domain where both 

neutral lines  and  exist) in figure 2, we find only one solution for 

the intrinsic mode. This is a coupling free domain. The neutral curves to the left of the 

main neutral loop in figure 2, are very thin in their spread and the neutral lines, 

,  and , are very close to each other. These small neutral 

loops manifest strong coupling between the intrinsic and acoustic modes. There are 

two more types of intrinsic mode-acoustic mode coupling possible, which will be 

discussed in the following section. 

 

Figure 4.17: Loci of the coupled modes for  =7.4 ms, 
q

x =0.25 m, 
am =1, 

im =1. n  is 

varied from 0.0 to 0.75. Plots are generated with the help of quadratic equation (30). This is 

an example of the second type of coupling, where the coupled intrinsic mode (BA) becomes 

unstable with 0
c

i   , whereas the coupled intrinsic mode (BI)  tends to become unstable at 

a higher frequency corresponding to 
c

i   . In this case, the mode numbers of the 

acoustic and intrinsic modes involved in coupling are the same. Notations and other 

parameters are the same as in figure 16. 

c

i   

0
c

i  
c

i  

0
c

i  
c

i  
c

i   
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These two types of coupling have been explained in figures 18 and 19. In figure 18, 

the coupled intrinsic mode (BI) becomes unstable, corresponding to 0
c

i   . The 

coupled intrinsic mode (BA), that is in the close vicinity, initially decays and then 

tends to become unstable at a higher frequency corresponding to  1
cos 0

q
k x  . In 

fact, the coupled intrinsic mode (BA) remains asymptotically stable for large n . This 

statement can be validated from equation (21), where we find that when 

 1
cos 0

q
k x  , 

th

in  . Thus, in this third type of coupling, there is only one 

unstable solution and that is for the coupled intrinsic mode (BI). This type of coupling 

can also be seen in the neutral curve. For example, in figure 3 (a), for 
q

x =0.1, we can 

see a domain like this on the left of the first neutral line  in the main neutral 

loop, where only one solution exists. The domain of the first two types of coupling 

exists on the right side of the first neutral line 
c

i   . Similarly, we can explain the 

fourth type of coupling using figure 19. In this type of coupling, the coupled intrinsic 

mode (BA) becomes unstable, corresponding to 0
c

i   , and the nearby coupled 

intrinsic mode (BI) remains asymptotically stable at a higher frequency corresponding 

to  1
cos 0

q
k x  . Hence, in this case, we again only find one unstable solution. All 

these four types of coupling exist not only in the main neutral loop on the extreme 

right, but also on the small neutral loops on the left of the neutral curve. Moreover, 

these four types of coupling are independent of the individual mode numbers for the 

acoustic and intrinsic modes. The mode numbers for the acoustic and intrinsic modes 

can be the same or different for these types of coupling. 

 

 

c

i  
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Figure 4.18: Loci of the coupled modes for  =7.1 ms, 
q

x =0.35 m, 
am =1, 

im =1. n  is 

varied from 0.0 to 0.75. Plots are generated with the help of quadratic equation (30). This is 

an example of the third type of coupling, where the coupled intrinsic mode (BI) becomes 

unstable at 0
c

i   , whereas the coupled intrinsic mode (BA) remains asymptotically stable 

at a frequency corresponding to  1
cos 0

q
k x  , as per equation (16). In this case, the mode 

numbers of the acoustic and intrinsic modes involved in coupling are the same. Notations and 

other parameters are the same as in figure 16. 

 

Figure 4.19: Loci of the coupled modes for  =7 ms, 
q

x =0.35 m, 
am =1, 

im =1. n  is 

varied from 0.0 to 0.75. Plots are generated with the help of quadratic equation (30). This is 

an example of the fourth type of coupling, where the coupled intrinsic mode (BA) becomes 

unstable at 0
c

i   , whereas the coupled intrinsic mode (BI) tends to remain asymptotically 

stable at a frequency corresponding to  1
cos 0

q
k x   , as per equation (16). In this case, the 

mode numbers of the acoustic and intrinsic modes involved in coupling are the same. 

Notations and other parameters are the same as in figure 16. 
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These four types of coupling can also be visualized on the neutral curves, as per 

figures 20 and 21. Figure 20 is produced for the second intrinsic mode, when the 

flame is located at 
q

x =0.35 m and figure 21 is applicable for the first intrinsic mode, 

when the flame is at 
q

x =L/3. In both these figures, domains of pure intrinsic and 

acoustic instabilities are marked by yellow and light yellow respectively. Lavender 

colour marks the domain where type 1 and 2 coupling exist between intrinsic and 

acoustic modes. Light turquoise colour represents the domain of type 3 and 4 

coupling. In the domain of type 1 and 2 coupling, we find the existence of two 

solutions, one for coupled intrinsic mode (BI) and another for coupled intrinsic mode 

(BA). In the domain of type 3 and 4 coupling, we find only one solution, that is either 

for coupled intrinsic mode (BI) or coupled intrinsic mode (BA). The second mode in 

this scenario remains asymptotically stable at a frequency corresponding to either 

 1
cos 0

q
k x   or   1

0sin qk x L  , as per equation (16). In the neutral curve for 

the first intrinsic mode, in figure 21, we also find that a type 3 and 4 coupled domain 

is bound, on either side, by two type 1 and 2 coupled domains. This indicates that a 

slight alteration in   can easily change the type of coupling that we see in 

combustion systems.  

Thus our ‘easy to deal with’ quadratic equation (29) generates the solutions for the 

modes involved in coupling. An analytical model like this easily detects the relative 

position of the coupled modes on the complex frequency plane. We have identified, 

within a classical open-open combustor setup, that four different types of intrinsic 

mode-acoustic mode coupling can exist, all of which also exist in a closed-open 

combustor. The analytical model is supposed to be accurate near the neutral line of 

stability. However, this analytical model of a quadratic equation can be extended into 
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a quartic equation in a very straightforward manner, as explained in § 8 of chapter 3 

for a closed-open combustor. For checking the fidelity of the analytical model, in the 

next section a numerical examination will also be performed for our current analytical 

model. 

 

Figure 4.20: Neutral curve and stability domain on the n   plane for the second intrinsic 

mode (
i

m =1, 
q

x =0.35 m). Blue and red lines correspond to the segments 0
c

i
    and 

c

i
    of the neutral curve respectively. The instability domains for intrinsic and coupled 

acoustic modes are marked in yellow and light yellow respectively. Lavender and light 

turquoise colours mark the domain of type 1,2 and type 3,4 coupling respectively. These 

domains are bound by thick purple vertical lines. The hatched area indicates the domain with 

multiple instability islands, narrowing as decreases. Other parameters are the same as in 

figure 2 (a). 
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Figure 4.21: Neutral curve and stability domain on the n   plane for the first intrinsic 

mode (
i

m =0), at 
q

x = L/3. Notations and other parameters are the same as for figure 20. 

 

4.6.3. Numerical validation of analytical solution predicted by quadratic 

equation  

In this section, the accuracy of the analytical solution (30) will be verified with the 

numerical result, as per equation (8). The quadratic equation (30) was derived by 

neglecting terms in  with a higher than order 2. The applicability of this 

assumption needs to be checked for all four types of the coupling scenarios. The 

quadratic equation was found to perform well near the neutral curve for the coupled 

modes for a closed-open combustor in § 7 of chapter 3. We need to check whether 

this result is consistent for a combustor with an open-open end condition as well. 

Figures 22-25 are dedicated to that purpose. Figures 22-25 present numerical 

validation for the analytical results depicted in figures 16-19. The dotted red line and 

continuous blue line represent the analytical solutions for coupled intrinsic modes 

(BI) and coupled intrinsic mode (BA) respectively. The magenta circular and green 


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diamond dots represent their numerical counterparts respectively, by direct solution 

of equation (8). 

Figure 22, which presents the first type of intrinsic-acoustic mode coupling, shows a 

good correspondence between analytical and numerical results for the coupled 

intrinsic mode (BA), whereas for the coupled intrinsic mode (BI), the analytical 

prediction does not seem to be that accurate. The same thing is true for figure 24, 

which shows the third type of coupling. In figure 23, which represents the second 

type of coupling, the prediction seems to be quite good for coupled intrinsic mode 

(BI) as well. A similarly good correspondence between the analytical and numerical 

results for coupled intrinsic mode (BI) can be found in figure 25, which depicts the 

fourth type of coupling. In general, for all these cases, the analytical prediction of the 

instability frequency is quite good for both the coupled modes (for type 1 and 2 

coupling) and for coupled intrinsic mode (BI) or (BA) (for type 3 and 4 coupling, 

because there is only one instability frequency for these two types of coupling). Thus, 

making use of equation (30), we can accurately a priori estimate the unstable 

frequencies in the coupling scenario during the combustor design phase. The 

simplicity of the quadratic equation makes it a handy tool for unstable frequency 

prediction. 

In all the figures, comparative study of the analytical and numerical study shows that 

the level of accuracy of the analytical solution provided by equation (30), for the 

prediction of the locus of coupled intrinsic mode (BA) in the complex frequency 

plane, is very high. The accuracy of prediction for coupled intrinsic mode (BI) is not 

as good when it is away from the neutral curve. The inclusion of higher order terms 

of   in the mathematical model should improve the accuracy of prediction and 

hence address this issue. However, we do not pursue this line here and refrain from 
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developing a quartic equation for intrinsic mode-acoustic mode coupling, which is a 

straightforward exercise for generalized combustor parameters. 

 

Figure 4.22: Numerical validation of analytical solution (30) for  =7.5 ms, 
q

x =0.25 m, 
am

=1, 
im =1. n  is varied from 0.0 to 0.7. The dotted red and continuous blue lines represent 

the analytical solutions for coupled intrinsic mode (BI) and coupled intrinsic mode (BA) 

respectively. The magenta circular and green diamond dots represent their numerical 

counterparts respectively, by direct solution of equation (8). Yellow colour represents the 

domain of instability. The brown arrow indicates the frequency of acoustic mode (
0

a ) of the 

open-open combustor in the absence of a flame. This is an example of the first type of 

coupling, where the coupled intrinsic mode (BI) becomes unstable at 0
c

i   , whereas the 

coupled intrinsic mode (BA) tends to become unstable at a higher frequency corresponding to 

c

i   . Other parameters are the same as in figure 2. 
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Figure 4.23: Numerical validation of analytical solution (30)  for  =7.4 ms, 
q

x =0.25 m, 

am =1, 
im =1. This is an example of the second type of coupling, where the coupled 

intrinsic mode (BA) becomes unstable with 0
c

i   , whereas the coupled intrinsic mode 

(BI) tends to become unstable at a higher frequency corresponding to 
c

i   . Notations 

and other parameters are the same as in figure 22. 

 

 

Figure 4.24: Numerical validation of analytical solution (30) for  =7.1 ms, 
q

x =0.35 m, 
am

=1, 
im =1. This is an example of the third type of coupling, where the coupled intrinsic 

mode (BI) becomes unstable with 0
c

i   , whereas the coupled intrinsic mode (BA) tends 

to remain asymptotically stable at a frequency corresponding to  1
cos 0

q
k x  , as per 

equation (16). Notations and other parameters are the same as in figure 22. 
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Figure 4.25: Numerical validation of analytical solution (30) for  =7 ms, 
q

x =0.35 m, 
am

=1, 
im =1. This is an example of the fourth type of coupling, where the coupled intrinsic 

mode (BA) becomes unstable with 0
c

i   , whereas the coupled intrinsic mode (BI) tends 

to remain asymptotically stable at a frequency corresponding to  1
cos 0

q
k x  , as per 

equation (16). Notations and other parameters are the same as in figure 22. 

 

4.6.4.   Uncoupling of acoustic and intrinsic modes when the flame is at the 

middle of the combustor 

So far, we have examined linear coupling within the framework of a 1-D open-open 

combustor. In this section, we provide an example of a scenario of a tube with open-

open boundary conditions and find a position within the tube where acoustic and 

intrinsic modes are naturally uncoupled.  

