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Sammanfattning

Akustiska spridningsmatriser används för att beskriva inverkan av olika element
på ljudutbredning i vågledare. När man experimentell bestämmer akustiska egenskaper
hos dessa matriser, är det ofrånkomlig att det finns fel i mätresultat och om man ska
kunna bestämma överenstämmelsenmellanmodeller ochmätningarmåste felen kunna
beskrivas.

I denna avhandling undersökas effekten av slumpmässiga och systematiska fel i
mätningen av akustiska spridningsmatriser. Olika aspekter av mätprocessen undersö-
kas,med början i beskrivningen av noggrannheten i uppmätta komplexa ljudtryck. Där-
efter behandlas beskrivningen av slumpmässiga fel på spridningskoefficienterna. Dessa
koefficienter är beräknade från mätdata och felet i mätdata måste propageras till koef-
ficienterna. Detta görs med noggranhetsanalyser och användningen av linjära metoder
för att bestämma osäkerheten i koefficienterna undersöks.

Impedansröret är en väsentlig del vid experimentell bestämning av akustiska sprid-
ningsmatriser och tredje delen behandlar beskrivningen av systematiska felet som kan
uppstår vid mätningar i impedansrör. Inverkan av systematiska fel på mätresultat visas
och metoder att minska systematiska fel presenteras. Det visar sig att det finns resteran-
de systematiska fel och källor till dessa fel diskuteras.

De erhållna kunskaperna används sedan för att bestämma strömningsakustisk väx-
elverkan vid ett areasprång med hjälp av spridningsmatriser. Den uppmätta absorptio-
nen stämmer kvalitativ med teoretiskja modeller, men skillnaden mellan modellerna
och mätningar är större än mätningarnas konfidensintervall. Ändkorrektionen stäm-
mer väl överens med modellerna vid högre Strouhaltal, men vid lägre Strouhaltal är
spridningen i uppmätta data för stor for att identifiera inverkan av strömningakustisk
växelverkan på ändkorrektionen.

Nyckelord: strömningsakustik, areasprång, akustik i vågledare, akustiska spridnings-
matriser, impedansrör, noggrannhetsanalys, systematiska fel.
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Abstract

Acoustic scattering matrices are used to characterize the influence of inline duct
elements on the acoustic wave propagation in wave guides. When measuring the prop-
erties of these matrices, errors are always present in the results and need to be charac-
terized tomake valid statements on the correspondence betweenmodel predictions and
measurements.

In this study the random and systematic errors in acoustic scattering matrix mea-
surements are investigated. Several aspects of the measurement cycle are examined,
starting with the determination of the random error on themeasured transfer functions
between the acoustic source signal and the measured acoustic pressure.

The second aspect is the determination of the random error on the scatteringmatrix
coefficients. They are mathematically derived from the measurement data and the error
has to be propagated from the data to the coefficients. This is done using uncertainty
analyses and the use of linear methods to calculate the uncertainty of the coefficients is
investigated.

The impedance tube is an essential element of acoustic scattering matrix measure-
ments and the third topic is a description of the systematic errors that can occur in these
tubes. The effect of various systematic errors are shown, together with methods to ac-
count or reduce them. It is shown that there are still systematic errors remaining, and
hypotheses to the source of these errors are discussed.

In the last part, the knowledge is put to use tomeasure the aero-acoustic interaction
present at a sudden area expansion. It is shown that the measured acoustic absorption
agrees qualitatively with the models, however the deviation between the measurements
and predictions are larger than the uncertainty of themeasurements. The end correction
agrees well with the models at high Strouhal numbers, but the scatter on the measure-
ments at lower Strouhal numbers is too large to identify flow-acoustic interaction effects
on the end correction.

Keywords: aero-acoustics, sudden area expansion, in-duct acoustics, Acoustic scatter-
ing matrix, impedance tube, uncertainty analysis, systematic errors.
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CHAPTER1
Introduction

Acoustic noise is a nuisance that everybody experiences in their daily life. To effectively
reduce it, the creation and propagation of noise has to be understood and the understanding
comes through the modelling of these phenomena. To verify that the modelling is correct,
the results have to compared against accurate experimental observations.

Noise pollution has long been recognized as affecting the quality of life and well being.
According to a recent report ofTheWorldHealthOrganization [1], noise is the secondworst
environmental cause of ill health, only behind ultra-fine particulatematter. In the European
Union, road traffic is themost dominant source of environmental noise, followed by railway
noise and air traffic noise. In the Seventh Environment Action Programme, the European
Union has committed itself to significantly decrease the noise pollution in the European
Union and move closer to levels recommended by the World Health Organization [2].

Vehicles are the largest contributor to environmental noise and their internal noise
sources are often encapsulated, with distinct openings to the outside world. Usually these
openings are used to exchange fluids with the environment and examples are automotive
mufflers, cooling intakes of trains and in- and outlets of aircraft engines.

The fluid flow to and from the internal noise sources can be confined by ducts, which act
as waveguides for the acoustic disturbances. These ducts can contain discontinuities, such
as bends, side branches and area expansions at which the fluid may separate. When there
is flow separation, a pathway is opened for the acoustic field to interact with the hydrody-
namic field and energy can be exchanged between the fields. This acoustic-hydrodynamic
interaction can significantly alter the prevailing wave fields in the ducts, and need to be
taken into account to describe the noise radiating from the vehicle to the environment.
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Introduction

The interaction between fluid flow and acoustics is known as aero-acoustics and the be-
ginning of the field is marked by the pioneering work by Sir James Lighthill, more than half
a century ago [3]. The field of aero-acoustics has been intensively studied for more than 6
decades and consequently, the major mechanisms of the acoustic hydrodynamic interac-
tions have been identified and model improvements only lead to a relatively small changes
on the predictions. For the experimentalist, it becomes increasingly more difficult to obtain
results that can confirm whether model results are valid, as the differences between the var-
ious models approach the size of the experimental errors. To still infer reliable conclusions
of the agreement between model and experiments, it is important that the effect of errors
on the measurements are assessed.

Acoustic disturbances travel aswaves andwhen these disturbances are confinedbyducts,
their vibrational pattern in the cross section of the duct is limited to a finite number of
modes. When the propagation of the acoustic wave is impeded by the presence of duct
irregularities, only a part of the wave is transferred to the other side, whereas a part of the
wave is reflected back. A convenient way to describe this scattering is the acoustic scattering
matrix. It relates the acoustic waves propagating toward the discontinuity, to the acoustic
waves travelling away from the discontinuity.

A well defined problemwhere aero-acoustic interaction is present is the sudden area ex-
pansion. When a fluid flow passes the sudden area expansion, flow separation occurs and
the acoustic field interacts with the hydrodynamic field. A variety of models have been cre-
ated which characterize the interaction using the acoustic scattering matrix, but the experi-
mental evidence is scarce. The goal of this thesis is to obtain reliable data of this interaction
in the form of scattering matrices, to achieve it is imperative that the measurements errors
on the results are accurately assessed.

1.1 Description of errors

Errors on measurements can be classified in two broad categories, random errors and sys-
tematic errors. These two categories are also indicated by resp. precision and accuracy
and a pictorial representation of the categories is given in figure 1.1. Random errors occur
through stochastic effects on the measurements and if the measurement would be repeated
an infinite amount of time, the true value would be obtained from the average of these mea-
surements. Systematic errors on the other hand cause a deviation of the measured value
from the true value and are deterministic in nature. Performing multiple measurements
will give the same measured value.

Stochastic errors onmeasurements can be quantified using an uncertainty analysis. The
basis of the uncertainty analysis is to systematically describe the errors that occur during the

2
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Inaccurate
Imprecise

Inaccurate
Precise

Accurate
Imprecise

Accurate
Precise

Measurement True value

Figure 1.1: Pictorial representation of the accuracy and precision of a measurement.

measurements and propagate them through the function that relates the measured values,
also called the measurands, to the value that is of interest. The stochastic error is often
described with uncertainty intervals and the size of the interval depends on the standard
deviation and the desired confidence level. The standard deviation is defined as the square
root of the variance of the measured value and is sometimes also referred to as the standard
uncertainty. The confidence level gives the relative proportion of intervals that will contain
the true value, when the experiment would be repeated an infinite amount.

To identify and reduce the systematic error, a systematic approach has to be taken, rep-
resented schematically in figure 1.2. The systematic error that is present can only be assessed
by performing a calibration measurement. With such a measurement, a calibration stan-
dard of known accuracy is measured. The deviation between the measured value and the
calibration standard indicates the presence of an error, but not the origin of it. By perform-
ing an uncertainty analysis on the measured results, the contribution of stochastic errors
can be assessed using the confidence intervals. If the deviation between the measurement
and the calibration standard is small compared to the confidence intervals, the stochastic
error dominates. The major contributors to the stochastic error can then be identified with
the uncertainty analysis and the measurements can be improved by reducing these error
sources.

On the other hand, if the measurements are repeatable and the size of the deviation
is much larger than the confidence interval, a systematic error is present. To identify the
systematic error, the source of error has to be hypothesized and measurements performed
to test the hypothesis. When a source of error is identified, it can be reduced or taken into
account in the measurement analysis. This procedure has to be repeated until the obtained
deviations are acceptable.
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Iteration 1

Iteration 2

Measurement Improve

Calibration standard

Measurements

Confidence interval

Uncertainty
analysis

Figure 1.2: Pictorial representation of the error reduction workflow.

1.2 Thesis outline

To reach the stated goal of the thesis, several aspects of the errors and their analysis in acous-
tic scattering matrices will be investigated. The studies presented in this thesis can be sum-
marized in four questions:

• How can the stochastic error on transfer functionsmeasuredwith stepped sine excitation
be determined?

• Are linear uncertainty analyses appropriate to quantify the stochastic errors on mea-
sured scattering matrices?

• Which systematic errors are present in acoustic impedance tubes?

• Do measurements agree with recent predictions of the area-acoustic interaction at an
area expansion?

In the first part (chapter two) a method to determine the stochastic error on measured
transfer functions is discussed. The transfer function for a system with noise on the out-
put and a harmonic signal as input is determined using a method based on synchronous
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1.3. Contributions and division of work

demodulation. The random error on the transfer function is characterized with the auto
spectral density of the noise and the expressions are validated against experiment.

The general acoustic theory is briefly reviewed in chapter three. The mathematical de-
scription for waves travelling in waveguides is given and the concept of the acoustic scatter-
ingmatrix is introduced. In chapter four, the use of linear uncertainty analyses to determine
the random error on the acoustic scattering matrix as function of the random error on the
measurements is investigated. The results are compared against a non-linear uncertainty
analysis and is shown that the linear uncertainty analysis can only be used in specific cases.

The accuracy of the scatteringmatrixmeasurements is determined in the fifth chapter by
measuring the acoustic reflection coefficient of a calibration standard. Various systematic
errors are identified and the influence and methods to reduce these errors are discussed.
After the systematic errors have been accounted for, there is still a discrepancy between
themeasurements and the calibration standardThe sixth chapter discusses these systematic
error and two general trends are identified. Several hypotheses of the origin of the error are
discussed and the discussion shows the probable sources of errors.

In the seventh chapter, the measurements of the aero-acoustic interaction at the area
expansion are given. Using the methods and theory presented in the previous chapters, the
accuracy of the measurements is shown to be good and the precision assessed using the
linear uncertainty analysis. The results are compared against recent models.

The last chapter concludes the thesis with an overview of the contributions and achieve-
ments.

1.3 Contributions and division of work

Themain contributions of the thesis can be found in chapter 2, 4, 6, 7.
In chapter 2 a novel method to estimate the uncertainty of measured transfer functions

from the background spectrum is proposed and comparedwith experimental data. In chap-
ter 4, a thorough investigation of linear methods to express the uncertainties in measured
scattering matrices is performed and compared with Monte-Carlo simulations. In chapter
6, a thorough discussion of the prevailing systematic error in impedance tubes is given. Var-
ious hypotheses of the error are tested and probable error sources are given. In chapter 7,
new experimental data for aero-acoustic interaction at an area expansion is presented and
compared with recent models.

Luck Peerlings initiated the direction and performed the studies, the measurements,
made the analysis and produced the thesis. Hans Bodén and Susann Boij supervised the
work, discussed ideas and reviewed the work.
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During the study, research visitswheremade to the Laboratoire d’Acoustique de l’Université
du Maine (LAUM) in Le Mans, France and the Deutsches Zentrum für Luft- und Raum-
fahrt in Berlin, Germany. At the LAUM, Yvés Auregan supervised the work and discussed
ideas. These contributions are mainly incorporated in chapter 5 and 6. Friedrich Bake su-
pervised the research visit to the DLR in Berlin and discussed ideas. These contributions
can be found in chapter 4, 5 and 6.
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CHAPTER2
Estimating the statistical

parameters of transfer functions
based on the background signal

In this chapter the determination of the variance of transfer functions is investi-
gated. Using the synchronous demodulation technique, expressions for the vari-
ance and kurtosis of the real and imaginary part of the transfer functions are
obtained for various noise models. The expressions are validated against exper-
imental results and it is shown that it is possible to determine the variance and
kurtosis of the transfer functions solely based on the auto spectral density of the
noise. Also, using the derived expressions, the commonly made assumptions on
the measured transfer functions, that is that the imaginary and real part are un-
correlated and that their variance are of equal magnitude is analyzed. It is shown
that these assumptions can be violated when strong tonal components are present
in the background signal.

2.1 Introduction

Recently, the application of statistical methods to determine the uncertainty in acoustic
measurements within ducts has gained interest [4–6]. These methods propagate the uncer-
tainty of the measured quantities to the quantities of interest. To apply such an analysis,
the probability density functions and statistical parameters of the measured data have to be
determined accurately.

7



Statistics of transfer functions

As acoustic measurements are often analysed in the frequency domain, one important
quantity in such measurements are transfer functions between electric and acoustic signals.
In the case of flow duct acoustics, the flow noise has a large contribution in the measured
pressure signal and to obtain good signal to noise ratios, single sine excitations are often
used to determine the transfer functions.

The statistical properties of the transfer function can be inferred from the coherence
between the input and output signal [7] under the assumption that the random error in
the transfer function is normally distributed and has equal variance for the real and imagi-
nary part and that the real and imaginary part are uncorrelated. Auweraer et al. [8] review
the stepped sine measurements and briefly addresses the uncertainty in the estimates and
shows that the estimation error is inversely proportional to the square root of the measure-
ment time. Pintelon et al. [9] show that exact confidence intervals of frequency response
functions measurements for arbitrary input/output noise signal to noise ratios can be com-
putedwhen the input and output noise are circular complex normally distributed. Schultz et
al. [10] demonstrate the use of a multivariate statistical analysis to describe the uncertainty
in measured transfer functions. The real and imaginary parts are treated as two separate
uncertain variables and the error on the measured transfer functions is determined from
the measured cross spectra.

To apply the above methods, several assumptions have to be made about the errors,
such as they are normally distributed, the real and imaginary part are uncorrelated and the
variance of the real and imaginary part are equal. These assumptions have to be verified
and to do so enough statistically independent measurements have to be taken of a transfer
function.

On the other hand, obtaining enough statistically independent samples could lead to too
longmeasurement times which could jeopardize the time invariant behaviour of the system.
Therefore, a single measurement is often taken and the statistical properties of the final
results are determined by dividing themeasurement data in separate samples and averaging
the results. It is possible that the underlying assumptions are violated, due to the short
measurement time of a single sample. In these cases, the obtained statistical parameters,
such as the variance, have a different relation to the uncertainty in themeasurement because
the underlying probability density function is not a normal distribution.

In this chapter a different approach is investigated to obtain the statistical properties.
When measuring the transfer function using a stepped sine signal, the relation between the
input signal and output signal is deterministic, when there is no added noise at the output
signal. The addition of noise makes the measured transfer function stochastic and thus the
stochastic properties are defined by the properties of the noise signal.

The goal of this chapter is to determine the stochastic properties of the transfer func-

8



2.2. Theory

n(t)

r(t) y(t)
H(ωr) ++

Figure 2.1: Schematic representation of the single input, single output system.

tion with the information of the noise signal. First, the relation between the variations in
the measured transfer function and the noise is determined in the time domain using the
synchronous demodulation technique [11]. Thereafter, three models are introduced for the
noise, for which the parameters only dependent on the auto spectral density of the noise.
With the help of the noise models, the variance and kurtosis are determined as function of
the auto spectral density. The variance gives information on the spread of the estimated
transfer functions and the kurtosis on the shape of the probability density function of the
transfer function estimates. To construct confidence intervals, the probability density func-
tion should be known and it is common to assume that the distribution follows a normal
distribution, but with the help of the kurtosis this assumption can be checked. The relation
for the variance and kurtosis are validated against measurements, showing a good agree-
ment between the predicted and measured statistical properties.

2.2 Theory

The theory is based on a linear, time invariant, single input, single output system with noise
𝑛(𝑡) on the output, as shown in figure 2.1. The input is to be considered to be a harmonic
signal, with an angular frequency of 𝜔𝑟, 𝑟(𝑡) = 𝐴𝑟 cos𝜔𝑟𝑡. The output 𝑦(𝑡) is of the form
𝑦(𝑡) = 𝐴𝑦 cos [𝜔𝑟𝑡 + 𝜃𝑦] and the relation between the input and output is given by the true
transfer function 𝐻(𝜔).

