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Societal Summary

Noise is defined as the ‘undesired sound waves’ and usually considered as a
problem of comfort. However, in various industrial applications from power gen-
eration with gas turbines to heating with domestic burners, the undesired sound
waves produced by the combustion process (combustion noise) can threaten the ef-
ficiency of the system. This phenomenon is called ‘combustion instability’ and it can
even cause mechanical failures. However, combustion instability can be prevented
if the produced noise is suppressed by means of a sound absorber.

Micro-perforated plates (MPPs) are new-generation sound absorbers. They are
plates with very small perforations (holes) whose diameter is in the order of a mil-
limeter and the total area of the perforations is about 1% of the whole plate area.
When they are supported with a back cavity and tuned for a certain frequency range,
MPPs can efficiently absorb sound. They can be made of various materials from
metal to textile, therefore their area of utilization is quite wide. The freedom in
material choice makes them a promising candidate for sound absorption in hostile
environments like combustion systems, aircraft engine casings, domestic boilers,
car mufflers, etc. Nevertheless, since they are rather new, our knowledge about the
sound absorption mechanism of such plates is limited.

The study presented in this thesis aims to gain more insight about the physical
mechanism that causes sound absorption in micro-perforated plates so that more
efficient designs can be made with less cost. To achieve this goal, experiments and
computer simulations are performed. The effect of perforation size, plate thickness,
open area ratio to the whole plate, perforation edge profile, plate flexibility and
sound amplitude is investigated both experimentally and numerically. A numerical
design tool is proposed to allow the optimal design of a flexible MPP.

The outcomes of the study presented in the thesis can be used for designing
MPPs more accurately for increasing the efficiency of various industrial applications
prone to combustion noise.
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Chapter 1

Introduction

1.1 Motivation

The global mean temperature of our planet has risen by 1oC in the last 40
years [1, 2]. This is the record high value since it is being measured. This grim
situation will not get any better if necessary measures are not taken. Many coun-
tries, companies and institutions are aware of this problem and they are trying to
fight it with reducing the carbon emission in every way possible. Besides changing
the regulations to reduce the emissions, it is important to provide the knowledge to
the public to achieve this objective.

Combustion is everywhere: from a domestic boiler to a gas power plant whose
output power is hundreds of mega-watts. Reducing the emissions in such devices
requires increasing the efficiency. However, high efficiency combustors are more
sensible to combustion instabilities [3]. As shown in Figure 1.1, it is a self-sustaining
feedback mechanism in which the acoustics plays an important role. The heat re-
lease causes pressure perturbations, which generates acoustic waves. If the acoustic
pressure oscillations are in phase with the heat release oscillations, then the pertur-
bations are amplified at each cycle. In some cases this amplification can continue
until a mechanical failure takes place [4].

TANGO, Thermoacoustic and Aeroacoustic Non-linearities in Green Combustors
with Orifice Structures, is a European Commission funded project (FP7-PEOPLE-
ITN-2012) that has been set-up for producing the knowledge for more environmental-
friendly combustors. Its mission is defined as “To develop green combustion tech-
nologies and noise control methods in a gender-balanced, multi-disciplinary net-

1
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Figure 1.1: Feedback mechanism responsible from thermoacoustic instabilities.

work with academic and industrial collaboration, while also training highly skilled
scientists of the future” [5]. One way to avoid or reduce the combustion instabilities
is to break the feedback mechanism described in Figure 1.1. To achieve this, the
present thesis consider the use of passive control by micro-perforated plates.

1.2 Micro-Perforated Plates

Micro-perforated plates (MPPs) are plates with orifices whose diameter (dp) is
in the order of 1mm and the open area to the plate surface ratio, i.e. porosity (φ),
is in the order of 1% for such plates. Moreover, the thickness of an MPP (tp) is
typically chosen as comparable to its perforation diameter, tp/dp ∼ O (1). They are
used with a back cavity [6].

The distinction between an MPP and a regular perforated plate is made through
the definition of the Shear number Sh. It is the ratio of the perforation radius (dp/2)
to the oscillating viscous boundary layer (Stokes layer) thickness (

p

ν/ω), where
ν is the kinematic viscosity of the acoustic medium and ω = 2π f is the angular
frequency of the sound excitation [7]. When Sh= dp

p

ω/(4ν)' 1 for a perforated
plate, the oscillating viscous boundary layers occupy the entire perforation cross-
section, therefore it is considered as an MPP. Moreover, the small porosity value of
an MPP ensures that the particle velocity amplitude in the perforations becomes
large, resulting in a larger energy dissipation due to viscosity.

A single perforation in an MPP and its surroundings is similar to a Helmholtz res-
onator: they both have a perforation (neck) and a reacting backing volume. How-
ever, due to the typical size of the perforations in MPPs, acoustic particles trying to
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Figure 1.2: MPP in a duct: dp is the perforation diameter, tp is the plate thickness,
Lc is the back cavity depth and δv is the Stokes layer thickness. The incident sound
waves are absorbed due to viscosity in the perforations.

pass through experience viscous forces resulting from the Stokes layers as illustrated
in Figure 1.2, whereas for Helmholtz resonators the viscous effects are negligible.
This is the main difference between an MPP and the Helmholtz resonator. It is
possible to model the Helmholtz resonator as a mass-spring system [8], where a
single perforation in an MPP is required to be represented as a mass-spring-viscous
damper system. Therefore, a Helmholtz resonator is a very effective absorber only
at its resonance frequency whereas an MPP has a more broadband acoustic response
yet a lower maximum absorption peak [9].

Micro-perforated plates (MPPs) have been used in sound absorption for more
than 40 years. However, their primary area of usage has been limited to room
acoustics until Maa [6] revealed their potential for the industrial applications. It
should be noted that such applications exhibit a different acoustic problem since
the frequency span of interest is less than 1 kHz [10], therefore the dissipation char-
acteristics of MPPs is expected to be different. Nevertheless, the suitability of MPPs
for industrial applications is based on several reasons: (i) Their acoustic perfor-
mance is robust compared to classical acoustic absorbers having fibrous structure
since their geometrical properties are harder to change in time [6]. (ii) Unlike clas-
sical sound absorbers, MPPs do not contaminate the acoustic medium with small
particles breaking off from the absorber [11]. (iii) MPPs can be made from any ma-
terial so that they can be more compact, lightweight and durable [6]. As a result,
they are considered as promising sound absorbers to reduce the acoustic reflections
from the intake of a combustion system [12, 13].

The viscous thermal dissipation of acoustic waves in stagnant fluid due to prop-
agation in a long capillary has been studied by Kirchhoff [14]. However, Maa [6]
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is the first scientist to combine this theory with the end-corrections proposed by
Ingard [15] in order to predict the acoustic behaviour of perforations in a relatively
thin plate. Besides, since the typical porosity of the plate is in the order of 1%, in-
teraction between the neighbouring perforations is neglected. Hence, Maa [6] pro-
poses a simple but very practical design expression for the linear transfer impedance
of an MPP which depends only on the following parameters: perforation diameter
dp, plate thickness tp, porosity φ, back cavity depth Lc and excitation frequency f .

The expression proposed by Maa [6] is valid in the linear regime. The acoustic
linearity of a perforation is defined by the ratio of its diameter (dp) to the acoustic
particle displacement amplitude (|ûp|/ω), where |ûp| is the acoustic velocity am-
plitude of a particle in the perforation. This ratio is referred to as the Strouhal
number [16]. The acoustic response of a perforation is linear when Sr >> 1 and
it is non-linear when Sr << 1. In the non-linear regime, the resistance of the per-
forations increases as the excitation amplitude increases [17, 18]. Attenuating the
large amplitude standing waves in launcher fairings [11], noise reduction at the air-
craft engine casings [9] and mufflers [19] are among the typical applications which
require dealing with non-linear acoustic response of MPPs.

1.3 Problem Definition

Although MPPs have so many advantages, there are aspects requiring further
study in order to utilize their full potential. Firstly, the end-corrections used by
Maa [6] have been proposed for the limit where viscous forces are neglected, i.e.
Sh >> 1. This is a contradiction to the MPP concept. The difference between
the theory and measurements is removed by choosing arbitrary factors for the end-
correction coefficients found in various publications, mostly between 1 and 4 [6, 20,
21, 19]. This has been linked with edge profile of the perforation [19], however
there has been limited study addressing this problem.

In addition, while the acoustic response of MPPs are proposed by Maa [6] in
the linear regime, Ingard and Ising [18] have modelled the sound absorption of a
perforation in the strongly non-linear regime, i.e. exposed to high-amplitude exci-
tation. These two models explain the acoustic response of MPPs in the two limits,
yet the transition between them has not been investigated systematically.

Moreover, depending on the material selection, structural vibrations can become
a parameter defining the acoustic response of the MPP. For example, Lee and Swen-
son [22] have observed additional absorption peaks in their measurements with
flexible MPPs. It is a challenging task to design and optimize MPPs when flexibility
of the plate is also a design parameter. Furthermore, current models are only valid
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for a uniform distribution of the perforations on the plate. Considering the vibro-
acoustic coupling and the mode shapes of plates, a non-uniform distribution has
the possibility to improve the acoustic properties of flexible MPPs. However, there
is no efficient tool to perform such a parametric study without carrying out a large
number of experiments.

1.4 Objective and Research Method

The main objective of this thesis is to provide knowledge about acoustic charac-
teristics of perforated plates and methods to design better passive sound absorbers.
Therefore, not only MPPs, but also regular perforated plates (Sh> O (1)) are stud-
ied. In the present thesis, experimental and numerical studies are performed to
achieve the main objective.

The experiments are carried out in a semi-anechoic chamber with an impedance
tube set-up. Depending on the parameter to measure, open or closed-end (with
back cavity) measurements are performed with MPP and regular perforated plate
samples.

The finite-element method (FEM) is used for the numerical studies. The com-
mercial FEM program COMSOL R© v. 5.0 [23] is used in the simulations. The built-in
modules such as CFD, Linear Acoustics and Structural Mechanics are made use of as
well as its Partial Differential Equation Interface. The simulation results are validated
with theory and measurements before conclusions are drawn.

On the other hand, the present thesis focuses only on circular perforations.
Moreover, the effect of mean flow (grazing or bias flow) is not considered in the
experiments or simulations.

1.5 Contributions

The main objective of the present thesis is achieved through the following con-
tributions:

• The ambiguity about the end-correction coefficients for circular orifices and
micro-perforations in the literature is resolved by proposing new expressions
in the linear regime, which are functions of edge profile and Shear number.

• Expressions are proposed to describe the evolution of the acoustic response
of MPPs from linear regime to non-linear regime.
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• A numerical design and optimization tool, which employs a patch-impedance
approach, is proposed for flexible MPPs. Due to this approach, the numerical
tool enables to include the spatial effects of the perforation distribution and
interaction between them.

1.6 Organization of the Thesis

The findings of this work have been used for preparing four journal paper manu-
scripts. Two of these manuscripts are already published and the other two are
submitted. The thesis is organized in a way that each chapter covers the content
of these manuscripts individually. Chapter 2 discusses the linear edge effects of a
circular perforation on estimating the end-correction coefficients with the help of
an experimentally verified numerical model. Chapter 3 investigates the acoustic
response of micro-perforations in the transition between linear and strongly non-
linear regimes. The effect of edge profile of perforations on acoustic response in
non-linear regime is studied in Chapter 4. In Chapter 5, the structural vibration
effects are included in the linear model and a numerical method to design flexible
micro-perforated plates is proposed. The conclusions are summarized in Chapter 6
and recommendations are given for a future study. Finally, some complementary
information such as details of the measurement set-up, mesh study for the proposed
numerical model, etc. are provided in Appendices.



Chapter 2

The Influence of Edge
Geometry on End-Correction
Coefficients in
Micro-Perforated Plates1

Abstract

Global expressions are proposed for end-correction coefficients in micro perfo-
rated plates (MPPs) using non-dimensional parameters. MPPs are sound absorbers
with small perforation diameters so that the Stokes boundary layers fill up almost
the entire perforation. Sound absorption does not only occur within the perfora-
tion, but also takes place just outside of it. The latter contribution plus the outside
inertia effect on the transfer impedance of the MPP is referred to as end-corrections.
In order to determine them, an analytical solution employing the very thin Stokes
layer assumption has been derived. However, this assumption requires empirical
coefficients in the end-corrections for accurate results. To explore the effects of var-
ious parameters a numerical model is used. This model is verified with open-end
reflection coefficient measurements. The most prominent result from this study is
that compared to plate thickness, the ratio of perforation diameter to Stokes layer

1The content of this study is published in The Journal of the Acoustical Society of America by Temiz et
al. [24].

7
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Figure 2.1: Representation of the Stokes layer (δv =
p

µ/(ρ0ω)) within a single
perforation of an MPP in 2D-axisymmetrical geometry. The parameters defining
perforation diameter (dp), plate thickness (tp), and chamfer length (cp) are also
shown on the figure.

thickness (Shear number) and edge geometry affect the end-correction coefficients
more significantly. The effect of plate thickness can be neglected for practical pur-
pose, therefore expressions for the end-corrections in terms of Shear number and
edge geometry are provided. The relative error of these expressions are less than
3% compared to the numerical results.

2.1 Introduction

Micro perforated plates (MPPs) are plates with perforations whose diameter is
in the order of a millimeter and with a low porosity, i.e. σ = O (1%). Due to the
small diameter size, the oscillating viscous boundary layers, i.e. Stokes layers, cover
the majority of the perforation as can be seen in Figure 2.1.

MPPs are identified as efficient absorbers by Maa [6]. He combines the oscillat-
ing viscous flow in a capillary tube solution from Crandall [25], which is a simplified
version of the visco-thermal derivation of Kirchhoff [14]with the end-corrections of
Ingard [15]. This way, Maa [6] derives a transfer impedance expression for a single
perforation. Nevertheless, Ingard [15] bases his end-correction coefficient deriva-
tion on very thin Stokes layer assumption. Thus, this model does not represent
the acoustic behaviour of MPPs for Stokes boundary layers as thick as the perfo-
ration radius. Plus, this is an unrealistic assumption for the geometry neglecting
completely the edge effect.

Consequently, the analytical model of Maa [6] requires empirical coefficients
to match the experimental results. Especially the coefficient for the resistive end-
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correction (α) varies between 2 and 4 in literature and this has been associated
with edge geometry by Allam and Åbom [19]. On the other hand, the theoretical
limit value for the reactive end-correction coefficient (δ) is reasonably accurate for
most applications.

To solve this deficiency especially with the resistive end-correction coefficient,
Bolton and Kim[26] have developed a numerical model in 2D axisymmetric coordi-
nates. With this model they simulate viscous, incompressible, oscillating flow in the
time domain. They include the end effects of the perforation by using upstream and
downstream channels with fixed length of 1mm. They have run simulations for 21
different combinations of plate thickness (tp), perforation diameter (dp) and poros-
ity (σ) parameters. They propose an expression for the resistive end-correction
coefficient in the dimensions of

�

Hz−0.5
�

.
Furthermore, Herdtle et al. [27] have used Bolton and Kim’s [26] CFD approach

to compute the end-corrections for tapered perforations.
In another recent study by Carbajo et al. [28], a method similar to Bolton and

Kim [26] is used to study the interaction between perforations. Although the two
works mentioned above propose a valuable methodology, there is a need for a more
generalized definition of the end-correction coefficients and experimental valida-
tion of the results. Furthermore, none of the studies discussed above consider the
influence of the perforation edges on the acoustic performance of the MPP.

In this paper both the resistive and reactive end-correction coefficients are eval-
uated by means of an axisymmetrical, incompressible flow model in the frequency
domain, and validated with experiments, also including the influence of the shape
of the perforation edges. Although this approach is analogous to that of Bolton and
Kim [26], the results are significantly different in the following aspects. Firstly, non-
dimensional parameters are employed to express end-correction coefficients so that
the results are generalized and useful for the design of MPPs with circular perfo-
rations. Secondly, linearized Navier-Stokes equations are solved numerically in the
frequency domain. Moreover, it is made sure that the acoustic transfer impedance
values are calculated independent of the upstream and downstream channel length.
Finally, the effect of the edge profile on the end-correction coefficients is investi-
gated. In other words, the aim of this study is to provide a consistent base for
the calculation of the transfer impedance in MPPs with circular holes in the linear
regime.

On the other hand, this study is limited to certain aspects. First of all, only low
perforation rates (φ = O (1%)) are focused so that the hydrodynamic interaction
between perforations can be ignored [6, 19, 26]. Secondly, although slit shaped
MPPs appear to be quite promising [19], this study concentrates on circular perfo-
ration geometries so that they can be represented in 2D axisymmetrical geometry
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in numerical model. Finally, measurements with a single perforation diameter are
carried out for all samples.

2.2 Theoretical Background

The transfer impedance of an MPP is defined as:

Zt−P =
∆P̂

φÛp

, (2.1)

where ∆P̂ is the plane wave pressure difference across the plate, φ is the porosity
and Ûp is the volume flow rate divided by the perforation area. From experimen-
tal or simulated data, plane wave pressure is obtained on each side of the plate by
extrapolating a plane wave model up to the surface of the plate. When Ûp is mul-
tiplied with φ, plane wave normal velocity before (or after) the plate is obtained.
Please note that the circumflex accent (ˆ) indicates complex quantity throughout
this chapter.

For MPPs with circular perforations, the transfer impedance of a single perfora-
tion with a finite plate thickness is modeled by Maa [6] as follows:

Zt =
∆P̂

Ûp

= jωtpρ0

�

1−
2

Sh
p

− j

J1(Sh
p

− j)

J0(Sh
p

− j)

�−1

+ 2αRS + jδωρ0

dp

2
, (2.2)

using the exp( jωt) convention.
The first term in the right-hand side of Eq. (2.2) defines the oscillating fluid flow

within the perforation where ω = 2π f is the radial frequency, ρ0 is the density of
air (1.184kg/m3 @20oC, 1.205kg/m3 @25oC), j is the imaginary number

p
−1,

Jn is the Bessel function of 1st kind of order n and Sh is the Shear number which
is defined [29] as Sh = dp

p

ωρ0/(4µ) where µ is the dynamic viscosity of air
(1.82× 10−5 kg/ms @20oC, 1.84× 10−5 kg/ms @25oC).

The second term in the right-hand side of Eq. (2.2) is the resistive and the last
one is the reactive (inertial) end-correction expressions, respectively. RS is the sur-
face resistance on one side of the plate which is calculated by RS = 0.5

p

2µρ0ω.
Moreover, the non-dimensional resistive and the reactive end-correction coefficients
are denoted byα and δ in Eq. (2.2). The end effects become very important in plates
with normalized thickness, t∗ = tp/dp, in the order of unity.

Even though Maa [6] has proposed his analytical model for the sharp-edge per-
foration case, the presence of end-correction coefficients in the model provides the
flexibility to include different edge types.
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This study starts with the sharp-edge case and then, extends for various types
and combinations for chamfered edges. The behaviour of the chamfered edges are
expected to be similar to those with rounded edges. Chamfers are preferred to
roundings due to manufacturing accuracy.

2.3 Numerical Set-up

The numerical part of the study contains a model tailored to a single perfora-
tion. A viscous, incompressible flow in 2D axisymmetric coordinates is assumed.
To compare the results with Maa’s linear model [6] and extend it further, the cal-
culations are kept in the linear regime also. As a result, the following linearized
incompressible Navier-Stokes equations in the frequency domain are solved in the
model:

∂ ûr

∂ r
+

ûr

r
+
∂ ûz

∂ z
= 0, (2.3a)

jρ0ωûr +
∂ p̂
∂ r
−µ

�

∂ 2ûr

∂ r2
+

1
r
∂ ûr

∂ r
+
∂ 2ûr

∂ z2

�

= 0, (2.3b)

jρ0ωûz +
∂ p̂
∂ z
−µ

�

∂ 2ûz

∂ r2
+

1
r
∂ ûz

∂ r
+
∂ 2ûz

∂ z2

�

= 0, (2.3c)

where r and z represents the radial and axial axes components; ρ0 represents the
base flow density; û and p̂ represent acoustic velocity and pressure. In COMSOL
Multiphysics R© [23], Eq. (2.3) is discretized using finite elements in the Coefficient
Form PDE module of the program. In the simulations, quadratic elements are used.
Since the flow is laminar, no turbulence model was needed. A schematic drawing
of the computational domain and the boundary conditions used are presented in
Figure 2.2.

As can be seen from Figure 2.2, the geometry covers both inner and outer regions
of the perforation. The outer region is the upstream / downstream channel and its
diameter is taken as D = dp/

p

φ. Doing that, it is ensured that the effect of the
perforation is negligible at the inlet and outlet boundaries. During the course of
the simulations it is seen that an increase of 33% in the channel length results with
a change of less than 0.001% in the pressure amplitude, which also indicates that
a long enough computational domain was used. A typical pressure distribution
obtained by solving linearized incompressible Navier-Stokes equations is shown in
Figure 2.3.
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Figure 2.2: Computational domain of a single perforation. |AB| harmonic velocity
inlet; |BC| and |FG| slip wall; |CD|, |DE| and |EF| no-slip wall; |GH| viscous-free,
zero-pressure outlet and |AH| radial symmetry axis.

The transfer impedance is calculated by dividing the acoustic pressure difference
between two sides of the perforation by the volume flux per perforation area, as
stated in Eq. (2.1). The relevant acoustic pressure at one side of the perforation is
obtained by linear extrapolation, assuming an incompressible uniform flow, from
the inlet (or the outlet) boundary of the computational domain to the surface of
the perforation [27]. In this incompressible model the pressure difference (∆P̂) is
therefore given by

∆P̂ = P̂u − P̂d − j2Lρ0ωÛ , (2.4)

where P̂u = p̂(zAB) and P̂d = p̂(zGH) are the upstream and the downstream pressures
at the inlet and the outlet of the numerical domain, respectively. Furthermore, Û is
the imposed uniform inlet velocity of the model and L is the length of the upstream
and downstream sections. The correction given in Eq. (2.4) ensures that ∆P̂ is
independent of the upstream / downstream channel length.

In order to avoid the need for resolving sharp edges, fillets with small radius,
r f , are used at the edge points. The simulations are repeated for different fillet
radius to perforation diameter values, r f /dp, such as 6.25× 10−3, 3.13× 10−3 and
1.56× 10−3. Observing the change is linear, we extrapolate Zt−P to the r f = 0 case
and approximate the limit value as accurately as possible.

Using this approach, not only perforations with square-edge profile but also
other types of edge profiles are investigated in this study. The schematic represen-
tations of these profiles are shown in Figure 2.4.

In all the cases shown in Figure 2.4, the sharp corners are taken care of with the
method mentioned above to avoid numerical singularity.

With COMSOL’s built-in mesh generation tool, a mesh with non-constant distri-
bution is built to minimize the number of grid points. This results with a combina-
tion of triangular and rectangular mesh types. Although triangular mesh dominates
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Figure 2.3: A typical pressure amplitude distribution around a perforation with the
square-edge profile.

the domain; in the vicinity of the boundaries with no-slip BC, rectangular mesh type
is present. An example for this distribution is shown in Figure 2.5.

A mesh study resulted in that, for the mesh used, the difference in the value of
Zt−P is less than 0.02% compared to the successive finer grid level.