When the flame sits in the middle of the combustor, that is 2qx L , the dispersion 

relation (8) simplifies to the following form, if we assume no temperature jump 

across the flame, that is, 
1 2   and 

1 2c c c  , 

  0
sin 1 0

iL
n e

c


   

 
 
 

.                             (4.32) 



242 
 

It is evident that equation (32) leads to two independent sets of solutions for any 

values of 0
n  and  . These are as follows: 

i. Solution for the acoustic modes, i.e. 0sin
L

c




 
 
 

, and                                                

ii. Solution for the intrinsic modes, i.e.   0
1 0

i
n e


                           (4.33 a, b) 

Equation (33b) is identical to Hoeijmakers et al. (2014), for the case of a flame in an 

infinite tube (with anechoic boundary condition), and Mukherjee et al. (2016), for the 

case of a closed-open combustor when 0n  . Moreover, equations (33 a,b) are self-

evident that the acoustic and intrinsic modes get uncoupled and become independent 

of each other when the flame sits in the middle of the tube (that is 2qx L ). This 

result is, however, based on the assumption that there is no temperature jump across 

the flame. With temperature jump, flame-acoustic coupling will, to a degree, occur. 

Thus, we have identified that for the case of a tube with the open-open boundary 

condition, when we assume the flame to be in the middle of the tube and no 

temperature jump across the flame, the acoustic and intrinsic modes become 

uncoupled and do not interact with each other. However, coupling will occur when 

we incorporate temperature jump across the flame into our analysis. 

4.7. Salient similarities and differences of flame intrinsic 

instability for combustors with closed-open and open-open end 

conditions 

Upon performing an analysis of flame intrinsic instability for a closed-open 

combustor (in chapter 2) and for an open-open combustor (in this chapter), we are in 
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a position to identify the salient similarities and differences of intrinsic instabilities in 

these two types of combustor configurations. The current section will highlight these 

similarities and differences. 

The neutral loops for both these two combustor types are combinations of neutral 

curve segments 0
c

i
   , 

c

i
    and 

c

i
    . However, there is a fundamental 

difference for the neutral loop on the extreme right for these two cases. The neutral 

loop on the extreme right for a closed-open combustor consists of all three neutral 

curve segments 0
c

i
   , 

c

i
    and 

c

i
    . Thus, it has two intersection points 

of these segments and also, for a sufficiently large time lag value, each intrinsic mode 

is stable. This scenario is slightly different for an open-open combustor, where the 

neutral loop on the extreme right consists of neutral curve segments 0
c

i
    and 

c

i
   . The neutral curve segment 

c

i
     is missing here. Hence, all the 

intersection points in this loop are due to neutral curve segments  0
c

i
    and 

c

i
   . Therefore, the coupled frequency never exhibits a    shift. Also, in 

contrast to a closed-open combustor, for sufficiently large time lag values, any 

particular intrinsic mode is unstable in an open-open combustor. For these combustor 

setups, the intrinsic mode frequency is decoupled from all the combustor parameters 

on the neutral curve and is identical to the value found in the limit of small n .  

The n -threshold dependence on the flame location is symmetric with respect to 

2
q

x L  for a closed-open combustor, but not for an open-open combustor. For 

2 1
1S S   and 

2 1
1c c  , 2

q
x L  is the location of n -threshold minima for a 

closed-open combustor, indicating 2
q

x L  in a closed-open combustor corresponds 

to the critical region from an intrinsic instability perspective. However, for an open-
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open combustor, no such minima exist. For an open-open combustor, as 
q

x  increases, 

the maximum n -threshold increases, indicating that the small values of 
q

x  in an 

open-open combustor correspond to the critical region from an intrinsic instability 

perspective. Moreover, unlike closed-open combustors, in open-open combustors, for 

very large   we have a huge number of simultaneously unstable intrinsic modes. In 

the closed-open combustor neutral curves, multiple intrinsic modes can indeed 

become unstable, but there exists no such   domain where large numbers of intrinsic 

modes are unstable. The cross-section jump across the flame holds the potential to 

reduce n -threshold in an open-open combustor, unlike in a closed-open combustor. 

In contrast, the temperature jump was found to always enhance the n -threshold for 

an open-open combustor. In a closed-open combustor, temperature jump can lower 

the n -threshold for some  .  

The intrinsic-acoustic mode coupling scenario is identical for both closed-open and 

open-open combustors. In both types of combustors, we see the same four types of 

coupling between intrinsic and acoustic modes, depending on which mode becomes 

unstable (or remains asymptotically stable) at which frequency. The only difference is 

in the coupling behavior in the main neutral loop of instability. As mentioned in the 

beginning of this section, in a closed-open combustor we have intersection points 

between neutral curve segments: 0
c

i
    and 

c

i
   , and 0

c

i
    and

c

i
    , in 

the extreme right neutral loop. Thus, the coupled mode can have a frequency shift of 

  . In an open-open combustor, intersection exists only between neutral curve 

segments  0
c

i
    and 

c

i
    in the extreme right neutral loop. Thus, the coupled 

mode exhibits a frequency shift of only   . 
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Figure 4.26: Contour plot of  g   for 3.0   ms and 2.1n  , 2
q

x L . Notation and 

other parameters are the same as in Fig.2. The domain of instability is marked in yellow. Blue 

squares and orange triangles represent the acoustic and intrinsic modes respectively. 

 

 

Figure 4.27: Contour plot of  g   for 3.0   ms and 1.0n  , 
q

x = 0.20 m. Notation and 

other parameters are the same as in Fig.2. The domain of instability is marked in yellow. Blue 

squares and orange triangles represent the acoustic and intrinsic modes respectively. 

 

We noted in the concluding section of chapter 2, that under certain conditions in a 

closed-open combustor, the intrinsic mode can be unstable, while all the acoustic 



246 
 

modes decay simultaneously, thus driving the combustion instability. The same 

scenario can appear in an open-open combustor as well. Figures 26 and 27 illustrates 

two such cases using contour plots of  g  . In figure 26, the flame is at the middle 

of the combustor, that is 2
q

x L . We see that for 2.1n   the first three intrinsic 

modes are unstable, whereas the acoustic modes remain on the neutral curve of 

stability, just like they do when 0n  . Another example is shown in figure 27, where 

the flame resides at 
q

x = 0.20 m. We find that for 1.0n  , the first intrinsic mode is 

unstable, whereas all other modes (acoustic/intrinsic) are either stable or on the 

neutral curve. These two scenarios are examples of when an intrinsic mode, instead of 

an acoustic mode, drives the combustion instability. 

Thus, indeed, there exist some similarities and dissimilarities in flame intrinsic 

instability within closed-open and open-open combustors. But in general, it cannot be 

said which combustor profile is more critical from an intrinsic flame instability 

perspective. Using the guidelines prescribed above, it must be checked on a case-by-

case basis for all the flame and combustor parameters. 

4.8. Conclusions 

In the current chapter, we have analytically studied the features of flame intrinsic 

modes within a 1-D open-open combustor, making use of linear n   heat release. 

We also mathematically described the intrinsic-acoustic mode coupling scenario for 

the open-open combustor. Similar to § 6 of chapter 3, we derived a quadratic equation 

able to describe intrinsic-acoustic mode coupling. Our main observations made in this 

chapter can be summarized as follows: 
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i.      In the asymptotic limit of small n , the behavior of intrinsic modes for any 1-D 

combustor setup was found to be the same as that of a closed-open combustor. In this 

limit, there exists an infinite number of strongly decaying intrinsic modes. Their 

frequencies depend only on the time lag and mode number 
i

m  of the intrinsic mode 

and are independent of other combustor and flame parameters. This mode number is 

independent of the mode number of the acoustic mode. In the limit of small n , the 

decay rate of the intrinsic modes does not depend on the mode number, is inversely 

proportional to   and is logarithmically dependent on n . For small n , intrinsic 

modes do not feel the combustor boundaries and are independent of the flame 

location. 

ii.        For any  , each intrinsic mode becomes unstable above a certain threshold of 

n . The threshold depends on the combustor parameters and flame position, shown by 

equation (21). The neutral curve for each intrinsic mode consists of some 

combination of neutral curve segments 0
c

i
   , 

c

i
    and 

c

i
    , where 

c

i  is 

the discrepancy between the real part of the frequency on the neutral curve and the 

real part of the frequency in the limit of small n . The neutral curve has two principal 

segments, one large loop on the extreme right (for larger time lag) and a series of 

smaller loops of reducing   scale on the left (for smaller time lag). In contrast to a 

closed-open combustor, the large neutral loop on the extreme right only consists of 

neutral segments 0
c

i
    and 

c

i
   (except at the middle of the combustor, where 

n -threshold has a constant value of 2). The neutral curve segment 
c

i
     does not 

feature there. The nature of the smaller neutral loops is exactly the same as that of a 

closed-open combustor. On the neutral curve, the intrinsic mode completely 

decouples from the combustor environment and the instability frequency is 
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independent of the flame location and the combustor parameters. Like in a closed-

open combustor, in this case, the intrinsic modes (and the acoustic modes that get 

coupled to them) can become unstable at a much lower n -threshold than for a flame 

in an infinite tube (Hoeijmakers et al. (2014)). We have also developed an explicit 

analytical formula to predict the growth rates for each intrinsic mode. The neutral 

curves and the growth rate predictions have been successfully verified by numerics. 

iii.         The intrinsic flame instabilities have been described analytically as a function 

of combustor parameters like the flame location, the cross-section and temperature 

jumps across the flame. Just as for a closed-open combustor, here as well, by 

manipulating the system parameters like cross section jump, temperature jump, and 

flame location, combustor designers can increase the 
th

in  and decrease the growth 

rate, hence preventing/controling the intrinsic mode instability. 

iv.         We have studied the scenario when intrinsic and acoustic modes come close 

to each other in the complex frequency plane. In the context of intrinsic-acoustic 

mode coupling, the four possible types have been identified: 

1. In the first type of coupling, the coupled intrinsic mode (BI) becomes unstable at 

a frequency predicted by 0
c

i   , whereas the coupled intrinsic mode (BA) becomes 

unstable at a frequency predicted by either 
c

i    or 
c

i    .  

2. In the second type of coupling, the coupled intrinsic mode (BA) becomes unstable 

at a frequency predicted by 0
c

i   , whereas the coupled intrinsic mode (BI) 

becomes unstable at a frequency predicted by either 
c

i    or 
c

i    .  

3. In the third type of coupling, the coupled intrinsic mode (BI) becomes unstable at 

0
c

i   , whereas the coupled intrinsic mode (BA) tends to remain asymptotically 



249 
 

stable at a frequency corresponding to  1
cos 0

q
k x   or   1

0sin qk x L  , as per 

equation (16).  

4. In the fourth type of coupling, the coupled intrinsic mode (BA) becomes unstable 

at 0
c

i   , whereas the coupled intrinsic mode (BI) tends to remain asymptotically 

stable at a frequency corresponding to  1
cos 0

q
k x   or   1

0sin qk x L  , as per 

equation (16).  

Clearly, in the first two types of coupling, we have two unstable frequencies in each 

case. In contrast, for the last two types of coupling, we have only one unstable 

frequency, while the other mode stays linearly stable for large n . All these types of 

coupling can also be seen in a closed-open combustor. The regions of the neutral 

curve close to the intersection of lines 0
c

i    and 
c

i   , in the large neutral 

loop on the extreme right, show strong evidence of coupling. Moreover, the neutral 

loops on the left-hand side of the stability plots (corresponding to small   values), 

manifest strong coupling, because the neutral curve segments  0
c

i   , 
c

i    and 

c

i     stay very close to each other. Near the neutral curve intersection points, 

coupled modes invariably change their identity, thus changing the type of coupling. 

We have verified our result with numerics and the accuracy level of prediction by our 

analytical result is found to be good. The prediction is quite accurate as we stay close 

to the neutral line of stability, where the actual intrinsic-acoustic mode coupling takes 

place. However, as we try to capture the locus of the coupled intrinsic mode (BI) far 

away from the neutral curve, the accuracy level of the analytical model drops. 

The present work was focused on the analytic study of linear intrinsic flame modes 

using the simplest n   model of a flame in an open-open combustor. The n   

model itself could be improved in many respects. A particular improvement could 
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take into account the randomly distributed delay (e.g. Schuermans et al. (2004), 

Alemela et al. (2010)). A study of nonlinear dynamics of intrinsic modes and their 

nonlinear interactions with acoustic modes in an open-open combustor should be 

taken care of thoroughly. We can introduce mean flow in our analysis to identify how 

this affects the stability behavior of the intrinsic modes. The interaction between 

intrinsic modes of very low frequency and hydrodynamic modes should also be a 

topic of interest. 
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Chapter 5 

 

Flame intrinsic instability in combustors with 

imperfect end conditions 

 

5.1. Introduction 

In chapters 2 and 4, intrinsic modes in closed-open and open-open systems were 

examined under the assumption of perfect end conditions of the combustors. This is a 

mere approximation of a practical system. In reality, it is not necessarily a good 

approximation to say that the reflection coefficients are equal to 1 , as it was 

assumed in chapters 2 and 4. Reflection coefficients are complex, meaning the 

reflection coefficient has a dissipative and a reactive part associated with it. The 

energy losses at the ends of the combustor account for the dissipative component in 

the reflection coefficient. A perfectly rigid or closed end will reflect the incident 

waves totally, without acoustic losses [Munjal (1987)], meaning the assumption made 

in chapter 2 and 3 for the closed end reflection coefficient being +1 is a valid one. 