An estimate of the true transfer function, �̃�(𝜔), at the frequency 𝜔 can be obtained
in the continuous time domain using the concept of synchronous demodulation and the
analytic representation of the input [11].

The idea is that the reference signal consists of a harmonic signal with a slowly varying
instantaneous amplitude and frequency. By multiplying the measurement signal with a ref-
erence signal that has two components that are orthogonal with each other, e.g. a real and
a complex part, the result will be the projection of the measurement signal on both compo-
nents of the reference signal. This approach gives then the in-phase and the out-of-phase
part of the measurement signal w.r.t. the reference signal.

9



Statistics of transfer functions

To represent a (random) signal in the complex domain such that it has two orthogonal
components, the signal has to be transformed to a so-called analytic signal �̂�(𝑡). The analytic
signal allows for an arbitrary signal 𝑥(𝑡) to represented by a time dependent amplitude 𝐴(𝑡)
and phase 𝜓(𝑡), that is,

�̂�(𝑡) = 𝑥(𝑡) + 𝑖ℋ [𝑥(𝑡)] ,
= 𝐴(𝑡) exp [𝑖𝜓(𝑡)] ,

(2.1)

where ℋ [𝑥(𝑡)] is the Hilbert transform of the signal 𝑥(𝑡) [11]. This phasor notation gives
the time dependent information of themeasured signal,𝐴(𝑡) is the instantaneous amplitude
(envelope) and𝜓(𝑡) is the instantaneous phase of themeasured signal. The relation between
the instantaneous phase and the instantaneous frequency is given by [11]:

𝜔(𝑡) = d𝜓
d𝑡 . (2.2)

If the signal 𝑥(𝑡) is harmonic and the amplitude is time invariant, the analytic signal reduces
to �̂�(𝑡) = 𝐴 exp[𝑖𝜔𝑡].

If the system under study is linear, the response signal will also be a harmonic which has
the same frequency (instantaneous phase) as that of the excitation signal. The amplitude
𝐴𝑦(𝑡) and phase 𝜙(𝑡) relative to the excitation signal may be time dependent and thus the
measured signal, under the assumption that the noise on the output is not present 𝑛(𝑡) = 0
can be written as:

𝑦(𝑡) = 1
2𝐴𝑦(𝑡)𝐴𝑟(𝑡) (𝑒𝑖(𝜓(𝑡)+𝜙(𝑡)) + 𝑒−𝑖(𝜓(𝑡)+𝜙(𝑡))) . (2.3)

If the excitation signal is time independent and harmonic, the relation between the out-
put and input can be obtained by dividing the measured signal with the reference,

𝑦(𝑡)
𝑟(𝑡) = 1

2𝐴𝑦(𝑡)𝑒𝑖𝜓(𝑡) + 1
2𝐴𝑦(𝑡)𝑒−𝑖𝜓(𝑡)−2𝑖𝜔𝑟𝑡. (2.4)

Consider now the case that the phase and relative amplitude between the excitation and
measurement signal is time independent, 𝜕𝐴𝑦(𝑡), 𝜓(𝑡)/𝜕𝑡 = 0. Then the first term in equa-
tion (2.4) is time independent and the frequency of the second term is the double of the
reference frequency. By taking the time average, an estimate of transfer function between
the reference and the excitation signal is obtained at the specific frequency 𝜔𝑟.

When noise is present on the measurement signal, the estimate of the transfer function
is given by,

�̃�(𝜔𝑟) = 2
𝜏 ∫

𝜏

0

𝑦(𝑡) + 𝑛(𝑡)
̂𝑟(𝑡) 𝑑𝑡, (2.5)

10



2.2. Theory

where 𝜏 is the integration time [11]. When the noise is considered to be a random variable
with zero mean, the expected value of the transfer function is given by,

E [�̃�] = 2
𝜏 ∫

𝜏

0

𝑦(𝑡)
̂𝑟(𝑡) 𝑑𝑡. (2.6)

where the notation of (𝜔𝑟) has been omitted for concise writing. From here onward, this
convention will be applied wherever possible.

Only when the integration time, 𝜏 is a multiple of half of the excitation frequency, the
true transfer function 𝐻(𝜔) is obtained from equation (2.6),

E [�̃�] = 𝐻 = 2
𝜏 ∫

𝜏

0

𝑦(𝑡)
̂𝑟(𝑡) 𝑑𝑡, when 𝜏 = 𝜋

𝜔𝑟
𝑛; 𝑛 ∈ ℤ. (2.7)

Otherwise a bias error will be introduced, as the double frequency term, (2.4), will con-
tribute to the time average. In the remainder of the text the integration 𝜏 is considered to
uphold the condition given in (2.7) such that the expected value is always the true value of
the transfer function.

The deviation from the expected transfer function can then be written as,

�̃� − E [�̃�] = 2
𝜏 ∫

𝜏

0

𝑛(𝑡)
̂𝑟(𝑡) 𝑑𝑡, (2.8)

which shows that the variation is solely induced by the noise. With the above expression,
the 𝑗-th and 𝑘-th order statistical moments with respect to the real and imaginary parts,
𝜇𝑗,𝑘, can then be calculated,

𝜇𝑗,𝑘 = 𝐸 [(ℜ [�̃� − 𝜇𝐻 ])𝑗 (ℑ [�̃� − 𝜇𝐻 ])𝑘
] , (2.9)

where 𝜇𝐻 = E [�̃�], ℜ [�] denotes the real part of� and ℑ [�] denotes the imaginary part
of �. For ease of comprehension, the statistical moments with respect to only the real or
imaginary part of the deviation, will be denoted by𝜇ℜ,𝑗 and𝜇ℜ,𝑘 respectively. If expressions
are similar for both the imaginary and real part of the statistical moments, the notation
𝜇ℜ,ℑ,𝑘 is used to indicate the 𝑘th statistical moment for the real 𝜇ℜ,𝑘 and the imaginary
part 𝜇ℑ,𝑘.

Noisemodels

To determine the statistical moments of the transfer function, a model for the noise 𝑛(𝑡)
has to be given. Three models will be investigated. The first two models are commonly
used in literature to describe random noise [12]. Both models have the property that their
average value is zero and that the variance as function of frequency is equal to auto spectral
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0 → 𝐴
Fourier Series

0 → 𝐴
Random phase

0 → 𝐴
Random amplitude and phase

Figure 2.2: Schematic representation of the probability density function of the amplitude as
function of the amplitude for the various models.

density function of 𝑛(𝑡). The first model is a Fourier series with normal random distributed
coefficients and the second a Fourier series with a known amplitude and a random phase
with uniform distribution. The third model uses a Fourier series with an amplitude that has
a Gamma distribution and a phase with a uniform distribution. It is inspired by looking at
the statistics of measured noise spectra of flow noise, for which the distribution resembled
a Gamma distribution. To have an expected value of zero, the phase is chosen to have a
uniform distribution. The probability density function of the Fourier coefficients of the
three models are circular symmetric in the complex plane and in figure 2.2 a schematic
overview of the probability density function of the amplitude as function of the amplitude
is given for the three models. For all the models, it is assumed that the random variables
associated to a single Fourier term are uncorrelated with the other Fourier terms. The first
model is given by,

𝑛(𝑡) =
∞

∑
𝑖=0

𝑎𝑖 cos(𝜔𝑖𝑡) + 𝑏𝑖 sin(𝜔𝑖𝑡), 𝑎𝑖, 𝑏𝑖 ∈ ℕ(0, 𝜎𝑖), (2.10)

where the random variables 𝑎𝑖 and 𝑏𝑖 are normally distributed with a zero mean and a vari-
ance 𝜎𝑖 = √𝑆𝑛𝑛(𝜔)Δ𝜔. Herein 𝑆𝑛𝑛(𝜔) is the single sided auto spectral density of the noise
and Δ𝜔 the frequency spacing of the consecutive Fourier coefficients of the spectrum.

The second model is given by,

𝑛(𝑡) =
∞

∑
𝑖=0

𝐶𝑖 cos(𝜔𝑖𝑡 + 𝜃𝑖), 𝜃𝑖 ∈ 𝕌(0, 2𝜋). (2.11)

Where 𝑐𝑖 is the amplitude of the Fourier term and given by 𝑐𝑖 = √2𝑆𝑛𝑛Δ𝜔. The phase, 𝜃𝑖,
is a random variable, for which the probability density function is uniform and the values
are bounded by 0 and 2𝜋.

12
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The third model is given by

𝑛(𝑡) =
∞

∑
𝑖=0

𝑐𝑖 cos(𝜔𝑖𝑡 + 𝜃𝑖), 𝜃𝑖 ∈ 𝕌(0, 2𝜋) and 𝑐𝑖 ∈ Gamma(𝛼𝑖, 𝛽𝑖), (2.12)

where the phase of the Fourier terms, 𝜃𝑖, is modelled as a random variable with a uniform
probability density function over the interval [0, 2𝜋].

𝑓(𝑐𝑖; 𝛼𝑖, 𝛽𝑖) = 1
Γ (𝛼) 𝛽𝛼 𝑐𝛼𝑖−1

𝑖 𝑒− 𝑐𝑖
𝛽 , (2.13)

where 𝛼𝑖 is the shape parameter, 𝛽𝑖 the scale parameter and Γ the Gamma function. The
shape and scale parameters can be estimated from the square root of the measured single
sided power spectral density and its corresponding variance,

𝛼𝑖 =
E [√𝑆𝑛𝑛(𝜔𝑖)]

2

Var [√𝑆𝑛𝑛(𝜔𝑖)]
, 𝛽𝑖 =

Var [√𝑆𝑛𝑛(𝜔𝑖)]

E [√𝑆𝑛𝑛(𝜔𝑖)]
. (2.14)

2.3 Statistical moments

The effect of the noise on the determination of the transfer function can be determined
using the introduced noisemodels. By introducing the noisemodels into the equation (2.8),
the deviation from the true transfer functions due to the noise can be determined. From
the obtained expressions, the statistical moments can be determined for the various noise
models wit the help of equation (2.9).

In the following, the real and imaginary part of the variation from the expected transfer
will be given for each of the noise models and the variance 𝜎2

ℜ,ℑ will be determined,

𝜎2
ℜ,ℑ = 𝜇ℜ,ℑ,2. (2.15)

The variance gives information on the variation of the measured transfer function, however
to compute confidence intervals the probability density functions also has to be known.

It is often assumed that the probability density function is normally distributed, but with
the help of the kurtosis that assumption can be strengthened and the kurtosis 𝜅ℜ,ℑ of the
real and imaginary part will also be determined,

𝜅ℜ,ℑ =
𝜇ℜ,ℑ,4

𝜇2
ℜ,ℑ,2

. (2.16)

For a normal distribution, the kurtosis equals 3. Care should be taken when interpreting
the kurtosis estimate the underlying probability density functions, because if the measured
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Statistics of transfer functions

kurtosis equals 3 it does not automatically imply that the probability density function is
normally distributed. The odd statistical moments will not be discussed, as they are zero for
all the used models.

Fourier Series

For the Fourier Series, the real and imaginary part of the deviation from the expected trans-
fer function are given by,

ℜ [�̃� − 𝜇𝐻 ] =
∞

∑
𝑖=0

𝑎𝑖
2𝜔𝑖 sin (2𝜏𝜔𝑖)
𝐴𝑟𝜏 (𝜔2

𝑖 − 𝜔2
𝑟 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴ℜ,𝑖

+𝑏𝑖
2𝜔𝑖 (1 − cos (2𝜏𝜔𝑖))

𝐴𝑟𝜏 (𝜔2
𝑖 − 𝜔2

𝑟 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐵ℜ,𝑖

, (2.17a)

ℑ [�̃� − 𝜇𝐻 ] =
∞

∑
𝑖=0

𝑎𝑖
2𝜔𝑟 (1 − cos (2𝜏𝜔𝑖))

𝐴𝑟𝜏 (𝜔2
𝑖 − 𝜔2

𝑟 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴ℑ,𝑖

−𝑏𝑖
2𝜔𝑟 sin (2𝜏𝜔𝑖)
𝐴𝑟𝜏 (𝜔2

𝑖 − 𝜔2
𝑟 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵ℑ,𝑖

. (2.17b)

The deviation from the true transfer function is undefined for 𝜔𝑖 = 𝜔𝑟, but the limit for 𝜔𝑖
approaching 𝜔𝑟 exists and the real and imaginary part of this limit are given by,

lim
𝜔𝑖→𝜔𝑟

ℜ [�̃� − 𝜇𝐻 ] = 𝑎𝑖
2

𝐴𝑟
, lim

𝜔𝑖→𝜔𝑟
ℑ [�̃� − 𝜇𝐻 ] = −𝑏𝑖

2
𝐴𝑟

. (2.18)

In equation (2.17), the deterministic part of the random terms are grouped in constants,
denoted by the under-brackets. Using the grouping, the second order statistical moment,
the variance, and the fourth order statistical moment for the real and imaginary part are
given by,

𝜇ℜ,ℑ,2 =
[

∞

∑
𝑖=1

𝜎2
𝑖 (𝐴2

ℜ,ℑ,𝑖 + 𝐵2
ℜ,ℑ,𝑖)]

, (2.19)

𝜇ℜ,ℑ,4 = 3
[

∞

∑
𝑖=1

𝜎2
𝑖 (𝐴2

ℜ,ℑ,𝑖 + 𝐵2
ℜ,ℑ,𝑖)]

2

. (2.20)

Herein 𝜎𝑖 given in equation (2.10) and determined by the auto spectral density of the noise.
The oddmoments are equal to zero and for this model, the kurtosis is not dependent on any
statistical parameter and is equal to three, resembling that of a normal distribution.

14



2.3. Statistical moments

Random Phase

For the randomphasemodel, the real and imaginary part of the deviation from the expected
values are given by,

ℜ [�̃� − 𝜇𝐻 ] =
∞

∑
𝑖=0

𝐶𝑖
2𝜔𝑖 sin (𝜏𝜔𝑖)

𝐴𝑟𝜏 (𝜔2
𝑖 − 𝜔2

𝑟 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴ℜ,𝑖

cos (𝜃𝑖 + 𝜏𝜔𝑖) , (2.21a)

ℑ [�̃� − 𝜇𝐻 ] =
∞

∑
𝑖=0

𝐶𝑖
2𝜔𝑟 sin (𝜏𝜔𝑖)

𝐴𝑟𝜏 (𝜔2
𝑖 − 𝜔2

𝑟 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴ℑ,𝑖

sin (𝜃𝑖 + 𝜏𝜔𝑖) . (2.21b)

The real and imaginary part of the deviations are undefined for 𝜔𝑖 = 𝜔𝑟, but the limits
𝜔𝑖 → 𝜔𝑟 exist for both the terms and are given by,

lim
𝜔𝑖→𝜔𝑟

ℜ [�̃� − 𝜇𝐻 ] = 𝐶𝑖
2

𝐴𝑟
cos 𝜃𝑖, lim

𝜔𝑖→𝜔𝑟
ℑ [�̃� − 𝜇𝐻 ] = 𝐶𝑖

2
𝐴𝑟

sin 𝜃𝑖. (2.22)

Using the grouping of the terms as in equation (2.21), the variance and fourth order statis-
tical moment of the real and imaginary parts are given by

𝜇ℜ,ℑ,2 = 1
2

∞

∑
𝑖=1

𝐴2
ℜ,ℑ,𝑖, (2.23)

𝜇ℜ,ℑ,4 = 3
8 [

2
(

∞

∑
𝑖=1

𝐴2
ℜ,ℑ,𝑖)

2

−
∞

∑
𝑖=1

𝐴4
ℜ,ℑ,𝑖]

. (2.24)

It follows that the kurtosis, as given by equation (2.16), for this model has a theoretical max-
imum value of 3. If there is only one term present in equation (2.11), the kurtosis reduces
to 1.5, agreeing to the kurtosis of the arcsine distribution.