2.4 Experimental Verification

The verification of the numerical model is done by comparing 4 different cases
with experimental results. In all these cases, samples with a single perforation is
used as in the numerical model. Their properties are given in Table 2.1 and their
photo is provided in Figure 2.6.

The samples introduced in Table 2.1 are placed at the end of a 1m long impedance
tube. The tube is made of aluminium with an inner diameter of 50 mm and a wall
thickness of 10mm. A photo and a schematic drawing of the system are given in
Figure 2.7.
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Figure 2.4: Egde geometries investigated in this study: (I) square-edge; (II)
both-sides-chamfered; (III) one-side-chamfered; (IV) punched; and (V) inverse-
chamfered profiles.

Table 2.1: Specifications of Sample I (square), Sample II (one-side-chamfered),
Sample III (both-ends-chamfered) and Sample IV (punched).

Sample Name dp [mm] tp [mm] φ cp [mm]

Sample I 4.20± 0.05 4.00± 0.01 0.71% N/A
Sample II 4.20± 0.05 4.00± 0.01 0.71% 0.35± 0.05
Sample III 4.20± 0.05 4.00± 0.01 0.71% 1.00± 0.05
Sample IV 4.20± 0.05 4.00± 0.01 0.71% 1.00± 0.05

For data acquisition, a NI PCIe-6361 X-Series card with 16 analog input and
2 analog output channels is used. The signals are generated and recorded using
LabView R©. One output channel is used for the loudspeaker and six input channels
are used for the microphones. The type of the microphones is BSWA MPA416 with
a sensitivity of 50.45 mV/Pa. They are equally distributed by a distance of 175 mm.
This set-up employs the algorithm described in Figure 2.8 to perform reflection
coefficient measurements.

For the calibration of the microphones, a one-time measurement is performed
before the others. Using a calibration mount specially designed for this purpose,
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Figure 2.5: An example of how non-constant distribution of the mesh looks like
around the both-sides-chamfered perforation. Note that the mesh is finer in the
vicinity of the edges.

Figure 2.6: Samples used in the impedance tube to verify the numerical model.
Samples I, II and III require a sample holder while Sample IV has it built-in.
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(a) Impedance tube. (b) Schematic drawing of the set-up.

Figure 2.7: The set-up used for verification of the numerical model. (a) The photo
of the set-up, (b) schematic drawing of the set-up: 1: the impedance tube, 2: loud-
speaker, 3: microphones, 4: MPP sample, 5: (hollow) sample holder, 6: microphone
amplifier, 7: loudspeaker amplifier, 8: analyzer and computer.

all the microphones are placed at the same distance from the loudspeaker and the
closed end tube termination. The idea is that: for each frequency step, every mi-
crophone should read the same complex pressure value according to the plane wave
assumption. As a result, one of the microphones is selected as the reference and
other microphones are forced to have the same value for the same frequency. This
is achieved by calculating the calibration coefficients for each frequency step. This
procedure is a relative calibration technique. However, since only reflection coef-
ficients are measured in this study, an absolute calibration is not necessary. In this
technique, the arbitrarily selected reference microphone should remain the same
throughout all the measurements. Finally, the microphones are relatively calibrated
for the frequency range [100, 700] Hz. Please note that, although the tube allows
one to carry on measurements approximately up to 3.4 kHz; considering the sam-
ple dimensions, the viscous effects are expected to be small enough to be neglected
for f > 700 Hz (Sh > 35). Moreover, above this frequency, the influence of the
finite compliance of the microphones becomes significant [30]. This effect is not
corrected for this study.

In the measurements of MPPs, after the pressure data from the microphones are
saved, the corresponding reflection coefficient for each frequency step is calculated
custom-built script. This script omits the first and last 2 seconds from the mea-
surements to avoid transient effects and uses the calibration coefficients obtained
before.

Both of the scripts calculating the calibration and reflection coefficients employ
a lock-in method [31]. This method correlates the input signal to the output to
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Figure 2.8: Measurement algorithm.

calculate the measurements in the Fourier domain. The advantage of this method
over FFT (or DFT) is that it ensures there is no spectral leakage.

The calculation of the reflection coefficient is based on the plane wave assump-
tion. In other words, within the tube, all the points at position z are assumed to
have the same complex pressure amplitude p̂(z), and this can be decomposed into
right, p̂+, and left, p̂−, travelling pressure waves such as:

p̂(z) = p̂+ exp(− jkcz) + p̂− exp( jkcz), (2.5)

where kc is the complex wave number taking visco-thermal effects into account and
described by Peters et al [29] as follows:
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where Pr is the Prandtl number and γ is the heat capacity ratio. In the calculations,
the term with Sh2 is omitted since its value does not exceed 2% of the first order
term in Eq. (2.6).

Introducing this complex wave number into the method of least square fit for 6
microphones by Jang and Ih [32], the plane wave decomposition is obtained and
the reflection coefficient can be expressed as

R=
p̂− exp( jkcz)

p̂+ exp(− jkcz)
. (2.7)

In Figure 2.8, one can see a 15-minute delay between two successive 20-step
measurements. The reason of this is to restore the uniform temperature in the tube.
This is due to the fact that measurements are affected by the change in the speed
of sound, c0. For 20 frequency steps one has 40 wave amplitudes as unknown, plus
c0 as an additional unknown. The signals of the 6 microphones provide a set of
120 equations for those 41 unknowns, which is solved by the least square method
proposed by Aurégan[33]. For the completely closed-end case, the deviation of the
measured reflection coefficient from the theoretical value R = 1.000 is less than
0.3%.

The transfer impedance is measured by the following procedure:

i. Measure the open end reflection coefficient of the open impedance tube with-
out the sample plate, ROE , and calculate the radiation impedance, ZR, using
ZR = ρ0c0(1+ ROE)/(1− ROE).

ii. Place the sample plate to the end, measure the reflection coefficient of sample-
loaded end, RP , and calculate ZP = ρ0c0(1+ RP)/(1− RP).

iii. Obtain the transfer impedance of the plate, Zt−P , by subtracting the radiation
impedance from the sample-loaded end impedance: Zt−P = ZP − ZR.

The samples are attached in between the impedance tube and the hollow sample
holder (see Figure 2.7), whose inner diameter is the same as the tube and length is
1.5 times the diameter. Since tube terminations in both sample-loaded and open-
end (without the sample) cases are identical and the surroundings is the same, one
can expect the radiation impedance values to be the same. Besides, it should be
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noted that since φ ∼ O (1%) for the samples, ZR is expected to be much lower than
ZP and the possible error is negligible in Zt−P = ZR − ZP .

Being aware of the non-linearity issues in the MPP measurements, an empirical
procedure is employed to avoid such effects. The excitation amplitude is decreased
gradually at the lowest frequency of interest. When two successive measurements
give the same reflection coefficient value, the measurements are carried out for the
frequency range with that particular amplitude. This is based on the definition of
Strouhal number, Sr = φωdp/|Û |, by Ingard and Ising [18]. According to this
definition if Sr > 1, one does not observe non-linear effects in the MPPs and Sr
increases with increasing frequency. It is furthermore verified that Sr remains larger
than unity for all the measurements given in this study.

Comparison between the numerical model and the experiments is done in terms
of non-dimensional end-correction coefficients α and δ. These coefficients are cal-
culated by rearranging Eq. (2.2);

α=
(ℜ{Zt−P} −ℜ{Zt−P}th)φ

2RS
, (2.8a)

δ =
(ℑ{Zt−P} − ℑ{Zt−P}th)φ

ρ0ωdp/2
, (2.8b)

where subscript th represents the word theoretical and this corresponds to the trans-
fer impedance calculated by means of the theory by Crandall [25]. In other words,
the theoretical transfer impedance of a perforation is calculated by Eq. (2.2) with-
out the end-corrections (α= δ = 0) and dividing it by the porosity (φ). His model
takes into account only the inside of the perforation of length te f f . This effective
thickness can be calculated as te f f = tp − ncp with cp is the chamfer length and the
coefficient n is the edge type factor whose values for different edge types are listed
in Table 2.2.

When employing Eq. (2.8) with the values of Zt−P determined from measure-
ments, one obtains experimental values for α and δ. Similarly, in order to obtain nu-
merical end-correction coefficients, Zt−P calculated by simulations should be used.

For the samples introduced in Table 2.1, the comparison between numerical and
experimental end-correction coefficients is shown in Figure 2.9.

In this study, samples whose perforation diameter is rather larger than a typical
MPP are concentrated on for the verification of the numerical model. This results
in a higher Sh number in the frequency of interest, i.e. Sh > 10. The numerical
model presented here has been already validated in the low Sh number region,
1 < Sh < 14, for square edges [34]. In this previous study imperfections in the
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Figure 2.9: Comparison of the resistive and reactive end-correction coefficients of
samples with different edge geometries: ( ) Experimental, ( ) numerical results.
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Table 2.2: Factor n for different edge geometries.

Edge Type n

Square 0
One-Side-Chamfered 1
Both-Sides-Chamfered 2
One-Side-Inverse-Chamfered −1
Both-Sides-Inverse-Chamfered −2
Punched 0

perforation geometry of some of the samples are observed, with holes that seem to
have a triangular rather than circular shape. It is concluded that, to ensure a high
accuracy of the hole geometry and edge shape larger hole diameter and thickness
values should be used. As a result, the samples described in Table 2.1 are produced
and tested.

Although the open-end impedance measurement is easy to apply, it has
a disadvantage where the reflection coefficient value approaches unity (recall
ZR = ρ0c0(1+ ROE)/(1− ROE)). A very small disturbance when |R| ≈ 1 can lead to
large errors on transfer impedance. Thus, in all measurements a large uncertainty
above 450− 500Hz is observed and therefore results up to Sh≈ 27 are presented.
It can be concluded from the results in Figure 2.9 that the numerically determined
end-correction coefficients are in good agreement with the experimental values for
the range of Sh numbers considered. Therefore the numerical model proposed is
validated and will be used in the following section to calculate the end-correction
coefficients for perforations with different edge profiles.

2.5 Results

After experimental verification, the numerical model is used for broadening the
study for 1 < Sh < 35. Doing so, it is aimed to cover the important Sh number
region, 1 < Sh < 10 for the MPPs according to Maa [6] and extend it to theo-
retical limits where the end-correction coefficients are comparable with the results
from the simulations. This study is divided in three main classes according to the
perforation edge profile.
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2.5.1 Perforations with square edges

The properties of the numerical cases designed to cover the Sh number range
of interest are presented in Table 2.3.

Table 2.3: Properties of the square-edge cases investigated numerically.

dp [mm] tp[mm] φ

Case 1 0.3 1.0 0.77%
Case 2 0.8 0.4 0.74%
Case 3 0.8 1.0 0.74%
Case 4 0.8 8.0 0.74%
Case 5 1.6 1.6 0.72%
Case 6 4.2 4.0 0.71%

With the use of Eq. (2.8), α and δ are calculated from the simulations for each
case. To observe the effect of the thickness of the Stokes layer on these coefficients,
the results are presented from all cases in two graphs: α vs. Sh and δ vs. Sh, which
can be seen in Figure 2.10.

From Figure 2.10, a strong dependence on Sh is observed for both α and δ.
Assuming that Sh is the only parameter defining the end-correction coefficients in
sharp-edge perforations, a practical expression for computing α and δ is proposed
for 1< Sh< 35 and Sr > 1 as follows;

αs = 5.08Sh−1.45 + 1.70, (2.9a)

δs = 0.97exp(−0.20Sh) + 1.54, (2.9b)

where subscript ‘s’ represents the perforations with the square edge geometry.
The expressions given in Eq. (2.9) consists of fit formulas from 411 data points

with a quality of R2
α = 0.9995 and R2

δ
= 0.9960. The curves calculated using

Eq. (2.9) are compared to numerical data in Figure 2.10.
This investigation on square-edge perforations is extended with the non-dimensional

plate thickness, t∗ = tp/dp. This time, a surface fit with two independent parame-
ters is performed to include thickness effect in α and δ. The updated expressions
with the wall thickness for the end-correction coefficients for the perforations with
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Figure 2.10: End-correction coefficients for square-edge profile plotted as functions
of Sh: ( ) Case 1, ( ) Case 2, ( ) Case 3, ( ) Case 4, ( ) Case 5, ( ) Case 6, and
( ) numerical fit.

square-edge profile become;

αs = 5.08Sh−1.45 + 1.70− 0.002/t∗, (2.10a)

δs = 0.97exp(−0.20Sh) + 1.54− 0.003/t∗. (2.10b)

The new fits given in Eq. (2.10) have a marginally better quality, R2
α = 0.9995

and R2
δ
= 0.9961, so it is concluded that α and δ do not significantly depend on t∗

for t∗ ≥ 0.5.

2.5.2 Perforations with chamfered edges

The chamfered edge profile is classified in two types depending on if it reduces
or increases the effective plate thickness, te f f . The chamfered edge with 45oangle
reduces te f f and is defined as normal where the one with 135oangle increases te f f
and is defined as inverse chamfer. Recall that te f f = tp − ncp where n can be ob-
tained from Table 2.2. While calculating the theoretical transfer impedance by Cran-
dall [25], effective thickness should be used.

Even though they have different profiles at the perforation edges, the definition
of the chamfer length, cp, and the non-dimensional chamfer length, c∗ = cp/dp,
are still the same for both normal and inverted chamfers. The properties of the
numerical cases designed for investigating chamfers can be seen in Table 2.4. The
limit c∗ = 0 is the case of square-edge and should be taken into account to relate
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the results with the previous part of the study. For this reason, Case 6 is included
in both normal and inverse chamfer types.

For this part of the study, 4 different cases are considered. These cases include
the smallest and largest non-dimensional chamfer length limits, i.e. c∗ = 0 and
c∗ = t∗/2, respectively. The properties of these numerical cases can be seen in
Table 2.4.

Table 2.4: Properties of the chamfered-edge cases investigated numerically.

dp[mm] tp[mm] φ cp[mm] Type

Case 7 4.2 4.0 0.71% 0.35 Normal
Case 8 4.2 4.0 0.71% 1.0 Normal
Case 9 4.2 4.0 0.71% 2.0 Normal

Case 10 4.2 4.0 0.71% 0.50 Inverse
Case 11 4.2 4.0 0.71% 1.0 Inverse
Case 12 4.2 4.0 0.71% 2.0 Inverse

Including the square-edge geometry in both chamfer types, the simulations pro-
vide 244 data points for each coefficient in both types. For perforations with cham-
fered edges, the best surface representing the distribution of the points for α and δ
are in 13< Sh< 35 and Sr > 1.

αc = 5.08Sh−1.45 + 1.70+ 1.18c∗1.74Sh−0.26, (2.11a)

δc = 0.97 exp(−0.20Sh) + 1.54+ 0.97c∗0.56 exp(−0.01Sh), (2.11b)

where the subscript ‘c’ represents the perforations with the chamfered edge geome-
try.

The quality of these fits can be quantified by R2
α = 0.9808 and R2

δ
= 0.9945.

The same study on perforations with inverse-chamfered edge profile results with
the following α and δ fits in 13< Sh< 35 and Sr > 1 as;

αic = 5.08Sh−1.45 + 1.70+ 0.08c∗0.17Sh0.36, (2.12a)

δic = 0.97exp(−0.20Sh) + 1.54− 0.17c∗0.41 exp(0.02Sh), (2.12b)

where the subscript ‘ic’ denotes the inverse-chamfered edge geometry.
For these fits, the quality factors are calculated as R2

α = 0.9986 and R2
δ
= 0.9883.
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2.5.3 Combinations of edge geometries

Neither square nor both-sides-chamfered edge geometries are easy to manufac-
ture in mass production of the MPPs. Hence two example geometries that can be
used as practical approximations are considered. These are one-side-chamfered and
punched edge profiles, which can be seen in Figure 2.4.

In this part of the study, simulations are run for perforations with smaller diam-
eters to cover lower Sh number region. The properties of the simulated cases are
listed in Table 2.5.

Table 2.5: Properties of the numerical cases to verify the proposed fit. Cases C1
to C4 represent one-sided-chamfer edge profile where Cases P1 to P4 represent
punched edge profile. φ = 0.71% for all cases.

dp[mm] tp[mm] cp[mm]

Case C1 0.3 1.0 0.025
Case C2 0.9 1.0 0.075
Case C3 1.5 1.0 0.125
Case C4 4.2 4.0 0.350
Case P1 4.2 1.0 0.071
Case P2 4.2 1.0 0.214
Case P3 4.2 1.0 0.357
Case P4 4.2 4.0 1.00

One-side-chamfered

This geometry is considered for the cases where the perforations are opened
with drills when supported by an additional material from behind. One side of the
perforation has the chamfer geometry where the other end has a square profile.
Referring to the linearity, the end-corrections can be proposed as a combination of
both cases mentioned as

α= (αs +αc)/2, (2.13a)

δ = (δs +δc)/2, (2.13b)

where subscripts s and c denote end-corrections for square-edge and chamfered
edge profiles respectively, which is calculated from Eqs. (2.9) and (2.11). These
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Figure 2.11: The relative percent error of the end-correction coefficients obtained
by the proposed fit with respect to the numerical simulations in one-side-chamfered
edge profile: ( ) Case C1, ( ) Case C2, ( ) Case C3, and ( ) Case C4.

expressions are assumed to hold for the lower Sh region as well since the gov-
erning physics is the same and non-dimensional numbers are used. To check that
assumption, c∗ = 0.083 is selected as in Sample II, and the results are compared
of this linear combination with numerical simulations in terms of relative percent
error, εr . For instance, the relative percent error is calculated for α as follows:
εr = 100|αnum − α f i t |/αnum. Replacing α with δ, one obtains the same error defi-
nition for the reactive end-correction coefficient. These error plots are provided in
Figure 2.11.

Punched hole

The idea behind investigating this geometry for is to approximate the perfora-
tions opened by punching the plate. This geometry consists of a chamfered edge
and an inverse-chamfered edge profile.

Similar to the one-side-chamfered profile, the end-correction coefficients of this
one can be calculated as

α= (αc +αic)/2, (2.14a)

δ = (δc +δic)/2. (2.14b)

where subscript ic stands for inverse-chamfered and can be calculated using Eq. (2.12).
The relative percent error between the numerical results and the proposed fit is
shown in Figure 2.12.



6. Concluding Remarks 27

0 10 20 30 40
0 %

1 %

2 %

3 %

Sh [-]

R
el

at
iv

e
Er

ro
r

fo
r
α

0 10 20 30 40
0 %

1 %

2 %

3 %

Sh [-]
R

el
at

iv
e

Er
ro

r
fo

r
δ

Figure 2.12: The relative percent error of the end-correction coefficients obtained
by the proposed fit with respect to the numerical simulations in punched hole ge-
ometry: ( ) Case P1, ( ) Case P2, ( ) Case P3, and ( ) Case P4.

Please recall that one-sided-chamfered edge is composed of square-edge and
(normal) chamfered edge profiles. Similarly, punched hole geometry is composed
of (normal) chamfered edge and inverse edge profiles. Hence, verifying the linear
combination of these edge profiles with numerical results is a compact verification
of all the fits proposed in this study. From Figures 2.11 and 2.12 it is seen that
even for low Sh number region, the fits and the numerical results are in accordance
within less than 3% in the Sh number region of interest. Hence, the assumption for
the lower Sh number region holds and the proposed fits can be used for calculating
end-correction coefficients of MPPs for Sr > 1.

2.6 Concluding Remarks

This study proposes expressions for dimensionless end-correction coefficients,
α and δ in MPPs based on numerical analysis; whose results are verified by ex-
periments. Using the numerical model described here, different edge profiles such
as square, chamfered, inverse-chamfered and their linear combinations are investi-
gated.

The transfer impedance is measured with the open-end method. Yet, when the
amplitude of the reflection coefficient of the sample is close to 1, the method be-
comes prone to errors. For this reason, the measurements with the MPP samples
could go up to 450-500 Hz. This corresponds to Sh≈ 27 for samples dp = 4.2 mm.
If studying with higher Sh is required, one should employ another experiment tech-
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nique.
The numerical results show that the plate thickness has negligible effect on the

end-correction coefficients. It is also concluded that α and δ strongly depend on Sh
number and the edge profile. These arguments have been tested in a large variety
of non-dimensional thickness range such as 0.5< t∗ < 10.

Square-edge profile is an important comparison case with the theory. It is re-
ported in the literature [19] that, α can be taken either 2 or 4. The results from this
study show that α value can be out of this interval depending on the Shear num-
ber. Moreover, with increasing Sh number, an asymptotic approach is observed in
end-correction coefficients. These are 1.70 for α and 1.54 for δ. Experiments with
the samples also support this statement. Please recall that Ingard [15] proposed
α to be 2 empirically; where the result from this study, α = 1.70, is close to his.
Although Morse and Ingard [35] propose a purely analytical solution for α, it does
not show the asymptotic behaviour that one sees in the experiments. On the other
hand, both Morse and Ingard [35] and Pierce [36] agree on the theoretical limit for
δ = 1.57 in very thin plates. This value is comparable with the findings from the
simulations, δ = 1.54.

The chamfered-edge geometry increases α and δ compared to square-edge pro-
file. Yet, the overall transfer impedance value decreases in presence of chamfers.
This is due to the fact that the viscous friction is dominant in the narrow part of
the perforations, which is defined by te f f in this study, and chamfers reduce this ef-
fective plate thickness. On the other hand, inverse-chamfered edges increase te f f ,
resulting with a higher transfer impedance compared to sharp-edges. In inverse-
chamfers, the fluid particles must follow a streamline making a 135o turn. This
increase the resistance of the edge but makes it harder for fluid particles to oscil-
late in and out of the perforation. As a result, compared to sharp-edge geometry, α
increases but δ decreases for inverse-chamfered edges.

Since the entire investigation is carried out in linear regime, end-correction co-
efficients for sharp-edge, chamfered-edge and inverse-chamfered-edge geometries
are combined linearly to obtain α and δ for one-side-chamfered edge and punched
edge profiles. Although the fit is obtained from data in the region 13 < Sh < 35,
the end-correction coefficients calculated with the proposed expressions are in good
agreement with the numerical results even for the region 1 < Sh < 13. Moreover,
the expressions proposed for chamfered profiles are designed to reduce into expres-
sions for square-edge profiles when c∗ = 0 is selected. Consequently, the expressions
offered in this study are generalized and the error between them and the numerical
results are less than 3% for 1< Sh< 35.



Chapter 3

Non-linear Acoustic Transfer
Impedance of Micro-perforated
Plates with Circular Orifice1

Abstract

A practical description of the transitional behaviour of micro-perforated plates
(MPPs) is provided between the linear and strongly non-linear regimes. Micro-
perforated plates are efficient sound absorbers whose application areas vary from
room acoustics to duct acoustics. Although there are accurate models for the lin-
ear and strongly non-linear acoustic behaviour of MPPs, the transition from one to
another has not been a focus of interest so far. A series of measurements are per-
formed with MPP samples for various excitation amplitudes. The deviation from the
linear impedance is found to be a function of excitation amplitude and oscillating
viscous boundary layer thickness, expressed in terms of the Strouhal number and
the Shear number. Typical for MPPs is a Shear number of order unity, implying that
the viscous boundary layer thickness is in the order of the perforation radius. Us-
ing the measurement data, expressions are proposed for calculating the non-linear
acoustic resistance and reactance for circular perforations with sharp square edges.
Some additional data is provided for the higher Shear number range. The behaviour
at low amplitudes for high Shear numbers deviates strongly from the typical MPP
behaviour. This is due to local vortex forming at the sharp edges of the perforation.