However, this assumption is not so accurate for the open end. Acoustic radiations 

from the end of a duct will be impeded by the atmosphere, a phenomenon represented 

by a parameter called the radiation impedance, which is a complex number for any 

open duct [Munjal (1987)]. For cylindrical ducts and normal acoustic modes, the 
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exact solution for the radiation impedance has been provided by Levine and 

Schwinger (1948). The exact expression for reflection coefficient of the open end of a 

circular duct with radius 
0r  is given as [Munjal (1987)], 

    2 2 1

0 01 0.5 exp 1.2tanR k r kr    , 

where, k  is the wave number. Clearly, the reflection coefficient for an open end is 

nearly unity and the phase angle is slightly less than  , meaning that the coefficient 

is not exactly -1 as we assumed in chapters 2-4. This assumption is valid only when 

the non-dimensional number 
0kr  (also known as the Helmholtz number) is small. 

This is, indeed, a low-frequency assumption. The reflection coefficient is a frequency 

dependent parameter in most of the cases. This feature of the reflection coefficient of 

open ends is illustrated by figure 1 (i) [Rammal and Lavrentjev (2008)]. Figures (a) 

and (b) correspond to 100 0C, whereas figures (c) and (d) correspond to 400 0C for the 

temperature of the flow. The figure also offers an experimental validation of the 

theoretical model by Munt (1977, 1990) for calculating reflection coefficients of open 

ends. Figure 1 (i) shows that at zero frequency, the amplitude is exactly 1 and the 

phase is exactly  , as is also visible from the equation above. With the increase of 

frequency, the amplitude and phase of the reflection coefficient reduce, as can be seen 

from figure 1 (i).  

The reflection coefficient also changes for ducts with mean flow inside and can 

exceed unity (e.g., Munjal (1987)). The reason for this was explained as the 

strengthening of the forward-going acoustic wave pressure in the duct by a factor 

 1 M  and weakening of the backward-traveling acoustic wave pressure in the duct 

by a factor  1 M , where M  represents the mean flow Mach number. Apart from 

that, the reflection coefficient is dependent on flow temperatures within the duct. It 
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was reported by Rammal and Lavrentjev (2008) that the amplitude of the reflection 

coefficient reduces with an increase of temperature, as can be seen from figure 1 (i) 

(c), and does not become greater than 1 at Helmholtz numbers up to 0.8 when mean 

flow is neglected. Hence, we can see that reflection coefficients are frequency 

dependent quantities and they have a dependence on flow velocities and flow 

temperatures within the duct.  

 

Figure 5.1 (i): (a, c) Amplitude and (b, d) phase of reflection coefficients of an open end vs 

non-dimensional Helmholtz number (
0kr , where k  is the wave number and 

0r  is the radius 

of the circular duct) [Rammal and Lavrentjev (2008)]. Figures (a) and (b) correspond to 100 
0C, whereas figures (c) and (d) correspond to 400 0C for the temperature of the flow. Green 

circular dots are the experimentally measured values, whereas the thin dotted line is the 

theoretical prediction by Munt’s model [Munt (1977, 1990)]. 

 

Information on the reflection coefficient of a dump combustor with a flame can be 

found from the work of Poinsot et al. (1986). Figure 1 (ii) represents some sample 

results of reflection coefficients measured between 400 Hz and 1000 Hz (this 
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frequency is below the first cut-off frequency of the transverse mode; thus, the plane 

wave assumption is valid). In a cold flow condition without a flame, as can be found 

from the panel (a), the reflection coefficient attains two minima at 500 Hz and 800 Hz 

respectively. When actual combustion is taken care of, the reflection coefficient in the 

low-frequency range (between 400 Hz and 600 Hz) increases and the minima is 

shifted to a higher frequency at around 800 Hz. Thus, the flame zone is found to 

respond actively to the incident pressure waves and the flame response amplitude 

even exceeds the incident pressure amplitude (as visible from the panel (b)). It was 

also reported as an observation from the experiment (supplemented by acoustic 

energy balance calculations) that measurement of the reflection coefficient, under 

stable conditions, offers a diagnostic mechanism for the prediction of combustion 

instability.  

 

Figure 5.1 (ii): Reflection coefficient of a dump combustor (a) without and (b) with 

combustion [Poinsot et al. (1986)]. In panel (a) two different air flow rates of 80 g/s and 90 

g/s are represented by the cross and square dots respectively. In panel (b) two different air 

flow rates of 78.5 g/s and 76.6 g/s are represented by the cross and square dots respectively. 
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Therefore, the assumption that the reflection coefficient at the open end is -1 and at 

the closed end is +1 is a strong idealization. Besides, in practical gas turbine 

combustor assembly there is a compressor upstream and a turbine downstream of the 

combustion chamber, which significantly affects the reflection coefficients at the ends 

[Silva et al. (2014), Lamarque and Poinsot (2008)]. In this chapter we address this 

matter and consider the effect of non-ideal or perturbed [Nayfeh (1993)] closed and 

open boundary conditions of the combustion chamber on the intrinsic mode 

instability. 

The aim of this chapter is twofold: (i) to check whether a small perturbation of the 

end conditions can drastically alter the analytical results of chapter 2 and 4; (ii) to 

derive a modified overall picture of intrinsic mode behavior, corrected by considering 

the non-perfect end boundary conditions. Thus, we first perform the robustness check 

of our analytical solutions. It is necessary to check whether the solution clears the 

robustness test for all flame locations and other combustor parameters (like cross 

section and temperature jump). Upon establishing the robustness, the idealized end 

conditions can be corrected by explicitly accounting for imperfectness of the 

boundary conditions where possible.  

The chapter is organized as follows: in § 2, we check the robustness of the analytical 

description of flame intrinsic instability for a closed-open system, derived in chapter 

2. In § 3, we examine the robustness of the open-open combustors studied in chapter 

4. Finally, in § 4, we make concluding remarks. 
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5.2. Flame intrinsic instability for closed-open combustors with 

imperfect end conditions 

The dispersion relations (2.20) to (2.23) are a result of the ideal case of perfectly 

closed-open boundary conditions of the combustor. In reality, imperfections in the 

boundary conditions have an effect on equations (2.3) and (2.4). We will verify 

whether the perturbation [Nayfeh (1993)] of our analytical results, due to the 

imperfections in the boundary condition, is scaled linearly with the imperfections or 

not.  

5.2.1. Robustness of the instability frequencies and neutral curves 

When  1 0R  and 
2
( )R L  are retained in the original form in equations (2.3) and 

(2.4), we derive the generalized dispersion relation as shown in equation (4.1). The 

real and imaginary parts of equation (4.1) are written as (4.3) and (4.4) on the neutral 

curve. Now, we consider a case when the end condition of the combustor is not 

perfectly closed-open and in that case, we can write the reflection coefficients for the 

ends as, 

 1 1 10 1R r  , and  2 2 21R L r   ,                           (5.1, 2) 

Where, 1  and 2  are two small parameters characterizing smallness of the deviation 

from ideal closed-open end condition, 1r  and 2r  are order one complex quantity, 

specified by the experimental data. 1r  and 2r  can further be written as 

   1 1 1e mr R r iI r   and     2 2 2e mr R r iI r  . Replacing  1 0R  and  2R L , as per 

equation (1) and (2), and neglecting the higher order terms, equations (4.3) and (4.4) 

reduce to the following forms on the neutral curve, 
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Both equations (3) and (4) provide explicit expressions for 
th

in . Equating 
th

in  from 

equations (3) and (4) leads to the following governing equation for 
c

i , 
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The 
c

i  in equation (5) is assumed to have two constituent parts. The first part is ,0

i

c , 

which is the deviation of the instability frequency on neutral curve from the 

frequency in the limit of small n ,  for the case of perfect closed-open boundary 

conditions (as given by (2.31)). The second part is i , due to the imperfections 

present in the boundary conditions (that is 1 1r  and 2 2r ). Therefore 
c

i  can be given 

as,  

,0
i

c

i
c

i    .                                                 (5.6) 

Using (6), 0 c

i i i     can also be restructured as 0,
ii i

t    , where 0,

i

t  can be 

explained as the instability frequencies on the neutral curves for a combustor with 

perfectly closed-open end conditions, 

0, 0 ,0

i i i

t c    .                                                (5.7) 

With the help of equations (6) – (7), the trigonometric expressions in equation (5) can 

be expanded in the following way, assuming smallness of i , 
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        1 0, 1 0, 1 1 0, 1cos cos cos sini i i i i

t t t

i              , 

        2 0, 2 0, 2 2 0, 2cos cos cos sini i i i i

t t t

i              , 

      
       

1 2 0, 1 2

0, 1 2 1 2 0, 1 2

sin sin

sin cos

i i

t

i i i

t t

i      

        

   

    
, 

      
       

1 2 0, 1 2

0, 1 2 1 2 0, 1 2

sin sin

sin cos

i i

t

i i i

t t

i      

        

   

    
. 

 (5.9 a, b, c, d) 
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Where,  1 2   and  1 2   are deduced as the following, in terms of combustor 

parameters from equation (2.18), 

 1 2 22 qx L c     and 1 2 12 qx c    .                     (5.10) 

After further simplification of equation (5), by making use of (8) and (9), we arrive at 

the following compact expression for i , 
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Making use of  1 2   and  1 2  , as given by (10), and  , 1  and 2 , as given 

by (2.28), equation (11) can be rewritten in the following form, depicting the effect of 

all combustor parameters like flame location, cross-section jump, and temperature 

jump, 
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.    (5.12) 

It is clear from (12) that the perturbation at the corresponding ends of the combustor 

perturbs ,0
i
c  linearly in 1  and 2 . This conclusion holds when cross-section jump is 

also taken into consideration. However, the effect of temperature jump introduces 

intricate effects of 1c  and 2c  into trigonometric expressions of (12), making it 



260 
 

difficult to analyze the equation further. For simplicity, we assume 
1 2

S S  and 

1 2
T T , and thus 

1 2
c c c  , 

1 2
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 .            (5.13) 

Once i  is obtained, using (13), 
c

i can be found in the following way, as 

,0

i

c m   , 

c

ii m
 


  .                                            (5.14) 

Where, m =-1,0,+1, as explained in § 4.1 of chapter 2. The instability frequency for a 

combustor with non-ideal closed-open end conditions can be evaluated as a 

straightforward deduction from equation (14) and making use of 0 c

i i i    . 

Further, making use of (14), the threshold of n  for non-ideal end conditions can be 

obtained from equation (3),  
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where 1G  and 2G  are given by the following expressions, 

           

        

        

        

1 1 1 1 2

1 1 2

,0 1 1 2

1 1 2

1 sin 1 sin

sin sin cos

cos cos sin

sin sin sin

i

th

c

c

c

i i

i i

i i

i i

i

i

i

G Im r Im r

Im r

n Im r

Re r

     

     

     

     

    

 
 
 

    
 
  
 

, and 



261 
 

           

        

        

        

2 2 1 2 2

2 1 2

,0 2 1 2

2 1 2

1 sin 1 sin

sin sin cos

cos cos sin

sin sin sin

i

th

c

c

c

i i

i i

i i

i i

i

i

i

G Im r Im r

Im r

n Im r

Re r

     

     

     

     

    

 
 
 

    
 
  
 

. 

Here, 
,0th

in  is the threshold of  for ideal closed-open end conditions. In the limiting 

case, 
1 2

0   , from (14) and (15) we retrieve expressions (2.31) and (2.33) for a 

combustor with perfectly closed-open boundary condition. According to (15), the 

effect of 1  and 2  on 
th

in is linear in 1  and 2 , hence, the effect is indeed small for 

small 1  and 2 . The same observation can be made from equations (11)-(13), which 

depicts that, to leading order, the correction due to imperfection of the end conditions 

depends linearly on 1  and 2 , any O( 1 ) or O( 2 ) imperfection in the end conditions 

perturbs the solution only linearly and hence only slightly. Therefore, we can 

conclude that our analytical solutions for the closed-open combustor are robust in 

general. However, there are some exceptions in this. As per equation (13), there are 

two cases when the solutions fail to retain their robustness. Those cases are as 

follows: 

i. When     0, 0,cos cos 2i i

t t qL c x L c   , i.e. the flame lies close to one of the 

ends of the combustor. As per equation (15), the corresponding 
th

in  goes to infinity, 

for this case. 

ii. When on the neutral curve, we attain a condition of  0,cos 0i

t L c  . 