Random phase and amplitude

For the random phase and amplitude model, the expression for the real and imaginary part
of the deviation are similar to those of the random phase model, except that the determin-
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istic part of the terms now exclude the amplitude,

ℜ [�̃� − 𝜇𝐻 ] =
∞

∑
𝑖=0

𝑐𝑖
2𝜔𝑖 sin (𝜏𝜔𝑖)

𝐴𝑟𝜏 (𝜔2
𝑖 − 𝜔2

𝑟 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴ℜ,𝑖

cos (𝜃𝑖 + 𝜏𝜔𝑖) , (2.25a)

ℑ [�̃� − 𝜇𝐻 ] =
∞

∑
𝑖=0

𝑐𝑖
2𝜔𝑟 sin (𝜏𝜔𝑖)

𝐴𝑟𝜏 (𝜔2
𝑖 − 𝜔2

𝑟 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴ℑ,𝑖

sin (𝜃𝑖 + 𝜏𝜔𝑖) , (2.25b)

and the limits for 𝜔𝑖 → 𝜔𝑟 are given by,

lim
𝜔𝑖→𝜔𝑟

ℜ [�̃� − 𝜇𝐻 ] = 𝑐𝑖
2

𝐴𝑟
cos 𝜃𝑖, lim

𝜔𝑖→𝜔𝑟
ℑ [�̃� − 𝜇𝐻 ] = 𝑐𝑖

2
𝐴𝑟

sin 𝜃𝑖. (2.26)

The second order and fourth order statistical moments of the real and imaginary part of the
deviation are given by,

𝜇ℜ,ℑ,2 = 1
2

∞

∑
𝑖=1

𝑐2
𝑖 𝛼2

𝑖 (1 + 𝛼𝑖)𝛽2
𝑖 , (2.27)

𝜇ℜ,ℑ,4 = 3
4 ([

∞

∑
𝑖=1

𝑎2
𝑖 𝛼2

𝑖 (1 + 𝛼𝑖)𝛽2
𝑖 ]

2

− 1
2

∞

∑
𝑖=1

𝑎4
𝑖 𝛼𝑖(1 + 𝛼𝑖)(−6 − 3𝛼𝑖 + 𝛼4

𝑖 )𝛽4
𝑖 )

. (2.28)

2.4 Results and discussion

In the previous section, equations were derived to express the variance and kurtosis of a
measured transfer function as function of the single sided auto spectral density of the back-
ground spectrum. In this section, the resulting expressions are validated against experi-
ments.

In the experiments, the transfer function between the signal exciting a loudspeaker and
a microphone measuring the emitted sound field from the loudspeaker is measured. Two
other loudspeakers are used to provide an acoustic background signal 𝑛(𝑡), measured by
the microphone. The first loudspeaker creating the background signal emits white noise,
generated by a Brüel and Kjætype 1405 noise generator, and the second loudspeaker emits a
pure sine wave at 1180Hz. The transfer function is measured at 1280 Hz, and the sampling
frequency was 12800 Hz, such that a full period is sampled with 10 samples.

The transfer function has been measured for a duration of three seconds and the mea-
surement has been repeated for 2000 times. Between each measurement a random amount
of time has been passed before measuring the transfer function. In this way, the starting
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Figure 2.3: The variance and kurtosis of the real part of the transfer function from the mea-
surement and models as function of integration time for two different background signals. Top
row shows the variance and the bottom row the kurtosis. Left column, only white noise present
as the background signal. Right column, white noise and a single harmonic signal present as
background signal. Kurtosis and variance as function of integration time. The measurement
is denoted by( ), the random Fourier coefficient model by ( ), the random phase model
by ( ) and the random amplitude and phase model by ( ).

phase of the measurement excitation relative to that of the background sine wave is non-
deterministic. The background signal was measured for 60 seconds without the presence of
the excitation at a sample frequency of 12800 Hz. The corresponding background spectrum
was determined by using 150 averages with a rectangular window function.

In figure 2.3, the measured variance and kurtosis of the real part of the transfer func-
tion are shown as function of the integration time 𝜏 for two different measurements. For
clarity, the results for the imaginary part have been omitted as they behave similarly. The
background signal consisted only of white noise for the first measurement. For the second
measurement, the background signal consisted of both the white noise and the sine signal.

When only white noise is present, the variance decays monotonically with the integra-
tion time. The decay is exponential and proportional to the inverse of the integration time,
𝜎2 ∝ 𝜏−1, agreeing to the theoretical results [8]. The kurtosis for the first measurement case
is around three, corresponding to that of a normal distribution in accordance with theoret-
ical results and assumptions.

The match between the measured and estimated statistical parameters is not perfect.
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Figure 2.4: Normalized histogram of the real and imaginary part of the relative deviation
from the mean value of the measured transfer functions for two different integration times.
The background signal consists of white noise and a sine signal.

Therefore, the variance has been also determined for different sets of measurement samples
and it shows that the variance does not converge, but shows a slight drift as function of time.
This indicates that the properties of 𝑛(𝑡) and 𝐻 are not completely time invariant and the
measurement conditions are violating the imposed assumptions.

For the second measurement case, shown in the right column of figure 2.3, the variance
has distinct minima and maxima and the envelope of these extrema decays exponentially
with increasing integration time, that is 𝜎2 ∝ 𝜏−1. Due to synchronous demodulation, the
harmonic background signal will introduce a slow oscillating component, which oscillates
at the difference of the excitation frequency and the background signal, which is in this case
100 Hz. When the integration time is exactly a multiple of the period, the slowly varying
component will not contribute to the measured transfer function in (2.5), leading to the
minima occurring at integration times which are a multiple of 10 milliseconds.

The measured kurtosis shows that at the positions where the contribution of the har-
monic background signal is zero, the kurtosis is around three. For the other integration
time, the kurtosis is lower than 3. For these integration times, the background tone con-
tributes to the variance. When this contribution is the largest, the kurtosis is similar to that
of the arcsine distribution, which has a theoretical kurtosis of 1.5. The model results are
also plotted in figure 2.3. For the variance, all three models agree reasonably well with the
measurement results. The model with the random amplitude and phase under predicts the
variance for both the measurement cases. The Fourier coefficient model and the random
phase predict the same variance and agreewell when there is onlywhite noise present. When
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the sine signal is present in the background signal, the variance is slightly over predicted by
these models.

For the kurtosis only the random phase model and the random amplitude with random
phasemodel are shown as the Fourier coefficientmodel does not predict the kurtosis. When
the sine signal is not present in the background signal, the models predict a kurtosis close
to three and this compares reasonably well with the measurements.

When the sine signal is present in the background signal, the kurtosis varies between
1.5 and 3 as function of the integration time. The predictions by the random phase model
and the random amplitude and phase model are very similar and follow the trend of the
measurements. For themeasurements, themeasured kurtosis is larger than three for certain
integration times, but as shown the random phase model cannot be larger than three. For
the random amplitude and phasemodel, the kurtosis can be larger than three, but in general
both models underestimate the depth of the troughs and the height of the peaks.

Comparing the random phase model and the random amplitude and random phase
model, they both predict similar values for the kurtosis and variance. However, the latter
model needs more information, that is the variance of the auto spectral density. Therefore,
the random phase model is the stronger candidate to model the variance and kurtosis of the
transfer function, as the expressions to calculate statistical parameters are simpler and the
model needs less information compared to the random phase and amplitude model.

The difference in the kurtosis as function of the integration time when the sine signal
is present in the background signal can be appreciated by looking at the histograms of the
measured transfer functions. In figure 2.4 the histograms of the real and imaginary parts
of the transfer function relative to the mean value of the transfer function are shown for
two different integration times. For the first integration time, 𝜏 = 99.60ms, the integration
time is a multiple of the period of the slowly-varying component and its contribution to the
estimate of the transfer function is not present. The histogram shows that the transfer func-
tion estimates are approximately circularly distributed indicating that themeasured transfer
function can be modelled as a bivariate normal distribution, where there is no correlation
between the real and imaginary parts.

For the second integration time 𝜏 = 93.75ms the presence of the harmonic background
signal modulates the measured transfer function. The resulting histogram has the form of
torus and the probability density function of the real and imaginary parts resemble that
of an arcsine distribution. In such a situation, the assumption of the normally distributed
probability density function of the transfer function is not appropriate.

From the measurements, it can be shown that the variance of the real and imaginary
parts are not equal. Thedifference can be estimated by interpreting the variance as aweighted
sum of the noise spectrum. As an example, evaluating and rewriting equation (2.23) using
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Figure2.5: Theweighting function of the real part of the variance 𝑤ℜ,𝑖, ( ), and imaginary
part 𝑤ℑ,𝑖, ( ), as function of frequency relative to the excitation frequency, 𝜔𝑖/𝜔𝑟. The left
column shows the envelope of the function, evaluated at the positions cos(2𝜏𝜔𝑖) = 1, the right
column shows a close up of the function in the neighbourhood of 𝜔𝑖/𝜔𝑟 = 1. The integration
time, 𝜏, is 50ms and the excitation frequency 1000Hz.

weights for the real and imaginary parts, 𝑤ℜ,𝑖, 𝑤ℑ,𝑖, the following expression can be ob-
tained,

𝜎2
ℜ = 1

2

∞

∑
𝑖=1

𝐴2
𝑖 𝑤ℜ,𝑖, 𝑤ℜ,𝑖 =

8𝜔2
𝑖 (1 − cos (2𝜏𝜔𝑖)

𝐴2
𝑟 𝜏2 (𝜔2

𝑖 − 𝜔2
𝑟 )2 , (2.29a)

𝜎2
ℑ = 1

2

∞

∑
𝑖=1

𝐴2
𝑖 𝑤ℑ,𝑖, 𝑤ℑ,𝑖 =

8𝜔2
𝑟 (1 − cos (2𝜏𝜔𝑖)

𝐴2
𝑟 𝜏2 (𝜔2

𝑖 − 𝜔2
𝑟 )2 . (2.29b)

From the above expressions, (2.29), it follows that the weights 𝑤ℜ,𝑖 and 𝑤ℑ,𝑖 are not equal
and thus the assumption of a circular distributed error on the transfer function, implying
equal variances for the real and imaginary part is in general not true. It can be shown that
in the special case of a constant auto spectral density for 𝑓 ∈ [0, ∞), the variances of the
real and imaginary part are equal. In figure 2.5 the weighting function is shown, as function
of the angular frequency 𝜔𝑖, normalized with the angular excitation frequency 𝜔𝑟. In the
left column, the function is plotted only for the points where cos (2𝜏𝜔𝑖) is zero to show the
envelope of the function. In the limit of 𝜔𝑖 → 0, the weights for the variance of the real
part are not a function of 𝜔𝑖,whereas for the imaginary part, the weights are proportional
to 𝜔−4

𝑖 . Therefore, if the background spectrum contains a single frequency component with
a large amplitude at frequency below the excitation frequency, the variance of the real part
will be larger than the variance of the imaginary part. The weighing functions both decay
for frequencies larger than the excitation frequency but at a different slope. The real part of
the variance is proportional 𝜔−4

𝑖 whereas the imaginary part of the variance is proportional
to𝜔−2

𝑖 , and thus if the noise spectrum a single frequency component with a larger amplitude
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at a frequency higher than the excitation frequency, the variance of the imaginary part will
be larger than that of the real part. For the experiments where the sine signal is present, the
variance of the imaginary part is around 10 % smaller compared to the real part when the
sine signal contributes to the variance and the integration time is in the order of 100ms.

In the right column of figure 2.5, a close up of the region 𝜔𝑖/𝜔𝑟 ≈ 1 of the weighing
functions is shown. The weighing functions show lobes and the zero points correspond
to the frequencies where cos (2𝜏𝜔𝑖) is equal to zero. At these zeros, the unwanted signal
does not contribute to the observed variance, which is the same phenomena as seen before
where the sine part of the background signal did not contribute to the observed variance.
The width of the lobes is proportional to the integration time, and the height of the lobes
decreases with 𝜏2, except for the main lobe. For the main lobe, the height is given by the
square of the limit expression given in equation (2.22) and is not a function of the integration
time. With increasing integration time, this difference decreases as the weights decrease
with increasing integration time, except at the integration time.

2.5 Conclusion

This chapter shows that the variance and kurtosis of transfer functions can be determined
with the information of the noise signal.

With the synchronous demodulation technique, the deviation from the transfer func-
tion as function of the noise is derived in the time domain. Three models are used to model
the noise in the frequency domain.

In the first model, the noise is modelled as a Fourier series, where both the Fourier
coefficients are modelled as stochastic variables with a normal probability density function.
The second model consisted of a Fourier series, for which the amplitude is a deterministic
variable and the phase a random variable with a uniform distribution. In the third model,
the amplitude and the phase are considered to be random, where the amplitude is modelled
as a gamma distribution and the phase as a uniform distributed variable.

From the expressions of the deviation of the transfer functions in the time domain and
the noise model, the variance and kurtosis are derived. The derived relations are validated
against experiments, where the transfer function between a microphone and loudspeaker
is measured. The background signal is provided by two loudspeakers, one emitting white
noise and the other one a single tone.

A good correspondence between the predicted variance and the measured variance is
shown for all the models. The kurtosis is only predicted by the random amplitude and ran-
dom phase model and the random phase model. Bothmodels show a good correspondence
with the measured kurtosis. The random phase model is preferred as the model parameters
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Statistics of transfer functions

can be inferred from the auto spectral density, whereas for the random amplitude and the
random phase model the variance on the auto spectral density has to be known to be able
to determine the needed parameters.

Furthermore, using the derived expressions, the assumption that the real and imagi-
nary parts are uncorrelated and have the same variance have been investigated. It is shown
that the variance on the real and imaginary parts depend on the noise spectrum and the
measurement time for a single sample.
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CHAPTER3
Acoustic Theory

In this chapter, the basic acoustic theory will be repeated. The discussion starts
by introducing the governing equations for motion of an isotropic viscous fluid.
Thereafter, the existence of the acoustic boundary layer is shown by deriving the
three coupled wave equations that govern small perturbations in a motionless
fluid. The last part introduces the concept of acoustic modes and the scattering
matrix is introduced. It concludes with the wave decomposition method.

3.1 Governing equations

In the following a short summary of the set of equations that model the motion of a vis-
cous fluid are given. The interested reader is referred for a more in-depth discussion of the
equations to [13–15]. The motion of a continuous medium can be described by the conser-
vation of mass, momentum and energy in a fixed control volume. The mass conservation
equation, also called the continuity equation, is given by

𝜕𝜌
𝜕𝑡 + div 𝜌𝒗 = 0, (3.1)

where 𝑡 is the time, 𝜌 is the density of the medium and 𝒗 the velocity. The divergence opera-
tor is denoted by div . For a viscous isotropic fluid the conservation of momentum is given
by the Navier-Stokes equation, relating the change of momentum of infinitesimal fluid ele-
ment to the forces acting on that element.

The momentum equation is given by

𝜌𝐷𝒗
𝐷𝑡 = − grad 𝑝 + div 𝝉 + 𝒈, (3.2)
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Acoustic Theory

where 𝑝 is the pressure, 𝝉 the fluid stress tensor and 𝒈 the body forces per unit volume acting
on the fluid element. The gradient operator is denoted by grad and the material derivative
given by,

𝐷�
𝐷𝑡 = 𝜕�

𝜕𝑡 + 𝒗 ⋅ grad�. (3.3)

When the fluid is considered Newtonian, that is the stress tensor is linearly related to the
rate of deformation of the fluid element and the fluid is considered isotropic, the fluid tensor
𝝉 is given by,

𝝉 = 𝜇 [ grad 𝒗+( grad 𝒗 )
𝑇 − 2

3 div𝒗𝑰] + 𝜁 div𝒗𝑰. (3.4)

Herein is 𝜇 the viscosity of the fluid, 𝑰 the identity matrix and 𝜁 the bulk viscosity of the
fluid.

The third equation is given by the energy equation, relating the rate of change of energy
of the element caused by the forces acting upon the element and the heat conduction to the
element,

𝜌 𝐷
𝐷𝑡 (𝑒 + 𝑣2) = − div 𝑝𝒗 − div 𝒒 + div (𝜏 ⋅ 𝒗) + 𝒈𝒗, (3.5)

where 𝑒 is the internal energy of the fluid, 𝑣 = |𝒗| the absolute value of the velocity vector
and 𝒒 the heat flux vector. The internal energy for an ideal and calorific perfect gas is pro-
portional to the temperature 𝑇 of the gas, 𝑒 = 𝑐𝑣𝑇 , where 𝑐𝑣 is the heat capacity at constant
volume.

Theheat flux 𝒒 ismodelled by Fourier’s law, which states that the heat flux is proportional
to the temperature gradient,

𝒒 = −𝜅 grad 𝑇 . (3.6)

The last equation that is needed is the equation of state. The equation of state of the gas
is modelled using the ideal gas law,

𝑝 = 𝜌𝑅𝑇 , (3.7)

where 𝑅 is the specific gas constant.
This set of five equations, (3.1), (3.2), (3.5), (3.6) and (3.7) describes the fluid motion

of an isotropic viscous fluid and is also known as the Navier-Stokes-Fourier model of a com-
pressible fluid

3.2 Wave equations in a stationary viscousmedium

The pressure fluctuations of acoustic disturbances are in generally small compared to the
mean pressure, and the equations governing the acoustic perturbations can be found by
linearising the Navier-Stokes equations.
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3.2. Wave equations in a stationary viscousmedium

Assuming that the fluid is motionless, that it the steady mean value of the velocity is
zero, �̄� = 0, the governing equations can be rewritten into three variables, all governed by a
wave equation. These three fields are also often called the acoustic mode, the vorticity mode
and the entropy mode [13]. In this section, the existence of the three fields will be shown
and discussed using the (translated) derivation and discussion given by Fritsche [16], based
on a theory byThiesen [17].