1The content of this study is published in Journal of Sound and Vibration by Temiz et al. [37].

29



30 Non-Linear Acoustic Transfer Impedance of MPPs...

3.1 Introduction

Maa [6] introduced the micro-perforated plates (MPPs) as promising sound ab-
sorbers in the presence of a supporting air cavity. MPPs are plates with small perfo-
rations whose diameter is in the order of a millimeter and low porosity, i.e. ∼ 1%.
Due to these features MPPs have high acoustic resistance and low reactance. More-
over, they can be produced from any material, so that their durability and weight
can be adjusted according to the application. There are a large number of possible
application fields such as room acoustics, duct acoustics and thermo-acoustics.

In many practical applications, even in case of moderate intensity of the incident
sound, the acoustic particle velocity in the perforations can reach high values [38].
This results in flow separation and vortices at the sharp edges of the perforations.
Vortex formation takes energy from the acoustic wave and as a result increases
the acoustic resistance of the perforation. Sivian [39] was the first scientist to ob-
serve this phenomenon experimentally. Inspired by his findings, Ingard and La-
bate [17] have performed experiments to conclude that the mechanisms causing
extra resistance are flow circulations and these vortices are visualized. Later on,
Ingard and Ising [18] have measured quantitatively the non-linear acoustic resis-
tance through an orifice. The orifice used in their experiments had sharp edges.
Guess [40] proposes a design method for perforated liners with a backing cavity
under high acoustic excitation and subjected to grazing flow. Nevertheless, non-
linear effects are included only for the resistance in his method. Later, Disselhorst
and van Wijngaarden [41] have measured and described theoretically the amount
of dissipated energy due to vortex formation at an open pipe termination and have
investigated the influence of rounding off the edges. Cummings and Eversman [42]
have improved the quasi-steady model describing the behaviour of perforations at
high Shear numbers and very high amplitudes of the acoustic particle velocity. In
their model, the acoustic flow separates at the sharp edges and forms a free jet with
a cross-section smaller than the perforation area, this is called a vena-contracta.
Testud et al. [43] report that the separated flow reattaches for thick orifices, whose
thickness is larger than twice the diameter. Aurégan and Pachebat [44] have studied
rigid porous materials both in the moderate and high intensity acoustic amplitudes.
One of the most significant observations of this particular study is that in the mod-
erate excitation case the relation between the resistance and the Reynold’s number
is quadratic. Another contribution to the quasi-steady approach for high amplitude
acoustic excitation has been provided by Hofmans et al. [45]. Instead of a circular
perforation, they have investigated a slit geometry and a method is proposed for
obtaining the vena-contracta factor as a function of geometry and Mach number of
the acoustic jet. Shortly after the study of Hofmans et al. [45], Jing and Sun [46]
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have proposed an empirical model for the non-linear acoustical behaviour of the
in-duct orifices. Their focus has been on very high excitation amplitudes. Leung et
al. [47] have carried out some numerical experiments with an in-duct orifice with
and without flow. They have observed that vortices are shed both upstream and
downstream in absence of main flow, but shedding can take place only in the down-
stream when there is a bias flow present. Buick et al. [48] have performed a quite
comprehensive study including numerical, analytical and experimental results alto-
gether for explaining the acoustic losses in the open termination of a tube. Although
the models do not converge perfectly, all of them result in that there are two sepa-
rate cases in non-linear acoustic absorption: one case in which vortices are formed
locally and remain close to the edges; and the other case in which the vortices
are shed far from the orifice. Their observations agree with those of Aurégan and
Pachebat [44]. A more practical study has been carried out by Park [11]. A design
method for MPPs is proposed including the non-linear effects for the impedance.
The non-linear resistance term is updated in this study, however for the reactance,
an expression from early works of Maa [38] is used. Ji and Zhao [49] have applied
the Lattice Boltzmann Method for modelling the non-linear acoustic losses of an
in-duct orifice. They have successfully reproduced the experimental results of Jing
and Sun [46] and their method promises a less expensive computation compared
to classical Navier-Stokes solvers. Nevertheless, none of these studies address MPPs
directly. Also, they mainly focus on the regime where strong non-linear effects are
observed.

This study focuses on non-linear acoustic behaviour of MPPs with circular ori-
fices with sharp square edges (90◦ angle). Besides, it is extended to plates with
perforations whose diameters are larger than those of MPPs. In this way, the re-
sults are linked with previous studies on orifices whose diameter is larger than the
MPP range. Furthermore, the scope of this study is limited to the transition be-
tween linear and non-linear regimes, to bridge the gap between these two regimes.
Moreover, both the non-linear acoustic resistance and reactance are investigated.

The results in this study are obtained from open-end transfer impedance mea-
surements. The dimensions of the samples used in these measurements cover both
the typical MPP range and slightly beyond. Practical formulas are proposed to form
a bridge between linear and non-linear regimes in MPPs. These formulas are ex-
pressed in terms of dimensionless parameters, introduced in the next section.
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Plate
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Plate

(a) Difference between micro and macro-
perforated plates.

Streamline

of the

Separating Flow

(b) Quasi-steady flow under the influence
of high level acoustic excitation.

Figure 3.1: Orifice geometry (a) and the quasi-steady acoustic flow (b) with ori-
fice diameter d, plate thickness t, channel diameter D, Stokes layer thickness δv ,
(complex) acoustic pressure p̂ and (complex) acoustic particle velocity û where the
subscripts p and j imply perforation and jet flow respectively.

3.2 Theoretical Background

In the linear regime the absorption of the acoustic energy takes place in the
Stokes layers shown in Figure 3.1a. These layers form due to the presence
of the solid-walled plate [50]. The thickness of the oscillating Stokes layer is
δv =

p

µ/ωρ0 where ω = 2π f is the angular frequency, ρ0 is the density of
air (1.18kg/m3 @25◦C, 1 atm, dry air) and µ is the dynamic viscosity of air
(1.85× 10−5 kg/ms @25◦C).

The Stokes layer thickness relative to the perforation diameter dp is the main
parameter that defines a micro-perforated plate (MPP) and is referred to as the
Shear number,

Sh=
dp

2δv
= dp

√

√ωρ0

4µ
. (3.1)

In an MPP the Stokes layers cover almost completely the perforation, i.e.
Sh= O (1). For low enough excitation amplitudes, the linear transfer impedance of
an MPP is calculated as a function of perforation geometry and frequency only [24].
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When the excitation amplitude is larger than a critical value, vortices start form-
ing at the sharp corners of the perforation [18]. This is schematically shown in
Figure 3.1b. The formation of vortices is a non-linear mechanism. This takes up
energy from the acoustic waves resulting in additional absorption. The criterion for
these vortices to start forming is based on the Strouhal number, which is calculated
as

Sr =
ωdp

|ûp|
, (3.2)

where |ûp| is the cross-sectional surface averaged acoustic velocity amplitude at the
orifice.

For Sr >> 1, the particle displacement is smaller than the orifice diameter and
vortices are unlikely to be observed. In other words, the acoustic system is linear. In
the opposite limit, Sr << 1, the particle displacement in the vicinity of the orifice is
so large that vortices are blown away by the acoustic flow, which can be described
as a free jet. In between these two limiting cases, i.e. Sr = O (1), vortices form at
the edges of the perforations but they remain local. In this study, to focus on the
transition regime, range 0.05 < Sr < 10 is investigated only. The limit cases are
now discussed in more detail.

3.2.1 Strongly non-linear regime: Sr << 1

If the particle displacement is much larger than the orifice diameter, i.e.
Sr << 1, the non-linear resistance due to vortex shedding dominates the absorp-
tion mechanism as shown by Ingard and Ising [18]. Assuming that the acoustic
pressure is negligible on the downstream side of the orifice, the pressure amplitude
on the upstream is expressed by

|p̂up|= ρ0|ûp|2, (3.3)

according to Ingard and Ising’s experiments [18], where p̂up is the complex pressure
amplitude at the upstream of the orifice. Note that the derivation of this formula
by Ingard and Ising [18] is not correct.

Cummings and Eversman [42], propose a simple theoretical approach to rep-
resent the acoustic flow through the orifice in a duct in the high Sh number limit.
They assume a quasi-steady behaviour in which the relation between the pressure
change and the particle velocity can be derived from the Bernoulli equation. They
find:
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dp

(a) Sharp Edge.

D

(b) Sharp Tube End.

dp

(c) Square Edge.

Figure 3.2: Edge profiles described in (a) Ingard and Ising’s [18], (b) Disselhorst
and van Wijngaarden’s [41] and (c) current study.

|p̂up| ' ρ0|ûp|2
1−σ2C2

v

2C2
v

, (3.4)

where σ is the porosity and Cv is the vena-contracta factor. Considering the typical
properties of MPPs, the term σ2C2

v can be neglected due to low values of σ.
Bearing in mind that Ingard and Ising [18] used an orifice with a sharp-edge

profile, both of the expressions given earlier in this section (Eqs. (3.3) and (3.4))
are in practice equivalent because the vena-contracta factor for sharp edges (see
Figure 3.2) is Cv ' 0.7. Yet, the model by Cummings and Eversman [42] takes
other types of edge profiles into account as well, because another value of vena-
contracta can be used.

3.2.2 Almost linear regime: Sr > 1

Disselhorst and van Wijngaarden [41] give the power absorbed by vortices, P̄,
in the high Sr limit as

P̄ = α

�

ρ0π

�

D
2

�2

|ûD|3/2
�

Sr1/3

3p2
, (3.5)

for an open tube termination. In Eq. (3.5), α is a constant changing between 0.6
and 1.0 depending on the number of point vortices used to describe the flow [16]
and ûD is the acoustic particle velocity amplitude at the tube termination. Written
in terms of acoustic pressure amplitude, Eq. (3.5) takes the following form:

|p̂up|= 2αρ0|ûD|2
Sr1/3

3p2
. (3.6)
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According to Disslehorst and van Wijngaarden [41] the higher Sr gets, the larger
normalized non-linear resistance becomes. Yet it should be noted that this model is
based on a high Sh limit and does not apply to MPPs for which Sh= O (1).

3.2.3 Transition regime: Sr = O (1)

The study of Aurégan and Pachebat [44] focuses on acoustic resistance in porous
materials. They quantify the non-linearity in the results with Reynolds number
instead of Strouhal number, which is defined as Re = D|ûp|ρ0/µ. Their main result
is that for Re << 1, the non-linear correction to Darcy’s law takes the following
form:

RN L = RL(1+ C2Re2), (3.7)

where R=ℜ{Zt} is the acoustic resistance and C2 is a constant defined empirically.
By Eq. (3.7), one concludes that the non-linear resistance in the transition regime
must be quadratically related to the particle velocity in the low Sh number limit
valid for MPPs.

3.3 Experiments

3.3.1 Properties of the setup

The experimental set-up used in this study is an impedance tube with 6 pre-
polarized 1/4 in microphones (type BWSA, sensitivity 50mV/Pa ). The schematic
description of the set-up, including the dimensions of the tube and positions of the
microphones, is shown in Figure 3.3.

The measurements have been conducted in a semi-anechoic room to avoid prob-
lems related to room resonances. The air in the tube is excited by a 3.5 in, 25W
loudspeaker. The microphone closest to the tube termination is calibrated by a
B & K piston-phone at 1000 Hz for 1Pa. The relative calibration of the remaining
microphones with respect to the first one is performed using an apparatus, which is
displayed in Figure 3.4 specially designed for this purpose. Using the apparatus, the
response of the 6 microphones are measured simultaneously to an identical pressure
fluctuation. For each frequency step, the pressure amplitude and the phase of each
microphone are adjusted to the reference microphone’s by means of a calibration
factor.
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Figure 3.3: Impedance tube used in the measurements: (a) schematic drawing
of the components which are: (1) the tube, (2) the sample, (3) (hollow) sam-
ple holder, (4) microphones, (5) microphone amplifier, (6) analyser and com-
puter, (7) loudspeaker amplifier and (8) loudspeaker; (b) dimensions of the tube:
a1 = 50 mm, a2 = 175mm, a3 = 10 mm, D = 50mm and Lt = 1m.

8

60 mm

30 mm

Figure 3.4: Placement of the microphones for the relative calibration process. All
the microphones are located axially at the same distance from the loudspeaker and
the closed tube termination.
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ZS

Sample80 mm

(a) Configuration with sample.

ZR

80 mm

(b) Configuration without sample.

Figure 3.5: Open-end impedance tube measurements are performed in 2 steps.
First, the impedance values for the sample loaded (a), then the open-end (b) con-
figurations are measured. The transfer impedance of the sample is calculated from
these values by Zt = ZS − ZR.

3.3.2 Properties of the DAQ system

For data acquisition, an NI PCIe-6361 X-Series DAQ card with 16 analog input
and 2 analog output channels is used. A script built in NI LabView R© software con-
trols the signal processing and data acquisition during the measurements. The post-
processing of the microphone readings is done separately in a user-built Matlab
script with a Lock-in method [31]. The sampling rate is 20kHz for the excitation
signal and 10kHz for recording the input signal. Each frequency step is measured
for 10 seconds. To avoid transient effects in the measurements, the first and last 2
seconds are omitted in the post-processing. The amplitude of the excitation signal
is adjusted automatically until it satisfies the pre-determined pressure value for the
reference microphone, i.e. the microphone closest to the sample.

3.3.3 Measurement method

The idea behind the open-end transfer impedance measurement is displayed
in Figure 3.5. Since the samples have relatively low porosity, i.e. σ = O (1%),
the open-end radiation impedance (see Figure 3.5b) is expected to be negligible
compared to the impedance measured for the sample loaded termination (see Fig-
ure 3.5a). Nevertheless, to take open end radiation effects into account, the acous-
tic transfer impedance of a sample is calculated as Zt = ZS − ZR, where ZS is
the impedance for the loaded case and ZR is the measured open-end radiation
impedance.

To measure the impedance, the relation between the reflection coefficient, ζ,
and the impedance, Z is used [32]. Based on this relation, the impedance in each
measurement is calculated as Z = ρ0c0(1+ζ)/(1−ζ). Then the measured radiation
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impedance ZR is subtracted from the sample loaded end termination impedance ZS
to find the transfer impedance, Zt = ZS − ZR.

The calculation of ζ is performed by the wave decomposition described by Jang
and Ih [32]. In our study, this method is improved by employing the complex wave
number approximation of Peters et al. [29].

In this study, the measurements and the calibration are performed for 60Hz <
f < 240Hz. The frequency step is 20Hz and multiples of the grid frequency, i.e.
100 Hz and 200Hz, are excluded from the calculations for the sake of reliability. The
deviation from the theoretical limit is less than 0.5% for the closed-end reflection
coefficient measurements in the frequency span of interest.

During the experiments, 6 sets of measurements are performed for each sample:
1 set in the linear and 5 sets in the non-linear regime. To make sure the measure-
ment set with the lowest excitation amplitude is in the linear regime, an empirical
method is followed. Measurements start with an arbitrary excitation amplitude
and the resulting reflection coefficient is recorded for the lowest frequency of inter-
est. As non-linear effects decrease with increasing frequency [47], the amplitude is
gradually reduced until two successive measurements give the same (or very close)
reflection coefficient value. For this amplitude value, the linear transfer impedance
Zt−L is calculated from the reflection coefficient throughout the frequency span of
interest. Next, the amplitude is doubled and the non-linear transfer impedance val-
ues Zt−N L in the frequency span are recorded. Finally, this last step is repeated until
the 6 sets are completed.

3.3.4 Measuring |ûp|

The required acoustic particle velocity amplitude to calculate Sr at a specific
frequency and excitation amplitude is deduced from the pressure amplitude in the
tube.

The wave decomposition provides the amplitudes of right and left travelling
pressure waves, p̂+ and p̂− respectively (see Figure 3.1b). By Euler’s law, the rela-
tion between the amplitudes of the pressure waves and the particle velocity is given
by

ûD =
p̂+ exp(jk+x)− p̂− exp(jk−x)

ρ0c0
, (3.8)

where ûD is the particle velocity in the tube, j =
p
−1 is the imaginary number,

x is the distance from the reference plane, k is the complex wave number and
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(a) Sample A. (b) Sample B. (c) Sample C. (d) Sample D.

Figure 3.6: Schematic drawings of samples used. Samples A, B and C have multiple
orifices where Sample D has a single orifice. All of the orifices are assumed to have
square edge profiles.

superscripts ‘+’ and ‘−’ indicate the right and left travelling waves respectively. In
case of no mean flow k = k+ = k−, and is approximated by Peters et al. [29] as
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, (3.9)

where γ and Pr are respectively the ratio of the specific heats and Prandtl number
for air, and ShD is the ratio of the tube diameter to the Stokes layer thickness. Since
the calculation is performed just before the sample in the upstream region, x = 0−

is valid. Considering continuity, one calculates the acoustic particle velocity in the
perforation as

|ûp|=
|p̂+ − p̂−|
ρ0c0σ

. (3.10)

3.3.5 Specifications of the samples

Throughout this study we have used 4 samples with different diameters and
comparable porosity values. Schematic drawings of these samples are given in Fig-
ure 3.6 and their specifications are provided in Table 3.1.

The vena-contracta coefficient Cv given in Table 3.1 depends on both orifice edge
profile and Reynolds number [51]. Considering the samples used in this study, the
Reynolds number of the acoustic flow in the perforation is Rep = |ûp|dpρ0/µ and
for this set of measurements Rep = O (10).

All of the samples are made of brass by drilling. The outer diameter of the
samples is 70 mm. To ensure that there is no air leakage between the samples and
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Table 3.1: Specifications of the samples.

Sample dp [mm] tp [mm] σ Cv

Sample A 0.3 1.0 0.77% 0.70
Sample B 0.8 1.6 0.74% 0.70
Sample C 1.6 1.6 0.72% 0.70
Sample D 4.2 4.0 0.71% 0.70

the impedance tube o-rings are used for mounting the samples.

3.4 Results and Discussions

Since the non-linear effects are interested in this study, the linear contribution is
substracted from the non-linear resistance and reactance that are measured in the
tube just before the sample. To calculate a single perforation, this quantity is mul-
tiplied with the porosity, σ. Furthermore, the change in resistance is normalized
with the non-linear limit proposed by Ingard and Ising [18]where for reactance it is
normalized by the fluctuating mass term proposed by Ingard [15]. By these normal-
izations, one obtains non-dimensional resistance and reactance changes due to non-
linearity, ∆RN L and ∆δN L respectively. These parameters are given in Eqs. (3.11a)
and (3.11b).

∆RN L =
(ℜ{Zt−N L} −ℜ{Zt−L})σ

|ûp|ρ0
, (3.11a)

∆δN L =
(ℑ{Zt−N L} − ℑ{Zt−L})σ

ωρ0dp/2
. (3.11b)

Recall that, the resistance expression by Ingard and Ising [18] is only valid for
orifices with sharp edge profiles. For a universal non-dimensional parameter, the
effect of the orifice edge should corrected via Eq. (3.4) as,

∆RN L−C = 2C2
v∆RN L . (3.12)

The plots of ∆RN L−C and ∆δN L are provided as functions of Sr in Figures 3.7
to 3.9. In these graphs, for each Sh value, there is a separate curve (symbol).

In Figure 3.7, it is seen that for Sh= O (1), the effect of Shear number cannot be
ignored both for ∆RN L−C and ∆δN L . Nevertheless, as the Shear number increases
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Figure 3.7: The effect of Sh number for Sample A: • Sh = 0.75, ◦ Sh = 0.86,
� Sh= 1.05, � Sh= 1.14, Î Sh= 1.22, 4 Sh= 1.29, � Sh= 1.43, ◊ Sh= 1.49.

this dependence vanishes rapidly both for the resistance and reactance change due
to non-linearity in MPPs. Moreover, in the resistance case, ∆RN L−C approaches an
asymptote which is determined by Cv . It is seen that for high Strouhal and low
Shear numbers (Sr >> 1, Sh = O (1)), the non-linear normalized resistance is
proportional to the inverse of the Strouhal number (Figure 3.7). Hence the non-
linear contribution to the resistance is proportional to the square of the acoustic
amplitude (and Reynolds number) as predicted by Aurégan and Pachebat [44].

On the other hand, deriving conclusion on the reactance is not as straightfor-
ward as the resistance case. One observes that δN L approaches 0 for high the Sr
limit regardless of the Sh value, as expected from the definition given in Eq. (3.11b).
Yet, for the low Sr limit, no clear trend is observed for the interval of Sr where the
measurements are performed. For example, in Figure 3.7b, the case Sh = 0.75,
∆δN L has a tendency of having a plateau; yet this behaviour cannot be easily gen-
eralized by looking at other Sh number cases.

The distributions of ∆RN L−C and ∆δN L in Figures 3.8 and 3.9 agree with the
previous observations for Sample A in Figure 3.7. As the Shear number increases,
the deviation between the measurement points becomes smaller for both the nor-
malized resistance and reactance.

Based on the measurement data presented in Figures 3.7–3.9, fits are proposed
as functions of Sr and Sh. The fits representing the change in normalized resistance
and reactance are given as FC and GC , respectively.
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Figure 3.8: The effect of Sh number for Sample B: • Sh = 1.99, ◦ Sh = 2.29,
� Sh= 2.81, � Sh= 3.04, Î Sh= 3.25, 4 Sh= 3.44, � Sh= 3.81, ◊ Sh= 3.98.
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Figure 3.9: The effect of Sh number for Sample C: • Sh = 3.98, ◦ Sh = 4.59,
� Sh= 5.62, � Sh= 6.07, Î Sh= 6.49, 4 Sh= 6.88, � Sh= 7.61, ◊ Sh= 3.98.
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Figure 3.10: Comparison of the proposed expressions Fc and Gc with experiment
results. In sake of simplicity, one Sh value is chosen from Samples A, B and C as
examples: • Sh = 1.05 (Exp), ◦ Sh = 1.05 (Fit); � Sh = 3.81 (Exp), � Sh =
3.81 (Fit); Î Sh= 7.61 (Exp), Í Sh= 7.61 (Fit).

FC (Sr, Sh) =
1

1+ 2Sr[1+ 0.06 exp(3.74/Sh)]
. (3.13)

GC (Sr, Sh) =

¨

0.20− 0.50
Sr

�

1− 0.42
Sh2

�

+ 0.05
Sr2

�

1− 0.68
Sh2

�

, if Sr ≤ 1.

−0.05
�

1
Sr

�

1− 1
Sh

��

− 0.60
�

1
Sr

�

1− 1
Sh

��2
, otherwise.

(3.14)

The expressions in Eqs. (3.13) and (3.14) are obtained by curve fitting of the
experimental data. For these fits, 118 data points were used. The correlation coef-
ficients rF and rG for Fc and Gc are given as r2

F = 0.92 and r2
G = 0.85 respectively.

The comparison between the proposed expressions and the experimental data
is given in Figure 3.10. In this figure, to maintain simplicity, 3 Shear number cases
are selected. These cases are chosen in such a way that experimental data with low
(Sh= 1.05), medium (Sh= 3.81) and high (Sh= 7.61) values for the Shear num-
ber are compared with the proposed expressions. As it is seen in Figure 3.10, the
proposed expressions represent the Sr and Sh number dependence in the transition
regime.