Regarding the first case, we note that when 
th

in  goes to infinity, the notion of 

robustness will be irrelevant for that case, as the system is expected to behave as 

n



262 
 

linearly stable for all n . For the two aforementioned cases, when the analytical 

solutions derived in chapter 2 lose their robustness, they need to be studied separately 

in greater detail. In the present context, we refrain from this task. 

A detailed explanation of the effect of the perturbation on acoustic end conditions of 

the combustor on neutral curves of intrinsic modes can be provided with the help of 

figures 2-7. In these figures, the blue line represents the neutral curve for the second 

intrinsic mode with ideal closed-open end conditions. The elliptical dots represent the 

area of the neutral curve when the robustness of analytical solution (15) does not 

hold. Panel (a), (b) and (c) in each figure represent three different cases when the 

linear perturbation is assumed on the acoustic end condition of the closed end, the 

open end and both the ends respectively. Thus, for panel (a), 2 0  , for panel (b) 

1 0   and for panel (c), both 1  and 2  are non-zero. 
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Figure 5.2: Neutral curves on the n   plane for the second intrinsic mode (
i

m =1) of a 

closed-open combustor based on equation (15). Continuous blue lines represent the neutral 

curves for 1 =0.0 and 2 =0.0. Dashed-dotted green lines represent the neutral curves for (a) 

1 =0.1, 1r =1.0, 2 =0.0; (b) 1 =0.0, 2 =0.1, 2r =1.0; and (c) 1 =0.1, 1r =1.0, 2 =0.1, 2r

=1.0 respectively. Elliptical dots represent the areas on the neutral curves where the analytical 

solution (15) ceases to be robust. The parameters are the same as in figure 2.8. 
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In figures 2-4, linear real perturbation ( 1  and/or 2 ) of 0.1, 0.3 and 0.5 respectively 

is assumed. The dashed-dotted green line depicts the perturbed solution. A common 

feature of all these figures is that the neutral segment corresponding to 0
i
c    is 

very robust, particularly in between the intersection points of the neutral segments. In 

most of the cases, they tend to overlap with the neutral segments 0
i
c   , 

corresponding to the closed-open combustor with ideal end conditions and hence are 

hardly distinguishable. A massive perturbation of 50% does not change this feature, 

as evident from figure 4. However, the same is not true for the neutral segments 

i
c     attributed to the coupling of intrinsic-acoustic modes. The neutral segment 

i
c     is found to lose its robustness at 30% perturbation, as can be seen from 

figure 3. A possible reason is that equation (15) is a derivative of single mode 

perturbation analysis of intrinsic modes. However, in the coupled domain, we have 

two solutions and hence both solutions need to be perturbed simultaneously to arrive 

at the exact solution. Hence, the neutral segments 
i
c     are much less robust in 

contrast to the neutral segment 0
i
c   . In all these figures, panels (a) and (b) 

demonstrate more robustness compared to panel (c), as in panel (c), both end 

conditions are perturbed simultaneously. 
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Figure 5.3: Neutral curves on the n   plane for the second intrinsic mode (
i

m =1) of a 

closed-open combustor, based on equation (15). Dashed-dotted green lines represent the 

neutral curves for (a) 1 =0.3, 1r =1.0, 2 =0.0; (b) 1 =0.0, 2 =0.3, 2r =1.0; and (c) 1 =0.3, 

1r =1.0, 2 =0.3, 2r =1.0 respectively. Notations and other parameters are the same as in 

figure 2. 
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Figure 5.4: Neutral curves on the n   plane for the second intrinsic mode (
i

m =1) of a 

closed-open combustor, based on equation (15). Dashed-dotted green lines represent the 

neutral curves for (a) 1 =0.5, 1r =1.0, 2 =0.0; (b) 1 =0.0, 2 =0.5, 2r =1.0; and (c) 1 =0.5, 

1r =1.0, 2 =0.5, 2r =1.0 respectively. Notations and other parameters are the same as in 

figure 2. 
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In figures 5-6, linear imaginary perturbation ( 1  and/or 2 ) of i *0.1 and i *0.3 

respectively is assumed. The dashed-dotted green lines correspond to the neutral 

curves due to i *0.1 and i *0.3 perturbations, whereas the dashed-dotted red lines 

correspond to the neutral curves due to i *0.1 and i *0.3 perturbations 

respectively. The neutral segments due to i *0.1, and i *0.3 perturbations tend to 

move to the left, whereas the neutral segments due to i *0.1 and i *0.3 

perturbations tend to move to the right, compared to the neutral curve for ideal end 

conditions. As a general observation, it can be claimed that the imaginary 

perturbation has a more significant impact on all neutral segments than the real 

perturbation of end conditions. Nevertheless, the shifts in the neutral segments 

i
c     are more prominent. In figure 7, linear complex perturbation ( 1  and/or 

2 ) of  1 i *0.1 and  1 i *0.3 is assumed. This case  is indeed a combination of 

figures 2 and 5, where we see a shift of the neutral curves either to the left or right, 

due to the imaginary part of the perturbation and loss of robustness in the 
i
c    , 

due to real part of the perturbation. However, the neutral segment 0
i
c    is found to 

retain robustness in between the point of intersections of the neutral segments 

0
i
c    and 

i
c    . 
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Figure 5.5: Neutral curves on the n   plane for the second intrinsic mode (
i

m =1) of a 

closed-open combustor, based on equation (15). Dashed-dotted green lines represent the 

neutral curves for (a) 1 =0.1, 1r = i *1.0, 2 =0.0; (b) 1 =0.0, 2 =0.1, 2r = i *1.0; and (c) 1

=0.1, 1r = i *1.0, 2 =0.1, 2r = i *1.0 respectively. Dashed-dotted red lines represent the 

neutral curves for (a) 1 =0.1, 1r = i *1.0, 2 =0.0; (b) 1 =0.0, 2 =0.1, 2r = i *1.0; and (c) 

1 =0.1, 1r = i *1.0, 2 =0.1, 2r = i *1.0 respectively. Notations and other parameters are 

the same as in figure 2. 
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Figure 5.6: Neutral curves on the n   plane for the second intrinsic mode (
i

m =1) of a 

closed-open combustor, based on equation (15). Dashed-dotted green lines represent the 

neutral curves for (a) 1 =0.3, 1r = i *1.0, 2 =0.0; (b) 1 =0.0, 2 =0.3, 2r = i *1.0; and (c) 1

=0.3, 1r = i *1.0, 2 =0.3, 2r = i *1.0 respectively. Dashed-dotted red lines represent the 

neutral curves for (a) 1 =0.3, 1r = i *1.0, 2 =0.0; (b) 1 =0.0, 2 =0.3, 2r = i *1.0; and (c) 

1 =0.3, 1r = i *1.0, 2 =0.3, 2r = i *1.0 respectively. Notations and other parameters are 

the same as in figure 2. 
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Figure 5.7: Neutral curves on the n   plane for the second intrinsic mode (
i

m =1) of a 

closed-open combustor, based on equation (15). Dashed-dotted green lines represent the 

neutral curves for (a) 1 =0.1, 1r =1.0+ i *1.0, 2 =0.0; (b) 1 =0.0, 2 =0.1, 2r =1.0+ i *1.0; 

and (c) 1 =0.1, 1r =1.0+ i *1.0, 2 =0.1, 2r =1.0+ i *1.0 respectively. Dashed-dotted red lines 

represent the neutral curves for (a) 1 =0.1, 1r =1.0 i *1.0, 2 =0.0; (b) 1 =0.0, 2 =0.1, 2r

=1.0 i *1.0; and (c) 1 =0.1, 1r =1.0 i *1.0, 2 =0.1, 2r =1.0 i *1.0 respectively. Notations 

and other parameters are the same as in figure 2. 
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Hence, the assumption of complex perturbation on the acoustic ends of a closed-open 

combustor proves that the neutral segment 0
i
c    is very robust in between the 

point of intersection of neutral segments, whereas the neutral segments 
i
c    , 

due to coupling, tends to lose robustness for small linear perturbations. This case 

needs to be treated carefully as part of future studies. 

5.2.2. Robustness of the growth rate 

The instability frequencies and the neutral curves for intrinsic modes are found to be 

quite robust, except for a few situations as highlighted in the previous section. The 

robustness of the growth rate can be checked in this context as well.  

For generalized boundary conditions  1 0R  and 
2
( )R L , the growth rate expression 

can be obtained by perturbing the generalized dispersion relation (4.1) using the 

condition: as 
1th

i in n n  , 
0 1

i i    . The dispersion relation (4.1) can be 

subtracted from the resultant equation, giving rise to a perturbed version of the 

generalized dispersion relation (4.1). The explicit expression for growth rate, in terms 

of generalized boundary conditions, can be given as, 
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(5.16) 
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For obtaining the specific expression for the growth rate of intrinsic modes in a 

closed-open combustor with non-ideal end conditions (1, 2), we substitute the 

expressions for  1 0R  and 
2
( )R L , as per (1, 2) in (16), and arrive at the following 

expression,  
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.                  (5.17) 

1H  and 2H  are given as follows, where 1,0
i  represents the growth rate for a 

combustor with ideal closed-open end conditions,
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. 

Clearly, equation (17) tells us that any linear perturbation 1  and 2  will only perturb 

the growth rate expressions linearly. However, the only restriction to this statement 

appears due to the lack of robustness of 
th

in  under certain conditions, as can be seen 

from the denominator of expression (17). The robustness of the growth rate 

expression (17) can further be proved using figure 8 for 
i

m =1 at  = 6 ms. The 
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continuous blue line shows the growth rate for a combustor with ideal end conditions 

and the dashed-dotted green line represents the growth rate for complex perturbations 

of acoustic boundaries given by, (a) 1 =0.2, 1r =1.0+ i *1.0, 2 =0.2, 2r =1.0+ i *1.0 

and (b) 1 =0.4, 1r =1.0+ i *1.0, 2 =0.4, 2r =1.0+ i *1.0. The two lines almost overlap 

each other for 8 (a) and shift slightly for 8 (b) (which represents a massive 40% 

perturbation of the boundary conditions), verifying that the solution (17) of the 

growth rate is indeed robust for this case. However, this is not true for all the cases. 

Figure 2 will show us, that for  = 6 ms, we have an uncoupled solution for the 

intrinsic mode corresponding to 0
i
c    and this neutral segment is also found to be 

very robust, as explained in § 2.1. Thus, the robustness of the neutral curve ensures 

the robustness of the growth rate in this case. However, when the neutral curves are 

not robust, particularly near and within the domain of intrinsic-acoustic mode 

coupling, equation (17) loses robustness. As mentioned before, this specific case of 

the robustness of the analytical solution of coupling needs to be treated with further 

care in future. 

In this section, we have checked the robustness our analytical solutions of the 

intrinsic flame instability for a closed-open combustor, developed in chapter 2. We 

found that the solutions are generally quite robust when considering all flame and 

combustor parameters, except for two cases. The first case is when the flame is 

located near one of the ends of the combustor and the second is when, on the neutral 

curve, we attain a condition of . Further, the neutral curve for the 

uncoupled solution of the intrinsic mode is very robust, whereas the robustness study 

of intrinsic-acoustic mode coupling scenario calls for further attention in future. 

 0,cos 0i

t L c 
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(a) 

 

(b) 

Figure 5.8: Growth rate for 
i

m =1 at  = 6 ms for a closed-open combustor, based on 

equation (17). The continuous blue line represents the growth rate for 1 =0.0 and 2 =0.0. 

The dashed-dotted green line represents the growth rate for (a) 1 =0.2, 1r =1.0+ i *1.0, 2

=0.2, 2r =1.0+ i *1.0 and (b) 1 =0.4, 1r =1.0+ i *1.0, 2 =0.4, 2r =1.0+ i *1.0. The instability 

domain is marked in yellow. The parameters of the system are the same as in figure 2. 
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5.3. Flame intrinsic instability for open-open combustors with 

imperfect end conditions 

An identical exercise to § 2 can also be conducted for a combustor with open-open 

end conditions. In chapter 4, we performed an analysis of a combustor with ideal 

open-open end conditions. In this section, we perturb the end conditions of the 

combustor slightly and evaluate the perturbed instability frequency and n -threshold 

for this new scenario. We also compare the results of § 2 with the current section and 

identify the salient similarities and differences.  