The linearised equation of conservation of mass is given by,
𝜕𝜌
𝜕𝑡 + 𝜌0 div𝒗 = 0, (3.8)

where 𝒗 is the vector of the acoustic particle velocity, assumed to be infinitely small. The
linearised equation of conservation of momentum equals to,

𝜌0
𝜕𝒗
𝜕𝑡 + grad 𝑝 = 𝜇1Δ𝒗 + 𝜇1 grad div𝒗. (3.9)

Herein, denotes 𝜇1 = 𝜇 the viscosity and 𝜇2 = 1
3 𝜇 + 𝜁 denotes the linear combination of

viscosity and the bulk viscosity. The Laplace operator is denoted by Δ = div grad .
The linearised energy conservation equation, neglecting the energy generated by vis-

cosity, is given by,
− 𝑝 div𝒗 = 𝜌0𝑐𝑣

𝜕𝑇
𝜕𝑡 + div 𝒒. (3.10)

Decomposing the Navier-Stokes equation

Using the Helmholtz-decomposition, the acoustic velocity can be decomposed in an irro-
tational part and a divergence free part,

𝒗 = grad𝜙 + rot𝒂. (3.11)

It follows, by taking the divergence of the above equation, (3.11), that

Δ𝜙 = div𝒗, (3.12)

where Δ = div grad is the Laplace operator. Introducing the Helmholtz-decomposition of
the velocity in the momentum equation, it can be written as the gradient of a rotational free
part and the rotation of a divergence free part,

gradΦ + rot𝑨 = 0, (3.13)

where the rotational free and divergence free parts are given by,

Φ = 𝜕𝜙
𝜕𝑡 − (𝜈1 + 𝜈2)Δ𝜙 + 𝑝

𝜌0
, (3.14a)

𝑨 = 𝜕𝒂
𝜕𝑡 − 𝜈1Δ𝒂. (3.14b)
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Herein is 𝜈1,2 = 𝜇1,2/𝜌. Taking the divergence of 𝑨, it follows that it has to be zero because
𝒂 is divergence free.

Rewriting the energy equation

The energy equation is rewritten by introducing the variable,

Θ = 1
𝛾 − 1

𝑇 − 𝑇0
𝑇0

, 𝑇 = (𝛾 − 1)𝑇0Θ + 𝑇0, (3.15)

where 𝛾 = 𝑐𝑝/𝑐𝑣. Introducing this in the energy equation (3.10), leads to:

− 𝑝Δ𝒗 = 𝜌0𝑐𝑣(𝛾 − 1)𝑇0
𝜕Θ
𝜕𝑡 − 𝜆(𝛾 − 1)𝑇0 gradΘ, (3.16)

then rewriting 𝑝 = 𝜌(𝑐𝑝 − 𝑐𝑣)𝑇 = 𝜌𝑐𝑝(𝛾 − 1)𝑇 leads to,

Δ𝜙 + 𝜕Θ
𝜕𝑡 − 𝜈3ΔΘ = 0, (3.17)

herein is 𝜈3 = 𝜆/𝜌0𝑐𝑣. The difference 𝑝 div 𝒗 − 𝑝0 div𝒗 has been neglected because of the
assumption of infinitesimal acoustic disturbances.

Rewriting the constitutive equation

The constitutive equation in linear form is given by,

𝑝 − 𝑝0
𝑝0

= 𝜌 − 𝜌0
𝜌0

+ 𝑇 − 𝑇0
𝑇0

. (3.18)

Differentiating this with respect to time and replacing 𝜕𝜌
𝜕𝑡 with the help of the mass equation

yields the expression:

𝜕
𝜕𝑡

𝑝
𝜌0

= 𝑐2

𝛾 (𝛾 − 1)𝜕Θ
𝜕𝑡 − 𝑐2

𝛾 Δ𝜙, with 𝑐2 = 𝑝0𝛾
𝜌0

. (3.19)

The new system of equations

By differentiating the irrotational part of the Navier-Stokes equation, (Φ), with respect to
time and eliminating 𝜕

𝜕𝑡
𝑝
𝜌0

using equation (3.19), three coupled wave equations are obtained
from the three conservation equations, Fourier’s law and the constitutive equations.

Assuming a time dependence of exp[𝑖𝜔𝑡] for the field variables,

(Φ, 𝜙, Θ) = (Φ∗, 𝜙∗, Θ∗)𝑒𝑖𝜔𝑡, (3.20)
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3.2. Wave equations in a stationary viscousmedium

the three coupled wave equations are given by (the superscript ∗ will be omitted from here
onwards),

0 = ΔΦ, (3.21a)

0 = Δ𝜙 + 𝑖𝜔Θ − 𝜆
𝜌0𝑐𝑣

ΔΘ, (3.21b)

0 = 𝑖𝜔Φ + 𝜔2𝜙 + [𝑖𝜔(𝜈1 + 𝜈2) + 𝑐2

𝛾 ] Δ𝜙 − 𝑖𝜔𝑐2

𝛾 (𝛾 − 1)Θ. (3.21c)

The set of equations can be solved by eliminating Φ and 𝜙, to obtain a fourth order differ-
ential equation in Θ, which is the approach used by Kirchhoff.

Thiesen [17] takes another approach to solve the system. The scalar functions Φ, 𝜙, Θ
describe the movement and thermo-dynamic state of each elemental volume of gas. The
phase between each of these states, which gives a measure of the reversibility of the state
changes, should be constant throughout space if the gas is homogeneous.

This is only possible if surfaces of constant Φ and the corresponding 𝜙 and Θ for these
surfaces congruent are with each other and that they move at the same speed. If the sound
field is composed of 𝑛 parts, which are independent of each other and expand with differ-
ent speeds, then Φ, 𝜙 and Θ should also be composed of 𝑛 independent parts. With this
reasoning, Thiesen makes the following ansatz,

𝜙 =
𝑛−1

∑
𝑙=0

𝐻𝑙, Θ =
𝑛−1

∑
𝑙=0

𝑎𝑙𝐻𝑙, Φ =
𝑛−1

∑
𝑙=0

𝑏𝑙𝐻𝑙, (3.22)

where 𝑎𝑙 and 𝑏𝑙 are complex constants. The solution for each part, 𝐻𝑙, is given by

Δ𝐻𝑙 + 𝑘2
𝑙 𝐻𝑙 = 0. (3.23)

This means that each wave equation, with a certain wave number 𝑘2
𝑙 should have a unique

solution. With the above ansatz in the three coupled equations gives rise to the following
relations,

0 = 𝑘2
𝑙 𝑏𝑙, (3.24a)

0 = −𝜈3𝑘2
𝑙 𝑎𝑙 − 𝑖𝜔𝑎𝑙 + 𝑘2

𝑙 , (3.24b)

0 = 𝜔2 − 𝑘2
𝑙 [

𝑐2

𝛾 + 𝑖𝜔(𝜈1 + 𝜈2)] − 𝑐2

𝛾 (𝛾 − 1)𝑖𝜔𝑎𝑙 + 𝑖𝜔𝑏𝑙. (3.24c)

The first two solutions can be obtained by considering all solutions where 𝑘𝑙 ≠ 0. It follows
from the first equation that 𝑏𝑙 = 0 and from the other two equations, a dispersion relation
can be obtained,

𝑘4
𝑙 (

1
𝛾𝑘2 + 1

𝑘2
𝑣 )

1
𝑘2

𝑤
− 𝑘2

𝑙 (
1
𝑘2 + 1

𝑘2
𝑣

+ 1
𝑘2

𝑤 ) + 1 = 0, (3.25)
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where

𝑘2 = 𝜔2

𝑐2 , 𝑘2
𝑤 = 𝜔2

𝑐2
𝑤

with 𝑐2
𝑤 = 𝑖𝜔𝜈3 and 𝑘2

𝑣 = 𝜔2
𝑖𝜔(𝜈1 + 𝜈2) .

The both solutions for the dispersion relation (3.25), 𝑘2
1 and 𝑘2

2, are corresponding to the
waves 𝐻1 and 𝐻2. The constant 𝑎𝑙 for these two solution is found by the energy equation
in the set of (3.24)

𝑎𝑙 = 1
−𝑖𝜔

𝑘2
𝑙 𝑘2

𝑤

𝑘2
𝑙 − 𝑘2

𝑤
, 𝑙 = 1, 2. (3.26)

The third solution is obtained for the case where 𝑘𝑙 = 0, corresponding to the 𝐻0 wave.
Introducing 𝑘𝑙 = 0 into the equations (3.24), it follows that 𝑏0 = 𝑖𝜔. As there are no more
unique solutions for 𝑘𝑙, the solution is given by,

𝜙 = 𝐻0 + 𝐻1 + 𝐻2, (3.27a)

Θ = 𝑎1𝐻1 + 𝑎2𝐻2, (3.27b)

Φ = 𝑖𝜔𝐻0. (3.27c)

Representation of the acoustic velocity

The acoustic velocity field is represented as the superposition of a rotational and divergence
free field (3.11),

𝒗 = grad𝜙 + rot𝒂.

To obtain the still unknown 𝒂 we use the notion that the Navier-Stokes equation is split up
into a irrotational and solenoidal field. It then follows from equation (3.13) that div𝑨 = 0
and that − rot𝑨 = gradΦ. Furthermore,

Δ𝑨 = grad div𝑨 − rot rot𝑨 = rot gradΦ = 0. (3.28)

Using the equation for the divergence free part, (3.14b) and introducing the ansatz of an
harmonic time dependence of the field variables, it can be rewritten as

− 𝑨
𝜈1

= Δ𝒂 + 𝑘2
3𝒂, with 𝑘2

3 = 𝜔2

𝑖𝜔𝜈1
. (3.29)

A solution to this equation is given by 𝒂 = 𝑨
𝑖𝜔 , resulting in grad div𝑨/𝑖𝜔 = 0. The solution

is a particular solution of the inhomogeneous differential equation, and the homogeneous
equation is given by,

Δ𝒂 + 𝑘2
3𝒂 = 0, (3.30)
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3.2. Wave equations in a stationary viscousmedium

a wave equation, for which the solution is of the type 𝐻𝑙 and given by 𝑯3. The complete
solution to the differential equation is given by

𝒂 = 𝑨
𝑖𝜔 + 𝑯3. (3.31)

wherein,
𝑯3 = 𝐻 (1)

3 𝒊 + 𝐻 (2)
3 𝒋 + 𝐻 (3)

3 𝒌. (3.32)

It shows that each of the components of 𝑯3 are separate solutions to the vector wave equa-
tion for 𝑘3. As the solution 𝑯3 only consist of the divergence free parts, it represents the
incompressible part of the solution. The velocity can then be written as

𝒗 = grad [𝐻1 + 𝐻2] + rot [𝑯3] . (3.33)

which together with equation (3.27b),

Θ = 𝑎1𝐻1 + 𝑎2𝐻2,

and the wave equations (3.23)

Δ𝐻𝑙 + 𝑘2
𝑙 𝐻𝑙 = 0, 𝑙 = 1, 2, 3.

represent the system of equations from which we started.

The wave numbers 𝑘2
𝑙

The two solutions for the dispersion relation (3.25), first order in respect to 𝜔, are given by

𝑘2
1 = 𝑘2

{1 − 𝑖 𝜔
𝑐2 [𝜈1 + 𝜈2 + (1 − 1

𝛾 𝜈3)]} ,

𝑘2
2 = 𝛾𝑘2

𝑤 {1 + 𝑖 𝜔
𝑐2 𝛾 [𝜈1 + 𝜈2 − 1

𝛾 𝜈3]} .
(3.34)

For gases, the three terms in the square brackets are of similar magnitudes, because 𝜈3/𝛾 =
𝜈1(𝜆/𝜂𝑐𝑝) = 𝜈1 Pr, where Pr the Prandtl number. For gases, the Pr = 𝒪(1).

The size of the complete term in the square bracket can be approximated by 𝜔/𝑐3𝜈3.
Introducing the wave length of the acoustic wave Λ𝑎𝑐 = 1/𝑘 and the wave length of the
isochoric heat conduction wave Λℎ = 1/𝑘𝑤, the term is given by

𝜔
𝑐2 𝜈3 = 1

2 (
𝜔
𝑐 )

2 2𝜈3
𝜔 = 1

2 (
Λ𝑤
Λ𝑎𝑐 )

2
. (3.35)
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At ambient pressure and a frequency of a 1000 Hz, the Λ𝑤 is in the order of 10−2 cm ,
Λ𝑎𝑐 is at the same frequency in the order of 10 cm and thus (Λ𝑤/Λ𝑎𝑐)2 << 1. Under these
conditions, one can approximate the equations (3.34) with,

𝑘2
1 ≈ 𝑘2, and 𝑘2

2 = 𝛾𝑘2
𝑤, (3.36)

Furthermore, it follows that
|𝑘2

3|| ≈ |𝑘2
2| >> |𝑘2

1|, (3.37)

and the constants for the are we obtain

𝑎1 ≈ −𝑖
𝜔 𝑘2

1, 𝑎2 ≈ 𝑖
𝜔𝑘2

2
1

𝛾 − 1 , (3.38)

and
𝑎1
𝑎2

≈ −(𝛾 − 1)
𝑘2

1
𝑘2

2
and |(𝑎1

𝑎2
|) << 1. (3.39)

Physical interpretations of the functions 𝐻1, 𝐻2 and 𝑯3

When heat conduction and viscosity can be neglected, the wave number for 𝐻1 reduces to,

𝑘2
1 = 𝑘2, (3.40)

and because 𝜈1 = 𝜈2 = 𝜈3 = 0 it shows that |𝑘2
2| = |𝑘2

2| = ∞. This means that the
waves 𝐻2 and 𝑯3 do not contribute to the sound propagation because of the vanishing
small propagation speed of these waves. In this case, the system of equations reduces to

𝒗 = grad𝐻1, Θ = −𝑖𝜔
𝑐2 𝐻1, Δ𝐻1 + 𝜔2

𝑐2 𝐻1 = 0, (3.41)

and 𝐻1 represents the velocity potential of the adiabatic sound wave.
With finite viscosity and heat conduction, the propagation constant of the acoustic wave

is slightly changed and secondary waves 𝐻2 and 𝑯3 arise. The 𝐻2 is a wave where only
the temperature diffusivity governs the wave speed and it is a pure heat conduction wave.
Consider a plane heat conduction wave,

𝐻2 ∝ 𝑒𝑖𝑘2𝑥. (3.42)

The propagation constant is given by

𝑘2
2 = −𝑖𝜔𝛾

𝜈3
, 𝑘2 = 1 − 𝑖

√2
|𝑘2|, (3.43)
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3.2. Wave equations in a stationary viscousmedium

showing that the heat conduction wave is highly damped. A measure of how far the heat
conduction wave reaches is the thermal boundary layer thickness,

Δℎ = 2
𝜔√

𝜔𝜈1
2

√Pr. (3.44)

For oscillating field at a 1 kHz at normal pressure in air, the thickness of the thermal bound-
ary layer is around 60𝜇m In an analogous way, the 𝑯3 represent a viscosity wave where the
propagation constant is solely determined by the viscosity. A measure for the propagation
distance of this wave is given by the acoustic viscous boundary layer thickness,

Δ𝑣 = 2
𝜔√

𝜔𝜈1
2 . (3.45)

The proportionality constant between the boundary layer thickness is given by the Prandtl
number and thus for gasses the thicknesses are of the sameorder ofmagnitude. Thepresence
of the heat conduction and viscous waves are confined to the boundaries and discontinuities
of the system because they decay rapidly in free space.

Connection between 𝑝 and the waves 𝐻1, 𝐻2 and 𝑯3

With the ansatz that the total pressure consists of superposition of the ambient pressure and
the pressure disturbance of the acoustic wave, 𝑝 = 𝑝0 + ̃𝑝, it follows from equation(3.19)
and equation (3.24c)

̃𝑝 = 𝜌0𝑐2

𝛾𝑘2
𝑤

(ΔΘ + 𝛾𝑘2
𝑤Θ) , (3.46)

and the pressure is a function of the acoustic and temperature wave.
However, when the condition (Λ𝑤/Λ𝑎𝑐)2 << 1 is fulfilled, then 𝛾𝑘2

𝑤 = 𝑘2
2 holds. The

equation (3.46) can then be rewritten, using Θ = 𝑎1𝐻1 + 𝑎2𝐻2 and it follows that,

̃𝑝 = 𝜌0
𝜔2

𝑘2𝛾𝑘2
𝑤

[𝑎1(Δ𝐻1 + 𝑘2
2𝐻1 + 𝑎2 (Δ𝐻2 + 𝑘2

2𝐻2)] ,

with Δ𝐻2 + 𝑘2
2𝐻2 = 0.

(3.47)

Therefore, when an acoustic wave hits a surface, it will be scattered and also excite the sec-
ondary waves. However when the wavelength of these secondary waves is much smaller
then the acoustic wave length, they will not contribute to the pressure perturbations and
the pressure perturbation at the surface will be solely caused by the acoustic wave.
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3.3 Acoustic modes in ducts

In the previous section is it shown that the acoustic sound field in a viscousmedium consists
of a superposition of three parts, the acoustic mode, the vorticity mode and the entropy
mode. In this section, the concept of acoustic modes will be introduced and the mode
shapes and wave numbers for rectangular and circular waveguides for specific assumptions
are briefly introduced. The interested reader is referred to [18] for more information on the
fundamentals of duct acoustics.