As shown in Figure 3.10, the proposed expressions represent the general be-
haviour of the measurements well in the transition regime. With these expressions,
one can calculate the non-linear resistance and reactance as
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Figure 3.11: The effect of Sh for Sample D. As the shear layer gets thin, different
non-linear mechanisms are activated: • Sh= 10.4, � Sh= 14.8 and Î Sh= 18.1.

ℜ{Zt−N L}=ℜ{Zt−L}+
Fc(Sr, Sh)|ûp|ρ0

2C2
vσ

, (3.15a)

ℑ{Zt−N L}= ℑ{Zt−L}+
Gc(Sr, Sh)ωρ0dp

2σ
. (3.15b)

For the resistance, as Sr increases, the dependence between the dimensionless
∆RN L−C and acoustic particle velocity amplitude becomes almost linear according
to the proposed expression in Eq. 3.13. This behaviour corresponds to the prediction
for porous media by Aurégan and Pachebat [44].

Although it is not in the focus of this study, some experiments have been car-
ried out with orifices which have considerably larger diameters than typical MPPs
(Sh>> 1). For example with Sample D, some peculiar behaviour is observed both
for the resistance and the reactance. The measurement results for this sample with
three different Sh levels are given in Figure 3.11.

For Sample D, when the Stokes layer is thin compared to the diameter of the
orifice, the resistance increases as Sr becomes very large. Considering the results
from Disselthorst and van Wijgaarden [41] and Peters and Hirschberg [16], similar
behaviour has been observed with tube terminations with sharp edges. An increase
following Sr1/3 is expected for the normalized non-linear contribution to the resis-
tance, following Eq. (3.6). Yet, further research and measurements are required to
support this explanation.
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Figure 3.12: Sketch of the acoustic flow with flow separation at sharp edges and
reattachment.

Furthermore, an overshoot to positive values is observed in Figure 3.11b for the
non-linear contribution to the inertia. As the Shear number increases, the overshoot
becomes stronger. This corresponds to the weak non-linear behaviour reported
by Ingard and Labate [17]. At such amplitudes, vortices are formed at the edges
of the orifice, but they remain close to the edge. The formation of a jet flow is
not reached there. The flow separates from the orifice edges, but reattachment
of this flow occurs soon downstream. The reattachment of the flow also occurs for
relatively thin orifices [17]. The schematic description of reattachment is illustrated
in Figure 3.12.

The local contraction of the acoustic flow due to vortex formation occurs at
the upstream edge. This corresponds to a local increase of flow velocity due to
the contraction of the flow. Further increase of the inertia is due to the increased
effective length of the perforation caused by the vortex shedding at the downstream
edge of the perforation.

In case of Sample A, some slightly positive valued data points are observed for
the high Sr limit. Yet, for this sample, the Stokes layer thickness is comparable with
the orifice radius which could be a reason for the suppression of the overshoot.

3.5 Conclusions

This study focuses on the acoustic response of micro-perforated plates (MPPs)
with circular orifices and square edges in the linear to non-linear transition regime.
In this regime, the deviation from the linear resistance and reactance due to the in-
crease in the excitation amplitude is interested in. To measure this, an impedance
tube set-up is used. Dimensionless functions of Strouhal (Sr) and Shear (Sh) num-
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bers are proposed both for non-linear resistance and reactance, i.e. Fc and Gc re-
spectively.

The non-linear effects are initiated around Sr = O (1). In this investigation,
to see the transition from linear to non-linear regimes, the excitation amplitude
is varied for Strouhal number values Sr ∈ [0.05,10]. Furthermore, to meet the
typical micro-perforated plate range and to observe the perforations slightly larger
than this range Shear number values are limited to within the range 0.75< Sh< 8.

The most prominent result of the study is that in the transition regime, the non-
linear corrections both for resistance and reactance depend mainly on Sr and Sh for
MPPs. The dependence on Sh is significant for Sh = O (1), and becomes negligible
for higher values of Sh> 3.

The non-linear correction for the resistance, Fc , is selected in such a manner
that it vanishes for Sr >> 1 and approaches to an asymptote defined by Cv for
Sr << 1. In other words, Fc satisfies the limits for both the linear and quasi-steady
approach. Moreover, in the transition regime, the relation between the resistance
and the particle velocity is quadratic according to Fc . This is in agreement with
previous analytical models [44, 52, 53]. For higher Shear numbers and Sr >> 1, a
more complex behaviour is observed which has been described by Disselhorst and
van Wijngaarden [41].

The proposed non-linear correction function for the inertia Gc also vanishes
for Sr >> 1. Yet, for the Sr << 1, it does not have a limit. The inertance is
negligible in the limit Sr << 1. Moreover, especially for high Sh and high Sr
cases, an overshoot to positive values is observed for the non-linear correction for
the inertia. The mechanism responsible for this is suspected to be the local vortex
shedding as described by Ingard and Labate [17]. This results in a local increase in
flow velocity and correspondingly of inertia.

With the correction functions proposed, a link between the linear and non-linear
acoustic behaviour for MPPs is provided for practical applications.



Chapter 4

Effect of Orifice Edge Profile on
Non-linear Acoustic Response

Abstract

This study investigates the effect of edge profiles on the acoustic response of
orifices subjected to high-amplitude excitation. Due to the ease in its manufacturing
process, an orifice is one of the most widely utilized sound control elements in
acoustic engineering. However, each manufacturing technique produces its own
edge profile. The current study leans over the effect of various edge profiles on
the non-linear acoustic response of an orifice. To focus only on the difference on
edge profiles, 7 single-orifice samples are tested in an impedance tube set-up at
various excitation levels. It is found that chamfering reduces the non-linear transfer
resistance by 50% in comparison to sharp edges in the transition regime, where
the particle displacements are comparable to the orifice diameter. Moreover, the
measurement results are compared to a quasi-steady approach in terms of reflection
coefficient and sound generation in higher harmonics. The quasi-steady approach
is revealed to be accurate for strongly non-linear regime, i.e. for acoustic particle
displacements in the orifice much larger than the orifice plate thickness. However it
severely underestimates the reflection coefficient of an orifice close to an open-end
for excitation levels corresponding to the transition regime.

47
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4.1 Introduction

Using orifices (perforations) to control the acoustic properties of a wall is a
common practice in engineering. They are also used for sound absorption in res-
onators [15] or for sound generation in (woodwind) musical instruments [54]. In
other words, plates with orifices have a wide range of acoustic applications that can
involve high-amplitude sound waves.

There are various techniques to produce plates with orifices such as drilling,
laser cutting, punching, etc. Each technique results in a different edge-profile. Even
for cases with low-amplitude excitations, it is known that the edge-profile alters the
acoustic response of an orifice plate [24]. Thus, the effect of orifice edge-profile
in high-amplitude applications should be known for better design. There are some
remarkable studies related to this problem in the literature.

Sivian [39] is one of the pioneer scientists to study the acoustic impedance of
the orifices. In his experiments, Sivian [39] discovers an increase in the resistance
with increasing excitation amplitude. The revelation of this non-linear phenomenon
inspires Ingard and Labate [17] to carry out experiments where the acoustic flow
around a thin orifice is visualized. In their measurements with high-amplitude ex-
citations, they observe that the additional resistance results from acoustic flow sep-
aration at the sharp edges of the orifice. When the amplitude is increased further, it
is also seen that the vortices are detached from the edges and carried away by the
acoustic flow. An oscillating jet is formed at both sides of the orifice. Bies and Wil-
son [55] have studied the non-linear acoustic response of a Helmholtz resonator
experimentally and found that the reactance decreases with the increasing exci-
tation amplitude. They explain this phenomenon by the conversion of alternating
flow to turbulent flow. Ingard and Ising [18] have used a hot-wire technique to mea-
sure the particle velocity in the acoustic jet through the orifice and observe that the
non-linear resistance is proportional to the particle velocity. They propose a quasi-
steady model for computing the non-linear resistance of an orifice, however this
model does not include the effect of area contraction in jet forming. Melling [56]
and Cummings and Eversman [42] improve the quasi-steady model by introducing
the vena-contracta factor into the non-linear resistance expression proposed by In-
gard and Ising [18]. Cummings [57] has shown that the quasi-steady approach can
be used for estimating the sound generation in higher harmonics. An application
of the quasi-steady approach is reported by Hirschberg et al. [58] to explain the
sound generation in clarinet. Recently, Temiz et al. [37] carry out measurements
on orifices with sharp square-edge profile in the transition regime and propose ex-
pressions to link linear and non-linear regimes.

The edge profile of the orifice is not the primary focus in the studies mentioned
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so far. However, its effect on the non-linear acoustic response is not completely
ignored. Thurston [59] has measured the higher harmonics of orifices with various
edge profiles and reports the emergence of even harmonics in case of an asymmet-
ric orifice. Working on musical instruments, Keefe [54] concludes that the sound
quality of a woodwind instrument can be enhanced by minimizing the non-linear
effects at the inner-side of a tone-hole. McDonald [60] proposes that the reduction
of non-linear effects can be achieved by undercutting the edges of the tone-holes.
Förner et al. [61] have studied the effect of chamfering the edges on the reflection
characteristics of a Helmholtz resonator under high-amplitude excitation. In this
study they compare experimental results with a numerical model. Using the same
numerical model in another study, Förner et al. [62] has investigated sound gen-
eration in the higher harmonics and compare their results with the quasi-steady
approach.

Non-linear response of orifices with an asymmetric profile is used as jet pumps
to avoid steady flow in thermoacoustic devices. A detailed study of the flow in such
orifice pumps is provided by Oosterhuis et al. [63].

In this study, the effect of orifice edge profile on the non-linear acoustic response
is investigated. Firstly, 7 samples with equal plate thickness (tp), orifice diameter
(dp) and porosity (φ) values are chosen. The thickness of the plate is chosen to be
comparable to the orifice diameter, i.e. tp

�

dp ∼ O (1). These samples are placed in
an impedance tube set-up to perform open-end transfer impedance measurements,
described in detail by Temiz et al. [37]. The reflection coefficient values of each sam-
ple are estimated using the quasi-steady approach and compared to the measured
ones. Finally, the sound generation at higher harmonics for a selection of samples
is calculated using the quasi-steady approach and compared to the measurements.

4.2 Theoretical Background

The acoustic field is assumed to be dominated by a fundamental harmonic
ω= 2π f , where f is the excitation frequency. Besides, the measure for the acoustic
non-linearity of an orifice is provided by the Strouhal number Sr defined as

Sr =
ωdp

|ûp|
, (4.1)

where dp is the orifice diameter and |ûp| is the amplitude of the acoustic particle
velocity through the orifice at the excitation frequency. Therefore, Sr is the ratio of
the orifice diameter to the amplitude of the acoustic particle displacement. When
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Figure 4.1: Formation of the acoustic jet in orifices. The jet continuously changes
direction depending on the pressure difference between the two sides of the orifice
where dp and d j are the orifice and jet cross-section diameters, respectively.

Sr >> 1, the acoustic response of the orifice is linear and for Sr < 1 it is non-linear.
However, the latter one is divided into two as transition regime, i.e. Sr ∼ O (1);
and strongly non-linear regime for Sr << 1, where the flow within the orifice is
quasi-steady and convective effects dominate over unsteady inertial effects.

The non-linear acoustic response of an orifice is caused by the flow separation
as shown by Ingard and Labate [17] in their experiments. When Sr << 1, this
separation results into formation of a free jet as illustrated in Figure 4.1.

In the quasi-steady limit (Sr << 1), the acoustic transfer impedance of the ori-
fice is predominantly determined by the resistance as shown by the measurements
of Ingard and Ising [18]. This non-linear acoustic resistance ℜ{Zt} can be approx-
imated by

ℜ{Zt}= ρ0|ûp|, (4.2)

where ρ0 is the density of the fluid and Zt = (p̂1 − p̂2)
�

ûp is the transfer impedance
of the orifice; as p̂1 and p̂2 are the acoustic pressure amplitudes of upstream and
downstream, respectively.

However, the expression given in Eq. (4.2) does not take the area contraction
of the jet into account. Therefore it is only valid for thin orifices with sharp edges
as used by Ingard and Ising [18].

Cummings and Eversman [42] included the effect of various edge profiles into
Eq. (4.2) by applying a quasi-steady model based on the unsteady Bernoulli equa-
tion.

ℜ{Zt}= ρ0|ûp|
1−φ2C2

v

2C2
v

, (4.3)
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Figure 4.2: Tube termination. The sample is mounted between the tube and the
extension (Le = 80 mm).

whereφ = d2
p

�

D2 is the porosity of the orifice, D is the pipe diameter, and Cv = d2
p/d

2
j

is the vena-contracta factor, which is the ratio of the jet cross-section area (πd j/4)
to the orifice area (πdp/4). For orifices with porosity value φ ∼ O (10−2), the term
φ2C2

v is negligible.

Please note that, Eq. (4.2) and (4.3) are equivalent for orifices with sharp edges
in a thin plate, because in that case the value of vena-contracta factor is Cv ' 0.7 [45].

Based on the quasi-steady approach given in Eq. (4.3), Cummings [57] gives the
relation between the upstream and the downstream acoustic pressure oscillations
of the orifice as follows:

p′1(t) = p′2(t) +ρ0

u′p(t)|u
′
p(t)|

2C2
v

+ρ0leq

du′p(t)

d t
, (4.4)

where leq is the equivalent length of the air slug oscillating through the orifice, p′(t)
and u′(t) are acoustic pressure and particle velocity oscillations in time domain and
subscripts 1, 2 and p represent the upstream, downstream and inside of the orifice,
respectively (see Figure 4.2). The linear friction term is neglected in Eq. (4.4).
Furthermore, the equivalent length leq of the orifice is in principle both frequency
and amplitude dependent.

Assuming planar harmonic waves on both sides of the orifice, the acoustic pres-
sures p′1(t) = p̂1 exp( jωt) and p′2(t) = p̂2 exp( jωt) are decomposed into incident
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and reflected waves as

p̂1 = p̂1i exp(− jk0z1) + p̂1r exp( jk0z1), (4.5a)

p̂2 = p̂2i exp(− jk0z2) + p̂2r exp( jk0z2), (4.5b)

where k0 =ω
�

c0 is the wave number, zn is the coordinate along the tube, c0 is the
speed of sound, and subscripts i and r stand for incident and reflected (with respect
to the downstream open pipe termination).

As shown in Figure 4.2, the downstream side of the orifice is terminated with an
open-end in a semi-anechoic room at z = Le, whose radiation impedance is given
by Levine and Schwinger [64] as

ZR = ρ0c0

�

1
4

�

k0
D
2

�2

+ jk0δ0

�

, (4.6)

where δ0 ' 0.61(D/2) for an unflanged pipe whose inner diameter is D. Then, the
acoustic pressure close to the orifice (z = 0) downstream is expressed as

p̂2 = p̂2i + p̂2r = p̂2i (1+ ζR)

= p̂2i

�

1+
ZR −ρ0c0

ZR +ρ0c0
exp(−2 jk0 Le)

�

,
(4.7)

where ζR = p̂2r/p̂2i is the reflection coefficient of the downstream termination.
Applying the conservation of mass law on both sides of the orifice, i.e.

φûp = û1 = û2, the following relation between the decomposed acoustic pressures
is obtained

p̂2i =
p̂1i − p̂1r

1− ζR
. (4.8)

Neglecting the non-linear term in Eq. (4.4) one obtains the expression for the
reflected pressure wave amplitude at the fundamental frequency ω:

p̂1r = p̂1iηR + j
�

1−ηR

2

� ωleq (p̂1i − p̂1r)

c0φ
. (4.9)

Neglecting the inertial term and adding the non-linear term of Eq. (4.4) in the
time domain, one has for the quasi-steady approximation:

p′1r(t) = p′1i(t)ℜ{ηR}+

�

p′1i(t)− p′1r(t)
�

|p′1i(t)− p′1r(t)|
2ρ0c2

0φ
2C2

v

. (4.10)
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Figure 4.3: The difference of the jet area between the inflow and outflow of an
orifice with an asymmetrical edge-profile. For the outflow, the separation occurs at
the sharp upstream edge and Cv ' 0.7. For the inflow, the separation takes place
downstream and due to the chamfer, the vena contracta factor is Cv ' 0.95.

In Eq. (4.10), the values for ηR are used at the fundamental frequency ω and
the only unknown is p′1i(t). In this study, p′1i(t) is reconstructed from its harmonics
p̂1ni as follows:

p′1i(t) = Re

¨ q
∑

n=1

p̂1ni exp( jnωt)

«

, (4.11)

where q is the number of harmonics taken into account. Once p′1i(t) is recon-
structed, it is introduced into Eq. (4.10) to solve for p′1r(t) for a given time t. In
this study, Eq. (4.10) is solved using the fzero function of MATLAB R© for each time
step. Then p̂1r and its harmonics are calculated by FFT.

Whilst solving Eq. (4.10), one should take a possible time dependency of Cv
into account. For orifices with symmetric edge-profiles Cv is constant. However,
for asymmetrical edge-profiles as shown in Figure 4.3, Cv changes value depending
on the direction of the flow through the orifice. As proposed by Förner et al. [62],
Cv = C+v used for p′1(t) > p′2(t) and Cv = C−v used for p′1(t) < p′2(t) in Eq. (4.10).
This time dependence for asymmetrical edge-profiles is iteratively taken care in the
calculations.

4.3 Experiments

The acoustic response of seven samples was measured using an impedance tube
set-up in a semi-anechoic chamber. The details of the set-up and the samples are
provided in this section.
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(a) Schematic description of the experimental set-up.
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(b) Microphone positions on the impedance tube (1).

Figure 4.4: (a) 1-Impedance tube, 2-orifice, 3-extension, 4-microphone(s),
5-microphone amplifier(s), 6-data acquision card, 7-loudspeaker amplifier,
8-loudspeaker, 9-analyzer; (b) a1 = 50mm, a2 = 175mm, a3 = 10mm, Lt = 1m
and D = 50 mm.

4.3.1 Description of the set-up

The set-up is composed of an aluminium tube, six microphones and microphone
amplifiers, a speaker, a power amplifier and an analyser. The schematic drawing of
the set-up is provided in Figure 4.4a.

The aluminium tube is 1-m long and the wall thickness is 10 mm. There are six
mounts opened along the tube to fit the microphones in, whose positions are spec-
ified in Figure 4.4b. Both ends of the tube are flanged allowing various structures
to be attached.

The analyser consists of an NI PCIe-6361 X-Series data acquisition card and a
PC with NI LabView software. The data acquisition card has 16 analog input and
2 analog output channels. The sampling rates for the input and output signals are
10 kHz and 20 kHz, respectively.

The microphones are 1
�

4” pre-polarized BSWA-type microphones with a sen-
sitivity of 50 mV/Pa. Before measuring, absolute calibration is performed on the
closest microphone to the tube termination. It is calibrated by using a B&K hand-
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Table 4.1: Properties of the samples measured in this study. S: square-
edge; OSC: one-side-chamfered; BSC: both-sides-chamfered; P: punched; and IC:
inverted-chamfer. All of the samples have the same orifice diameter dp = 4.2 mm,
and porosity φ = 0.7%.

Sample tp [mm] te f f [mm] cp [mm] Edge Profile

1 4.00 4.00 0 S
2a 4.00 3.65 0.35 OSC
2b 4.00 3.30 0.35 BSC
3a 4.00 3.0 1.0 OSC
3b 4.00 2.0 1.0 BSC
4 4.00 4.0 1.0 P
5 2.00 4.0 1.0 IC

held piston-phone at 1000 Hz for 1 Pa amplitude (SP L = 99.4dB). The remaining
microphones are calibrated relative to the first one using a specially designed appa-
ratus. This apparatus ensures that all the microphones are located at the same dis-
tance from a closed-end termination so that they are exposed to identical pressure
fluctuations simultaneously. The difference in the measurements are eliminated by
a set of calibration coefficients for each microphone at each frequency.

To excite the air in the tube, a 3.5”, 25 W loudspeaker is used. This loudspeaker
is detached from the tube to avoid coupling with the structural vibration modes.

4.3.2 Description of the samples

To study the effect of edge profiles in orifices, samples with comparable plate
thickness and orifice diameter are chosen for the measurements. The main differ-
ence between these samples are the edge-profiles as shown in Figure 4.5.

All of the samples are made of brass except for Sample 5, which is made of
aluminium. The samples are located at the end of the tube and supported by an 80-
mm length extension for sample mounting. To prevent the air leakage in mounting,
o-rings are used where metal-to-metal contact is present.

The samples are designed to have the same orifice diameter dp = 4.2mm and
the porosity value φ = 0.7%. Besides, the plate thickness is not always equal to the
effective plate thickness te f f , which is the length of the orifice with constant diam-
eter in z-direction. The physical properties of the samples are listed in Table 4.1.
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(a) S-Sample 1. (b) OSC-Sample 2a. (c) BSC-Sample 2b.

(d) OSC-Sample 3a. (e) BSC-Sample 3b.

(f) P-Sample 4. (g) IC-Sample 5.

Figure 4.5: Edge profiles of the samples. (a) Square-edge (S), (b) and (d) one-
side-chamfered OSC, (c) and (d) both-sides-chamfered BSC, (f) punched P and
(g) inverted-chamfer IC edge profiles (θc = 45o). Samples (b) and (c) have
small chamfers (cp = 0.35 mm) whereas Samples (c) and (e) have large chamfers
(cp = 1.0mm).
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Table 4.2: The list of excitation frequency and reference amplitude values used in
the measurements.

Frequency Value

f1 80 Hz
f2 120 Hz
f3 160 Hz
f4 240 Hz
f5 280 Hz
f6 140 Hz
f7 180 Hz
f8 220 Hz
f9 260 Hz

Amplitude Value

A1 0.4 Pa
A2 0.8 Pa
A3 1.6 Pa
A4 3.2 Pa
A5 6.4 Pa
A6 13 Pa
A7 20 Pa
A8 26 Pa
A9 32 Pa
A10 40 Pa

4.3.3 Measurement procedure

The amplitude of the generated signal that drives the loudspeaker is regulated
by a custom-built measurement script in LabView software. This script measures the
signal amplitude of the microphone closest to the sample and iterates the output
signal amplitude until it matches the desired value. The actual measurement does
not start until the desired amplitude is reached. The measurements are performed
for 9 frequency and 10 amplitude values for each sample (see Table 4.2). The
acoustic velocity amplitude in the perforation (|ûp|) is computed as described by
Temiz et al. [37].

Some precautions are taken for increasing the accuracy of the measurements.
For example, there is a 10-minute cool-down period after every five measurement
steps in order to prevent a possible temperature gradient in the tube. For the same
token, a monotonous increase in excitation frequency is avoided as it is shown in Ta-
ble 4.2. Furthermore, the grid frequency (50 Hz) and its harmonics are excluded in
the measurements. Additionally, some physical precautions are taken. For example,
the tube and the loudspeaker are separated (no mechanical contact). The micro-
phone cables are fixed by means of Scotch tape to the tube in order to minimize
the effects of structural vibrations in the measurements. Eventually, the measured
reflection coefficient of a closed-end termination deviates from the theoretical value
by 0.5% at most in the frequency span of interest (80− 280Hz).
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4.3.4 Post-processing

The time data in each measurement step is processed by a custom-built MATLAB R©

script after the measurements. First, a lock-in method is used for translating the
time data into frequency domain for each microphone. Using the wave decomposi-
tion by Jang and Ih [32], the incident and reflected complex pressure amplitudes,
p̂1i and p̂1r respectively, are obtained to be able to calculate the reflection coefficient

ζ=
p̂1r

p̂1i
. (4.12)

Moreover, the transfer impedance of the samples is estimated by the open-end
transfer impedance measurements as described by Temiz et al. [24].