5.3.1. Robustness of the instability frequencies and the neutral curves 

When the end conditions of the combustor are not perfectly open, we can write the 

reflection coefficients as, 

 1 1 10 1R r   , and  2 2 21R L r   ,                    (5.18, 19) 

Where, 1  and 2  are two small parameters, representing a deviation from the ideal 

end condition. Replacing  1 0R  and  2R L , as per equation (18) and (19), the 

equations (4.3) and (4.4) reduce to the following forms on the neutral curve, 
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Both equation (20) and (21) provide explicit expressions for 
th

in . Equating 
th

in , from 

equations (20) and (21), leads to the following governing equation for 
c

i , equivalent 

to (5), 
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The 
c

i  in equation (22) is assumed to have two parts, as mentioned in equation (6). 

Making use of equations (6) – (9), and accounting for small i , 
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t t t
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t t t

i              , 

in equation (22), we can arrive at an identical equation for i , similar to (11), for an 

open-open combustor, 
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 .  (5.23) 

Making use of  1 2   and  1 2  , as given by (10), and  , 1  and 2 , as given 

by (2.28), equation (23) can be rewritten in the following form, depicting the effect of 

all combustor parameters like flame location, cross-section jump, and temperature 

jump, 
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.   (5.24) 

Again, it is clear from (24) that linear perturbations 1  and 2 , at the ends of the 

combustor, perturb ,0
i
c  linearly. The inclusion of cross-section jump into the 

equation does not change this scenario. However, the effect of temperature jump 

across the flame introduces intricate effects of 1c  and 2c  into the trigonometric 
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expressions of (24), making it difficult to analyze this equation further. As a matter of 

simplification, (24) can be visualized in a compact form if we assume 
1 2

S S  and 

1 2
T T , and thus 

1 2
c c c  , 

1 2
  ; 
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 .            (5.25) 

The corresponding 
th

in  can be obtained from equation (21) as follows, 
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Where 1G  and 2G  are given by the following expressions, where, 
,0th

in  is the 

threshold of n  for ideal open-open end conditions, 
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. 

Equation (23-25) suggests that the fluctuation of instability frequency ( i ), due to 

imperfections in the boundary conditions, depends linearly on the fluctuation 

parameters 1  and 2 . Thus, the 1-D analytical solutions prescribed in chapter 4 for 
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combustors with open-open end conditions are generally quite robust. However, just 

as for a closed-open combustor, in the case of an open-open combustor, there also 

exist a couple of situations where the analytical solutions lose their robustness. These 

are as follows: 

i. When     0, 0,sin sin 2i i

t t qL c x L c   , i.e. the flame lies close to 
qx L . As 

per equation (26), the corresponding 
th

in  goes to infinity for this case. The analytical 

solutions retain their robustness when the flame is situated close to 0qx  , as can be 

seen from (25) and (26). Clearly, this aspect is different from the first case mentioned 

in § 2.1. 

ii.  When on the neutral curve, we attain a condition of  0,sin 0i

t L c  . 

Similar to the previous section, we can say that when 
th

in  goes to infinity, the aspect 

of robustness will be irrelevant, as the system is expected to behave as linearly stable 

for large n . Thus, the first case can be treated as not so important for practical 

combustors. For these two cases, when the solutions lose their robustness, they should 

be studied separately in greater detail. 

A detailed explanation of the effect of the perturbation on the acoustic end conditions 

of the open-open combustor on the neutral curves of the intrinsic modes can be 

provided with the help of figures 9-11. In these figures, the blue line represents the 

neutral curve for the second intrinsic mode with ideal open-open end conditions. The 

elliptical dots represent the area of the neutral curve when the robustness of the 

analytical solution (26) does not hold anymore. Panel (a), (b) and (c) in each figure 

represent three different cases when the linear perturbation is assumed for the 

acoustic end condition of the open end on the left of the flame, open end of the right 
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of the flame and both the ends respectively. Thus, for panel (a), 2 0  , for panel (b) 

1 0   and for panel (c) both 1  and 2  are non-zero. 

In figure 9, linear real perturbation ( 1  and/or 2 ) of 0.1 is assumed. The dashed-

dotted green line depicts the perturbed solution. Similar to the closed-open 

combustor, in this case, the neutral segment corresponding to 0
i
c    is very robust. 

They tend to overlap with the neutral segments 0
i
c    for an open-open combustor 

with ideal end conditions and hence, are hardly distinguishable. Selection of higher 

values of perturbations ( 1  and 2 ) has further proved (not shown here) that the 

neutral segments 
i
c    , attributed to the coupling of intrinsic-acoustic modes, 

tend to lose their robustness. A possible reason for this phenomenon is provided in § 

2.1 for a closed-open combustor. In all these figures, panels (a) and (b) demonstrate 

more robustness compared to panel (c), as in panel (c), both end conditions are 

perturbed simultaneously. 
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Figure 5.9: Neutral curves on the n   plane for the second intrinsic mode (
i

m =1) of an 

open-open combustor, based on equation (26). Continuous blue lines represent the neutral 

curves for 1 =0.0 and 2 =0.0. Dashed-dotted green lines represent the neutral curves for (a) 

1 =0.1, 1r =1.0, 2 =0.0; (b) 1 =0.0, 2 =0.1, 2r =1.0; and (c) 1 =0.1, 1r =1.0, 2 =0.1, 2r

=1.0 respectively. Elliptical dots represent the areas on the neutral curves where analytical 

solutions (26) cease to be robust. The parameters are the same as in figure 4.2. 
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Figure 5.10: Neutral curves on the n   plane for the second intrinsic mode (
i

m =1) of an 

open-open combustor, based on equation (26). Dashed-dotted green lines represent the 

neutral curves for (a) 1 =0.1, 1r = i *1.0, 2 =0.0; (b) 1 =0.0, 2 =0.1, 2r = i *1.0; and (c) 1

=0.1, 1r = i *1.0, 2 =0.1, 2r = i *1.0 respectively. Dashed-dotted red lines represent the 

neutral curves for (a) 1 =0.1, 1r = i *1.0, 2 =0.0; (b) 1 =0.0, 2 =0.1, 2r = i *1.0; and (c) 

1 =0.1, 1r = i *1.0, 2 =0.1, 2r = i *1.0 respectively. Notations and other parameters are 

the same as in figure 9. 



283 
 

 

Figure 5.11: Neutral curves on the n   plane for the second intrinsic mode (
i

m =1) of an 

open-open combustor, based on equation (26). Dashed-dotted green lines represent the 

neutral curves for (a) 1 =0.1, 1r =1.0+ i *1.0, 2 =0.0; (b) 1 =0.0, 2 =0.1, 2r =1.0+ i *1.0; 

and (c) 1 =0.1, 1r =1.0+ i *1.0, 2 =0.1, 2r =1.0+ i *1.0 respectively. Dashed-dotted red lines 

represent the neutral curves for (a) 1 =0.1, 1r =1.0 i *1.0, 2 =0.0; (b) 1 =0.0, 2 =0.1, 2r

=1.0 i *1.0; and (c) 1 =0.1, 1r =1.0 i *1.0, 2 =0.1, 2r =1.0 i *1.0 respectively. Notations 

and other parameters are the same as in figure 9. 
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In figure 10, linear imaginary perturbation (  and/or ) of *0.1 is assumed. The 

dashed-dotted green lines correspond to the neutral curves due to *0.1 

perturbation, whereas the dashed-dotted red lines correspond to the neutral curves due 

to *0.1 perturbation. The neutral segments due to *0.1 perturbation tend to 

move to the left, whereas the neutral segments due to *0.1 perturbation tend to 

move to the right, relative to the neutral curve for ideal end conditions. This 

observation is consistent with a closed-open combustor. Also, the imaginary 

perturbation has a more significant impact on all neutral segments than the real 

perturbation of end conditions. In figure 11, linear complex perturbation (  and/or 

) of *0.1 is assumed. This case is a combination of figures 9 and 10, where 

we see a shift of the neutral curves either to the left or right, due to the imaginary part 

of the perturbation and the loss of robustness in the neutral segment , due 

to the real part of the perturbation. However, the neutral segment  is found to 

retain its robustness. 

Hence, the assumption of complex perturbation on the acoustic ends of an open-open 

combustor proves that the neutral segment 0
i
c    is very robust, whereas the 

neutral segments 
i
c    , due to coupling, tend to lose robustness for small linear 

perturbations. 

5.3.2. Robustness of the growth rate 

The instability frequencies and the neutral curves for intrinsic modes are found to be 

quite robust, except for a few situations which are highlighted in the previous section. 

Similar to § 2.2, the robustness of the growth rate can be checked as well.  

1 2 i

i

i i

i

1

2  1 i

i
c   

0
i
c  
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For obtaining the specific expression for the growth rate of intrinsic modes in an 

open-open combustor with non-ideal end conditions (18, 19), we plug the expressions 

of  1 0R  and 
2
( )R L , as per (18, 19), into (16) and arrive at the following 

expression,  
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.               (5.27) 

1H  and 2H  are given as follows, where 1,0
i  represents the growth rate for a 

combustor with ideal open-open end conditions,
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Clearly, equation (27) tells us that any linear perturbation 1  and 2  will only perturb 

the growth rate expressions linearly. However, the only restriction to this statement 

appears due to the lack of robustness of 
th

in  under certain conditions, as can be seen 

from the denominator of expression (27). The robustness of growth rate expression 

(27) can further be proved using figure 12 for 
i

m =1 at  = 9 ms. The continuous blue 
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line shows the growth rate for a combustor with ideal end conditions and the dashed-

dotted green line represents the growth rate for complex perturbations of acoustic 

boundaries given by, (a) 1 =0.2, 1r =1.0+ i *1.0, 2 =0.2, 2r =1.0+ i *1.0 and (b) 1

=0.4, 1r =1.0+ i *1.0, 2 =0.4, 2r =1.0+ i *1.0. The two lines almost overlap each other 

in figure 12 (a) and are shifted slightly in 12 (b) (which depicts 40% perturbation of 

the boundary conditions), verifying that in this case, the solution (27) of the growth 

rate is indeed robust. However, this is not true for all the cases. Figure 9 tells us that 

for  = 9 ms, we have uncoupled solution for the intrinsic mode corresponding to 

0
i
c    and this neutral segment is also found to be very robust, as explained in § 

3.1. Thus, in this case, the robustness of the neutral curve ensures the robustness of 

the growth rate. However, when the neutral curves are not robust, particularly near 

and within the domain of intrinsic-acoustic mode coupling, equation (27) will lose 

robustness.  

In this section, we have checked the robustness of our analytical solutions for intrinsic 

flame instability for an open-open combustor, which were developed in chapter 4. We 

found that the solutions are generally quite robust for all but two cases, when 

considering all the flame and combustor parameters. The first case is when the flame 

is located near  and the second case is when, on the neutral curve, we attain a 

condition of . Furthermore, the neutral curve for the uncoupled 

solution of the intrinsic mode is very robust, whereas the robustness study of the 

intrinsic-acoustic mode coupling scenario calls for further attention in future. 

qx L

 0,sin 0i

t L c 
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(a) 

 
(b) 

Figure 5.12: Growth rate for 
i

m =1 at  = 9 ms for an open-open combustor, based on 

equation (27). The continuous blue line represents the growth rate for 1 =0.0 and 2 =0.0. 

The dashed-dotted green line represents the growth rate for (a) 1 =0.2, 1r =1.0+ i *1.0, 2

=0.2, 2r =1.0+ i *1.0 and (b) 1 =0.4, 1r =1.0+ i *1.0, 2 =0.4, 2r =1.0+ i *1.0. The instability 

domain is marked in yellow. The parameters of the system are the same as in figure 9. 

 

5.4. Conclusions 

In this chapter, we have analyzed the effect of imperfect end conditions on the 

analytical results of instability frequency, n -threshold and the growth rate of flame 
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intrinsic modes, obtained for a closed-open and an open-open combustor in chapters 2 

and 4 respectively. The analytical results described in chapter 2 and 4 have been 

found to be generally quite robust, except the following two cases: 

i.  When the flame lies close to one of the ends of the combustor for a closed-open 

combustor and when the flame lies near the end corresponding to 
qx L  for an open-

open combustor. However, when the flame resides near the end corresponding to 

0qx   for an open-open combustor, the analytical solutions retain their robustness.  

ii.   When on the neutral curve, we attain a condition of  0,cos 0i

t L c   for a 

closed-open combustor and  0,sin 0i

t L c   for an open-open combustor, where 0,

i

t  

is the instability frequency on the neutral curves for a combustor with perfect end 

conditions. 