Considering a non-viscous fluid and without thermal conductivity, it can be shown that
the entropy is conserved and the pressure disturbances are linearly related to density dis-
turbances, that is 𝑝 = 𝑐2

0𝜌. If furthermore an uniform mean flow is assumed, the mass and
momentum equation can be linearised, where 𝒖0 ≠ 0, and the convective wave equation,

𝐷0𝑝
𝐷0𝑡 − 𝑐2

0Δ𝑝 = 0. (3.48)

If the acoustic field is assumed to have a time dependence of exp [𝑖𝜔𝑡] and that the
boundary conditions on the acoustic field are independent of the axial coordinate 𝑥, the
ansatz 𝑝 ∝ exp[𝑖𝜔𝑡 − 𝑖𝑘𝑥] can be made and the convective wave equation reduces to,

Δ𝑝 + [(𝜔 − 𝑘𝑢0)2 − 𝑘2𝑐2
0] 𝑝 = 0. (3.49)

where the Laplace operator Δ and the pressure 𝑝 is no longer dependent on the axial coor-
dinate 𝑥.

The solution to equation (3.49) is given,

𝑝(𝑥, 𝑦, 𝑧, 𝜔) =
∞

∑
𝑙=0

𝑝+
𝑙 𝜓𝑙(𝑀, 𝑦, 𝑧)𝑒−𝑖𝑘𝑙(𝑀,𝜔)𝑥 + 𝑝−

𝑙 𝜓𝑙(−𝑀, 𝑦, 𝑧)𝑒𝑖𝑘𝑙(−𝑀,𝜔)𝑥, (3.50)

showing that the acoustic field can be represented as an infinite sum of modes. The modal
amplitudes of mode 𝑙 propagating in the positive and negative 𝑥-direction are given by 𝑝+

𝑙
and 𝑝−

𝑙 respectively. The propagation direction does not have to coincide with the direction
of the mean flow. The mean flow is characterized by the Mach-number 𝑀 , which has no
spatial dependency and is defined as the mean flow velocity normalized by the speed of
sound, 𝑐0, in the medium. The specific mode shape is given by 𝜓𝑙 and its corresponding
wave number by 𝑘𝑙. The various modes are ordered by their cut-on frequency [19] and
the number of modes used to describe the sound field is truncated to the 𝐿 modes that
significantly contribute to the soundfield far away from irregularities in the duct. Themodes
are propagating when the real part of the free-field wave number, given by 𝑘0 = 𝜔/𝑐0, is
larger than the real part of the cut-on wave number of the mode 𝑙, ℜ(𝑘0) > ℜ(𝑘𝑐

𝑙 ). The
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3.3. Acoustic modes in ducts

wave numbers 𝑘𝑙 can be analytically or numerically determined [20–22] and in the next
part the wave numbers and mode shapes for rectangular and circular ducts are given under
simplifying assumptions.

Rectangular ducts

For waves in circular and rectangular ducts, neglecting losses in the fluid and at the wall and
including the effect of uniform mean flow, the axial wave number for mode 𝑙 is given by,

𝑘𝑙 = 𝑘0
𝑀 ± √1 − (1 − 𝑀2)𝑘𝑐2

𝑙 /𝑘2
0

1 − 𝑀2 , (3.51)

with 𝑘0 the free field wave number, given by 𝜔/𝑐0 and 𝑘𝑐
𝑙 the cut-on wave number for the

mode 𝑙. For rectangular ducts the cut-on wave numbers are given by,

𝑘𝑐
𝑙 = √(

𝑚𝑙𝜋
𝑏 )

2
+ (

𝑛𝑙𝜋
ℎ )

2
, 𝑛𝑙, 𝑚𝑙 ∈ ℕ, (3.52)

where 𝑏 is the width of the duct and ℎ the height of the duct. The corresponding mode
shapes are given by,

𝜓𝑙(𝑦, 𝑧) = cos(𝑚𝑙𝜋
𝑏 𝑦) cos(𝑛𝑙𝜋

ℎ 𝑧). (3.53)

Circular ducts

For waves in circular ducts, the cut-on wave number,s 𝑘𝑐
𝑙 , are given by the solutions to the

equation,
𝐽 ′

𝑚𝑙 (𝑘
𝑐
𝑙 𝑅) = 0, 𝑚𝑙 ∈ ℕ, (3.54)

where 𝐽 ′
𝑚 is the derivative of the Bessel function of the first kind of order𝑚, and𝑅 the radius

of the duct. The corresponding mode shapes are given by

𝜓𝑙(𝑟, 𝜃) = exp(𝑖𝑚𝜃)𝐽𝑚𝑙 (𝑘𝑙𝑟), (3.55)

where 𝑟 is the distance from the center of the duct and 𝜃 the polar angle in the cross sectional
plane of the duct.

Attenuation in ducts

In the first section it was shown that the acoustic sound field in a viscousmedium consists of
a superposition of three parts, the acoustic mode, the vorticity mode and the entropymode.
When an acoustic wave propagates through a duct, the vorticity and entropy mode will be
present close to the duct walls and will lead to a loss of acoustic energy of the acoustic mode.
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The influence of the boundaries can be taken into the wave number, when the boundary
conditions do not depend on the axial conditions.

When the duct walls are assumed to be rigid, that is the acoustic velocity at the wall is
zero 𝒖 = 0, and the wall is isothermal, 𝑇 = 0, the thickness of the acoustic boundary layer
is much smaller than the cross sectional dimensions of the waveguide and no mean flow is
present,𝑀 = 0, Kirchhoff derived the correction to thewave number for waves travelling in
a circular duct [23]. For waves travelling in rectangular ducts, there are no exact solutions to
the wave equation when taking the effect of viscosity and thermal conductivity into account
[24].

However, in the first order approximation, the wave number for the plane wave mode is
the same for waves propagating in rectangular and circular ducts and is, in first order with
respect to 𝜔, given by [13],

𝑘 = 𝜔
𝑐 + (1 + 𝑖) 1

2√2√
𝜔𝜇
𝜌𝑐2 [

1 + 𝛾 − 1
√Pr ]

𝐿𝑝
𝐴 , (3.56)

where 𝐿𝑝 is the perimeter of the duct cross section and 𝐴 the duct cross sectional area. In
the above equation, the absorption of the losses due to to the influence of thermal conduc-
tion and viscosity within the fluid element is assumed to much smaller than the absorption
induced by the duct walls [13].

To take the effect of viscous thermal damping on the wave propagation when a mean
flow is present, the effect of the acoustic boundary layer can be modelled as an equivalent
impedance at the boundaries for the acoustic mode, as long as the acoustic boundary layer
is much smaller than the cross sectional dimensions of the duct. The wave numbers for
rectangular ducts are given in [22, 25] and for circular ducts they can be found in [21, 26,
27].

In the above models, a uniform mean flow is assumed which only takes into account
the convective effects of the mean flow on the wave propagation. For ducted flows, the
mean flow profile is not uniform over the cross section creating refraction of the acoustic
wave. Furthermore, the presence of turbulence leads to acoustic absorption, which is most
apparent when the acoustic boundary layer thickness is larger the turbulent boundary layer
[28, 29]. These effects can be of importance under specific conditions.

3.4 Scatteringmatrix

The scattering matrix is a concept used in various branches of physics, such as electronics
where it describes the relation between electrical quantities at different electric lines of an
electric network [30, 31]. In an analogous way, the scattering matrix for acoustic networks
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3.4. Scatteringmatrix

relates the acoustic fields at different physical ports to each other. In the scattering matrix
representation, the sound fields are described by propagating waves and the scattering ma-
trix relates the incident to the outgoing waves from each port. Now consider a device which
has 𝑁 number of physical ports. At each port, the sound field can be decomposed using
equation (3.50) and the relation between the waves propagating to and away from the object
is then given by the scattering matrix 𝑺 .

The scattering matrix, 𝑺 ∈ ℂℒ −xℒ +
, with ℒ + the number of incident modes and ℒ −

the number of modes propagating away from the object, describes the relation between the
fields propagating towards and away from the object.

The relation between the acoustic field propagating to and away from the object is given
by,

𝒑− = 𝑺𝒑+, (3.57)

where the vectors𝒑+ and𝒑− are a concatenation ofmodal amplitudes respectively travelling
towards and away from the object from all the 𝑁 ports.

To simplify the notation, from here onward the notation 𝒑± will be used to indicate that
the relation holds for both the waves traveling to, 𝒑+, and away, 𝒑−, from the object. The
vectors 𝒑± are given by,

𝒑± = [𝒑±
1 … 𝒑±

𝑛 … 𝒑±
𝑁 ]

𝑇
∈ ℂ1xℒ ± , (3.58)

where 𝒑±
𝑛 ∈ ℂ1x𝐿±

, with 𝐿± the number of incident and scattered modes respectively,
propagating in a specific duct 𝑛,

𝒑±
𝑛 = [𝑝±

1 … 𝑝±
𝑙 … 𝑝±

𝐿]
𝑇

. (3.59)

The scattering matrix can be determined from experimental or numerical data by solv-
ing,

𝑷 − = 𝑺𝑷 +, (3.60)

where the matrices 𝑷 ± are a concatenation of the 𝒦 measured vectors 𝒑±

𝑷 ± = [𝒑±
1 … 𝒑±

𝑘 … 𝒑±
𝒦 ] , 𝑷 ± ∈ ℂℒ ±x𝒦 . (3.61)

To determine the scattering matrix using (3.60), at least 𝒦 ≥ max(ℒ +, ℒ −) linearly inde-
pendent incident and reflected sound fields have to be measured, such that both measured
matrices are of full rank, rank (𝑷 ±) = ℒ ±.

Wave decomposition

The vectors 𝒑±
𝑛 describing the waves that are present in each duct 𝑛 can be determined with

the so called wave-decomposition method. The pressure at different positions is measured,
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and using the modal representation, equation (3.50), a linear system of equations can be
constructed,

𝜳𝑛 [
𝒑+

𝑛
𝒑−

𝑛 ]
=

⎡
⎢
⎢
⎣

𝑝𝑖
⋮
𝑝𝐼

⎤
⎥
⎥
⎦

, (3.62)

where 𝑝𝑖 is the pressure measured at the position 𝒙𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖] in the duct. Thematrix 𝜳𝑛
relates the pressures at a certain position in duct 𝑛 with the modal amplitudes and is given
by,

𝜳𝑛 = [𝜳1 … 𝜳𝑖 … 𝜳𝐼 ] , 𝜳𝑛 ∈ ℂ𝐿x𝐼 , (3.63)

where 𝐼 is the number of microphone positions and 𝐿 = 𝐿+ + 𝐿− the number of modes
present in the duct. The rows in 𝜳𝑛 are given by

𝜳𝑖 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜓1(𝑀, 𝑦𝑖, 𝑧𝑖)𝑒−𝑖𝑘1(𝑀)𝑥𝑖

⋮
𝜓𝑙(𝑀, 𝑦𝑖, 𝑧𝑖)𝑒−𝑖𝑘𝑙(𝑀)𝑥𝑖

𝜓1(−𝑀, 𝑦𝑖, 𝑧𝑖)𝑒𝑖𝑘1(−𝑀)𝑥𝑖

⋮
𝜓𝑙(−𝑀, 𝑦𝑖, 𝑧𝑖)𝑒𝑖𝑘𝑙(−𝑀)𝑥𝑖

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑇

. (3.64)

To solve the system (3.62), the pressure should be measured at 𝐼 ≥ 𝐿+ + 𝐿− different
positions such that the matrix 𝜳𝑛 is of full rank rank (𝜳𝑛) = 𝐿+ + 𝐿−.

3.5 Summary

In this chapter an overview of the acoustic theory has been given. The presence of the acous-
tic boundary layer has been shown using the linearised Navier-Stokes Fourier model of a
compressible fluid. Under the assumption that there is no mean flow, the equations have
been rewritten and represented by three wave equations. The fields associated with the wave
equations have been identified as the acoustic mode, the entropy mode and the vorticity
mode. The latter two modes exist close to boundaries and create the acoustic boundary
layer.

When acoustic waves are confined by waveguides, whose properties are not depend
on the axial direction, the acoustic field in the waveguides can be decomposed in acous-
tic modes. With the modal representation of the acoustic fields in ducts, the amplitude and
phase of the individual modes can be determined using the wave decomposition method.
Using the acoustic modes, the concept of the scattering matrix has been introduced which
relates the acoustic modes that are propagating towards an object to the modes that are
travelling away from the object.
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CHAPTER4
Assessing the quality of acoustic

scatteringmatrices
In this chapter, linear methods to determine the standard deviation of scatter-
ing matrix coefficients is investigated. The uncertainty in measured scattering
matrices is assessed using a linear uncertainty analysis and the results are com-
pared against Monte-Carlo simulations. It is shown that for plane waves, a linear
uncertainty analysis, applied to the wave decomposition method, gives correct re-
sults when three conditions are satisfied. For higher order mode measurements,
the number of conditions that have to be satisfied increases rapidly and the lin-
ear analysis becomes an unsuitable choice to determine the uncertainty on the
scattering matrix coefficients. As the linear uncertainty analysis is most suitable
for the plane wave range, an alternative linear method to assess the quality of
the measurements is investigated. The method is based on matrix perturbation
theory and the information is obtained in the form of partial condition num-
bers. This method gives only qualitative information, but the implementation is
straightforward.

4.1 Introduction

The interest in measuring the scattering matrix for higher order modes in ducts with flow
has increased recently andmeasurements have beenmade on rectangular and circular ducts
[25, 32, 33]. One of the advantages of including higher order modes is the possibility to
increase the frequency range in which measurements can be made. Recently, new models
are proposed to describe the wave propagation constants for plane waves and higher order
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modes in turbulent pipe flows [25, 34]. To verify these models, it is necessary to perform
precise acoustic measurements where the uncertainty in the measurement data has been
assessed.

For plane waves, the errors that can arise using the two-microphone methods are well
known and are described qualitatively in [35–37], with generalized optimality conditions
described in [35, 36]. Methods to reduce systematic errors are described in [38–41] and
techniques to quantitatively assess the measurement uncertainty have been described in
[5].

In comparison, investigations of the errors in measurements with higher order modes
have not received the same attention. Efforts to reduce systematic errors and improve the
accuracy of the measurement results for higher order modes have been recently published.
For example, Sack et al. investigated the sensitivity of the modal decomposition results
with respect to sensor and source positions [4]. Suzuki and Day investigated the use of
different algorithms to decompose the sound field in the various wave components [42].
The lack of design guidelines can partially be explained by the fact that the number of free
parameters are significantly increased compared to that of the two-microphone method for
plane waves, making it difficult to create generalized optimality conditions, such as those
derived by Bodén and Åbom [35, 36].

To compare model predictions and measurements with each other, the uncertainty in
the measurements has to be known to make definitive statements on the agreement. Also,
the uncertainty itself can be used to assess the quality of the measurements and determine
the contribution of individual error sources, helpful when improving the measurements.

Two methods are often used to determine the uncertainty of measurements. The first
is the multi-variate analysis [43], which is based on a linear approximation of the equation
describing the relation between the measured variables, for example the transfer functions,
and the quantity of interest, for example the scattering coefficients. The secondmethod, the
Monte-Carlo method [43], uses a numerical approach where the inputs are considered as
random variables and a set of measurement samples are generated based on the statistical
properties of the inputs. The quantity of interest is calculated for each set of input samples
and the resulting statistical properties of the outputs can be calculated.

The benefit of the Monte-Carlo method is that it includes the effect of non-linear error
propagation, however the drawback of the method is the computational time. On the other
hand, themulti-variate analysis is based on an analytical approach and is significantly faster,
however it can only take into account linear error propagation.

Thepurpose of this chapter is to investigate if a linearmulti-variate approximation is suf-
ficient to quantify the uncertainty of higher order modes measurements. A subject closely
related to the linear uncertainty analysis is the theory of matrix perturbations. With meth-
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ods from matrix perturbation theory, it is possible to determine the sensitivity of the wave
decomposition method to input perturbation using analytical methods. Such an approach
is beneficial in the process of designing of new setups as the solution is straightforward to
implement and computationally fast, but it only gives qualitative information.

The linear uncertainty analysis will be investigated for higher order mode scattering
matrices using the multi-microphone method [44] in a generalized way. Only solutions to
the linear equation will be considered, without iterative refinement and the sound fields are
assumed to be harmonic in time.

4.2 Linear uncertainty analysis

The elements of the scattering matrix 𝑺 (introduced in section 3.4), also called scattering
coefficients, are complex variables relating the amplitude and phase of in-going to out-going
modes. When performing a measurement, there is always an uncertainty associated with
the measured quantities, which will lead to an uncertainty in the obtained scattering coef-
ficients.

Some measured quantities and the scattering coefficients are complex and to describe
their uncertainty, they are decomposed in the real part 𝑢 and the imaginary part 𝑣, 𝒛 =
[ 𝑢 𝑣 ]𝑇 ∈ ℝ2. If the real and imaginary parts of 𝑧 are normally distributed, the joint proba-
bility density function can be fully described by the variance of the real and imaginary part
and the covariance between them [45, 46],

𝑝(𝑢, 𝑣) = 1
2𝜋 det1/2 𝑹𝑧𝑧

exp(−1
2𝒛𝑇 𝑹−1

𝑧𝑧 𝒛) , (4.1)

where the covariance matrix is given by 𝑹𝑧𝑧,

cov(𝑧) = 𝑹𝑧𝑧 = E [(𝒛 − 𝝁𝒛)(𝒛 − 𝝁𝒛)𝑇 ] , (4.2)

where E [⋅] is the expectation operator and 𝝁𝒛 = E(𝒛).
The purpose of an uncertainty analysis, is to determine the statistical properties of the

parameters of interest, such as the elements of 𝑺 as function of the statistical properties of
the known parameters, such as the measured parameters 𝑝𝑖.