4.4 Results and Discussions

4.4.1 Non-dimensional parameters

To allow for more general conclusions, the quantities measured in this study are
made non-dimensional.

The real part of the transfer impedance is normalized by the quasi-steady limit
proposed by Ingard and Ising [18] so that

eR=
ℜ{Zt}φ
ρ0|ûp|

. (4.13)

The imaginary part of the transfer impedance is normalized by the reactive end-
correction coefficient proposed by Ingard [15] as

eX=
2ℑ{Zt}φ
ρ0ωdp

. (4.14)

The Shear number is the ratio of the oscillating boundary layer (Stokes layer)
thickness to the orifice diameter

Sh= dp

√

√ωρ0

µ
, (4.15)

where µ is the dynamic viscosity and ρ0 is the density of air. In other words, the
excitation frequency is made non-dimensional by using it to calculate the Shear
number. This study focuses on high Sh results.
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4.4.2 Effect of edge profile

The results with Sh = 12.1 are shown in Figure 4.6. To help the reader, the
edge-profiles of the samples are added to the beginning of the sample name in the
rest of the text, e.g. S-Sample 1, OSC-Sample 2a, etc.

As it can be seen in Figure 4.6, the edge profiles affect the resistance significantly
in the non-linear regime, i.e. Sr < 1. For example, the normalized resistance of S-
Sample 1 is ∼ 50% larger than that of BSC-Sample 3b. This difference in the linear
regime is around 30%.

Secondly, as indicated in Figure 4.5 and Table 4.1, the difference between BSC-
Sample 2b and BSC-Sample 3b is the chamfer size. Although the chamfer size
increases by 3 times in this comparison, the difference in the normalized resistance
is only about 10%. Same type of behaviour can be observed in the one-sided-
chamfer case, namely between OSC-Sample 2a and OSC-Sample 3a. As mentioned
by Förner et al. [61], corners with obtuse angle prevent the flow separation in the
perforations. Therefore the non-linear sound absorbing mechanism loses its effi-
ciency in the presence of chamfers. However, the chamfer size does not affect the
vortex shedding mechanism significantly. Thus, increasing the chamfer size does
not modify the non-linear resistance considerably.

On the other hand, S-Sample 1 and IC-Sample 5 exhibit comparable non-linear
behaviour in terms of normalized resistance. This implies the acoustic flow sep-
aration from an edge with acute angle behaves similarly to the one from an edge
with right angle. This argument is supported by the normalized resistance values of
OSC-Sample 3a and P-Sample 4 in non-linear regime, which are also comparable.

The acoustic reactance of an orifice decreases as non-linearity increases
(Sr → 0). This phenomenon is also observed by Bies and Wilson [55], Ingard and
Ising [18], and Melling [56] in their measurements. This decline is due to the fact
that flow separation causes a reduction in the oscillating mass through the orifice.

Compared to the resistance, the effect of edge profile on normalized reactance
is limited, but still evident. For example, when Sr is changed from 25 to 0.3, the
relative decrease in eX for S-Sample 1 and IC-Sample 5, is∼ 40%, where it is∼ 30%
for BSC-Sample 2b and BSC-Sample 3b.

Consequently, edge profiles reducing flow separation reduce the non-linear ef-
fects in acoustic response of orifices.

4.4.3 Sound generation in higher harmonics

Sound generation in higher harmonics due to non-linearity is studied for Sam-
ples 1, 2a and 3a. For each sample, p̂1r and its harmonics are both measured and
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(a) Normalized resistance. (x and y-axes are shown in logarithmic scale)
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(b) Normalized reactance. (x and y-axes are are shown in logarithmic
and linear scales, respectively.)

Figure 4.6: The effect of the edge profile on (a) the normalized resistance,
(b) normalized reactance of an orifice. S-Sample 1 ( ), OSC-Sample 2a ( ),
BSC-Sample 2b ( ), OSC-Sample 3a ( ), BSC-Sample 3b ( ), P-Sample 4 ( ) and
IC-Sample 5 ( ) at Sh= 12.1. (See sample geometries in Figure 4.5.)
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Figure 4.7: Measured rSP Ln = 20 log(p̂1nr/p̂11i) values for S-Sample 1 ( -
symmetrical square-edges), OSC-Sample 2a ( -asymmetrical small chamfer) and
OSC-Sample 3a ( -asymmetrical large chamfer): f1 = 80 Hz.

computed by means of Eq. (4.10) and they are compared by means of a reflected
sound pressure level, rSPL, which is defined as

rSP Ln = 20 log
�

p̂1nr

p̂11i

�

, (4.16)

where p̂1nr is the nth harmonic of the reflected pressure wave in the tube and p̂11i
is the fundamental harmonic of the incident pressure wave in the tube. The mea-
surements are restricted to 80 Hz and 120 Hz, allowing a high accuracy at low Sr.
In calculations, the first four harmonics are taken into consideration. Unfortunately
the fifth harmonic is a multiple of the grid frequency 50 Hz.

In Figure 4.7 the measured rSP L values for S-Sample 1, OSC-Sample 2a and
OSC-Sample 3a are compared for the fundamental frequency of 80 Hz.

As it can be seen from Figure 4.7, OSC-Sample 2a and OSC-Sample 3a exhibit
a significantly stronger sound generation in the even-harmonics, i.e. 160 Hz and
320 Hz, due to the asymmetry between the inflow and outflow conditions (see Fig-
ure 4.3). However, the sound generation at odd-harmonic (240 Hz) is dominant
compared to the even-harmonics, which is in accordance with the detailed numer-
ical flow simulation results from the study by Förner et al. [62].

In Figure 4.8, the measured rSP L values are compared with the calculated ones,
which are obtained using quasi-steady approach given in Eq. (4.10). In the analyti-
cal model, the relevant value for the vena-contracta factor is chosen from Table 4.3.
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(a) S-Sample 1, Sr = 0.35.
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(b) OSC-Sample 2a, Sr = 0.32.
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(c) OSC-Sample 3a, Sr = 0.31.

Figure 4.8: Quasi-steady model vs measurements (rSP L = 20 log(p̂1mr/p̂re f ),
f1 = 80 Hz, p̂re f = p̂11i).



5. Conclusions 63

Table 4.3: Value table for vena-contracta factor (Cv) during acoustic flow through
the samples.

p′1(t)> p′2(t) p′1(t)≤ p′2(t)

Sample 1 and 5 0.70 0.70
Sample 2a, 3a and 4 0.70 0.95
Sample 2b and 3b 0.95 0.95

As it can be seen in the comparison graphs, the rSP L values calculated for the
first harmonic using the quasi-steady approach deviates by ∼ 4 dB. This is due to
the fact the system is still in the transition regime at Sr ∼ 0.35. In other words, the
contributions from the linear resistance and reactance are not small enough to be
neglected. However, the quasi-steady approach in time domain succeeds to capture
the effect of asymmetrical edge profile on sound generation in higher harmonics.

One can observe even a further deviation in rSP L values if the quasi-steady
approach is used for higher Sr values (Sr ∼ 0.6) as in Figure 4.9.

If the system is not in strongly non-linear regime, then the quasi-steady approach
starts underestimating the reflection coefficient in the fundamental frequency and
overestimating the sound generation in the odd-harmonic. As stated in Chapter 3,
for Sr ∼ 1, the non-linear response of an orifice is not only function of Sr, but also
a function of Sh. However, the quasi-steady model does not take the viscous losses
into consideration. As it is seen in Figure 4.10, the normalized resistance curves
start separating from each other at Sr ' 0.5.

The observations for the validity of the quasi-steady approach is complemented
by comparing the measured and calculated values of the reflection coefficients for
all the samples previously mentioned in this chapter (see Fig. 4.5). In Tables 4.4
and 4.5, ζex p and ζqs represent the reflection coefficients which are measured, and
calculated using the quasi-steady approach, respectively. Please note that Table 4.4
provides the results for 80 Hz, whereas Table 4.5 presents for 120 Hz.

4.5 Conclusions

In this study, the effect of edge profiles on the non-linear response of an orifice
and sound generation in higher harmonics is studied.

It is observed that the edge profile plays an important role in the non-linear
resistance. For example, orifices with both-sides-chamfered edge-profile (BSC) ex-
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(a) S-Sample 1, Sr = 0.64.
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(b) OSC-Sample 2a, Sr = 0.56.
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(c) OSC-Sample 3a, Sr = 0.56.

Figure 4.9: Quasi-steady model vs measurements (rSP L = 20 log(p̂1mr/p̂re f ),
f1 = 120 Hz).
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Figure 4.10: Sample 2a, Sh range. (Both x and y-axes are shown in logarithmic
scale.)

Table 4.4: Comparison of measured and estimated reflection coefficient amplitudes
at the fundamental harmonic frequency f = 80Hz.

Sr |ζex p| |ζqs|

Sample 1 0.38 0.50 0.34
Sample 2a 0.35 0.48 0.25
Sample 2b 0.33 0.48 0.17
Sample 3a 0.34 0.45 0.25
Sample 3b 0.30 0.41 0.19
Sample 4 0.36 0.51 0.25
Sample 5 0.37 0.46 0.34

hibit 50% less non-linear resistance compared to the one with square-edge profile
(S). The chamfers delay acoustic flow separation to higher excitation amplitudes.

The presence of a chamfer is more substantial than the size of it for non-linear
response. Tripling the size of a chamfer provides only ∼ 10% more reduction in the
normalized resistance.

An inverse-chamfer edge-profile (IC) behaves similarly to the square-edge pro-
file considering the non-linear resistance. Therefore, it is possible to model the edge
profiles with acute angles as square-edges in non-linear regime.

As non-linearity increases, the normalized transfer reactance decreases. Al-
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Table 4.5: Comparison of measured and estimated reflection coefficient amplitudes
at the fundamental harmonic frequency f = 120 Hz.

Sr |ζex p| |ζqs|

Sample 1 0.70 0.72 0.31
Sample 2a 0.61 0.71 0.23
Sample 2b 0.56 0.68 0.15
Sample 3a 0.56 0.64 0.24
Sample 3b 0.49 0.60 0.16
Sample 4 0.69 0.77 0.22
Sample 5 0.65 0.69 0.31

though this reduction depends less on the edge profile, the decrease in BSC is less
than S and IC by ∼ 15%.

A quasi-steady theory is employed to study the sound generation in higher har-
monics. However, it is observed this approach fails to represent the acoustic re-
sponse of an orifice at the transition regime (Sr ∼ 1). For the fundamental har-
monic, the deviation between the measured and estimated reflection coefficients
is about 4dB for Sr ' 0.3 and 10dB for Sr ' 0.6. Although the quasi-steady ap-
proach is an efficient method to estimate the non-linear response of an orifice and
even sound generation at higher harmonics in strongly non-linear regime, it does
not represent the acoustic behaviour accurately in transition regime (Sr ∼ O (1)).
Therefore, it is evident that a more sophisticated approach is required to capture
the acoustic response of an orifice in the transition regime.



Chapter 5

Building a Numerical Model to
Investigate the Effect of
Perforation Distribution in
Flexible Micro-Perforated
Plates1

Abstract

This study proposes a Finite Element (FE)-based efficient numerical model of
the vibro-acoustic coupling in flexible micro-perforated plates (f-MPPs) where each
perforation is described as an imposed impedance boundary condition (uniform
impedance patch) on the plate. This approach opens the possibility of predicting
the influence of perforation distribution on the acoustic performance of f-MPP. Mi-
cro perforated plates have been a topic of interest as a promising sound absorber
in a wide range of applications, from room acoustics to combustion chambers. One
great advantage of these plates is that it gives the designer the freedom of choice on
material in production. Depending on the material and the dimensions, the acous-
tical modes of the medium can couple with the structural modes of the plate. This

1The content of this chapter is compiled as a manuscript by M.A. Temiz, J. Tournadre, I. Lopez Arteaga
and A. Hirschberg; and submitted to Applied Acoustics in November 2016.

67
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coupling changes the number of absorption peaks, frequency and amplitude of the
Helmholtz resonance of the system, therefore the coupling becomes an extra pa-
rameter in the design process. Current analytical models superpose the mechanical
impedance of the plate with the acoustic impedance of the perforations to compute
this coupling. This approach works fairly well for plates with uniform perforation
distribution. If a non-uniform distribution is required, the conventional methods
fall short in calculating the acoustic response of an f-MPP. This study proposes a
numerical method which assumes perforations as discrete impedance patches on
the flexible plate so that they can be considered separately. The method couples
the solution of the Helmholtz equation in air with shell plate theory to model the
vibro-acoustic effects and the impedance patches are represented as imposed trans-
fer impedance boundary conditions. The assessment of the method is performed
in terms of comparing the calculated absorption coefficient values from the simu-
lations of several test cases, fundamental theories and measurement results from
the literature. The simulation results agree both with these theoretical limits and
measurement results.

5.1 Introduction

Micro-perforated plates (MPPs) have been designated as high potential sound
absorbers by Maa [6] for various applications including the ones with severe envi-
ronments. Before the study of Maa [6], they were used only as protective layer for
classical sound absorbers. MPPs are plates with small perforations whose diameter
is in the order of 1 mm with low porosity values, i.e. φ = O (1%). When backed
by a cavity, they provide broadband acoustic dissipation compared to Helmholtz
resonators.

The present study is limited to the amplitude range for which the behaviour can
be described by a linear model. This excludes damping due to vortex shedding.
The linear sound absorption mechanism in MPPs is based on the conversion of the
kinetic energy of the fluid particles into heat energy due to the viscous resistance
in the perforations. As the viscous resistance increases with the relative velocity
between the plate and the fluid, the kinetic energy loss of the particles and the cor-
responding sound absorption is larger when the excitation frequency approaches
to the Helmholtz resonance frequency of the back cavity. For a rigid MPP, the rel-
ative particle velocity of the air is the same for each perforation at all frequencies
when excited by a planar acoustic wave. On the other hand, when the plate is flex-
ible, at certain frequencies the plate vibrates with the mode shape depending on
its geometry, excitation frequency, boundary conditions and material. Due to this
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mode shape, even under acoustic plane wave excitation, the relative air particle
velocity with respect to the plate depends on the position of the perforation within
the plate. Therefore, the perforation position is potentially a design parameter in
flexible micro-perforated plates (f-MPPs).

Sound absorption by flexible plates is a known phenomenon in room acoustics.
One of the first analytical models for a flexible plate, which does not have per-
forations but backed by an air cavity, is provided by Cremer and Müller [65]. In
this model, they couple the bending waves of the flexible plate with the acoustic
waves of the air cavity. An important contribution to this model is made by Bas-
ten et al. [66]. They consider an enclosed air cavity between two flexible plates and
the distance between these plates are small. Basten et al. [66] analytically show
that, such a small gap between the flexible plates causes the visco-thermal effects
to become dominant in the cavity.

On the MPP side, the first scientists to observe that plate vibrations affect the
absorption mechanism are Lee and Swenson [22]. In their experiments, they report
an additional absorption peak which cannot be modeled by the rigid MPP theory.
The first analytical model including the flexible effects in MPPs is given by Lee et
al. [67]. Inspired by their work, Toyoda et al. [68] propose a similar approach for
modeling of f-MPPs having circular geometry. Both Lee et al. [67] and Toyoda et
al. [68] calculate the structural impedance of the flexible plate using modal analysis
and combine it with the acoustic transfer impedance defined by Maa [6]. In both
of these studies, the mathematical models are verified by experiments. Bravo et
al. [9, 69] consider a case where the back cavity walls are flexible and provide
a theoretical model where the absorption mechanism is governed by the relative
velocity between the air particles and the flexible plate. They verify this model
by experiments. Li et al. [70] propose a sophisticated model to account for the
non-zero velocity boundary condition at the inner walls of the perforations. This
boundary condition redefines the classical acoustic transfer impedance expression
by Maa [6].

All of the studies mentioned so far explain a different aspect of the vibro-acoustic
coupling in f-MPPs. On the other hand, except for the one by Li et al. [70], all of
the studies use the concept of a plate-averaged MPP transfer impedance. Even
though the model by Li et al. [70] takes perforation positions into account, their
method confine them to radial distributions only. In case of uniform distribution
of perforations, the aforementioned methods are all adequate, yet they fall short in
case of a non-uniform spatial distribution.

The focus of this study is to provide a numerical method for modelling f-MPPs
in a way that each perforation is considered separately. Thus it can be used for
investigating the acoustic properties of an f-MPP with a non-uniform perforation



70 Building a Numerical Model to Investigate ...

(a) (b)

Figure 5.1: (a) The schematic drawing of the flexible micro-perforated plate
(f-MPP) placed between the impedance tube (Domain 1 ) and the back cavity

(Domain 2 ). The plate displacement vector w(x , y) is also illustrated on the
cross-sectional view of the f-MPP; (b) front view of an f-MPP whose perforations
are distributed uniformly.

distribution, allowing one to design the optimum distribution for a desired acoustic
response.

To validate the theory, a cylindrical impedance tube is modelled numerically
and the acoustic properties of the f-MPP with a back cavity is assessed in terms of
absorption coefficient, β . The model outputs are compared with fundamental plate
and acoustic theories and experiments reported in the literature.

5.2 Theoretical Background

The numerical domain of the impedance tube configuration, which is presented
schematically in Figure 5.1, is composed of two domains: a structural domain
(shell) and an acoustic domain. This section provides the governing equations used
for modelling these domains.

5.2.1 Structural domain

The equation of motion of the thin, homogeneous flexible plate shown in Fig-
ure 5.1 is given by Kirchhoff [71] as
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Dp∇2∇2w(r)−ρp tpω
2w(r) = P̂, (5.1)

where ∇2 is the Laplacian operator, w(x , y) is the plate displacement in the
z-direction, ρp is the plate density (mass per unit of surface), tp is the
plate thickness; P̂ is the external pressure difference acting on the plate;
Dp = E(1+ jη)t3

p/[12(1− ν2)] is the flexural rigidity of the plate where j is the
imaginary number ( j2 = −1), E is the Young’s modulus, η is the loss factor and ν
is the Poisson ratio of the plate material. As the typical porosity of an f-MPP is in
the order of 10−2 [24], the effect of perforations on the structural properties of the
flexible plate is ignored for the modelling.

5.2.2 Acoustic domain

Domains 1 and 2 in Figure 5.1 are acoustic domains and they are assumed
to be excited by harmonic plane waves. Furthermore, thermo-viscous losses at the
sound-hard boundaries are negligible in theses acoustic domains. Under these as-
sumptions, the spatial pressure distribution in frequency domain is given by Helm-
holtz equation [8]

ω2 p̂n(z) + c0
2∇2 p̂n(z) = 0, (5.2)

where ω = 2π f is the radial frequency, c0 is the speed of sound in air and p̂n
is the acoustic pressure in frequency domain for acoustic medium n; i.e. n = 1
for the impedance tube and n = 2 for the back cavity domains, respectively (see
Figure 5.1).

The two acoustical domains in Figure 5.1 are connected through micro-perfo-
rations which can be considered as independent uniform impedance patches on the
flexible plate. These patches are defined as imposed transfer impedance boundaries
in the numerical model and the mathematical expression for each patch is given by
Temiz et al. [24] as

Zt =
p̂1 − p̂2

ûp
= jωtpρ0

�

1−
2

Sh
p

− j

J1(Sh
p

− j)

J0(Sh
p

− j)

�−1

+ 2αsRs + jδsωρ0

dp

2
, (5.3)

where ûp is the average acoustic particle velocity in the perforation, ρ0 is the density
of the acoustic medium and Jm is the Bessel function of first kind of order m. The
other parameters in Eq. (5.3) are calculated for square-edged perforations as [24]
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Sh= dp

Æ

ωρ0/(4µ), (5.4a)

Rs = 0.5
p

2µρ0ω, (5.4b)

αs = 5.08Sh−1.45 + 1.70, (5.4c)

δs = 0.97 exp(−0.20Sh) + 1.54, (5.4d)

where Sh is the Shear number: the ratio of the perforation diameter to the os-
cillating boundary layer thickness, µ is the dynamic viscosity of air (1.82× 10−5

kg/ms at 20oC), Rs is the surface resistance, αs and δs are resistive and reactive
end-correction coefficients for circular orifices with square-edge geometries. Note
that as αs and δs are functions of Sh, they take the effect of viscosity on the iner-
tance into account. Other expressions for other edge geometries are proposed by
Temiz et al. [24]. The expression given in Eq. (5.3) is valid when the perforations
are far enough from each other, so that they do not interact. Eq. (5.4) is based on
numerical simulations and was validated experimentally [24].

5.3 Numerical Model

The numerical model is built in the finite element program COMSOL Multi-
physics R© (ver. 5.0) [23] using the built-in Pressure Acoustics and Plate modules.
The model represents a cylindrical impedance tube set-up with two microphones
to estimate the absorption coefficient. At one end of the tube, the flexible micro-
perforated plate and the back cavity is placed where the other end is used for
introducing the acoustic plane wave into the system. The micro-perforations are
modelled as described in the previous section. The simplified representation of the
numerical domain, which describes the boundary conditions employed, is given in
Figure 5.2.

5.3.1 Boundary conditions

Four types of boundary conditions are used to model the configuration repre-
sented in Figure 5.1.

• Imposed pressure boundary (ΩP): To represent the plane wave excitation
incident to the f-MPP, this boundary condition is employed at the upstream of
the tube geometry. The equation for this boundary is

p̂|ΩP
= p̂ex , (5.5)
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(a) (b)

Figure 5.2: The description of the boundary conditions used for modelling the (a)
impedance tube; (b) f-MPP: ΩP is the imposed pressure, ΩZ∞ is the sound-hard,
Ω f −M PP is the f-MPP, ΩZt

is the imposed transfer impedance and ΩS is the vibro-
acoustic coupling boundary.

where p̂ex is the prescribed pressure amplitude (in frequency domain).

• Sound-hard boundary (Z∞): The normal acoustic velocity vanishes at the
side walls of the impedance tube and the termination of the back cavity by
this boundary condition.

û|ΩZ∞
= 0. (5.6)

• Imposed transfer impedance boundary (ΩZt
): The change (p̂1 − p̂2) in the

acoustic pressure from Domain 1 to 2 through the perforations is related
to the particle velocity (ûp) by the boundary condition, on the patch surface

p̂1 − p̂2

ûp
|ΩZt
= Zt , (5.7)

where Zt is calculated by using Eq. (5.3).

• Vibro-acoustic coupling boundary (ΩS): On this boundary, the acoustics of
Domains 1 and 2 are coupled with the structural vibrations of the shell
domain. This is achieved by the following equations

û(x , y)|ΩS
=

dw(x , y)
d t

= jωw(x , y) (5.8a)

P̂
�

�

ΩS
= p̂1|ΩS

− p̂2|ΩS
, (5.8b)

where Eq. (5.8a) couples the plate displacements with the acoustic particle
velocity and Eq. (5.8b) couples the forcing source term in Eq. (5.1) on the
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flexible plate with the acoustic pressure difference between Domains 1 and

2 .