For the first case, we can say that when 
th

in  goes to infinity, the notion of robustness 

must be revisited, as the system is expected to behave as linearly stable for large n . 

The domain of coupling is found to be not so robust, as slight perturbations of the end 

conditions significantly perturb the neutral segments 
i
c    . The reason for this 

is that the robustness analysis of the current chapter is based on the perturbation of 

the analytical solution for a single intrinsic mode. Whereas, in the coupled intrinsic-

acoustic domain, we need to simultaneously perturb two solutions to obtain more 

accurate results. However, this lies in the scope of future work. Remarkably, the 

neutral segment corresponding to 0
i
c    and the corresponding growth rate are 

found to be very robust between the points of intersections of the neutral curve 

segments. In fact, in this chapter, it has been shown that a significant 50% 

perturbation of the real part of the reflection coefficients of either end of the 
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combustor does not alter the neutral curve segment corresponding to 0
i
c    

significantly. The robustness of the analytical solution is not expected to hold for 

perturbations of such a magnitude. The exact position of the neutral curve must be 

obtained numerically for the actual boundary condition in each case. However, for a 

surprisingly wide range of perturbation magnitudes, a good perturbed approximation 

for the neutral curve can be obtained. Nonetheless, except for the situations 

mentioned above, the analytical solutions are found to be fairly robust for all flame 

locations and combustor parameters like cross-section jump. It requires a dedicated 

effort to derive analytical corrections to the “ideal” solutions for the cases when the 

solutions are not robust.  The effect of temperature jump on the robustness of the 

analytical solution is found to be an intricate matter to analyze. This aspect also needs 

to be dealt with in further studies. Equations (12, 24) derived here provide a good 

starting point. 
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Chapter 6 

 

Conclusions and outlook 

 

6.1. Conclusions 

Within the framework of the simplest 1-D model of a combustor with n   heat 

release, a new overall picture of linear flame intrinsic modes has been analytically 

derived. The main results and conclusions of the work can be summarized as follows: 

(i)              The outstanding question of the emergence of intrinsic flame modes within 

the framework of the n   model of the combustor has been clarified. It has been 

shown that for any nonzero n  and   there is always an infinite number of intrinsic 

modes present for any combustor, whatever the end boundary conditions. These 

modes are strongly damped for small n  and, to leading order in n , the real parts of 

the frequencies have been found:     Re 2 1i im    , where 
im  is the mode 

number. These frequencies are determined solely by   and thus, do not depend on 

any characteristics of the combustor and the flame position. This is in contrast with 

the acoustic modes, whose frequencies are primarily determined by the combustor 

length, L (for example,  (2 1) 2
a a

m c L   (for 
a

m =0, 1, 2…) for a closed-open 

combustor).  For small n , the strongly decaying nature of these modes make it 

practically impossible to detect them in combustion systems. This feature also makes 
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these modes insensitive to the flame location and the specific properties of the 

combustor end boundary conditions.  

(ii) It has been shown, that with an increase of n , the intrinsic modes for any 

  have a tendency to become unstable at some threshold value of n . The threshold 

depends on the characteristics of the combustor and the flame position. The key 

finding is the factorization of intrinsic modes in the exact transcendental dispersion 

relation for closed-open and open-open combustors, which means that, on the neutral 

curves, the intrinsic modes do not depend on the combustor parameters. We have 

called this new phenomenon “decoupling of intrinsic modes”. The fact that the 

frequencies of marginally unstable intrinsic modes are determined solely by  , 

suggests that there are natural oscillations in the subsystem fuel injector-flame, 

determined by the ratio of the distance from the fuel injector to the flame front and 

the flow velocity. The exact solutions of the dispersion relation on the neutral curve 

allow us to exactly find the neutral curve. On the n   plane, the neutral curve for 

each intrinsic mode consists of a combination of neutral curve segments 0
c

i
   , 

c

i
    and 

c

i
    , where 

c

i  is the discrepancy between the real part of the 

frequency on the neutral curve and the real part of the frequency in the limit of small 

n . The overall geometry of the instability domain bounded by the neutral curve has 

been revealed and proved to be quite complicated. It is bounded from below by an 

infinite sequence of loops, decreasing in their width in   with a decrease of  . 

Because of the loop width tending to zero, it would be close to impossible to capture 

such instability domains numerically. For the growth/decay rates of the intrinsic 

modes, the explicit dependence on all parameters of the combustor (the length, the 

cross-section and temperature jumps, the flame location) have been derived and 

verified by numerics. On this basis, by manipulating the system parameters such as 
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cross section jump, temperature jump, and flame location, one can decrease/increase 

the threshold 
th

in  and increase/decrease the growth rate, hence instigating/preventing 

the intrinsic mode instability. It has been demonstrated that the intrinsic modes can be 

dominant for some values of  , for example, for   when all acoustic modes decay.    

(iii) A new type of combustion instability has been discovered and described 

analytically. The instability is caused by intrinsic-acoustic mode coupling. Four 

principal types of coupling between intrinsic and acoustic modes have been 

identified. The intrinsic-acoustic mode coupling instability scenario occurs when 

acoustic pressure and flame heat release are out of phase with each other (that is, the 

Rayleigh index is negative), which forces the acoustic mode to decay for small values 

of n  and makes it impossible for classical combustion instability to occur. The 

coupled acoustic mode attains all the features of an intrinsic mode. It has been 

suggested to refer to such modes as “coupled intrinsic” and to distinguish their 

provenance, i.e. their identity for small n  we introduce an identifier (born acoustic or 

born intrinsic). In general, the larger values of n -thresholds correspond to the 

coupled intrinsic mode (born intrinsic) and the smaller values correspond to the 

coupled intrinsic mode (born acoustic). Thus, for a weak flame with low interaction 

index, even though the intrinsic mode does not become unstable on its own, it might 

trigger the instability of one of the acoustic modes of close frequency. However, close 

to the intersection of the neutral curve segments, coupled modes invariably change 

their identity. A quadratic equation model that qualitatively captured the mode 

coupling and a quartic equation model that captured the phenomenon quantitatively 

with a good accuracy have been developed to describe coupling for a closed-open and 

open-open combustor. The analytical results have been validated by numerics.  
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(iv) The effect of imperfect end conditions on the analytical predictions of 

instability frequency, neutral curves and growth rates of flame intrinsic modes for a 

closed-open and an open-open combustor has been examined analytically and 

numerically. The analytical results have been found to generally be quite robust, 

except the following two cases: (a) when the flame lies close to one of the ends of the 

combustor for a closed-open combustor and (b) when the flame lies near the end 

corresponding to 
qx L  for an open-open combustor. However, when the flame 

resides near the end corresponding to 0qx   of an open-open combustor, the 

analytical solutions retain their robustness. The neutral curve segment corresponding 

to 0
c

i    and the corresponding growth rates are found to be particularly robust. 

6.2. Scope of future work 

The analytical work presented in the thesis focuses on the analytical description of 

intrinsic flame modes within a closed-open and open-open combustor. We have been 

able to develop a comprehensive description of combustion instability, that is, the 

instability frequencies, the neutral curve on the n   plane and the growth rate. The 

adopted analytical approach was based on the widely used n   model [Crocco and 

Cheng (1956)] for the flame description. We have proved that the presence of 

acoustic boundaries of a combustor can instigate the combustion instability. The 

intrinsic modes do couple with the combustor acoustic modes and thus, eventually 

give rise to extra unstable modes, i.e. in addition to those that would have been 

expected in the established theory based on a positive Rayleigh index. The coupled 

acoustic modes behave exactly like intrinsic modes, suggesting, that in fact, we have 

more potentially unstable intrinsic modes in a combustor, compared to the number of 

intrinsic modes found in the limit of small n . Thus, an overall picture of all types of 
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linear instabilities (the classical acoustic modes, the intrinsic modes studied here and 

coupled acoustic-intrinsic modes) for the simplest model of a combustor has been 

developed. Apart from providing answers to outstanding questions, the work also 

raised new questions. Here we discuss some possible extensions of the current work.  

The main finding of the work – the factorization of the intrinsic modes in closed-open 

and open-open combustors could be exploited in many models capturing more 

realistically certain aspects of the practical combustors.   

The n   model, which provided the basis for the present study, can be improved by 

taking into account the randomly distributed delay. This has been successfully done 

for acoustic modes (e.g. Schuermans (2003), Sattelmayer (2000), Polifke et al. 

(2001)), but not yet for the intrinsic ones. The n   model assumes a fixed time lag 

between the velocity perturbation and heat release rate perturbation of a flame, which 

is rarely the case in real combustors. In a real combustion system, the time lag 

between velocity perturbation and flame heat release rate perturbation is not fixed. It 

is much better to treat it as a distributed quantity. This distribution is due to three 

main factors (Schuermans et al (2004)): 

i. distributed fuel injection (in the case of multi-point fuel injection system); 

ii. distribution in the flame geometry (the flame does not lie on a single axial plane 

which forms the basis of the n   flame models);  

iii.  flow turbulence. 

Thus, a standard n   model with a single fixed   assumes that the combustor has a 

single injector, the flame lies on a single axial plane and the flow is laminar. There 

were attempts to develop more realistic models by considering the distributed 

character of the time lag within the framework of a slightly modified n   model. In 
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this vein, a Gaussian distribution of time lags in the form 
2 21

2
i

e
   

 was used by 

Schuermans (2003) to describe the three aforementioned effects, where   is the 

mean time lag and   is the standard deviation of time lags. As per a Gaussian 

distribution, for high frequencies and a large standard deviation, the equivalence ratio 

fluctuations at the flame front decay to zero. In other words, the distribution acts like 

a low pass filter. An earlier work of Sattelmayer (2000) shows that the distribution of 

the time lag also controls the combustion instability, apart from the mean time lag. 

Distribution of the time lag was shown to weaken the feedback loop between 

combustor acoustics, fuel concentration, and flame heat release fluctuations, thus 

resulting in combustion stabilization. Staggered fuel injectors or various kinds of 

injectors in combustors are used as a technique to control combustion instability [e.g., 

Straub and Richards (1998), Berenbrink and Hoffmann (2000)]. Most of the previous 

work was concerned with identifying the effect of the time lag distribution on the 

acoustic modes. It was found that the standard deviation,  , acts as an acoustic 

damper and hence inhibits acoustic mode instability. In a recent study, Bomberg et al. 

(2015) made use of a distributed time lag flame model to find the flame intrinsic 

modes in a laminar flame holder stabilized and turbulent swirl stabilized combustors. 

Hence, an extension of the n   model into a distributed time lag model is highly 

desirable and, crucially, it is possible within the framework of the same analytical 

approach. The analytical description of the combustors with non-ideal end boundary 

conditions can be further improved if the perturbation approach is applied both to 

isolated intrinsic modes and the coupled acoustic-intrinsic ones. The coupled domain 

calls for further detailed study based on linear perturbations of the two modes.  

Once the clarity within the framework of linear models is achieved, a study of 

nonlinear dynamics of intrinsic modes and their nonlinear interactions with acoustic 
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modes will be a natural next step, opening a vast new field. We can also introduce 

mean flow into our analysis to examine how it affects the stability behavior of the 

intrinsic modes. The interaction between intrinsic modes of very low frequency and 

hydrodynamic modes is also of great fundamental and practical interest. It has been 

shown that the neutral curve of the first intrinsic mode lacks the segment 
c

i     

for an ideal closed-open combustor. However, they might exist for non-ideal 

boundary condition and also have really low-frequency instability. This issue must be 

explored. Instability of this type and the corresponding coupling with hydrodynamic 

instability is a promising direction of future work. A detailed study should also be 

made in the low time lag domain, where small scale neutral loops exist in close 

proximity to each other. As the operating parameter domains of combustors generally 

correspond to small time lags, a detailed study in this domain could lead to important 

insights. Comprehensive experimental validation of the analytical models presented 

in this thesis is certainly needed, which is likely to generate new theoretical questions.  
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APPENDIX I 

 

AI.1. Intersection of the neutral curve segments 0
c

i    and 
c

i     

In § 4.2 of chapter 2, it was shown that the intrinsic mode neutral curve on the 

n   plane is made of the segments corresponding to ±
c

i    and 0
c

i   . Here 

we will analytically find the locations of the intersection points of these segments. At 

the point of intersection of the neutral curve segments corresponding to  
c

i    and 

0
c

i   , the threshold values of n  belonging to different segments are equal by 

definition, that is, 

,(0) ,( )th th

i in n


 .                                               (AI.1) 

Assuming, for simplicity, that there are no cross-section and temperature jumps, the 

flame is located at 2
q

x L  and making use of (2.34), equation (1) reduces to, 

 

 

 

 

 

2cos 2 1 2cos 2 2

cos 2 1 1 1 cos 2 2

i i

i i

L L
m m

c c

L L
m m

c c

 

 

 

 

   
    

   
   

      
   

.                    (AI.2) 

The further simplified equation reads; 

           cos 2 1 cos 2 2 2cos 2 1 cos 2 2 0i i i im X m X m X m X       , 

where  
L

X
c




        .  (AI.3) 

For particular 
i

m , equation (3) reduces to a polynomial equation. For example, for 

i
m =1 the equation leads to the following polynomial equation, 
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  7 5 4 3 264cos 112cos 8cos 52cos 8cos 3cos 1 0g X X X X X X X        .       