Consider a general function 𝒚 = 𝑓(𝒛) which represent the relationship between the pa-
rameters of interest 𝒚 and the measured parameters 𝒛. If this relationship can be considered
linear in the neighbourhood of 𝒛, for which the size is proportional to the size of covariances
of 𝒛, a linear multi-variate uncertainty analysis can be used to relate the covariancematrices
of the known parameters 𝒛 to the covariance matrices of the parameters of interest 𝒚.

The linear multi-variate uncertainty analysis is based on a first order Taylor’s expansion
of the function 𝑓 . It is possible to take into account higher order terms in the Taylor ex-
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pansion and include higher order statistical moments into the analysis [47], however the
computations quickly become cumbersome.

Considering only the first order Taylor expansion of 𝒚 = 𝑓(𝒙), the covariance matrix of
the parameter of interest is related to the covariance matrix of the measured parameters by
[43, 48],

cov ̂𝑦𝑘 ≈
𝑁

∑
𝑖

𝑁

∑
𝑗

𝑱 𝑘
𝑖 (𝑓 ) cov(𝒛𝑖, 𝒛𝑗)𝑱 𝑘

𝑗 (𝑓 ), (4.3)

where cov ̂𝑦𝑘 ∈ ℝ2𝑥2 represents the covariance matrix of a random complex element of the
output vector 𝒚 and 𝑱 𝑘

𝑖 the complex Jacobian matrix of the kth output value w.r.t to ith input
variable evaluated at the position 𝑧𝑖 ∈ ℂ,

𝑱 𝑘
𝑗 = [

𝜕
𝜕𝑢𝑘

𝒛𝒋
𝜕

𝜕𝑣𝑘
𝒛𝒋] ∈ ℝ2x2. (4.4)

The cross-covariance cov(𝑧𝑖, 𝑧𝑗) is given by

cov(𝑧𝑖, 𝑧𝑗) = E [(𝒛𝑖 − 𝝁𝑧𝑖 )(𝒛𝑗 − 𝝁𝑧𝑗 )𝑇
] . (4.5)

An advantage of the linear analysis is that the contribution from each error source to the
overall uncertainty can be easily calculated which is beneficial in the design and improve-
ment of experimental setups.

If the relationship 𝑓(𝒛) is not linear in the neighbourhood of 𝒛, other methods, such
as the Monte-Carlo method, have to be used to determine the statistical parameters of 𝒚.
The Monte-Carlo method simulates many samples from a measurement based on the sta-
tistical properties of the input variables. From the samples, the mean value and statistical
parameters of the output values are calculated [43]. The method allows the calculation of
the statistical properties for an arbitrary relation between the input and output parameters,
but it is computationally heavy.

As the linear uncertainty analysis is a useful tool to express and analyze the uncertainty
analysis fast, the question arises when the analysis is appropriate without performing a val-
idation against a Monte-Carlo simulation. By analyzing the sources of non-linearity when
determining the N-port scatteringmatrix, estimators can be derived to determine if a linear
analysis gives correct results.

There are three sources of non-linearity when calculating the scatteringmatrix. Two are
related by the matrix inversion needed to obtain the solution to equations (3.60) and (3.62).
The third source of non-linearity are the relationships of the matrix elements in 𝜳 (defined
in 3.4) with respect to their arguments.
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The first source of non-linearity that we consider are perturbations of the elements of
𝜳 . Consider the Taylor expansion of the matrix,

𝜳 (𝑎 + 𝜖) = 𝜳 + 𝜕𝜳
𝜕𝑎 𝜖 + 1

2
𝜕2𝜳
𝜕𝑎2 𝜖2 + 𝒪 (𝜖3) , (4.6)

where 𝑎 and 𝜖 represent any input parameter and its error, respectively. The condition to
have linear error propagation is that all the second and higher order terms have to be much
smaller than the first order terms,

‖ [𝜖 (
1
2

𝜕2𝜳
𝜕𝑎2 ) + 𝒪 (𝜖2)] ⊘ (

𝜕𝜳
𝜕𝑎 ) ‖∞ << 1, (4.7)

where ⊘ represent element wise division. The above condition has to be satisfied for all
uncertain input parameters to ensure linear error propagation.

The second source of non-linearity is the method used to solve the wave decomposition
equation, (3.62). The solution is obtained by pre-multiplying the equations by a Moore-
Penrose pseudo-inverse 𝜳 †, for which small perturbations to 𝜳 could lead to non-linear
perturbations on the inverse. In general, the pseudo-inverse of a perturbed matrix is non-
continuous [49],

lim
𝜖→0

(𝑨 + 𝜖𝑩)† ≠ 𝑨†. (4.8)

However, in the special case that the perturbations on matrix 𝑨 are acute [49], that is, the
perturbations do not change the rank of 𝑨, ℛ(𝑨) = ℛ(𝑨 + 𝜖𝑩), the matrix inverse is
continuous and can be approximated by a Taylor series [50].

Consider now the case for the matrix 𝜳 . If the perturbations are small and acute, then
the perturbation to the matrix can be written as 𝜖𝑬 by neglecting the second order terms
in (4.6), with

𝑬 = 𝜕𝜳
𝜕𝑎 , (4.9)

and the pseudo-inverse can be approximated by,

(𝜳 + 𝜖𝑬)† = Ψ† +
∞

∑
𝑘=1

(−1)𝑘 (𝜳 †𝐸)𝑘 𝜳 †𝜖𝑘, (4.10)

for ‖𝜖𝜳 †𝐸‖ < 1, to have the series converge. Comparing the size of the second order term
with the first order term of (4.10), with a suitable norm,

‖𝜖𝜳 †𝐸‖ << 1, (4.11)

must be satisfied to ensure that the inversion process is linear. A more conservative but
insightful bound is given by,

‖𝜖𝑬‖2
‖𝜳 ‖2

𝜅 (𝜳 ) << 1, (4.12)
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which shows that when the relative perturbations on the matrix 𝜳 are small, measured with
a suitable norm, they can lead to a non-linear contribution to the inverse of the matrix
through a badly conditioned matrix 𝜳 .

The third source of non-linearity that can be identified is the method used to solve for
the scattering matrix, equation (3.60). It is also solved by pre-multiplying the equation with
𝑷 +† and the above reasoning holds as well for this source. It becomes clear from equation
(4.12), that the condition number of 𝑷 + has to be small to have a linear error propagation.
Therefore, when measuring the scattering matrix, acoustic fields for which the columns of
𝑷 + are orthogonal to each other and have a similar magnitude should be used. One way to
realize this is to excite only one mode at a particular port for eachmeasurement in equation
(3.61) and have non-reflective boundary conditions for all the other modes at the termina-
tions of each port.

To apply the linear uncertainty analysis, both conditions, (4.7) and (4.11), should hold
for any uncertain input parameter. When higher order modes are cut-on, the number of
necessary conditions increases rapidly and it becomes cumbersome to keep track of all the
conditions. Unfortunately no specific sets of conditions can be identified which are mutu-
ally exclusive and thus all the conditions have to be satisfied to have linear error propagation.
Only when plane waves are present, some general statements can be made if a linear uncer-
tainty analysis can be applied.

In the case of planewaves three parameters play a role in thewave decomposition, which
are the axial position of themicrophone, theMach number and the free field speed of sound.
With the help of (4.7), the linearity conditions for these three parameters can be derived.

The first condition is with respect to the error in the microphone distance,

‖𝜖𝑥𝑘0
2

𝑀1
1 − 𝑀2 ‖ << 1. (4.13)

Herein 𝜖𝑥 is the error in the microphone distance. The second condition is with respect to
the error in the Mach number 𝜖𝑀 and is given by,

‖𝜖𝑀
2 [

𝑖𝑘0𝑥
(𝑀 ± 1)2 − 2

(𝑀 ± 1)] ‖ << 1. (4.14)

The third condition is with respect to the error affecting the free field wave number, which
is related to the speed of sound. The speed of sound can be estimated using 𝑐0 = √𝛾𝑅𝑇 ,
where 𝛾 is the ratio of specific heats,𝑅 the gas constant of themediumand𝑇 the temperature
of the gas. Considering the uncertainty in the temperature 𝜖𝑇 the condition that has to be
satisfied can be written as,

‖𝜖𝑇
2 [

±𝑖𝜔𝑥 (1 + 𝑀)
2𝑇 √𝛾𝑅𝑇 (𝑀2 − 1)

− 3
2𝑇 ]

‖ << 1. (4.15)
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It can be seen that the ratios in (4.13), (4.14) and (4.15) increase with frequency and there-
fore, there will be an upper frequency limit where the linear uncertainty analysis will not be
valid anymore. All these conditions have to be satisfied to ensure that the error in the wave
decomposition process is linear. As the solution to the equation is a linear function of the
measured pressures 𝒑, these errors will always propagate linearly to the amplitudes of the
propagating waves.

4.3 Perturbation theory

The linear multi-variate analysis is an effective method to determine the uncertainty, but as
argued in the previous sections, it becomes difficult to correctly determine the uncertainty
using linear methods when higher order modes are present. In addition, even though the
linear uncertainty analysis is computationally fast, the implementation can be cumbersome.
On the other hand, when designing a setup, the use of Monte-Carlo methods to estimate
the uncertainty could be too time consuming.

An alternative way to assess the quality of themeasurements is with an analysis based on
condition numbers, which can be computed relatively easy. Using condition numbers, the
sensitivity of the measurement results to perturbations (errors) can be examined to obtain
a qualitative understanding and can be of interest when designing or analysing a setup. In
the field of computer science and scientific computing, the response of linear systems to
perturbations is actively studied and the following section is a recapitulation of material
that can be found in [49, 51–53]

The sensitivity of a solution of a system of equations is defined as a condition number of
the system. Consider a map 𝑔, whichmaps an 𝑚-dimensional data space to a 𝑛 dimensional
solution space with 𝑛 ≤ 𝑚, 𝑔 ∶ ℝ𝑚 → ℝ𝑛. The condition number of the system gives a
measure of the sensitivity of the map 𝑔(𝒚0) to perturbations in the data space 𝒚0.

The condition number of the system is defined by [52, 53],

𝐾(𝒚0) = lim
𝛿→0

sup
0<‖𝒚0−𝒚‖𝒟 ≤𝛿

‖𝑔(𝒚0) − 𝑔(𝒚)‖𝒮
‖𝒚0 − 𝒚‖𝒟

, (4.16)

where ‖.‖𝒟 is the norm used in the data space and ‖.‖𝒮 the norm used in the solution
space to measure the size of a vector. The condition number of the system represents an
asymptotic sensitivity to infinitesimal perturbations and is dependent on the choice of the
norms for the data and solution space. The relative condition number is defined as,

𝐾 (𝑟𝑒𝑙)(𝒚0) = 𝐾(𝒚0)‖𝒚0‖𝒟 /‖𝑔(𝒚0)‖𝒮 . (4.17)

In the current study, the map is given by the solution to an (over)-determined system of
linear equations, (3.62) and (3.60). A condition number that is sometimes used to express
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the sensitivity of a solution to linear equations 𝑨𝒙 = 𝒃 is given by,

𝜅(𝑨) ≡ ‖𝑨‖2 ‖𝑨−1‖2, (4.18)

where ‖ ⋅ ‖2 is the two-norm. This condition number gives an upper bound for the sen-
sitivity of the solution to perturbations to the system. Equation (4.18) is a special case of
equation (4.17), when a determined set of equations is considered, only 𝑨 is perturbed and
the perturbations in the data space and solution space are measured by the two-norm [51,
54].

In general, equations (3.62) and (3.57) are over-determined systems, which are more
prone to ill-conditioning as the sensitivity can scale with the square root of the condition
number 𝜅, as defined by (4.18) [54–56]. Therefore, equation (4.18) is not the best way to
determine the sensitivity of these systems of equations. Further more, the above condition
number only gives information on the size of the perturbations on the solution vector 𝒙 and
not a specific element 𝑥𝑖 of the solution vector.

Arioli et al. [52] givemethods to determine the condition numbers for over-determined
systems of equations. These condition numbers can be determined for specific elements of
the solution vector and for perturbations on 𝑨 and 𝒃. The results are obtained for maps
in the real domain ℝ, but in the following it is assumed that the results also hold for the
complex domain ℂ as the system of equations are continuous in the complex domain and
the perturbations are assumed to be acute, implying that the complete system is continuous
and thus Fréchet-differentiable.

The theorem by Arioli et al.[52,Theorem 1] allows deriving the exact condition number
in the form of equation (4.16) under special conditions. Consider a map 𝑔 of a linear least
squares solutionmin𝑥∈ℝ𝑛 ‖𝑨𝒙 − 𝒃‖2, which is projected on to a 𝑘 dimensional space 𝑳𝑇 𝒙,
𝐿 ∈ ℝ𝑛x𝑘. The map is given by,

𝑔 ∶ ℂ𝑚x𝑛xℂ𝑚 → ℂ𝑘,
𝑨, 𝒃 ↦ 𝑔(𝑨, 𝒃) = 𝑳𝑇 𝒙(𝑨, 𝒃) = 𝑳𝑇 (𝑨𝑇 𝑨)−1𝑨𝑇 𝒃.

(4.19)

The projection on the 𝑘 dimensional space allows the determination of the condition num-
ber for a specific element of the solution vector 𝒙, by choosing 𝐿 such that it is a column of
the identity matrix.

Values, as opposed to bounds, of the condition number of the above system can be de-
rived, when suitable norms for the solution and data space are taken. For the solution space
the two-norm is used. For the data space, the following norm is used,

‖(𝑨, 𝒃)‖𝐹 = √𝛼2‖𝑨‖2
𝐹 + 𝛽2‖𝒃‖2

2, 𝛼, 𝛽 > 0 ∈ ℝ, (4.20)

44



4.4. Results and discussion

where ‖ ⋅ ‖𝐹 stands for the Frobenius norm and ‖ ⋅ ‖2 for the two-norm. The Frobenius
norm is given by,

‖𝑨‖𝐹 = √trace [𝑨∗𝑨], (4.21)

where 𝑨∗ denotes the conjugate transpose of 𝑨. With the above norm, it is possible to esti-
mate the effect of perturbations on 𝑨 and 𝒃 separately. For values of 𝛼 → ∞ the condition
number of the problem is obtained where mainly 𝒃 is perturbed and for values of 𝛽 → ∞
the condition number of the problem is obtained where mainly 𝑨 is perturbed [53].

The condition numbers as defined in (4.16) can then be computed with the theorem [52,
Theorem 1], given by:

Theorem 1. Let 𝑨 = 𝑼𝜮𝑽 𝑇 be the thin singular value decomposition of 𝑨, with 𝜮 =
diag(𝜎𝑖) and 𝜎1 ≥ 𝜎2 … ≥ 𝜎𝑛 ≥ 0. The absolute condition number of 𝑔(𝑨, 𝒃) = 𝑳𝑇 𝒙(𝑨, 𝒃),
where the norm of the solution space is the Frobenius norm, is given by

𝐾(𝑳𝑇 𝒙) = ‖𝑺𝑽 𝑇 𝑳‖2, (4.22)

where 𝑺 ∈ ℝ𝑛x𝑛 is the diagonal matrix with diagonal elements,

𝑆𝑖𝑖 = 𝜎−1
𝑖 √

𝜎−2
𝑖 ‖𝒓‖2

2 + ‖𝒙‖2
2

𝛼2 + 1
𝛽2 . (4.23)

where 𝒓, the residual, is given by 𝒓 = 𝑨𝒙 − 𝒃.

The thin singular value decomposition is given by the singular value decomposition
where only the column vectors of 𝑈 and the row vectors of 𝑉 𝑇 are calculated that corre-
spond to the non zero singular values 𝜎𝑖. With the above condition number, (4.22), the
sensitivity of solution to the wave decomposition step, equation (3.62) can be calculated for
example. Letting 𝛼 → ∞ in (4.23), the effect of perturbations, when only 𝒑 is perturbed can
be investigated. On the other hand when taking 𝛽 → ∞ the condition number reflects the
sensitivity of the solution only to perturbations on 𝜳 . By taking 𝑳 as a column of the iden-
tity matrix, component wise condition numbers can be obtained, relating the sensitivity of
specific components of [𝒑+ 𝒑−]𝑇 to perturbations of the data space for a specific choice of
𝛼 and 𝛽.

4.4 Results and discussion

In this section, results from the measurement of the reflection coefficient of a rigid wall will
be presented. Two different experimental setups are used, one to determine the reflection
coefficient using plane waves and the second where the reflection coefficients are deter-
mined for higher order modes. One advantage of using a rigid wall as the measurement
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object is that the acoustic impedance of the wall is homogeneous and there is no scattering
of energy between different modes [57, Chapter 9.3]. Therefore, only one acoustic field has
to bemeasured to determine the reflection coefficient of each of themodes. This reduces the
number of variables used in the computation significantly and it becomes easier to analyse
the sources of the observed errors.