The boundary condition represented as Ω f −M PP is the combination of ΩZt
and ΩS ,

as can be seen in Figure 5.2

5.3.2 Finite element model

The finite element model of the configuration is obtained by discretizing Eqs. (5.1)
and (5.2) over the numerical domain using quadratic shape function for both acous-
tic and structural domains. After introducing the boundary conditions (Eqs. (5.5)-
(5.8)) into the weak form of the governing equations (Eqs. (5.1) and (5.2)), the
system of equations representing the numerical model takes the following form:

§�

K s K c
0 K a

�

+ jω
�

C s 0
0 C a

�

−ω2
�

M s 0
M c M a

�ª§

w u
pu

ª

=
§

F si
F ai

ª

, (5.9)

where, K is the stiffness, M is the mass, C is the dissipation and F is the forc-
ing matrices. The subscripts ‘a’, ‘s’ and ‘c’ represent the words acoustic, structural
and coupling. The vectors w u and pu stand for the free plate displacement and
acoustic pressure vectors, respectively. These are the vectors that are not imposed
as boundary conditions and need to be solved for. The imposed boundary condi-
tions introduced in the acoustic and structural forcing vectors, F ai and F si . Finally,
Eqs. (5.8a) and (5.8b) are represented by M c and K c , respectively [72].

The system of equations given in Eq. (5.9) is solved by using a direct linear
solver.

5.3.3 Meshing

The mesh used for discretizing the numerical domain is built by COMSOL au-
tomatically based on the physics used in the model. The extra-fine mesh option is
chosen for all models in this study. Although it is built automatically, the mesh is
manually checked to satisfy following conditions: (1) the largest acoustic element
is never larger than 1/10 of the smallest acoustic wave length of interest; (2) there
are at least 8 elements for each perforation; (3) the mesh around the perforation is
finer than the rest of the acoustic domain matching locally the perforation mesh.

In the model, triangular elements are used for surfaces and boundaries whereas
tetrahedral elements are used for volumes to mesh the numerical domain. An ex-
ample of the meshed geometry is shown in Figure 5.3.
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Figure 5.3: The example of typical meshing of the numerical geometry. The mesh-
ing is performed with COMSOL’s built-in physics controlled meshing tool and some
part of the side surface is left open to show the meshing around the perforations.

The study for mesh convergence is discussed in Appendix B.

5.3.4 Estimation of the absorption coefficient

In this study, the absorption coefficient is represented by β in order not to con-
fuse it with the resistive end-correction coefficient α. To calculate the absorption
coefficient β , the two-microphone method by Bodén and Åbom [73] is applied to
the numerical model. Two microphone positions, zm1 and zm2 are chosen on Do-
main 1 and the pressure values are averaged by section at these two positions in
z as p̂m1 and p̂m2. Using these pressure readings, wave decomposition is performed
to obtain complex amplitudes of the right and left travelling pressure waves, p̂+ and
p̂− respectively. Therefore, the absorption coefficient is calculated as

β = 1−
�

�

�

�

p̂−

p̂+

�

�

�

�

2

. (5.10)

5.3.5 Compensation for inviscid reactance

Since the numerical method described in this section allows one to model the
perforations separately, it is referred here as the discrete model. On the contrary, the
conventional analytical model assumes an average transfer impedance value over
the plate and lumps this value to the MPP to compute the acoustic properties of the
system, therefore it is referred to as the lumped model in the present paper. Pro-
vided that the perforations are far enough from each other, so that no interactions
between perforations take place, the discrete and lumped models should provide
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Table 5.1: Properties of the cases from Toyoda et al. [68] used for comparing the
discrete and lumped models. Please see Figure 5.4 for the definition of parameters.

Case A1 Case A2 Case A3

dp [mm] 0.5 1.0 2.0
tp [mm] 0.5 0.5 0.5
b [mm] 10 10 10
np [mm] 76 76 76
φ [-] 0.2% 0.8% 3.1%
D [mm] 100 100 100
L [mm] 300 300 300
Lc [mm] 50 50 50

Figure 5.4: Geometric parameters of the numerical domain.

comparable results for the rigid plate. Please note that, for the rigid plate mod-
elling, the vibro-acoustic boundary condition (ΩS) is replaced with the sound-hard
boundary condition (ΩZ∞).

To verify this, three test cases are considered. The physical properties of these
cases are provided in Table 5.1 and Figure 5.4.

In Table 5.1, b is the distance between the two neighbouring perforations, np
is the number of perforations on the plate, L is the length of the impedance tube
and Lc is the depth of the back cavity (see Figure 5.4). These parameters are taken
from the study by Toyoda et al. [68].

The comparison between the absorption coefficients predicted by the lumped
and discrete models for Cases A1 to A3 is given in Figure 5.5. As it can be seen
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Figure 5.5: Comparison of the absorption coefficients calculated with the discrete
model ( ) and the conventional lumped model ( ).

in these graphs, the discrepancy between the analytical results and the numerical
ones increase from Cases A1 to A3. Considering the parameters given in Table 5.1,
only perforation diameter and plate porosity values differ among the test cases.

The same discrepancy is reported by Temiz et al. [72] with another FE program,
namely LMS Virtual.Lab [74]. Hence, the discrepancy between the predictions of
the lumped and discrete models is not solver dependent.

Keeping in mind that the Helmholtz equation does not take the viscous effects
into account, the frequency shift observed in Figure 5.5 is a result of reactance only.
In fact, Eq. (5.3) takes a reactance (end-correction δs) into account describing the
inertia of the non-uniform acoustic flow around the opening of the perforations.
The solution of the Helmholtz equation should therefore disregard this effect. To
eliminate this inviscid reactance contribution (δH) by the Helmholtz equation, its
value is estimated and subtracted from Eq. (5.3). This subtraction can be performed
under the assumptions that the acoustic flow is almost incompressible around the
perforations and that acoustic impedance can be superposed due to the linearity of
the system.

This new expression is referred as the modified transfer impedance and should
be used at the imposed transfer impedance boundaries in the proposed numeri-
cal model. To calculate the inviscid reactance contribution, a set of simulations
have been carried out. The numerical domain for this set of simulations is almost
identical to the one described so far in this paper. The schematic description of
the numerical domain used in this parametric study is given in Figure 5.6 and the
parameters investigated are provided in Table 5.2. By examining Figure 5.6, the
differences can be noted: a single orifice is modelled (instead of an MPP) and the
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Figure 5.6: Schematic representation of the numerical geometry used in the para-
metric study for calculating the inviscid reactance contribution of an orifice.

Table 5.2: The parameters used in simulations to calculate the inviscid reactance
contribution from the Helmholtz equation.

Porosity (φ) [-]

0.1%
0.2%
0.4%
0.8%
1.6%
3.2%
5.0%

Perforation Diameter (dp) [mm]

0.5
1.0
2.0
4.0

Frequency ( f ) [Hz]

200
1000
2000

plate is modelled as a rigid boundary. Since it is a basic acoustic model, the meshing
is performed by the built-in meshing tool by COMSOL. The mesh size is selected as
the Extremely Fine level, which provides the finest grid in the numerical domain.
Using the results from this numerical model, a parametric study is performed. The
results are represented in terms on non-dimensional parameters so that they can be
generalized.

The single orifice illustrated in Figure 5.6 is modelled with the Acoustic mod-
ule of COMSOL Multiphysics in frequency domain. Therefore no viscous effects are
taken into consideration. As a result, the acoustic reactance of the orifice in Fig-
ure 5.6, ℑ{Zt}H , is the inviscid reactance contribution. Please note that subscript H
represents the word Helmholtz and indicates the inviscid contribution. This param-
eter is non-dimensionalized by normalizing it as proposed by Ingard [15]

δH =
2ℑ{Zt}H
ρ0ωdp

. (5.11)
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Figure 5.7: The change of inviscid reactive end-correction coefficient with respect
to the porosity. For 0.5mm≤ dp ≤ 4.0 mm, the perforation diameter has negligible
effect on δH .

From Table 5.2, simulations are run for 7 × 4 × 3 = 84 different parameter
combinations. Among these combinations, the effect of frequency change between
the same porosity and perforation diameter values are found to be less than 1% for
δH , therefore the number of points to be investigated is reduced to 28 by taking an
average value of the three frequency values of the same combination. The resulting
28 data points are plotted with respect to porosity in Figure 5.7.

It is evident from Figure 5.7 that the inviscid reactive end-correction δH only
depends on the porosity. Even for various diameter values from 0.5 mm to 5.0
mm, the same δH value is found for the same porosity. Hence, to estimate the non-
dimensional inviscid reactance, a fit which is a function of porosity only is proposed
such as

δH = 0.85φ − 2.40
Æ

φ + 1.54, 0≤ φ ≤ 1. (5.12)

The quality of the fit given in Eq. 5.12 is r2 = 0.9998, where (1− r2) is the variance
of the fit.

The fit is calculated in such a way that when the porosity is unity, in other words
when the orifice size is equal to the duct diameter, δH = 0 is satisfied. On the other
hand, when the porosity becomes very small, the fit value approaches to 1.54. This
value is comparable to the theoretical limit value calculated by Pierce [36] who
obtains the analytical value for the low frequency limit of the length of the oscil-
lating fluid mass at a circular orifice in an infinite (thin) baffle plate as π/2= 1.57
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times the orifice radius. Therefore in the very low porosity limit, the fit proposed in
Eq. (5.12) leads to an error of no more than 2% compared to the theoretical limit
of Pierce [36].

Moreover, Tayong et al. [75] discuss the hole interaction effect on the acoustic
reactance with the help of Fok’s function which also depends on porosity. Their
correction is compared to the fit given in Eq. (5.12) for 0.005≤ φ ≤ 0.05 and a very
similar trend is observed between the two calculations (see Figure 5.7). Therefore,
we conclude that using the expression given in Eq. (5.12) for compensating the
excess reactance should be adequate.

Finally, the modified transfer impedance Z∗t , which is used in the imposed trans-
fer impedance boundary layer in the discrete numerical model, is updated as

Z∗t = jωtpρ0

�

1−
2

Sh
p

− j

J1(Sh
p

− j)

J0(Sh
p

− j)

�−1

+ 2αsRs + j(δs −δH)ωρ0

dp

2
. (5.13)

In Figure 5.8, the comparison between the predicted absorption coefficient for
the conventional analytical model and the discrete model which uses the modified
transfer impedance is made. For each Case, the relative percentage error is calcu-
lated as

ε f % =
| fpeak−lm − fpeak−dm|

fpeakl m
100%, (5.14)

where fpeak is the frequency where the absorption peak is observed, subscripts lm
and dm represent the lumped and discrete models respectively. The calculated
relative percentage errors are presented in Figure 5.8, also.

It can be seen that the discrepancy between the two prediction is practically
eliminated when the modified transfer impedance proposed in Eq (5.13) is applied
in the discrete model.

5.4 Validation of the Discrete Numerical Model and
Discussions

The validation of the discrete numerical model is partly performed in the previ-
ous chapter by the parametric study for evaluating the contribution of the inviscid
reactance. Figure 5.8 provides the comparison between the discrete and lumped
models of the acoustic absorption of an MPP backed by a cavity for rigid plates.
In this section, the predicted absorption coefficients for two rigid plate configu-
rations are compared to measured absorption coefficients and then the effect of
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Figure 5.8: Comparison of the absorption coefficients calculated with the discrete
model using the modified transfer impedance ( ) and the conventional lumped
model ( ).

vibro-acoustically coupled system is discussed by comparing results from both fun-
damental analytical models and measurements by Toyoda et al. [68] with the dis-
crete numerical model.

5.4.1 Rigid plate

The impedance tube used for the experimental validation of the discrete nu-
merical model is the same set-up described in the study by Temiz et al. [24]. The
physical properties of the samples used in this validation is provided in Table 5.3.

The measurements are performed in the frequency interval of 100 Hz ≤ f ≤
700Hz. The experimental and numerical results are plotted together in Figure 5.9.
As it can be seen from the plots, the numerical model successfully captures the
general absorption behaviour of the rigid MPPs.

The samples defined in Cases A4 and A5 have already been used in an earlier
study by Temiz et al. [34] and they are reported to have some uncertainties in
the perforation geometry. The perforations on these samples are manufactured by
drilling and some of them have more triangular shape than circular. The reason for
the frequency shift between the discrete numerical model and the measurements in
Figure 5.9 can be this uncertainty.
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Table 5.3: Properties of the samples used in the experimental validation of the
discrete numerical model for the rigid plate case. The measurements are carried
out with the impedance tube set-up described by Temiz et al. [24].

Case A4 Case A5

dp [mm] 0.8 1.6
tp [mm] 1.0 1.6
b [mm] 8 15
np [-] 29 7
φ [-] 0.7% 0.7%
D [mm] 50 50
L [mm] 150 150
Lc [mm] 20 20
Material Brass Brass
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Figure 5.9: Comparison between the (original) experiments (•) and numerical
model (—) with modified transfer impedance in Eq. (5.13).



4. Validation of the Discrete Numerical Model and Discussions 83

Table 5.4: Parameters defining the validation test cases. Except from the density,
they are taken from the study by Toyoda et al. [68]who reports the sample material
as PVC. The density value is taken from the material library of COMSOL.

Case VA0 Case VA1 Case VA2 Case VA3

dp [mm] N/A 0.5 1.0 2.0
tp [mm] 0.5 0.5 0.5 0.5
b [mm] N/A 10 10 10
np [mm] 0 76 76 76
φ [-] 0 0.2% 0.8% 3.0%
D [mm] 100 100 100 100
L [mm] 300 300 300 300
Lc [mm] 50 50 50 50
E [N/m2] 3× 109 3× 109 3× 109 3× 109

η [-] 0.03 0.03 0.03 0.03
ν [-] 0.3 0.3 0.3 0.3
ρ [kg/m3] 1760 1760 1760 1760

5.4.2 Flexible plate

To validate the discrete numerical model in terms of vibro-acoustic coupling,
the test cases from Toyoda et al. [68] are used and their properties are provided
in Table 5.4. To include the structural effects into the model, the f-MPP boundary
condition is applied on the plate (See Figure 5.2 and Eq. (5.8)).

Although the test cases are clearly defined in the study by Toyoda et al. [68],
the density of the flexible plate is not explicitly provided. Instead, the material
used for manufacturing the plates is reported as rigid PVC (polyvinyl chloride). As
a result, the simulations are carried out using the PVC material which is already in
the material library of COMSOL (ρPV C = 1760kg/m3).

Comparison with fundamental analytical models

First, the eigen-frequencies of the flexible plate Case VA0 is computed analyt-
ically and compared with numerical results. The theoretical modes of a circular
plate whose circumference is clamped is calculated by [76]

J0(γm)I1(γm) + I0(γm)J1(γm) = 0, (5.15)
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Table 5.5: The first four vacuum eigen-frequencies of the circular plate whose
circumference is clamped. The plate properties are given in Table 5.4 for a non-
perforated plate in vacuum.

γm [-] ℜ{ fm} [Hz]

3.1962 129
6.3064 500
9.4395 1121

12.5771 1990

where subscript m denotes the mth natural mode and

γm =
D
2

√

√

√

2π fm

�

ρp tp

Dp

�0.5

. (5.16)

Hence, the eigen-frequencies of a circular plate whose circumference is clamped is
found by solving for γm in Eq. (5.16). The first four solutions of this equation and
corresponding vacuum eigen-frequencies are given in Table 5.5.

The eigen-frequencies calculated with the simple analytical approach are com-
pared with the simulation results in Figure 5.10. It is seen that the first eigen-
frequency in the simulation is significantly larger compared to the analytical calcu-
lations. This is due to the additional stiffness added by the air volume in the back
cavity. This is verified by carrying out another simulation where the back cavity wall
is modeled as a sound-soft boundary, i.e. p̂2|z=Lc

= 0. Doing so it is ensured that the
air in the back cavity can flow through the back and forth through this sound soft
boundary and does not exert an additional stiffness on the plate. In other words, by
changing the boundary condition, the vacuum modes of the plate described in case
VA0 is simulated. The results of this updated simulation validate that the structural
properties of the plate is captured successfully in the simulations.

The second basic model is the Helmholtz resonator. The eigen-frequency of a
Helmholtz resonator can be calculated by [36]

fH =
c0

2π

√

√

√

Snnp

V0 Leq
, (5.17)

where Sn = d2
pπ/4 is the cross-section of the perforation, V0 is the volume of the

backing cavity and Leq = tp + 1.70(Sn/π)2 is the equivalent orifice length. In Ta-
ble 5.6, the corresponding Helmholtz frequencies of the simulation cases are given.
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Figure 5.10: The comparison between a simple circular plate and the simulations of
Case VA0: ( ) Theoretical eigen-frequencies, (—) simulation with vibro-acoustic
coupling, and ( ) simulation with vibration only.

Table 5.6: Corresponding Helmholtz frequency of Cases VA1, VA2 and VA3 (see
Table 5.4).

Simulation Case fH [Hz]

VA1 420
VA2 682
VA3 1051

The calculated Helmholtz frequency values using the analytical expression given
in Eq. (5.17) is marked in the absorption coefficient vs. frequency graphs for Cases
VA1, VA2 and VA3 in Figure 5.11.

First point to observe in Figures 5.10 and 5.11 is that the absorption peaks orig-
inating from structural vibrations are sharper and have a more narrow-band char-
acter. On the other hand, the peaks related to the acoustic modes are effective over
a wide frequency band. This is due to the difference in damping mechanisms be-
tween the structural and acoustic systems. Since the acoustic system benefits from
the viscous damping, which dissipates more energy in case of high particle velocity,
the absorption caused by the air particles passing through the perforations expands
over a wider frequency bandwidth.

The key observation from Figure 5.11 is that all of the the calculated Helmholtz
frequencies (see Table 5.6) are higher than the smooth and wide-band peaks in the
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Figure 5.11: Cases VA1 (a), VA2 (b), and VA3 (c). The corresponding Helmholtz
frequencies are marked on top of the graphs ( ). Additionally, the first three
vacuum eigen-frequencies of the plate are also shown on the graphs ( ).
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absorption curves, which originate from the sound dissipation due to the back cavity
volume and viscous friction in the vicinity of the perforations. This systematic shift
to the lower frequencies result from the added mass of the flexible plate described
by Cremer [77]. Unlike cases with rigid ones, in non-rigid cavities the compressed
air not only pushes out the particles through the perforation, but exerts pressure on
the flexible plate also. Therefore, the eigen-frequency corresponding to the funda-
mental acoustic mode of a non-rigid cavity is referred as the first cavity resonance
frequency.

Comparison with experimental results

The validation of the discrete numerical model is completed by comparing the
predicted absorption coefficient for all cases given in Table 5.4 with the measure-
ments provided by Toyoda et al. [68] in Figure 5.12.

As shown in Figure 5.12, the discrete numerical model represents the general
behaviour of a vibro-acoustic system successfully. Although, there is a shift be-
tween the numerical simulation and experiment results due to the difference in the
material properties. When the density is adjusted as a fit parameter to the value
ρPV C = 1300 kg/m3, the shift between the numerical simulations and the measure-
ments performed by Toyoda et al. [68] is significantly reduced.

5.5 Parametric Study Example

To illustrate that the described numerical model can be used as a tool for para-
metric studies, the influence of plate thickness and distribution of the parameters
are investigated in this section. For the parametric study, the density of the flexible
plate material does not matter provided that it is kept constant throughout all the
simulations. Hence, the default value from the material library of COMSOL R© is
used (ρPV C = 1760 kg/m3).

5.5.1 Influence of Plate Thickness

The thickness of a flexible plate is an important parameter for coupled vibro-
acoustic behaviour since its third power is directly related to the flexural rigidity of
the plate. Hence, a thinner plate results in lower structural acoustic peaks in the
system. Moreover, for the same acoustic excitation, the amplitude of the plate vibra-
tions is increased with the decreasing plate thickness. Depending on the shape and
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Figure 5.12: Comparison between the discrete numerical model (—) and measure-
ments by Toyoda et al. [68] (�). Additional simulations with the density as fit param-
eter adjusted to ρPV C = 1300 kg/m3 instead of the density reported in the COMSOL
library ρPV C = 1760kg/m3 are shown as (- - -).
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Figure 5.13: The plate thickness effect for a plate with no perforations:
(—) tp = 0.5mm, ( ) tp = 0.2mm, and (- - -) tp = 0.1 mm.

boundary conditions of the plate, it is not straightforward to assess the exact out-
come of the thickness change on acoustic response. As a result, the model described
here can be used to obtain some insight.

For this parametric study, there are three base cases: VA0, VA2 and VA4. The
properties of the first two base cases are already provided in Table 5.4 and for
Case VA4, one can refer to Table 5.7. The distinguishing properties for these bases
cases are that Case VA0 has no perforations, Case VA2 has perforations of 1 mm in
diameter and Case VA4 has perforations whose diameter is 0.3 mm. As a result this
variety of diameters gives a general idea for the typical MPP range.

Besides the aforementioned three base cases, all of which have thickness of
0.5mm, 6 additional cases are designed to investigate the effect of thickness in
vibro-acoustic coupling of f-MPPs. Each base case is related to 2 additional case,
whose properties only differ in terms of thickness. The detailed list of the parame-
ters of these additional cases and VA4 is given in Table 5.7.

The first observation that can be made from Figures 5.13-5.15 is that, the pres-
ence of micro perforations increases the absorption characteristic of the flexible
plate drastically in the frequency span of interest (100Hz ≤ f ≤ 2000Hz). Plates
with micro-perforations provide a more wideband absorption compared to the plates
without. Moreover, even the structural absorption peaks becomes higher and wider
because of the friction losses due to the fluid movement through the perforations.

Another observation is that, the results from the simulations are in harmony
with the expectations mentioned earlier: The thinner the plate becomes, towards
the lower frequencies the plate eigen-frequencies move. This is visible for all three
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Table 5.7: Parameters defining the parametric study test cases for effect of thickness.

Case VA0 Case VA0-1 Case VA0-2

dp [mm] N/A N/A N/A
tp [mm] 0.5 0.2 0.1
b [mm] N/A N/A N/A
np [mm] 0 0 0
φ [-] 0% 0% 0%
D [mm] 100 100 100
L [mm] 300 300 300
Lc [mm] 50 50 50
E [N/m2] 3× 109 3× 109 3× 109

η [-] 0.03 0.03 0.03
ν [-] 0.3 0.3 0.3

Case VA2 Case VA2-1 Case VA2-2

dp [mm] 1.0 1.0 1.0
tp [mm] 0.5 0.2 0.1
b [mm] 10 10 10
np [mm] 76 76 76
φ [-] 0.8% 0.8% 0.8%
D [mm] 100 100 100
L [mm] 300 300 300
Lc [mm] 50 50 50
E [N/m2] 3× 109 3× 109 3× 109

η [-] 0.03 0.03 0.03
ν [-] 0.3 0.3 0.3

Case VA4 Case VA4-1 Case VA4-2

dp [mm] 0.3 0.3 0.3
tp [mm] 0.5 0.2 0.1
b [mm] 10 10 10
np [mm] 76 76 76
φ [-] 0.07% 0.07% 0.07%
D [mm] 100 100 100
L [mm] 300 300 300
Lc [mm] 50 50 50
E [N/m2] 3× 109 3× 109 3× 109

η [-] 0.03 0.03 0.03
ν [-] 0.3 0.3 0.3
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Figure 5.14: The plate thickness effect for a plate with dp = 1.0 mm:
(—) tp = 0.5mm, ( ) tp = 0.2 mm, and ( - - - ) tp = 0.1 mm.
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Figure 5.15: The plate thickness effect for a plate with dp = 0.3 mm:
(—) tp = 0.5mm, ( ) tp = 0.2 mm, and (- - -) tp = 0.1mm.
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Table 5.8: Calculated Helmholtz frequencies of Test Cases VA2, VA2-1, VA2-2, VA4,
VA4-1 and VA4-2.