(AI.4) 

Of course, (4) can always be solved numerically. Figure 1 shows a plot of  g X  

against  . Its main feature is the presence of multiple solutions. The multiple 

solutions are due to the presence of multiple instability loops and hence multiple 

intersection points of 
c

i    and 0
c

i   . Selection of the right solution is based 

on observation. The first and second points of intersection of 
c

i    and 0
c

i   , 

as shown in figure 2.8 (a), correspond to the first and second largest values of   

(excluding from consideration   ), as suggested by figure 1. These values here 

are  =14.75 and 5.425 ms respectively (see figure 1). The first largest value 

corresponds to the first intersection that takes place below the neutral curve, as shown 

in figure 2.10. Higher intersection points of 
c

i    and 0
c

i    can be found as 

the third largest, fourth largest values of   and so on, from figure 1. 

 

Figure AI.1:  g X  vs time lag for 
i

m =1. Inbox shows blow-up for small  . Other 

parameters are the same as in Fig.2.8 


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Thus, it is possible to track the point of intersection of 
c

i    and 0
c

i    on the 

neutral curve using analytical formula (3) for 2qx L . This approach is not 

restricted to a particular value of 
qx  and can be applied to any 

qx . The numerical 

solution of (3) predicts multiple solutions. Hence, for any intrinsic mode, multiple 

intersection points of neutral curve 
c

i    and 0
c

i    exist and could be found in 

a similar manner. The intersection points corresponding to 0
c

i    and 
c

i     

can be found in the same way. We stress that this approach provides exact results for 

the location of the intersection points. However, the price for finding the exact 

position of the intersection points is the need to solve the polynomial equation of high 

degree, which requires resorting to numerics. A handier alternative approach is to find 

a simple approximate formula for the intersections avoiding to resort to numerics, as 

mentioned in the § 4.2.3 of chapter 2 when dealing with asymptotic analysis. 
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APPENDIX II 

 

AII.1. Local maxima of 
th

in  for neutral curves 

In § 4.2 of chapter 2 (also in Appendix I, § AI.1) we have found the value of 
th

in  at 

the intersection of two segments of the neutral curve. However, it might also be 

interesting to have an idea of the maximal/minimal values of 
th

in  corresponding to 

each segment. We can, at this point, attempt to find the values of   for which 
th

in  

attains its local extremum. According to (2.34), 
th

in
 
can be positive only when cos  

is negative, where    2 1im L c    . Thus, to ensure positivity of 
th

in , we 

require, 

   cos 2 1 0im L c   
 

.                                        (AII.1) 

This produces an upper and lower bound on the values of   for  which a solution 

with positive 
th

in
 
exists, where m  is a positive integer and can have only odd values 

to satisfy (1). 

         2 2 1 2 1 2 2 1 2 1i iL c m m L c m m      .             (AII.2) 

Differentiating both sides of equation (2.34) for 0
c

i   , we get the following 

equation: where     and  is a constant, defined as  2 1im L c   , 

   
2 22sin 1 cos

th

idn d       .                            (AII.3) 
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The necessary condition for the extrema of 
th

in , 
th

idn d =0, requires sin 0  . This 

generates an explicit solution for  : m  , where m , according to (2), is a 

positive odd integer. For these values of m , cos 1   . Thus, the value of   

corresponding to an extremum is, 

   2 1 1im L c m  .                                      (AII.4) 

Differentiating both sides of equation (3) with respect to  , we get 

   
22 2 2 42 cos 1 cos

th

id n d      .                         (AII.5) 

Clearly, 
2 2 0

th

id n d   for cos 1   . Thus, the values of   specified by (4) 

correspond to maxima. According to (2.34) the maximum value of 
th

in  is 1. 

Hence, we have derived an analytical criterion for the positivity of 
th

in  values and 

explained the specific feature of the neutral curve that shows multiple confined loops 

of instability. We have also derived a maximum value for 
th

in  and the corresponding 

value of  . The maximal value of 
th

in , for the segment of the neutral curve 

corresponding to 0
c

i   , comes out as 1. Similarly, for the neutral curve segments 

corresponding to 
c

i    and 
c

i    , it can be shown that the minimum value 

for this case is -1 and hence these segments of the neutral curve do not have any 

maxima. 
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APPENDIX III 

 

AIII.1 Asymptotics for large   

As figure 2.11 suggests, the largest loop of the neutral curve shifts towards larger 

values of  , with an increase of the mode number. In this section, we will find 

asymptotics of 
th

in  for the large time lag  , that is  >> L c . The large   

assumption provides a way to explicitly find the intersection points for the neutral 

curve segments 0
c

i
    and 

c

i
     belonging to the largest loop, as shown in 

figure 2.8 (a). At the intersection, 
th

in  simultaneously satisfies equations for the 

neutral curve segments 0
c

i
    and 

c

i
    , given by (2.34). We begin our analysis 

with the left intersection: 0
c

i
    and 

c

i
   . On equating 

th

in  for 0
c

i
    and 

c

i
   , from (2.34), we get  

         2cos cos 1 2cos 1 cos          ,           (AIII.1) 

where,  ,   and normalized time lag 
n  are: 

 2 1i
nm    , 1 n   and 

n c L   .                  (AIII.2) 

We are now focusing on large   asymptotics, i.e.  , in (2), will be treated as a small 

parameter. Using this smallness of  , equation (1) can be expanded in  . On 

retaining just zero and linear terms we get, 

2
2cos sin 2cos 2 sin cos 0          ,                  (AIII.3) 
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which immediately yields an explicit expression for  , 

    2
2cos 2cos sin 1 2cos       .                   (AIII.4) 

We can consider   as a sum of a zero order term, 
0 , and a correction  , 

0
    . To leading order in  ,  =0 and equation (4) becomes, 

2

0 0
2cos 2cos 0   .                                      (AIII.5) 

Equation (5) yields two solutions for 
0 : 

0
cos 0,1  . The 

0
cos =1 root corresponds 

to 
n
  . Hence, we choose the second solution 

0
cos 0  , which leads to the 

explicit solution for 
0 :   0 ,0

2 1 2m


 


  , where  ,0
m


= 0,1,2,… The 

integer  ,0
m


 is the intersection point number of the neutral curve segments 

0
c

i    and 
c

i   , with  ,0
m


=0 being the rightmost intersection point, while 

i
m  is the mode number. Since not all intersections occur at positive n ,  ,0

m


 

cannot take all integer values. This limitation on  ,0
m


 will be discussed below. 

Inserting the two-term expansion for  , in the form 
0

    , into (4), we get, 

          2

0 0 0 0
2cos 2cos sin 1 2cos               . (AIII.6) 

Due to the presumed smallness of  , we assume cos 1   and sin  . Also, 

using    ,0

0
sin 1

m    , for 
0

cos 0  , we apply the following trigonometric 

identities in equation (6):      ,0
0cos 1

m
       and 

     ,0
0sin 1

m
     . On neglecting the higher order terms in  , we obtain a 
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simplified expression for  , from (6), of 2   . Using this form,  

  0 ,0
2 1 2m


 


   and equation (2), we rewrite 

0
     as follows, 

         
,0

2 1 2 1 2 1 2i
n nm m


  


    .                   (AIII.7) 

After further simplification, we arrive at an explicit expression for the normalized 

time lag, 
n , written as 

 ,0n 



, to stress the fact that it corresponds to the 

intersection point of 0
c

i    and 
c

i   , valid for large  , 

         ,0 ,0
4 3 2 1

i

n
m m

 
 

 
   .                       (AIII.8) 

Using (2.34), 
th

in  at the intersection can be found as, 

 

  

  
,0

,0

,0

1
2cos 2 1 1

2 4

1
cos 2 1 1 1

2 4

i

i

th

i
n

m
m

m
m















 

  

   
   

   
    

    
    

.               (AIII.9) 

To ensure positive 
 ,0th

i
n


, we require      ,0

cos 2 1 2 1 1 4 0i
m m





   , 

thus  ,0
m


 will be restricted to odd integers, i.e.  ,0

2 1m j


 . The even 

intersection points should be discarded from consideration. On substituting 

 ,0
2 1m j


  into (9), we obtain the simplified form, 

 
   

,0
2sin 3 8 sin 3 8 1

i i

th

i
n m m


 


    .               (AIII.10) 

This shows how 
 ,0th

i
n


 tends to zero as 

i
m  increases. Further, for 

i
m >>1,

 sin 3 8 3 8i i
m m  . Thus, for large 

i
m , (10) reduces to,  
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 
   

,0
6 3 8 2 8 3

i i

th

i
n m m


   


   .                (AIII.11) 

Similar consideration of the intersections of the neutral curve segments 0
c

i    and 

c

i     yields,  

       ,0 ,0
4 1 2 1

i

n
m m

 
 

 
   .                       (AIII.12) 

Here  ,0
m


 is an integer indicating the intersection point number of the neutral 

curve segments intersections 0
c

i    and 
c

i    , with  ,0
m


=0 being the 

rightmost intersection point, while 
i

m  is the mode number. However, in contrast to 

the previous case, to ensure the positive value of 
 ,0th

i
n


, we require 

     ,0
cos 2 1 2 1 1 4 0i

m m





    . Hence, the value of  ,0
m


 will be 

restricted to even integers, i.e.  ,0
2m j


 , whereas the odd intersection points 

should be discarded from consideration for this case. Equivalent to (10), we can 

arrive at an identical expression for 
th

in  in this case as well, 

 
   

,0
2sin 8 sin 8 1

i i

th

i
n m m


 


    .                 (AIII.13) 

This expression quantifies how 
 ,0th

i
n


 tends to zero as 

i
m  increases. A comparison 

of (10) and (13) shows that 
   ,0 ,0th th

i i
n n

  
 . Thus, for this case, the intersection 

points of neutral curve segments correspond to lower values of 
th

in  compared to the 

previous case. For large mode numbers, we arrive at an expression for 
 ,0th

i
n


 which 

is identical to (11),  
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 
 

,0
2 8

i

th

i
n m


 


 .                              (AIII.14) 

Figure 1 shows how the values of   and 
th

in  at the intersection (given by (8), (10), 

(12) and (13) respectively) depend on the mode number. The plots are for two 

particular intersection numbers:  ,0
m


=1 and  ,0

m


=0. As mentioned previously, 

intersection number  ,0
m


=0 corresponds to negative 

th

in . Hence, we made plots for 

the intersection,  ,0
m


=1.  In figure 1(a), the region above   = L c  is marked in 

light gray to indicate the extremely optimistic interpretation of the domain of validity 

for the large   assumption (recall, the true condition of validity is  >> L c ). The 

values of   at the intersection of the neutral curve segments increase as the mode 

number increases, while 
th

in  at the intersection decreases with   2 8 3
i

m    or 

  2 8
i

m    for high mode numbers.  

The figure can be also viewed from a different perspective. For any given , a 

straight horizontal line in figure 1(a) would give the numbers of the modes whose 

large loops overlap for such a combustor. The intersection of this horizontal line with 

the solid straight line gives, in the generic case, a non-integer . That is, this 

intersection falls in between the extreme right intersections of neutral curve segments 

for two subsequent modes. In § 4.4 of chapter 2, it is shown that only these two 

modes are important from the perspective of the prediction of maximal growth rate. 

All modes with numbers below these two modes are stable (for large ) for this , 

while all modes higher than these two, have a smaller growth rate. For example, 

=25 ms intersection of  and  falls between the third and fourth 



i
m

n 



0
c

i
  

c

i   
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intrinsic modes, whereas the intersection of  and  falls between the 

eighth and ninth intrinsic modes, as shown by the black dashed line projections on the 

horizontal axis of figure 1(a) and/or relation (8, 12). Hence, it is these two modes 

which are of crucial importance from the growth rate prediction perspective. Figure 

1(b) also shows that the value of  at the   intersection is always 

lower than  at the   intersection, in accordance with (10) and (13). 