For the plane wave results, confidence intervals will be shown, obtained with the linear
uncertainty analysis. The obtained covariance matrix from the linear uncertainty analysis
will be compared against the covariance matrix obtained from a Monte-Carlo simulation.
For the higher order modes, no bounds will be derived as it is shown that the linear uncer-
tainty analysis is unsuitable to determine these bounds for the higher order mode reflection
coefficients. The results from the higher order mode measurements show the presence of a
random error in the obtained scattering coefficients and with the help of the perturbation
theory, a plausible explanation is found for the observed scatter.

No detailed information about the setups will be given, as the focus of the chapter is on
the use of methods to assess the measurement quality, but information can be found in the
cited references and in chapter 5. The first setup is used to measure within the plane wave
range and it consists of a circular duct where one loudspeaker is attached to the wall of the
duct to excite the sound field. The field is sampled by four microphones flush mounted in
the side wall of the duct [58]. The second setup is designed to measure higher order modes
and the waveguide has a rectangular cross-section. A combination of four loudspeakers
is used to excite the sound field, with each wall of the duct having one loudspeaker. The
sound field is measured with 20 flush mounted microphones located at various positions in
the duct walls [25, 59].

To calculate the uncertainty in the reflection coefficients, the uncertainties on the mea-
sured parameters have to be known. For the sake of argument, only errors in the temper-
ature 𝑇 , acoustic pressures 𝒑 and microphone distances 𝑥𝑖 are considered, as these errors
are the most significant [58]. In table 4.1 the used uncertainties are given for two different
cases. The uncertainties for the first case are based on experimental and technical informa-
tion, see also chapter 5 and appendix A.3. For the first case, the uncertainty in the temper-
ature is taken to be 0.1 ∘C Celsius, the uncertainty in the microphone position 0.1 mm and
the uncertainty in the measured acoustic pressures to be normal circular distributed in the
complex domain with a radius of 1% of the absolute value of the measured pressure. For the
second case, the uncertainty of the microphone positions has been increased to 1 mm, to
show non-linear error propagation. To assess the validity of the multi-variate analysis, the
determinants of the covariance matrices obtained from the multi-variate analysis, det𝜮MC,
is compared against the determinant obtained from theMonte-Carlo simulation, det𝜮MVA,

Covar ratio ≡ det𝜮MC/ det𝜮MVA − 1. (4.24)
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Case 1 Case 2

Temperature [∘C] 0.1 0.1
Distance [mm] 0.1 1
Pressure [Pa] |𝑝𝑖|10−3𝑰 |𝑝𝑖|10−3𝑰

Table 4.1: Table of the standard deviation of the input variables for the two different cases
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Figure4.1: Themeasured reflection coefficient of the rigid wall ( ) and the 95% confidence
interval ( ).

Thismeasure gives the relative difference in the size of the uncertainty region obtained from
the two methods

First the results in the plane wave region will be discussed. In figure 4.1, the measured
phase andmagnitude of the reflection coefficient is shown together with the 95% confidence
interval. It is customary to describe the scattering coefficients in polar form and the uncer-
tainty can be expressed in a Cartesian reference frame, coinciding with the direction of the
complex phasor defined by the reflection coefficient, by performing a transform on the co-
variance matrix [60]. When the uncertainties in the new Cartesian coordinate systems are
small compared to the absolute value of the scattering coefficient, then the uncertainty can
be expressed as uncertainties in phase and absolute value of the mean vector [60].

Due to the linear nature of the analysis, equation (4.3), the total variance on the mea-
surement is a superposition of the variances created by the individual uncertain inputs and
the total variance can be analyzed to determine the sources that contribute the most to the
overall error. In figure 4.2 a breakdown of the variance is given for both the magnitude and
the phase of the reflection coefficient. The errors contributing the most are different for the
magnitude and phase. For the absolute value, the dominant factor is the uncertainty in the
measured transfer functions. On the other hand, the uncertainty in the phase is dominated
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Figure 4.2: The relative contribution of each error source, microphone pressures ( ), tem-
perature ( ) and microphone positions ( ) to the variance of the error in the magnitude
of the reflection coefficient (left) and the phase of the reflection coefficient (right).
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Figure 4.3: (Left) Relative difference between the determinant of the covariance matrix de-
termined using the Monte-Carlo method and the linear multi-variate analysis as function of
frequency. (Right) Scatter plot of the reflection coefficient at 2500 Hz calculated with the
Monte-Carlo method for the two different cases. The different colors,( , ) and ( , )
represent respectively Case 1 and Case 2 in table 4.1.
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by the error related to the microphone positions and speed of sound.
In figure 4.3, the ratio of the covariancematrices obtained for the reflection coefficient is

shown for the two different sets of uncertainties given in table 4.1. For the first case, the ra-
tio is below 10% for most frequencies, showing that the linear analysis accurately describes
the covariance matrix. The covariance ratio slowly increases with frequency, as the ratio
between the second order and first order term of the Taylor expansion of Ψ increases with
frequency, (4.13,4.15). On the other hand, for the second case, the covariance ratio is much
larger, indicating that the linear analysis can not be used to determined the covariance ma-
trix for the set of uncertainties. This is surprising, as even for the second case the ratios,
(4.13,4.15), are met.

The obtained covariancematrices of the amplitudes 𝑝+
1 and 𝑝−

1 for both theMonte-Carlo
simulation and the linear analysis compare well to each other, with a maximum relative
covariance ratio of 10%, for both sets of uncertainties as could be expected from the linearity
conditions. The source of non-linearity is the determination of the reflection coefficient
from the wave amplitudes. The largest discrepancy is seen at 2500Hz, and the obtained
scatter plot of the Monte-Carlo simulation (Figure 4.3) shows the non-linear behavior. The
reason for this non-linear error propagation can be explained by considering the Taylor
expansion of the reflection coefficient with respect to the incident and reflected wave. The
ratio between the second order terms to the first order terms is given by,

1
2

𝜖+

𝑝+
𝜖− + ℛ𝜖+

𝜖− − ℛ𝜖+ . (4.25)

If the errors on the incident and reflected pressure waves are almost equal, the linear terms,
represented by the denominator in equation (4.25), cancel each other since ℛ ≈ 1. When
this happens, the error will propagate non-linearly even though that the overall error on the
reflection coefficient can be small.

In the second part of this discussion, the focus is on the higher order modes. Because
of the measurement object, there is no interaction between dissimilar modes and to cal-
culate the scattering coefficients using equation (3.60), the information for each mode can
be seen as a separate measurement. The matrix 𝑷 ± can be written as a diagonal matrix,
diag(𝑝±

1 , … , 𝑝±
𝑙 , … , 𝑝±

𝐿) and the computed scattering matrix, will reduce to a diagonal ma-
trix with the reflection coefficients of each mode on the diagonal.

In figure 4.4 the reflection coefficient of the plane wave mode and the first higher or-
der mode are shown for two different excitation configurations. For the first configuration,
only one loudspeaker was used, situated on the top wall. For the second configuration, two
loudspeakers mounted in the side walls and facing each other where used. Doak [61, 62]
investigated the excitation of higher order modes in rectangular ducts and showed that the
excitation strength of the specific modes is sensitive to both the spatial distribution of the
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Figure 4.4: Reflection coefficient for the plane wave mode (left) and the first higher order
mode (right) as function of frequency for two different acoustic excitations, case 1 ( ) and case
2 ( ). The vertical lines denote the cut-on frequencies of the higher order modes

excitation sources and the end conditions of the duct. Therefore, the two different configu-
rations lead to different amplitudes of the ingoing waves. From the reflection coefficients it
can be seen that after the cut-on of the second higher order mode, the plane wave and first
higher order mode reflection coefficients for the second configuration show more scatter
compared to the results from the first configuration.

In the bottom row of figure 4.4, the relative difference between the calculated covariance
matrix for the reflection coefficient using the Monte-Carlo method and the multi-variate
method is shown. The figure shows that after the second cut-on frequency, the covariance
matrix for the plane waves is not correctly described by the linear analysis. The relative
difference between the covariance matrices for the reflection coefficient for the first higher
order mode is large for almost all frequencies, and the results obtained from the multi-
variate method can not be used.

The results from the wave decomposition step, equation (3.62), show that the covari-
ance matrices determined for the individual components with the two methods are still
in good agreement with each before the third cut-on frequency except close to the cut-on
frequencies. Here the covariance matrices obtained by the linear analysis and the Monte-
Carl simulation show larger differences as the condition number of 𝜳 is large, due to small
wave number 𝑘𝑙 for the cut-on higher order mode, in agreement with the condition (4.12).
The difference between the covariance matrices of the reflection coefficients obtained by
the linear method and the Monte-Carlo simulations is a consequence of the difference in
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Figure 4.5: Partial condition numbers for the wave amplitudes of the plane wave mode (left
column) and the first higher order mode (right column) as function of frequency for two dif-
ferent acoustic excitations. The top row denotes the partial condition numbers based on per-
turbations of the measured pressures 𝒑, the bottom row shows the partial condition numbers
based on perturbations of 𝜳 . The positive travelling waves are denoted by circles, ( , ), and
the negative travelling waves are denoted by pluses, ( , ), for case 1 (red) and case 2 (blue).
The vertical lines denote the cut-on frequencies of the higher order modes.

magnitude of the individual wave components, which will be shown below. The difference
in magnitude of the individual components leads to that the small components have a large
relative error, which leads to non-linear error propagation to the scattering matrix due to
the inversion step, eq. (4.12), when determining the scattering matrix, eq. (3.60).

In figure 4.5, the condition number, based on perturbations of 𝒑 for the individual wave
components for the plane wave and first higher order mode are shown. For both the excita-
tion cases these graphs are identical, since 𝜳 is identical for the two cases. As the absolute
value of the measured pressures for the two different cases have similar magnitudes, the in-
duced error on the wave amplitudes is of a similar magnitude. It can be seen that the com-
ponents of the first higher order mode, the sensitivity to errors on the measured pressures
shows a maximum at around 3000Hz and that the results of the plane wave components are
most sensitive to perturbations after the third cut-on frequency.

In the samefigure, the second rowdepicts the condition number, based on perturbations
of 𝜳 . This condition number is similar for both cases, up to the cut-on of the second higher
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Figure 4.6: Relative size of the wave amplitudes of the plane wave mode (left column) and
the first higher order mode (right column) as function of frequency for two different acoustic
excitations. Triangles denote the positive traveling waves and circles the negative traveling
waves. The vertical lines denote the cut-on frequencies of the higher order modes The positive
travelling waves are denoted by circles, ( , ), and the negative travelling waves are denoted by
triangles, ( , ), for case 1 (red) and case 2 (blue).

order mode, after which the condition numbers of the first configuration are higher than
those of the second configuration. The errors on𝜳 are identical as they are not dependent on
the excitation conditions and thus the results for the first configurations aremore sensitive to
errors than for the second configuration, which correlates with the scatter on the measured
scattering coefficients.

The main reason why the second configuration is more sensitive can be appreciated by
looking at the relative size of the wave amplitudes compared to the solution vector. The
relative size is depicted in figure 4.6. It can be seen that for the second configuration, the
relative amplitude of the plane wave and first higher order mode are lower than those of the
first excitation case after the cut-on of the second higher order mode and it correlates with
the increased scatter on the measured results.

It is shown by Chandrasekaran and Ipsen [56] that the partial condition number of the
solution components is inversely related to the relative size of the solution component to
the size of the solution vector,

𝐾 (𝑝±
𝑙 ) ∝ ‖𝒑+ 𝒑−‖

|𝑝±
𝑙 |

. (4.26)

In this specific circumstance, the various modes do not interact with each other, because
of the spatially uniform impedance that is being measured [57, Chapter 9.3]. Furthermore,
the presence of the wall determine the ratio between the amplitude of the in- and out- going
wave for a specificmode and the relative size of the amplitudes of each of themodes is solely
determined by the excitation and end conditions at the excitation side. To obtain reliable
and repeatable results, independent of the object to be measured, the amplitudes of the
ingoing wave components have to be controlled. Another consequence of the large relative
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errors, is that the resulting error on the reflection coefficient will depend non-linearly on the
errors of the traveling wave amplitudes and a linear analysis can not be used to determine
the uncertainty in the scattering coefficients.

4.5 Conclusion

The validity of the linear uncertainty analysis to determine the uncertainty in the scattering
matrix coefficients for higher order modes has been investigated. It has been shown that a
linear multi-variate analysis can only be used in specific circumstances and conditions have
been derived when such an analysis gives valid information on the uncertainty bounds for
the wave decomposition method.

For higher ordermodes, the amount of conditions increases significantly and no general
conditions can be formulated for when a linear uncertainty analysis can be used. Therefore,
to determine accurate uncertainty intervals, aMonte-Carlomethodhas to be used. If the use
of a Monte-Carlo method on the complete determination is too time consuming, a two step
approach could be considered where the uncertainty in the wave decomposition is assessed
with a linear analysis and the uncertainty in the scatteringmatrix determinedusing aMonte-
Carlo methods.

The experimental results for the higher order mode scattering matrices have been an-
alyzed with the help of the partial condition numbers. The partial condition numbers are
a computational inexpensive alternative to investigate the problem and give qualitative in-
formation on the measurement quality. Using the partial condition numbers, it has been
shown that the difference in excitation levels for each of the mode is the main reason for the
large variance in themeasured reflection coefficients. To reduce these errors, measurements
have to performed where the energy in the modes can be controlled.
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CHAPTER5
Accuracy of impedance tube

measurements
The impedance tube is an essential part in the determination of an acoustic scat-
tering matrix and in this chapter various systematic errors that may be present
in impedance tube measurements are discussed. Three sources of errors are dis-
cussed, pipe vibrations induced by the acoustic excitation, the effect of a slowly
drifting ambient temperature and the finite dimensions of the microphones. By
determining the reflection coefficient of a calibration standard, the rigid wall, the
effect of the error sources are shown together with ways to reduce the systematic
error.

5.1 Introduction

In the previous chapter, the experimental error in acoustic scattering matrices was assessed
using uncertainty analyses.

In this chapter the accuracy of impedance tubes will be discussed. The accuracy de-
scribes the difference between the measured value and the true value of the quantity being
measured. The impedance tube is an essential part of acoustic scattering matrix measure-
ments. These tubes are used to determine the travelling waves towards and away from each
of the ports of the object under study.

To determine the accuracy of measurements, a known value has to be measured. In the
case of the impedance tube, a known impedance is that of a rigid wall. When not taking
into account the effects of viscosity and thermal conductivity, the compliance of the wall
is zero and an incident waves is completely reflected back. When the effects of viscosity
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and thermal conductivity are taken into account, the acoustic wave excites also the so called
entropy and vorticity wave (section 3.2). The presence of these waves is confined to the
acoustic boundary layer close to the wall, but lead to a slight loss of acoustic energy in the
reflected wave [13].

The systematic errors that are present in the setup have to be identified and taken into
account. The only way to assess whether there is a systematic error is present, is the mea-
surement of a calibration standard. To be able to reduce the systematic errors, the source
of the error has to be removed from the measurements or included into the mathematical
analyses.

An approach that can be used is the use of calibration impedances [39–41]. The calibra-
tion impedances consist of a rigid wall at different lengths and the systematic errors that are
present can be taken into account using calibration factors obtained from measurements.
Another approach is the optimization of the model parameters in the wave decomposi-
tion equation, such that the residual between the determined and measured pressures is
minimized. In this way the presence of systematic errors in the model parameters can be
minimized by creating the best fit with the measurements.

The drawback of the above approaches is that they rely on the fact that the model de-
scription of the wave propagation in the duct is correct. The model assumes that the mea-
sured pressure are only due to acoustic waves. However, if the walls of the duct are not
completely rigid, structural waves can propagate which have different wave numbers and
are not captured by the model and the use of calibration impedances will not yield the de-
sired results.

In this chapter, the source of systematic errors that can arise in impedance tube mea-
surements is discussed. The determination of the true origin of errors is in general not
straightforward and in the first part of this chapter a comprehensive, but not exhaustive,
overview of the origin and significance of systematic errors that can occur in impedance
tubes will be given. As the list of errors is not exhaustive, there are still systematic errors
which have not been accounted for. The subsequent chapter will discuss the remaining sys-
tematic errors.

5.2 Experimental setup

The measurement setup used to determine the presence of systematic errors consists of a
waveguide which is terminated by the calibration standard, the rigid wall. A schematic
overview of the measurement setup is given in figure 5.1. The waveguide is made of alu-
minium, is cylindrical and has an inner diameter of 50mm and wall thickness of 5mm. The
rigid wall is made from steel and has a thickness of 3.5cm. The acoustic waveguide has
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VXI-DAQ

Amplifier

T
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Figure 5.1: Schematic of the experimental setup used to determine the reflection coefficient
of a rigid wall.

been disconnected between the excitation section and measurement section to reduce the
influence of mechanically vibrations induced by the loudspeakers. The acoustic excitation
was provided by a loudspeaker attached to the excitation section, far from themeasurement
section. A stepped sine excitation was used to obtain a high signal-to-noise ratio and the
excitation order was randomized.