VA2 VA2-1 VA2-2 VA4 VA4-1 VA4-2

fH [Hz] 682 757 789 283 355 395

set of cases. Nevertheless, commenting on the Helmholtz frequency of the system
is not that straightforward. For Test Cases VA0, VA0-1 and VA0-2, the Helmholtz
frequency is not defined since there are no perforations; yet, for the remaining
cases, the Helmholtz frequency values are calculated via Eq. (5.17) and given in
Table 5.8.

The expected Helmholtz frequencies given in Table 5.8 increase as the plate
becomes thinner. As mentioned earlier in the chapter, the Helmholtz frequency is
valid for rigid-cavities. The first cavity resonance frequency for the non-rigid cavity
is always lower than the calculated Helmholtz frequency. However, this non-rigid
cavity resonance frequency is related to the Helmholtz frequency and the change in
the latter gives idea about the former one.

The decrease in plate thickness means that the amount of oscillating mass through
the perforation decreases. Since the volume in the back cavity does not change, the
decrease in oscillating mass results with an increase in the first cavity resonance
frequency. Moreover, the thinner the plate is, the less amount of plate mass couples
with the acoustic mode in the cavity. Thus this is another reason for the first cavity
mode to increase.

As the plate thickness decrease, the sound absorption mechanism by the plate
vibration becomes more dominant for two reasons: (1) The plate displacements in-
crease; (2) the viscous losses are reduced. Owing to these two reasons, the smooth
and wide-band acoustic peaks become harder to notice in the absorption curves in
Figures 5.14 and 5.15. Nevertheless, the change in the first cavity resonance fre-
quencies can still be noticed between the cases with tp = 0.5mm and tp = 0.2mm.

5.5.2 Influence of Distribution of the Perforations

The discrete numerical model described in this chapter defines each perforation
separately. Thus, it is possible to treat the perforation distribution as an additional
parameter in MPP design. In this section, the acoustic response of several f-MPPs
with different perforation distributions are compared. This time, the parametric
study is based on test cases VA2-1 and VA4-1 (see Table 5.7). The essential differ-
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Table 5.9: Geometrical parameters of the test cases used for investigating the per-
foration distribution on an f-MPP. Structural properties of the flexible plates are the
same as previous test cases.

VA2-1_D0 VA2-1_D1 VA2-1_D2

dp [mm] 1 1 1
tp [mm] 0.2 0.2 0.2
b [mm] 10 3× dp 3× dp
np [-] 76 79 72
φ [-] 0.8% 0.8% 0.7%
D [mm] 100 100 100
Lc [mm] 50 50 50

VA4-1_D0 VA4-1_D1 VA4-1_D2

dp [mm] 0.3 0.3 0.3
tp [mm] 0.2 0.2 0.2
b [mm] 10 3× dp 3× dp
np [-] 76 79 72
φ [-] 0.07% 0.07% 0.06%
D [mm] 100 100 100
Lc [mm] 50 50 50

ence between VA2-1 and VA4-1 is the perforation diameter. The properties of the
new cases are given in Table 5.9 and the corresponding perforation distributions
are illustrated in Figure 5.16.

The absorption coefficient curves calculated using these test cases are given in
Figure 5.17.

Comparing the two sets of simulations in Figures 5.17, it is seen that the set of
cases with smaller perforation diameter (Figure 5.17b) have stronger and more
wide-band absorption peaks compared to the set with larger perforations (Fig-
ure 5.17a). This is due to the difference in the viscous forces acting on the air
particles passing through the perforations. The corresponding Shear number Sh is
given at the top of the horizontal axis to quantify this effect. The smooth wide-band
absorption peaks are visible where Sh ≈ 1, where the Stokes layer is thick enough
to occupy the entire perforation cross-section.

The perforation distributions illustrated in Figures 5.16b and 5.16e are chosen to
be central since the largest displacements take place in the central area of a circular
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(a) VA2-1_D0 (b) VA2-1_D1 (c) VA2-1_D2

(d) VA4-1_D0 (e) VA4-1_D1 (f) VA4-1_D2

Figure 5.16: Perforation distributions of the cases described in Table 5.9.

plate whose periphery is fixed. Positioning all of the perforations in this central
area, it was aimed to maximize the effect of the plate vibrations on the velocity of
the particles that passes through the perforations. To minimize the inter-perforation
coupling effects, the perforations are located by a minimum distance of 3dp away
from each other.

The comparison of the absorption coefficients of cases having central distribu-
tion (Cases VA2-1_D1 and VA4-1_D1) to the ones with uniform distribution (Cases
VA2-1_D0 and VA4-1_D0) shows that the sound absorption is increased in the lower
structural modes, but does not have large effects in the higher ones. Moreover, there
is an overall decrease in absorption coefficient for test cases with central distribu-
tion.

The overall decrease in the absorption coefficient is also visible in the periph-
eral distribution (Cases VA2-1_D3 and VA4-1_D2), nevertheless the effect is smaller
compared to the central distribution.

In Figure 5.18 the amplitude of the average particle velocity in a perforation,
|ūp| is given for different distributions. For both of the cases, the difference between
the uniform distribution and the central distribution is the largest. Since the viscous
dissipation is related with the particle velocity, this difference explains the overall
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(a) Test cases based on VA2-1.
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(b) Test cases based on VA4-1.

Figure 5.17: The effect of perforation distribution on absorption coefficient for (a)
Cases based on VA1, (b) Cases based on VA4. The major difference between these
sets of cases is the perforation diameter (see Table 5.9 and Figure 5.16).
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decrease in the absorption coefficient.
Since the plate displacement decreases towards the periphery in a circular plate

whose circumference is fixed, the difference from the uniform distribution is less
for cases VA2-1_D2 and VA4-1_D2 in terms of ūp value. Thus, the decrease in par-
ticle velocity is the main reason for the overall drop in the viscous dissipation and
absorption coefficient.

5.6 Conclusions

A new, efficient numerical model for estimating the absorption characteristics of
flexible micro-perforated plates (f-MPPs) is presented. The model couples the linear
acoustics with the shell plate theory. Specifically, the flexible plate is assumed as a
shell domain and the micro-perforations are defined separately as imposed transfer
impedance boundaries on this domain. The calculation of the transfer impedance
value of a single perforation is performed by relations provided by Temiz et al. [24].

Since each perforation is represented separately, the proposed model is referred
to as the discrete numerical model. During the model building it is observed that
the Helmholtz solver takes the area changes into account, hence inserting additional
reactance to the modelled system. This additional reactance is calculated for several
porosity values and a correction to the transfer impedance expression proposed as
a part of the numerical model.

The validation of the discrete numerical model is performed by comparing it to
the experiment results. The experiment results from Toyoda et al. [68] is used for
the validating the vibro-acoustic coupling of the discrete numerical model. Good
agreement is achieved between the experimental and numerical results.

The proposed method enables one to treat perforation position as an additional
variable. As a result, the effect of non-uniform perforation distribution can be inves-
tigated for design purposes. Moreover, even though only circular f-MPPs are studied
in this paper, it is possible to use the same model for all types of plate geometries.
The model has been used here with impedance of perforations with square edges.
The effect of modified edge geometry can be taken into account as proposed by
Temiz et al. [24].

Some examples of a parametric study using the discrete model is also provided
by changing the plate thickness and spatial perforation distribution. For these para-
metric study cases, the change in flexible plate thickness has a more drastic effect
than the perforation distribution. When thickness is changed, the eigen-frequencies
of the plate is altered, thus the coupling mechanism is changed completely.
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(a) Test cases based on VA2-1.
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(b) Test cases based on VA4-1.

Figure 5.18: Comparing the absolute value of the average particle velocity in the
perforations for different distributions: (a) Cases based on VA2-1, (b) Cases based
on VA4-1. For the complete parameter list and distributions, please see Table 5.9
and Figure 5.16, respectively.
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On the other hand, since the typical perforation size and the porosity of an f-
MPP is very small compared to the size of the plate, the perforation distribution is
expected to have negligible effect on the structural properties. Nevertheless, the
average particle velocity in the perforations changes with the distribution. This
alters the acoustic properties of the flexible plate. To study such complex problems
the numerical model proposed here can be advantageous since, (1) the model uses
basic acoustic and shell modules which is found commonly in many commercial FE
softwares; (2) the viscous effects in the perforations are included in the model as
boundary conditions. Hence solving Helmholtz equation in the acoustic domain is
sufficient instead of Navier-Stokes. Moreover, using the shell theory results in with
employing 2D meshes to model the flexible plate instead of 3D. These two features
result in a significant reduction in the computation time.



Chapter 6

Conclusions and
Recommendations

6.1 Conclusions

Combustion instability is a serious problem affecting the efficiency and lifetime
of a combustor. The coupling between the unsteady heat release and acoustic waves
in the combustors is among the main reasons for this instability [4]. One way to
break this coupling is to suppress the effects of acoustic waves by absorbing them.
To accomplish this task, the acoustic properties of micro-perforated plates (MPPs)
are investigated in this thesis. By numerical and experimental studies, the sound ab-
sorption mechanisms for micro-perforated plates are discussed in detail. Impedance
tube experiments in a semi-anechoic chamber and finite element model simulations
in COMSOL Multiphysics R© (ver. 5.0) [23] are used throughout the study.

The present thesis involves not only MPPs, but also regular perforated plates
since they are also used in combustion systems [78]. As a result, the covered Shear
number range in this thesis is 0.75 < Sh < 35. The acoustic response of MPPs and
perforated plates is examined in the linear, transition, and non-linear regimes, i.e.
0.05≤ Sr ≤ 100 (please see Sections 2.2 and 3.2 for definitions of Sh and Sr).

Moreover, the effect of edge-profile on the acoustic response of a perforation is
investigated. This study is carried out for both MPPs and perforated plates in the
linear, transition and non-linear regimes.

MPPs and perforated plates are not handy only in combustion systems, but they
are also used in architectural and room acoustics [9]. In such applications larger
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plates are used, hence structural vibration of the plates plays an important role in
the acoustic response of the MPPs and perforated plates. When the flexibility of the
plate is included, design and optimization of such plates become a challenging task.
The current thesis attempts to solve this problem by proposing a numerical method
that includes the plate flexibility and the position of each perforation separately.
The simulation results from the proposed model is validated with the results from
literature and some theoretical limits.

On the other hand, the present thesis focuses only on the circular perforations.
Slits, rectangular perforations or any other geometries are out of the scope of this
thesis. Besides, all the experiments and simulations are carried out in stagnant
acoustic medium, i.e. no mean flow.

The prominent conclusions that are drawn from this thesis are summarized in
the rest of this section.

The end-correction coefficients do not necessarily depend on the edge pro-
file of a perforation, yet they do depend on the Shear number. In Chapter 2,
expressions for the resistive and reactive end-correction coefficients are proposed
in the range 1 < Sh < 35 [Eqs. (2.9), (2.11) and (2.12)]. These expressions are
obtained for square-edge, both-sides-chamfered and inverse-chamfer edge profiles
and their linear combination is used for one-side-chamfered and punched-edge pro-
files [Eqs. (2.13) and (2.14)]. The relative error between the linear combinations
and the numerical simulations are less than 3% in the given Sh range [Figures 2.11
and 2.12].

The acoustic response of a circular MPP with a square-edge profile depends
not only the Strouhal number, but also the Shear number in the transition
regime, i.e. Sr ∼ O (1). However, when Sh > 3, its effect becomes quite weak for
this regime. Empirical correction functions are provided for the transfer resistance
and reactance so that linear and non-linear regimes are linked with one expression
for both transfer resistance and reactance [Eq. (3.15)].

The effect of edge-profile in perforations on the non-linear acoustic re-
sponse cannot be ignored. For example, the normalized resistance [Eq. (4.13)]
of both-sides-chamfered profile with c∗ = 0.08 is 40% less than the one of the
square-edge profile [Figure 4.6a]. However, when the chamfer size is tripled, the
normalized resistance decreases only by 10% compared to the behaviour of the
small chamfer. Therefore, the presence of a chamfer is more important than its
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size in the non-linear regime. The inverse-chamfer profile behaves similarly to the
square-edge profile in case of high-amplitude acoustic excitations.

The quasi-steady model fails to predict the sound absorption mechanism in
the transition regime [Figures 4.8, 4.9 and Tables 4.4, 4.5]. Although it is quite a
powerful tool in strongly non-linear regime [18, 57, 56], the quasi-steady approach
loses its accuracy when the contribution from linear resistance and reactance to
the acoustic response of an orifice is comparable to the non-linear effects (Sr ' 1).
Therefore, there is a need for an improved approach to model the acoustic response
of an orifice and sound generation in higher harmonics in the transition regime.

A new, efficient numerical method is proposed to calculate the absorption
coefficient of a flexible MPP [Chapter 5]. This method models each perforation
separately by a patch-impedance approach using the expressions proposed in Chap-
ter 2. It is efficient compared to CFD models since it couples the shell plate the-
ory [71] and the Helmholtz equation [8], which are both linear. The proposed
model allows the spatial distribution of the perforations to be treated as an addi-
tional parameter in MPP design. It can be used as an optimization tool. An example
of a parametric study is provided.

For a rigid MPP absorber one has at least 6 parameters taking geometrical
and hydrodynamic flow parameters into account. This implies that even if only a
few measurements are carried to vary each parameter, a few hundred experiments
would be necessary to choose an optimal design when theoretical models are not
used. The proposed models allow to determine the acoustic response in absence
of mean flow for circular perforations. When the plate is flexible, flexural rigidity
(DP), plate geometry and spatial distribution of the perforations are also needed to
be taken into account. The findings of this study are used for building an engineer-
ing tool which can be used for designing a flexible MPP absorber and optimizing its
acoustic performance. In particular the effect of individual perforation geometry
and spatial distribution can be considered.

6.2 Recommendations

By some minor adjustments, the numerical model proposed in Chapter 5 can
be used for designing efficient flexible MPPs for room acoustics. These adjustments
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are:

• Changing the geometry of the flexible plate: Only circular plates are used in
the parametric study examples in Chapter 5. However, there is no restriction
about the flexible plate geometry in the model. On the contrary, each geom-
etry have different mode shapes which can couple with the acoustic response
of the perforations. Therefore, it is possible to carry out more parametric
studies with different plate geometries.

• Changing the geometry of the perforation: The perforations are repre-
sented as separate boundaries and the governing boundary condition is de-
scribed by the transfer impedance for a single perforation minus the reaction
due to porosity. If the transfer impedance expression for a certain perforation
geometry (slit, rectangular, triangular, etc.) is known, implementing this into
the discrete numerical model [Chapter 5] is just updating an equation.

On the other hand, before using MPPs in combustion systems efficiently, further
study is required in following aspects:

• The effect of mean flow: The current thesis does not take the mean flow into
consideration. However, combustion systems have main flow which cannot be
neglected. In such cases, perforated plates are subjected to grazing and / or
bias flows. The effect of mean flow on the acoustic response of MPPs should
be investigated.

• Vibro-acoustic coupling in the non-linear regime: Since combustion sys-
tems can produce acoustic waves which have amplitudes large enough to
cause mechanical problems, they are expected to be in the non-linear regime.
However the vibro-acoustic coupling theories are developed for linear regime.
Investigating the effect of high intensity sound waves in vibro-acoustic cou-
pling would be beneficial for better acoustic estimations.

• The effect of edge-profile in the transition regime: As discussed in Chap-
ter 4, quasi-steady approach fails to predict the acoustic response of a perfo-
ration accurately. Therefore a study including the effect of edge profiles can
fill this information gap. The study presented in Chapter 3 considers only
circular MPPs with square-edge profiles.

Last but not the least, the interest in MPPs with slit geometry advances recently
due to their ease of mass production and promising acoustic performance [19].
Therefore carrying out studies similar to the ones presented in the current thesis
would be beneficial.
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Appendix A

Impedance Tube Set-Up

In this part, the impedance tube set-up used in Chapters 2–4 is described in
detail with the precautions taken and post-processing methods applied to increase
the accuracy of the measurements.

A.1 Technical Description

The impedance tube used in the measurements is a 1-meter long, cylindrical alu-
minum tube whose wall thickness is 10mm and inner diameter is D = 50mm. The
tube has flanges at both of its ends and 6 holes along for mounting the microphones.
The microphones are flush mounted into the tube with a specially manufactured
mount having a curved base. The radius of mount base is the same as the inner
radius of the tube in order not to create physical obstacles or cavities in the tube.
In Figure A.1 the photo of the measurement setup, one of the microphones with
its mount and the schematic description of the remaining components are shown.
Moreover, the technical properties of the set-up are listed in Table A.1. Finally, the
microphone placement on the impedance tube is given in Figure A.2.

A.2 Signal Processing Techniques for Impedance Tube
Measurements

The set-up uses a custom built LabView R© script as its data acquisition and sig-
nal processing (DASP) interface. The excitation signal sent to the loudspeaker is
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(a) Photo of the setup. (b) Microphone with its mounting.

(c) Schematic representation of the impedance tube setup components: 1-Tube,
2-Sample, 3-Tube extension, 4-Microphone, 5-Microphone amplifier, 6-A/D & D/A
converter, 7-Loudspeaker amplifier, 8-Loudspeaker, 9-Analyser & signal generator
(computer including the data acquisition card).

Figure A.1: The impedance tube setup (a), the microphone with the mounting (b)
and the schematic representation of the components (c).
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Table A.1: TBC

Brand & Model Specifications

(1) Tube Generic 1-m long, aluminium, 10-mm
wall thickness.

(2) Test Sample Generic Explained in detail in Sec-
tion 4.3.2.

(3) Tube Extension Generic 80-mm long, 50-mm inner di-
ameter, 140-mm outer diame-
ter, aluminium.

(4) Microphone BSWA Tech MPA
416

Pre-polarized, 1/4" diameter,
50mV/Pa sensitivity.

(5) Microphone
Amplifier

BSWA Tech MC
102

Dual channel, 4mA output.

(6) D/A & A/D
Converter

NI BNC-2111 16 analog input and 2 analog
output channels.

(7) Loudspeaker
Amplifier

XXL Power Sound
PA 240

Dual channel, 240W output.

(8) Loudspeaker Dayton Audio
DA115-8

Aluminum cone, 4" diameter,
60Hz− 15kHz, max. 40 W.

(9) Analyser & Signal
Generator

NI PCIe-6361
X-Series

16 input, 2 output channels,
2MHz input sampling rate,
2.86MHz output sampling rate.
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Figure A.2: Equidistant microphone placement on the impedance tube. a1 =
50 mm, a2 = 175 mm, tw = 10 mm, t f = 20mm, and D = 50 mm.

Figure A.3: A sample of the signal read by one of the microphones in the impedance
tube at 120 Hz. Due to the transient effects in the beginning and at the end, first
and last 2-second portions of the signal are omitted.

sampled with 20kHz and the signals acquired from the microphones are sampled
with 10 kHz. Each measurement is performed for a single frequency for 10 seconds.
Since the excitation signal passes through a Planck-taper window, the beginning and
the end of the read signals are smoothly goes to zero. Thus, in post-processing first
and last 2 seconds of each measurement is omitted to avoid transient effects. A
sample of the measurement reading is given in Figure A.3. The post processing of
the data is performed separately in a custom built MATLAB R© script. To minimize
the possible measurements errors, some post-processing precautions are taken in
this script. In the rest of this section, these precautions are discussed in detail.
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Figure A.4: The schematic drawing of the equiripple band-pass filter in frequency
domain. The parameters shown here are explained in Table A.2.

A.2.1 Signal filtering

As mentioned earlier, the air in the tube is excited by a single-frequency sig-
nal, fex . Hence, the expected response is at the same frequency provided that the
higher harmonics are neglected. As a result, the components of the frequencies
except for the excitation frequency is considered as noise and filtered out in the
post-processing. This is performed by the built-in Filter Design and Analysis tool of
MATLAB R©. Using this tool, a bandpass equiripple FIR filter is designed for the post-
processing script. The parameters required to design this filter and the assigned
values for this study are given in Table A.2 and the parameters are schematically
illustrated in Figure A.4.

An example of the actual filter for 120 Hz is calculated with the parameters given
in Table A.2 and its gain is showed in Figure A.5.

To avoid the phase shift problem caused by using a digital filter, the filtfilt()
function is used for completing the filtering process. This function filters the data
both forward and backward to cancel out the artificial phase shift caused by digital
filtering [79].

A.2.2 Converting measurement data to frequency domain

The parameters that will be introduced later in this chapter are meaningful in
frequency domain only. As a result, the measured time domain data needs to be
converted to frequency domain. The most common way to perform this task is to use
an FFT algorithm. Nevertheless, this method does not compensate for the possible
frequency shifts in the excitation. To exclude these type of errors, a modified lock-in



110 Impedance Tube Set-Up

Table A.2: Parameters used to design an equiripple FIR filter in the Filter Design and
Analysis tool of MATLAB R©.

Parameter Value Definition

fs1 fex/2 First band-stop frequency [Hz]
fp1 5 fex/6 First band-pass frequency [Hz]
fp2 7 fex/6 Second band-pass frequency [Hz]
fs2 3 fex/2 Second band-stop frequency [Hz]
Ds1 0.001 Maximum relative signal amplitude before fs1 [-]
Ds2 0.0001 Maximum relative signal amplitude after fs2 [-]

Dpass 0.0575 Band-pass ripple relative amplitude[-]
Dp1 1− Dpass Band-pass ripple minimum relative amplitude[-]
Dp2 1+ Dpass Band-pass ripple maximum relative amplitude[-]
fs 10000 Sampling frequency [Hz]
d f 20 Filter ripple density factor [-]
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Figure A.5: The example of a filter gain computed for 120 Hz with parameters given
in Table A.2.
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method is employed in this study.
A lock-in amplifier is described by Scofield [31] as a device to measure the am-

plitude of a signal who is completely synchronous to a reference input. In this work,
the reference input is not taken directly from the output signal due to hardware re-
strictions, yet one of the microphone signals is chosen to be as a pseudo-reference.
To obtain this pseudo-reference signal, the following steps are followed:

i. The microphone signal with the largest amplitude is chosen as the reference
signal.

ii. The band-pass filter described earlier in the chapter is applied on the the refer-
ence signal to clear out the other components and becomes the filtered refer-
ence signal.

iii. The filtered reference signal is normalized by its amplitude becoming the nor-
malized reference signal.

iv. The Hilbert transform of the normalized reference signal is calculated to obtain
the analytical signal.