Previously, considering figure 2.8, we noticed that for the second mode,  is 

minimal at the intersection of the  and  segments of the neutral 

curve for the extreme right loop in the curve. This proved to be the case for all modes. 

Here, in figure 1, we also plot the exact numerical solutions for segments of the 

neutral curve and manually track down the points of their intersections. The 

agreement between the “exact” numerical results, shown in figure 1 by circles and the 

analytical predictions is remarkable, given that the large  asymptotics is not 

formally applicable in the left corner of these figures. 

Thus, to avoid dealing with large , large  and large  regimes head on, 

we found a simple analytical description of the points of intersection of the segments 

of neutral curves  and , as well as  and , assuming 

large . At the intersection of neutral curve segments,  decreases with the 

increase of mode number. , at the intersection of  and , is always 

larger than  at the intersection of  and . The extreme right 

intersection point of  and  (that is, the intersection of the large loop 

0
c

i
  

c

i  

th

in 0
c

i
  

c

i   

th

in 0
c

i
  

c

i  

th

in

0
c

i
  

c

i   



 ,0
m

  ,0
m




0
c

i
  

c

i   0
c

i
  

c

i   


th

in

th

in 0
c

i
  

c

i  

th

in 0
c

i
  

c

i   

0
c

i
  

c

i   
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with =0, as given by (12)) corresponds to the lowest value of  for any fixed 

mode number. 

 

Figure AIII.1: (a) Values of   at the intersections of the neutral curve segments 0
c

i
    and 

c

i     vs mode number of the intrinsic mode. Solid red and dashed blue lines show the 

large   asymptotic solution (12, 8) for the intersections 0
c

i
   , 

c

i     (when  ,0
m



=0) and 0
c

i
   , 

c

i    (when  ,0
m


=1) segment, respectively. Circles (red and blue) 

show their numerical counterparts found by plotting (2.34) and manually tracking down the 

points of intersection of the corresponding neutral curve segments. The light gray colour 

represents the region where the large   assumption might be applicable. (b) 
th

in  at the 

intersections of neutral curve segments 0
c

i
    and 

c

i     vs mode number of the 

intrinsic mode. Solid red and dashed blue lines show the analytical solution (13, 10) for 

0
c

i
   ,  (for  ,0

m


=0) and 0
c

i
   , 

c

i    (for  ,0
m


=1) intersections 

respectively. Circles (red and blue) show their numerical counterparts in panel (a). The 

instability domain is marked in yellow. The first intrinsic mode is not shown. 

 

 

 

 

 

 ,0
m

 th

in

c
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APPENDIX IV 

 

AIV.1. Effect of flame location on 
i

thn  

In this section, the effect of flame location on the threshold value of n  is analyzed. 

An attempt will be made to identify the flame location within the resonator, for which 

th

in  attains its maximum or minimum. For simplicity, in this section, we assume no 

cross-section jump or temperature jump. For 
2 1

1S S  , 
2 1

1    and 
2 1

1c c  , 

the value of 
th

in , given by (2.33), takes the  form, 

 

 
    

0

0 0cos sin sin

cos

q q

c

c c

c

th

i i

i i i i

i

i

L

c
n

x x L

c c

   
 

 
 
 
 

         
      



.           (AIV.1) 

Note that the right-hand side of equation (1) is a symmetric function with respect to 

2qx L , as 
2 2q q

th thx L x x L x

i in n
   

  , for any x  satisfying 0 2x L  . Taking 

the logarithm of both sides of equation (1) leads to, 

     

    

0

0 0

log log log cos

log sin log sin

cos

q q

c cth

c c

i i i i

i i i i

L
n

c

x x L

c c

 

   

 
           

                    
            



 

,            (AIV.2)

 

And, on differentiating both sides of equation (2) with respect to q
x , we obtain, 



310 
 

    

    

0 0

0 0

2
sin

sin sin

q

q
q q

c c

th

th

c c

i i i i

i

i

i i i i

x L

c cd

dx x x L

c c

n
n

   

   

    
  

 
 

       
     

   

.                (AIV.3) 

At the extrema (maximum or minimum) of 
th

in  with respect to q
x , the necessary 

condition is 0qth

id dxn  , which can be reduced to 

  0 2
sin 0

q

i i
c x L

c

    
 

  

.                              (AIV.4) 

It is easy to see from it that the extremum flame location for 
th

in  is 2
q

x L . This is 

true for any   and any intrinsic mode. To find whether 
th

in  has a maximum or 

minimum at 2
q

x L , we analyze the second derivative with respect to q
x , 

 

   

2
2

2
2 2

0

0

2

cos sin
2

q

i i
c

i i i
c c

th th

i id

Ldx
c

c

n n 

   




 
 

 

.                        (AIV.5) 

 Hence, at 2
q

x L , for any   and any intrinsic mode for the segment 0
c

i   , 

2 2 0qth

id dxn  , while for 
c

i    and 
c

i    , 
2 2 0qth

id dxn  . Thus, 
th

in  has a 

local minimum at 2
q

x L on the 0
c

i    segment and a maximum for 
c

i    

and 
c

i     for any  . 

Therefore, 
th

in  indeed attains an extremum when the flame sits at the middle of the 

resonator. However, whether this extremum is a maximum or minimum depends on 

the segment of the neutral curve we focus on. For example, as mentioned previously, 
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at 2
q

x L , when 0
c

i   , 
th

in  reaches a minimum and when 
c

i    and 

c

i    , 
th

in  reaches a maximum.  

 

(a) 

 

(b)                                                                 (c) 

Figure AIV.1: Extremal flame location ( qx ) given by (8), as function of   and 
2

c , for the 

second intrinsic mode and 
1

c = 345 m/s. The parameters are the same as in figure 2.8. 

 

It is also possible to analytically find the extremal flame location considering the 

effect of cross-section and temperature jump. The threshold value (2.33) can be 

restructured as, 
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. (AIV.6) 

Differentiating 
th

in  with respect to qx  yields, 
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(AIV.7) 

The condition of its vanishing can further be written as, 

 
    

1 2 2 1

0 0
2 21 1
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c c
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.   (AIV.8) 

When 
1 2

c c , (8) reduces to (4). Equation (8) must be solved numerically to find the 

optimum flame location. Interestingly, equation (8) is independent of the cross-

section jump. Thus, the optimum flame location depends only on the temperature 

jump across the flame. Figure 1 shows a plot of the optimum flame location ( qx ) as a 

solution of (8), depending on   and 
2

c , for the second intrinsic mode. Figure 1 

shows that if we increase 
2

c , the optimum value of the flame location ( qx ) reduces, 

that is, it shifts slightly towards the closed end of the resonator. A similar observation 

can be made when we treat   as a parameter. It is important to mention that beyond 

certain 
2

c , for any  , we will not find any solution of (8). To understand why this 

happens, consider (8) for large 
2

c , then it reduces to 

 
1

0
2

sin 0
qc

i i
x

c

 


 
  
 

.                                  (AIV.9)  
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Clearly, this equation does not provide any solutions other than qx =0.  

Hence, it is possible to find the optimum flame location for which 
th

in  attains a 

maxima or minima, taking into account both the cross-section and temperature jump. 

Surprisingly, the optimum flame location proved to be independent of the cross-

section jump. As the temperature jump increases, the extremum flame location tends 

to shift towards the closed end of the resonator. 

AIV.2 Effect of temperature jump on 
th

in  

The effect of the temperature jump across flame can be identified on 
th

in  by 

considering equation (6) as a starting point. In this case, we will find extrema of 
th

in  

with respect to 
2

c  instead of 
2

T  and also make use of the relation between mean 

density jump and speed of sound jump across flame, as  2 1 2 1

2
c c   . 

Differentiating 
th

in  with respect to 
2

c , as per equation (6) (assuming 
1

c  and other 

parameters constant), provides us with the following expression, 

 

 

  

  

  

2

1

2

2

0

0

0

0

22

2 1 1

cot

cos
cos

cot

q

q

q

q

c

c

cth

c

c

i i

i i

i ii

i

i i

x L

c
x

c x Ldn
ec

dc c

x L

c

S

S c

 

 

 

 

 

 



 


 

  
  
     

  
                  

 
  
   

   

.    (AIV.10) 

Clearly, at extrema of 
th

in , 
2

0
th

i
dn dc  , meaning we have the following governing 

equation to define the extremum value of 
2

c , 
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.           (AIV.11) 

The only solution that equation (11) offers us is as follows, 

 
  

2

0
2

0
qc

i i
x L

c

  
 ,                               (AIV.12) 

suggesting that the extremum 
2

c  . Thus, 
th

in  does not have any extrema with 

respect to 
2 1

c c  or, in general, temperature jump across the flame. 

AIV.3 Effect of cross-section jump on 
th

in  

Effect of cross-section jump across the flame can also be evaluated like in § 2, by 

considering equation (6) as a starting point. Differentiating 
th

in  with respect to 
2S , as 

per equation (6) (assuming 
1S  and other parameters constant), provides us with the 

following expression, 
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 

.         (AIV.13) 

At extrema of 
th

in , 
2

0
th

i
dn dS  , meaning we have the following governing equation 

to define the extremum value of 
2S , 

     0 01 2cos cos 0
c c

i ii i       .                    (AIV.14) 
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Quite surprisingly, any 
2S  related term does not feature in equation (14). Hence, 

similar to the effect of temperature jump across the flame, we do not obtain any 

extrema of  
th

in  with respect to cross-section jump across the flame. 

In summary, a detailed parametric study in this section proves that 
th

in  has extrema 

with respect to flame location. However, there are no such extrema of 
th

in  with 

respect to temperature jump and cross-section jump across flame for a closed-open 

combustor. 
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APPENDIX V 

 

AV.1. Value of n  for which coupled intrinsic-acoustic modes attain 

the same frequency 

It has been mentioned, in § 2 of Chapter 3, that a gradual increase of n  from 0 brings 

the coupled modes closer in the complex frequency plane and, for a certain n , their 

frequencies are equal and start crossing each other. In this section, we make an 

attempt to analytically evaluate an expression of n , for which coupled modes have 

the same frequencies but different decay rates. 

We start with equation (3.29) and consider a special case of 
1 2

S S  and 
1 2

T T , thus 

1 2
c c c  , 

1 2
   and make use of A , B  and C  as per equation (3.33). When 

the frequencies of the coupled modes are equal and thus,    1 2
Re Re    , this 

will automatically imply that  2 24 4B AC A 
 

 is a negative real number and 

does not possess any imaginary component. Hence, the necessary condition for the 

equal frequency of the coupled modes,    1 2
Re Re     can also be 

interpreted as,  2 24 4 0B AC AIm   
. In that case, 

   1
2Re Re B A    and the  2 24 4B AC A  

 only contributes in the 

decay rate, which is different for the coupled modes. The further implication of the 

aforementioned condition,  2 24 4 0B AC AIm  
 

 is that, 
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       2 2 2 24 4 0Re B AC Im A Im B AC Re A    .     (AV.1) 

Further,  2 4Re B AC ,  2 4Im B AC ,  2Re A  and  2Im A  can be 

expanded into the following expressions, by making use of A , B  and C  as per 

equation (3.33), 
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.   (AV.2 a,b,c,d) 

Plugging the expressions  2 4Re B AC ,  2 4Im B AC ,  2Re A  and 

 2Im A , as per (2), into (1) leads to a simplified quadratic equation in n , 

2

1 1 1 0A B Cn n   ,                                       (AV.3) 

Where, 1
A , 1

B  and 1
C  are represented by the following simplified expressions, 
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     0 0

2 2
2

1 2 2

0 0 0

sin 2 cos 2
4

1 4
a

a amL L L
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c c c
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  

.        (AV.4) 

Indeed, equation (3) generates two solutions of n  for any case. In the case of the 

coupling of modes, one of them is positive and is of importance, the other solution is 

negative and thus does not carry any physical significance. For example, if we 

consider the test case explained in § 2 of chapter 3, we find two solutions of (3), n

=0.4435, -1.65. n =0.4435 is in fact a true physical solution verified by numerical 

analysis. The other solution is non-physical and thus should be discarded.  

We have derived a compact analytical expression to identify the n  for which coupled 

modes have an equal frequency. At this n , both coupled modes have the same 

frequency but different decay rates. This analytical expression has been checked 

against numerics and is found to work with reasonable accuracy. However, we need 

to clarify that because of intrinsic limitations of the quadratic equation (3.30), mainly 

away from the neutral line, equation (3) cannot be trusted all the time. This equation 

needs to be improved further based on quartic equation (3.35). This lies in the scope 

of future work. 
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