The analytical signal computed throughout the steps described is taken as the pseudo-
reference signal, p̃re f , for the modified lock-in method. Please note that the Hilbert
transform transforms a real valued readings into complex ones and this is desig-
nated by the tilde accent (̃ ).

Once the pseudo-reference signal, whose amplitude is 1, is calculated, the trans-
lation of the time domain data to frequency domain is performed by a cross-correlation
between the measured pressure signal vector pm of microphone m, and the pseudo-
reference signal p̃re f . Thus, the pressure reading of the microphone m in the fre-
quency domain (P̂m) is calculated by

Am =
2

tq f
− tqi

q f −1
∑

q=qi

�

pm,qℜ{p̃re f ,q}+ pm,q+1ℜ{p̃re f ,q+1}
2

(tq+1 − tq)

�

, (A.1a)

Bm =
2

tq f
− tqi

q f −1
∑

q=qi

�

pm,qℑ{p̃re f ,q}+ pm,q+1ℑ{p̃re f ,q+1}
2

(tq+1 − tq)

�

, (A.1b)

P̂m = Am − 1 jBm, (A.1c)

where t is the discrete time vector, pm is the pressure readings vector of microphone
m, qi and q f are the initial and final data points, respectively, which are taken into
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Figure A.6: Naming the microphones on the impedance tube and the reference
plane for z-direction.

account in calculations. As it can be deduced from Eq. A.1, the trapezoidal rule is
used for calculating the cross-correlation.

A.3 Calibration Procedure

Calibration of the set-up components is necessary to perform accurate acoustic
measurements [80]. To achieve the maximum measurement accuracy, a series of
several calibrations are performed on the impedance tube set-up described in Fig-
ure A.1. In this section, the procedure of these calibration procedures are described.
To assist this description, the naming and the positioning of the microphones are
illustrated in Figure A.6.

A.3.1 Absolute and Relative Calibration

In the impedance tube set-up described in, the analyser script is programmed in
such a way that the output signal is adjusted to a pre-determined amplitude value
which is controlled by the microphone closest to the tube termination, which is
referred as Mic-6. Thus, absolute calibration is applied on Mic-6, then taking Mic-6
as the reference, remaining microphones are calibrated relatively. For the absolute
calibration, a Brüel&Kjær R© piston-phone is used, and Mic-6 is calibrated for 1 Pa at
1000 Hz. Then, Mic-6 is placed in the calibration apparatus, which is schematically
described in Figure A.7, with the rest of the microphones and relative calibration
performed.

As in Figure A.7, all the microphones are located at the same distance from the
closed termination. During the calibration measurements, the original microphone
locations on the tube are sealed with specially built metal blocks, which are in the
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Figure A.7: The cross-sectional view of the calibration apparatus attached to the
impedance tube, and the left view. All of the microphones are located around the
tube, so that the distance from the termination is the same for each one.

same size as the microphone holders shown in Figure A.1b. The calibration mea-
surements are also performed in the same manner as the actual measurements, i.e.
single tone excitation during 10 seconds. Assuming plane wave propagation in the
tube, every microphone located on the apparatus is expected to measure the same
pressure amplitude and the phase.

When the entire frequency span is covered by the measurements, the data from
each microphone is processed and the corresponding complex pressure value for
each frequency is computed with the modified lock-in method described earlier.
Then, taking Mic-6 data as the reference, calibration factors are computed for each
microphone at each frequency step. For a certain frequency f , a calibration factor
for microphone m (ÓC F m) is calculated as

ÓC F m( f ) = P̂ c
6( f )/P̂

c
m( f ), (A.2)

where the superscript c denotes the values measured with calibration measurement
configuration as shown in Figure A.7.

After the microphones are carefully placed into their original positions, the ac-
tual measurements are ready to be performed. During the post processing of the
actual measurement data, the calibrated complex pressure value of microphone m
(P̂m−c) at each frequency step is calculated as

P̂m−c( f ) = P̂m( f )ÓC F m( f ). (A.3)
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Table A.3: Microphone positions for the set-up described in this chapter.

x1 [mm] x2 [mm] x3 [mm] x4 [mm] x5 [mm] x6 [mm]

Position -925 -750 -575 -400 -225 -50

A.4 Multi-Microphone Method and Reflection Coeffi-
cient Measurements

The complex pressure amplitude distribution at a certain frequency and in an
acoustic medium represented by planar acoustic waves is given as [8]

p̂(z) = p̂+e− jkcz + p̂−e jkcz , (A.4)

where incident and reflected waves are represented by superscripts (+) and (−),
respectively; and kc is the complex wave number taking thermo-viscous effects into
account along the tube wall and described by Peters et al. [29] as

kc =
ω

c0

�

1+
1− j
p
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�
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�

�

−
ω
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�

j
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�
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γ− 1
Pr0.5

−
γ

2
γ− 1

Pr

�

�

, (A.5)

where γ is the ratio of the specific heats and Pr is the Prandtl number for
air. Moreover, in Eq.(A.5), the thickness of the Stokes layer along the tube is
given by ShD = D

p

ρ02π f /(4µ), where ρ0 = 1.205 kg/m3 is the density and
µ= 1.82× 10−5kg/ms dynamic viscosity of air (at 20oC and 1 atm).

Since the microphones in the impedance tube set-up described in this chapter
are fixed, the complex pressure amplitudes measured by each microphone is calcu-
lated as

P̂m = p̂(zm) = p̂+e− jkczm + p̂−e jkczm ; m= 1, ..., 6. (A.6)

The values for zm are estimated from Figures A.2 and A.6 and given in Table A.3.
Microphones can only measure the complex pressure amplitude at a certain po-

sition. Thus, to decompose the pressure wave into incident and reflected waves,
at least one more measurement is necessary. This way, one has two equations to
solve for the two unknowns in Eq. (A.4). In other words, measurement two mi-
crophones are enough to decompose the complex pressure amplitude into incident
(p̂+) and reflected wave (p̂−) wave components by providing a determined system
of equations [73].
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However, the set-up described in this chapter has six microphones. If one uses
all the pressure readings from these six microphones to solve for p̂+ and p̂− in
Eq. (A.4), the system of equations become over-determined as shown below.
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, (A.7)

which can be simplified as Ax = y, where A is the coefficients matrix, the 6 × 2
matrix on the left-hand side of Eq. A.7; x is the unknowns vector composed of
incident and reflected waves and y is the vector of known quantities obtained by
the measurements from six microphones. Since matrix A is not a square matrix, the
solution of the system given in Eq. (A.7) is not straightforward. Hence, the Moore-
Penrose generalized inverse of matrix A, which is A+, is needed to be calculated as
follows [81].

A+ = (AHA)−1AH , (A.8)

where AH is the Hermitian of matrix A.
The best approximate solution for the unknowns vector x is estimated by [32]
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. (A.9)

Then, the reflection coefficient ζ at position z = 0, at a certain frequency is
calculated by [32]

ζ=
p̂−

p̂+
. (A.10)

A.5 Validation

Once the set-up is calibrated and the post-processing measures are taken, a well-
known case is used for validation: the reflection coefficient of a rigid, closed-end
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tube termination. For this measurement, a 20-mm thick aluminium disk is attached
to the tube termination and reflection coefficient is measured between 80 Hz and
700 Hz.

In the limit case of no visco-thermal losses, the boundary condition at the rigid
tube termination (z = 0) yileds that

û=
p̂+ − p̂−

ρ0c0
= 0, (A.11)

so that the expected reflection coefficient is ζ= 1+0 j. As the reflection coefficient
is represented in absolute value and phase, then it corresponds to

ζ= |ζ|e jθ = 1e j0. (A.12)

The validation measurement results for |ζ| and θ are shown in Figure A.8.
As can be seen from the closed-end measurements in Figure A.8, the measured

absorption coefficient amplitude has a deviation of less than 0.5% from the ideal
case. It is also observable that there is a decreasing trend in the absolute value of
ζ as the frequency increases. This is due to the thermal boundary layer at the rigid
end [30].

In terms of phase, we also observe a discrepancy between 0.005 to 0.010 ra-
dians from the ideal case. Moreover, this deviation also appears to increase with
frequency. However, this systematic deviation results from the difference between
the measured and actual microphone positions. This frequency dependent devia-
tion is fixed easily and described here.

A.5.1 Correcting the microphone positions

The impedance set-up measures the reflection coefficient, ζ, as described in Sec-
tion A.4. In case of a rigid closed-end termination, the expected reflection coeffi-
cient is ζri gid = 1+ j0. Thus, the phase of the reflection coefficient should be zero,
also. The linear deviation from this value in Figure A.8b is due to the difference
between the actual and measured positions of the microphones.

To find an average correction value to all the microphones, the definition of the
reflection coefficient is used.

ζ= |ζ|e jθ , (A.13)

where |ζ| is the amplitude and θ is the phase angle of the reflection coefficient. In
the closed-end measurements shown in Figure A.8, the linear shift in the phase of
the reflection coefficient is observed. To quantify this shift, a least-squares linear
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(b) Phase of the reflection coefficient, θ .

Figure A.8: Validation of the impedance tube set-up with closed-end reflection co-
efficient measurements.



118 Impedance Tube Set-Up

0 200 400 600
−0.010

−0.005

0.000

0.005

0.010

f [Hz]

θ
[r

ad
.]

Figure A.9: The shift in the phase of the reflection coefficient of a closed-end ter-
mination: (•) the measurements, (—) the least-squares linear fit.

fit, which is forced to pass through θ = 0 when f = 0 is calculated. The fit for the
phase angle, θ f i t is calculated as

θ f i t = −8.26× 10−6 f , (A.14)

as can be seen from Figure A.9. The quality of the fit is r2 = 0.80, where (1− r2) is
the variance of the fit.

To find the shift between the actual microphone positions and the measured
ones, using the definition of the reflection coefficient, the shift between the actual
and measured position of each microphone, zs is calculated by

e jθ f i t = e2 jk0zs ,

θ f i t = 2
ω

c0
zs,

zs =
θ f i t c0

2ω
. (A.15)

Furthermore, combining Eqs. (A.14) and (A.15), the amount of position shift is
calculated as

zs =
−8.26× 10−6 f 343.3

4π f
= −0.2 mm. (A.16)

The shift calculated by Eq. A.16 is added to the current microphone positions to
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(a) Absolute value of the reflection coefficient for closed-end tube termination.
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(b) Phase of the reflection coefficient for the closed-end tube termination.

Figure A.10: The effect of correcting for the microphone positions in a closed end
tube termination. (•) before correction; (�) after correction.

compensate for the difference.

zm−new = zm−old + zs, m= 1,2, 3, ..., 6. (A.17)

Since adding zs to all microphones does not change the distance between them, the
absolute value of the reflection coefficient does not change after this correction. It
only affects the phase, as can be seen in Figure A.10.

As it can be observed from Figure A.10, the correction in the microphone po-
sitions eliminates the systematic deviation from the phase measurements. Conse-
quently, the impedance tube set-up can perform measurements with an accuracy of
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99.5% in terms of reflection coefficient.

A.6 Miscellaneous Precautions

Along with the systematic precautions that is described in the chapter so far,
some further individual measures are taken to increase the overall accuracy of the
measurements. First of all, as it can be seen from Figure A.1, the loudspeaker is
separated from the tube and the gap between them is covered by pieces of acous-
tic foam. This is due to fact that, the loudspeaker excite the structural modes of
the tube around 300 Hz and spurious peaks are observed near that particular fre-
quency. After the separation of the loudspeaker and the tube, this spurious peak
has disappeared.

The second precaution is taken to avoid the relative motion between the mi-
crophones and their cables in case there is a remaining structural vibration on the
tube. To prevent this, each microphone cable is taped on the impedance tube next
to the microphones.

Moreover, in the semi-anechoic chamber, there are two tables to support the sep-
arate loudspeaker and the measurement computer (analyser). To avoid undesired
resonances that may occur from the cavities underneath these tables, wedges made
of acoustic foam are used for occupying these volumes. Furthermore, the ground
surface at the open termination of the impedance tube is covered with these sound
absorbing wedges, so that the sound radiation from the open end is not affected by
the waves reflecting from the surface. This configuration can be seen in Figure A.1a.

Another measure is to not calculate the speed of sound from the temperature
and the humidity of the room, but to measure it using the excess data obtained in
the multi-microphone measurements.

Owing to the fact that the current frequency of the electric network is 50 Hz, this
frequency and its multiples are also ignored in measurements and post-processing.

Last but not least, when two metal surfaces have to contact with each other
in a measurement configuration, an o-ring is used for preventing the air-leak and
causing undesired resonance.



Appendix B

Mesh Convergence

A mesh convergence study is performed for the discrete numerical model. Since
the most critical part of the numerical domain is around the perforations, the el-
ement size representing the perforations is the main focus of this study. The size
of the elements in and around one of the perforations is compared in Figure B.1:
Mesh-1 is the typical mesh built for the simulations in this study and Mesh-2 is the
finer mesh built for checking the effect of element size.

The parameters of the numerical model used for comparing the effect of mesh
is chosen among the test cases, i.e. VA1 (see Table 5.4). The reason for selecting

(a) Mesh-1 (b) Mesh-2

Figure B.1: The element size comparison for two meshes built to represent the same
geometry. The diameter of the perforation here is 0.5 mm.
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(a) Mesh-1 (b) Mesh-2

Figure B.2: A slice of the numerical domain in yz-plane to show the gradual increase
of the element size from the plate to the rest of the acoustic domain. Different
colours represent the element size and the dimensions provided in the scale are in
[m].

this particular case is that it has the smallest perforation diameter, thus the number
of elements in perforations is more critical than other cases in this study.

To minimize the number of elements in the mesh, a gradually increasing element
size is used. The maximum growth rate of the elements are selected as 1.35 in this
study. As a result, once the size of the elements around the perforations become
smaller, they affect the size of the elements around. The gradual change in the
element size away from the plate is given for Mesh-1 and Mesh-2 in Figure B.2.

In Figures B.1 and B.2, it is seen that Mesh-2 has 5 times more elements in a
perforation compared to Mesh-1. Moreover, the size of the elements are decreased
both for the plate and the acoustic volume around the perforation. In general, the
number of elements in Mesh-2 is 30% more than those of Mesh-1. To assess this
effect on the absorption coefficient, the relative percentage error, ε%, is calculated
as follows:

ε% =
|β2 − β1|
β2

100%, (B.1)

where β1 and β2 are the absorption coefficients calculated in the simulations using
Mesh-1 and Mesh-2, respectively. The graph over the frequency range of interest,
100 Hz≤ f ≤ 2000Hz is illustrated in Figure B.3.

In Figure B.3, it is seen that, increasing the number of elements in the per-
forations by factor 5 does not affect the absorption coefficient more than 1% for
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Figure B.3: The relative percentage error between Mesh-1 and Mesh-2. Increasing
the number of elements in the perforation by 5 times in each perforation results in
a difference of less than 1% relative error in the absorption coefficient. Please note
that when the absorption coefficient is not close to zero, the relative error is even
less.

100Hz ≤ f ≤ 2000 Hz. Considering the absorption coefficient vs. frequency graph
of Case VA1 (see Figure 5.12), the increase in ε% is due to the division of two small
numbers. For absorption peaks, the relative percentage error is significantly lower
than 1%.
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Summary

Passive Noise Control by Means of Micro-Perforated Plates:
Developing Tools for an Optimal Design

Micro-perforated plates (MPPs) are promising sound absorbers both for indus-
trial and architectural applications because a large variety of materials, from metals
to textile products, can be used to manufacture them. These plates have perfora-
tions with diameter of the order of a millimeter, corresponding to the Stokes layer
thickness at audio frequencies. Hence the acoustic flow through the perforations
is dominated by viscous forces. The ratio of the open area to the entire plate is
about 1%. MPPs are supported with a back cavity, which acts as volume element in
a Helmholtz resonator. Nevertheless, unlike Helmholtz resonators, MPPs perform
broadband sound absorption due to viscous dissipation in the perforations.

MPPs can be used as sound absorbers with reduced hazard due to fire. They
furthermore can be used in aggressive environments such as combustion chambers
and jet engines. In that case they provide passive sound absorption and avoid po-
tential thermo-acoustical instabilities. The present study focuses on the acoustic
characteristics of MPPs and perforated plates, which should allow optimal design.
The content of this thesis is based on four closely linked studies, which employ
numerical and / or experimental methods.

The first study focuses on the influence of the geometry and size of the perfo-
rations on the acoustic response at low amplitudes, such that a linear theory can
be used. The numerical model used for this study solves linearized Navier-Stokes
equations in frequency domain and simulations are performed for perforations with
various edge geometries. The verification experiments are open-end impedance
tube measurements, which are performed in the semi-anechoic chamber to mini-
mize the external effects. This study shows that for a given geometry the acoustic
response depends mainly on the ratio of viscous boundary layer (Stokes layer) and
perforation diameter. Empirical correlation formulas are provided.

133



134 Summary

The second study focuses on the non-linear effects on acoustic response of an
MPP with sharp, square edges. Transfer impedance of MPP samples with different
perforation diameter and thickness are measured by means of an impedance tube.
To capture the non-linear acoustic effects, the excitation amplitude is increased up
to acoustic particle displacements larger than the plate thickness. At such high am-
plitudes, the commonly used quasi-steady approximation can be used. The results
of the present work provides a bridge between the linear to non-linear transition
regime which has not received much attention until now.

The effect of edge-geometry on the acoustic non-linearity of a perforation is
investigated in the third study. Samples with same thickness and perforation di-
ameter but different edge profiles are used in the experiments. These experiments
are performed as open-end transfer impedance measurements. It is observed that
the edge profiles have a significant effect on the non-linear response. Moreover, a
quasi-steady model is employed for estimating the acoustic energy dissipation in the
fundamental harmonic and sound generation in higher harmonics. It is observed
that, the quasi-steady theory fails to predict the acoustic response of a perforation
in the transition regime.

Finally, vibro-acoustic coupling of MPPs are studied. As thin materials with large
surfaces are commonly used, vibration does often influences the performance of the
micro-perforated plates. A numerically efficient finite element model is used for ex-
amining the effect of perforation positions relative to vibrational modes of a micro-
perforated plate. This numerical model solves Helmholtz equation for the acoustic
domain and the plate is assumed to behave as a shell element. The perforations
are described as discrete transfer impedance islands which are represented as in-
ternal impedance boundaries connecting the acoustic domains. With the help of
this model, the distribution of perforations over the MPP can be optimized.

Our results should allow new and accurate designs of MPPs with non-conventional
perforation edge geometries and with non-uniform spatial perforation distribution.



Samenvatting

Micro-geperforeerde platen (MPP’s) zijn veelbelovende geluidsdempers voor
zowel industriële als architectonische toepassingen aangezien ze gemaakt kunnen
worden van een grote verscheidenheid aan materialen, variërend van metalen tot
textielproducten. MMP’s hebben perforaties met diameter in de orde van één mil-
limeter, die correspondeert met de dikte van de Stokes grenslaag bij hoorbare gelu-
idfrequenties. Daarom wordt de akoestische stroming door de perforaties gedom-
ineerd door viskeuze krachten. De verhouding tussen het open gebied en de op-
pervlakte van de gehele plaat is ongeveer 1%. MPP’s worden gebouwd met een
achterholte, die zich gedraagt als een Helmholtz resonator, maar in tegenstelling
tot Helmholtz resonatoren absorberen MPP’s geluid in een grote bandbreedte door
de viskeuze dissipatie in de perforaties.

MPP’s kunnen worden gebruikt als geluidsdempers met verminderd brandgevaar.
Ze kunnen ook worden gebruikt in agressieve omgevingen zoals verbrandingskamers
van vliegtuigmotoren. Dat resulteert in passieve geluidsabsorptie en vermijd poten-
tiële thermo-akoestische instabiliteiten. De huidige studie concentreert zich op de
akoestische eigenschappen van MPP’s en geperforeerde platen, die gebruikt kunnen
worden om het ontwerp van MMP’s te optimaliseren. De inhoud van dit proefschrift
bestaat uit vier studies die nauw met elkaar verbonden zijn. Deze studies maken
gebruik van numerieke en/of experimentele methoden.

De eerste studie richt zich op de invloed van de geometrie en de grootte van de
perforaties op de akoestische respons bij lage amplitudes, zodat een lineaire theorie
kan worden gebruikt. Het numerieke model dat wordt gebruikt voor deze studie
lost de gelinearizeerde Navier-Stokes vergelijkingen op in het frequentiedomein.
Simulaties worden uitgevoerd voor perforaties met diverse randgeometrieën. De
verificatie experimenten zijn gedaan met een open-end impedantiebuis in een semi-
anechoïsche kamer om externe effecten te minimaliseren. Dit onderzoek toont aan
dat de akoestische respons vooral af hangt van de verhouding tussen de dikte van de
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Stokes grenslag en de perforatie diameter voor een gegeven geometrie. Empirische
formules zijn ontwikkeld.

Het tweede onderzoek richt zich op de invloed van niet-lineaire effecten op de
akoestische respons van MPP’s met scherpe, haakse perforatieranden. De trans-
ferimpedantie van MPP’s met diverse perforatiediameters en diktes wordt gemeten
door middel van een impedantiebuis. Om de niet-lineaire akoestische effecten te
meten, is de excitatie-amplitude verhoogd tot niveaus waarbij de akoestische deelt-
jes verplaatsingen groter dan de plaatdikte hebben. Bij dergelijke hoge amplitudes
kan de veelgebruikte quasi-stationaire benadering worden toegepast. De resultaten
van het huidige werk vormen een brug tussen het lineaire en niet-lineaire transi-
tieregime dat niet eerder in detail werd bestudeerd.

Het effect van perforatieranden op de akoestische niet-lineariteit van een per-
foratie wordt onderzocht in de derde studie. Monsters met dezelfde dikte en per-
foratie diameter maar met verschillende perforatieranden worden gebruikt in de ex-
perimenten. Deze experimenten worden uitgevoerd als open-end transferimpedanie
metingen. Opgemerkt wordt dat de randprofielen een significant effect hebben op
de niet-lineaire respons. Bovendien wordt een quasi-stationaire model toegepast
voor het schatten van de akoestische energie dissipatie in de grondharmonische en
geluidsgeneratie in hogere harmonischen. De quasi-stationaire theorie is niet in
staat de akoestische respons van een perforatie in het transitieregime voorspellen.

In de vierde studie wordt de vibro-akoestische koppeling van twee akoestische
domeinen door middel van een MPP bestudeerd. Aangezien MMP’s gewoonlijk
dunne platen met een groot oppervlak zijn, beïnvloeden trillingen vaak het gedrag
van MMP’s. Een numeriek efficiënt eindige elementen model wordt gebruikt om het
effect van perforatie posities ten opzichte van trillingsmodes van de MMP te onder-
zoeken. Dit numeriek model lost de Helmholtz vergelijking op voor het akoestische
domein. Verder wordt verondersteld dat de dikte van de plaat klein is. De perfo-
raties worden beschreven als discrete transferimpedantie gebieden, die de koppel-
ing tussen de twee akoestische domeinen beschrijven. Met behulp van dit model
kan de verdeling van perforaties over de MPP worden geoptimaliseerd.

Deze resultaten moeten nieuwe en nauwkeuriger ontwerpen van MPP’s mogelijk
maken met niet-conventionele perforatieranden en met niet-uniforme ruimtelijke
perforatie distributies.
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