Thepressure fluctuationswere registered by four flushmounted Brüel andKjær 1/4-inch
condenser microphones of type 4938. The microphones were attached to a Brüel and Kjær
NEXUS signal conditioner. The microphones have been calibrated relative to each other by
exposing them to the same sound field [63].

The temperature of the measurement section has been continuously monitored by at-
taching a thermo-couple to the outside of the waveguide. The acquisition of the measure-
ment signals and the excitation of the loudspeakers were controlled by a HP-VXI system.

5.3 Identified errors

Mechanical vibrations

A error source that is not taken into account in the model description of the acoustic pres-
sures (3.62), are structural vibrations. The measurement setup consists of pipes which act
as wave-guides and the microphones and the loudspeakers are attached to these pipes. The
whole system is susceptible tomechanical vibrations, whichmay cause vibrations of themi-
crophone membranes and create a bias error in the measurement results. As the vibrations
are dependent on the measurement setup itself, and particularly the mechanical connec-
tion between the pipes and how the setup is fixed to the ground, it is difficult to model the
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Figure 5.2: Measured reflection coefficient of the rigid wall for the upstream side. Two cases
are shown, the first where the excitation and speaker section are connected ( ) and the
second where the two sections are disconnected ( ).

effects. Therefore, only the relative importance on the measurement results will be shown
and discussed but not quantified.

Under a single sine excitation the measured signal will be a superposition of the mea-
sured pressure signal and the vibration signal. As both excitations are of the same frequency,
the resulting signal will also be a harmonic sine wave. Therefore, the extra linear pathway
affecting the measurement results will not unveil itself in for example the coherence, even
if the propagation speed is different.

The vibrations induced by the loudspeaker act on the natural resonances of the me-
chanical system and most often they will appear as sharp peaks in the measurement results.
Measurements have been performed to show the effect if the measurement section is rigidly
attached to the excitation section. Results of such measurements are shown in figure 5.2.
The results show the measured reflection coefficient of the steel wall for the two cases where
the measurement section and excitation are connected and disconnected. It can be seen
that both phase and magnitude of the reflection coefficient are affected by the vibrations
and the measurements are more smooth when the excitation section is disconnected from
the measurement section. The influence if of vibrations depend on the actual measurement
setup and it is good practice to verify whether there are significant vibrations present.

Temperature influence

To perform accurate measurements, especially for the phase, changes of temperature dur-
ing the measurement should be taken into account. In the current setup, the temperature
is continuously monitored and the average temperature at each excitation is recorded and
used in the post processing to determine the speed of sound. As an example, the phase
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Figure 5.3: Comparison of the phase of the determined reflection coefficient of the steel wall
for the upstream pipe (left) using the averaged measured temperature ( ) and the averaged
temperature at each frequency ( ). The temperature as function of measurement time is
shown on the right.

of the reflection coefficient of the rigid wall is shown in figure 5.3 for two cases, the first
case is where the average temperature of the whole measurement is taken and the second
case where the average temperature at each measurement frequency is used to perform the
calculation.

In the same figure, the temperature as function of measurement time is shown, and it
can be seen that during the 1.5 hour measurement, the temperature rises by 0.8 𝑜C, which
is larger than the uncertainty in the temperature measurement itself (Appendix A.3 ). The
measured phase with the average temperature shows sudden jumps in the measured phase.
The excitation frequency is chosen at random and thus the increased error in the phase
due to the steadily increase in temperature will be distributed randomly to the frequencies,
leading to the jumps in the measured data.

From the figure it can be seen that the phase calculated using the frequency dependent
data is smoother and the deviation from 0 degree is smaller. This temperature increase is
small, but readily noticeable in the phase of the reflection coefficient.

Finite dimensions of themicrophones

In the measurement model, (3.62), the pressure is defined at a single point but the micro-
phones measure a surface averaged pressure. This leads two sources of error, the first is that
themicrophone positions can only bemeasured geometrically up to a certain accuracy. The
second source of error is that an averaged pressure is measured due to the finite membrane
surface.

The first error can be reduced by acoustically determining the microphone positions,
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with the help of theoretical models. By measuring the transfer function between two mi-
crophones and minimizing the difference between the transfer function obtained from a
theoretical model, the microphone distances can be obtained. The method is similar to
method used by Katz [64] except that it doesn’t use an extra microphone in the rigid wall.

Consider a semi-infinite pipe closed rigidly at one end, 𝑥 = 0, and a sound field in that
pipe which consists only of plane waves. Then the pressure field can be decomposed in a
wave travelling towards and away from the rigid end. The pressure field as function of the
axial coordinate, equation (3.50) with only the contributions of the plane wave mode, can
thus be written as,

𝑝 = 𝑝+ exp(−𝑖𝑘𝑥) + 𝑝− exp(𝑖𝑘𝑥), (5.1)

where 𝑘 is the wave number for plane waves in the duct. The ratio between the pressure at
position 𝑥𝑖 and 𝑥𝑗 is given by:

𝑝𝑖
𝑝𝑗

= exp(−𝑖𝑘𝑥𝑖) + ℛ exp(𝑖𝑘𝑥𝑖)
exp(−𝑖𝑘𝑥𝑗) + ℛ exp(𝑖𝑘𝑥𝑗) . (5.2)

where the reflection coefficient is given by ℛ = 𝑝−/𝑝+. This coefficient should satisfy the
imposed boundary condition at 𝑥 = 0 and for a perfect rigid ending ℛ ≈ 1.

The microphone positions are found by minimizing the difference between the model
of the transfer function, (5.2) and the calibrated measurement data. To obtain correct data,
the wave number 𝑘 is determined by taking into account the effect of viscous and thermal
effects at the tube walls and the speed of sound is determined with the model for by Cramer
[65]. For each microphone combination, 2 distances are obtained and after averaging these
distances, the microphone separations and the distance to the rigid surface are obtained.

A typical result of this procedure is shown in figure 5.4. The figure shows both the mag-
nitude and phase of the determined reflection coefficient with and without the calibration
procedure. It can be seen that the optimization procedure affects the measured absolute
value of the reflection coefficient slightly. The effect on the phase can be more clearly seen.
The calibration minimizes the oscillatory behaviour of the phase caused by the error in mi-
crophone separation distance and removes the linear decaying trend due to the error in the
distance between the rigid wall and the first microphone. The initial values and optimized
values for the microphone distances are given in table 5.1. From the table it can be seen
that the differences between the measured and optimized values are within the size of the
microphone (6.35 mm in diameter), except for the last microphone. A possible reason for
this discrepancy will be hypothesized in the next chapter 6.

One difficulty with the optimization procedure is that optimization variable 𝑥𝑛 always
appear together with the wave number 𝑘. As the wave number involves the speed of sound,
it is critical that the speed of sound and the model of the wave numbers are accurately de-
termined as any error in the speed of sound will be taken into account in the determined
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Figure 5.4: Result of using the measured microphone positions ( ) and performing the
microphone position calibration ( ) on the measured reflection coefficient of the rigid wall.

Table 5.1: Measured values, optimized values and uncertainties of the microphone positions.

𝑥1 𝑥2 𝑥3 𝑥4

Measured value [m] 0.4800 0.5500 0.5850 0.6200
Optimized value [m] 0.4816 0.5498 0.5847 0.6113
Uncertainty 𝜎 [mm] 0.0862 0.0985 0.1046 0.1440

positions. As shown in the previous section, the measured phase is sensitive to tempera-
ture changes. Therefore, when determining the transfer functions the excitation frequency
should be chosen at random, otherwise the slow change of the temperature will result in a
biased phase and this bias error will affect the determination of the microphone positions.

The described optimization procedure yields the optimized microphone positions, but
determine the uncertainty on measurements using an uncertainty analysis, the uncertainty
of the optimization microphone positions have to be determined.

The transfer function expression has three variables which have an uncertainty, the wave
number 𝑘, due to the uncertainty in the speed of sound, and the two microphone positions
𝑥𝑖, 𝑥𝑗 whichmakes it difficult to say something about the uncertainty in the parameter 𝑥𝑖, 𝑥𝑗
directly from the optimization procedure described above.

The main source of variance in the wave number is the speed of sound and the wave
number can be normalized with respect to the speed of sound to obtain the propagation
constant, Γ. The propagation constant can be obtained from the model equation (3.56) To
assess the uncertainty in the microphone positions, instead of determining the microphone
positions directly, the parameter 𝐾𝑛 is determined, which is the microphone position di-
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vided by the speed of sound, 𝐾𝑛 = 𝑥𝑛/𝑐. The equation (5.2) can then be rewritten as,

𝑝𝑖
𝑝𝑗

= exp(−𝑖𝜔𝐾𝑖Γ) + ℛ exp(𝑖𝜔𝐾𝑖Γ)
exp(−𝑖𝜔𝐾𝑗Γ) + ℛ exp(𝑖𝜔𝐾𝑗Γ) , (5.3)

The parameters𝐾𝑛 are determined using theMatlab optimization algorithm nonlsq, which
also returns the covariance matrix of the estimated parameters. The microphone positions
are given by the relation,

𝑥𝑛 = 𝐾𝑛𝑐, (5.4)

and the uncertainty on𝑥𝑛 can be determined, using a linear uncertainty analysis, as function
of the variance on 𝐾𝑛, obtained from the optimization algorithm, and the variance of the
speed of sound 𝑐. The variance of the speed of sound can be determined by applying an
uncertainty analysis on the model used to determine the speed of sound, which is given by
Cramer [65].

In table 5.1 the determined uncertainties are shown. It can be seen that the uncertainty
is much smaller than the diameter of the microphones itself (6.35mm) and that the relative
uncertainty is around 0.02%.

Microphone dimensions

The second source of error due to finite microphone dimensions is that the signal that is
obtained from the microphone is proportional to a surface averaged pressured, introducing
an estimation error.

Using a simplified model, the measured pressure by the microphone can be represented
by a surface averaged weighted pressure,

𝑝(𝒙0) = 1
𝑆 ∬𝑆

𝑤(𝒙 + 𝒙0)𝑝(𝒙 + 𝒙0)𝑑𝑆, (5.5)

in which 𝒙 = [𝑥, 𝑦, 𝑧]𝑇 denotes the position vector and 𝒙0 the position of the center of
the microphone in Cartesian coordinates, 𝑆 the surface of the microphone, 𝑝 the pressure
field and 𝑤 the sensitivity of each position of the microphone to a pressure acting on that
position.

In chapter 3 it is shown that, the pressure contribution of each mode can be written as
two waves travelling in the positive and negative axial direction, and the dependence on the
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axial direction is given by exp [±𝑖𝑘𝑙𝑥].

𝑝𝑙(𝒙0) = 𝑝+
𝑙 𝑒−𝑖𝑘𝑙𝑥0

∬𝑆
𝑤(𝒙 + 𝒙0)𝜙𝑙(𝑦 + 𝑦0, 𝑧 + 𝑧0)𝑒−𝑖𝑘𝑙𝑥𝑑𝑆

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑤+

𝑙

+𝑝−
𝑙 𝑒+𝑖𝑘𝑙𝑥0

∬𝑆
𝑤(𝒙 + 𝒙0)𝜙𝑙(𝑦 + 𝑦0, 𝑧 + 𝑧0)𝑒+𝑖𝑘𝑙𝑥𝑑𝑆

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑤−

𝑙

.
(5.6)

The finite microphone dimensions lead to a corrective factor, 𝑤+
𝑙 and 𝑤−

𝑙 to the measured
pressure and the actual pressure. These corrective factors are depend on the mode shapes
and the wave numbers of the modes.

For plane waves propagating in a fluid without mean flow, the effect of the finite micro-
phone dimensions will cancel itself out during the determination of the scattering matri-
ces. When the microphone dimensions are small and also the imaginary part of the wave
number, the acoustic amplitude of the wave can be approximated to be constant over the
microphone. The complex exponential consists of a symmetric and anti-symmetric parts
and as the microphone is assumed to be symmetric around the center, the anti-symmetric
part cancels when performing the surface average and only contribution that is left is that
of the symmetric part,

𝑝𝑙(𝒙0) = 𝑝+
𝑙 𝑒−𝑖𝑘1𝑥0

∬𝑆
𝑤(𝒙 + 𝒙0) cos(𝑘1𝑥)𝑑𝑆

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑤1

+𝑝−
1 𝑒+𝑖𝑘1𝑥0

∬𝑆
𝑤(𝒙 + 𝒙0) cos(𝑘1𝑥)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑤1

𝑑𝑆.
(5.7)

The correction factors are now equal for the positive and negative travelling way and when
calculating the reflection coefficient, or the scattering matrix using equation (3.57), these
correction factors cancel [37, 66].

For the higher order modes, the corrections depend also on the cross sectional dimen-
sions and in general will not cancel, leading to a bias error. Using models of the response of
condenser microphones [67, 68], it is possible to determine the weighting factors for each
of the modes and account for the error.
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5.4 Conclusion

In this chapter, various source of errors that can occur when experimentally determining an
impedance using an impedance tube have been investigated. Four error sources have been
treated, mechanical vibrations induced by the loudspeakers, the influence of a temperature
drift and the finite size of the microphones.

The most prominent error source are vibrations induced by the actuator exciting the
sound field, which can lead to large errors in themeasured values and appear as sharp peaks
in the determined reflection coefficients. These errors can easily be removed by mechani-
cally disconnecting thewaveguidewhere the excitation source is present with thewaveguide
where the measurement is performed.

The second source that is investigated is the presence of a temperature change during the
measurements. This error source predominantly affects themeasured phase of the reflection
coefficient and can be taken into account by measuring the temperature continuously.

The third error source that is discussed are the finite dimensions of the microphones.
Due to the finite size, the acoustic center can only be determined up to a certain accuracy
geometrically. Therefore, the microphone positions are determined acoustically leading to
improvements of the results especially with respect to the measured phase. Furthermore,
due to the finite dimensions, the microphones also measure a surface averaged pressure. In
the case of plane waves in a medium without mean flow, this influence leads to a corrective
factor to the wave amplitudes, which cancel when calculating the reflection coefficients.
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CHAPTER6
Errors in impedance tube

measurements
In the previous chapter various sources of systematic errors and way to reduce
them have been shown. There are still systematic errors present in the measure-
ment of reflection coefficients with an impedance tube and in this chapter the
presence is shown using the previous introduced linear uncertainty analyses. The
effect of the systematic error on the measured reflection coefficient can be summa-
rized by two trends and in this chapter, various hypotheses of the source of these
trends are investigated and the most plausible hypothesis presented.

6.1 Introduction

In the previous chapter, several systematic errors and their influence on the measurement
results have been shown. To determine whether there are still systematic errors present in
the measurements, an uncertainty analysis has to be performed on the measurement and
the results compared with a known value. In chapter 4 the use of the linear uncertainty anal-
ysis to determine the stochastic uncertainty in the measurements has been explained. To
determine whether there are systematic errors present, the measurement accuracy has to be
assessed and the measurement results compared with a calibration standard. As explained
in the previous chapter 5, a calibration standard is the reflection coefficient of a rigid wall.

In figure 6.1, the measured reflection coefficient and corresponding uncertainty inter-
vals of the rigid wall are shown. The experimental setup used to obtain the data has been
presented in section 5.2. The information on the variance of the measurands is given in
table 6.1 and more information to determine the uncertainties can be found in appendix
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Table 6.1: Uncertainty table of the measurement.

Variable Mean Value Standard deviation Source

Amb. humidity 25% [RH] 3.23% [RH] Manufacturer
Amb. pressure 100 [kPa] 1.30 [hPa] Manufacturer
Amb. temperature 25 [∘C] 0.0675 [∘C] Measurement
Pipe diameter 50 [mm] 65.2 [𝜇m] Manufacturer
Transfer function - 1% rel. error Manufacturer
Microphone Position 1 0.4816 [m] 8.62e-2 [mm] Measurement
Microphone Position 2 0.5498 [m] 0.98e-1 [mm] Measurement
Microphone Position 3 0.5847 [m] 1.05e-1 [mm] Measurement
Microphone Position 4 0.6113 [m] 1.44e-1 [mm] Measurement
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Figure 6.1: Theoretical reflection coefficient ( ), and the measured reflection coefficient
( ) with the 95% confidence interval ( ) when taking into account the known systematic
errors as function of frequency.

A.3. In the same figure the theoretical amplitude and phase of the reflection coefficient as
function of frequency is given in figure 6.1.

The results show that the distance between the theoretical and measured amplitude of
the reflection coefficient is much larger than the range of the 95 % confidence interval and it
is likely that there is a systematic component present. On the other hand, for the measured
phase, the distance between the measured and theoretical phase is smaller than the uncer-
tainty intervals and no statement can be made whether the observed difference between the
model and result is due to a systematic or random error.

These kinds of observations are not unique. Measurements have been performed at the
Acoustical Laboratory of the Université du Maine (LAUM) under the supervision of Yvés
Auregan and at the German Aerospace center in the institute of Propulsion Technology
under the supervision of Friedrich Bake. The observations made in these measurements

66



6.2. Oscillations in the reflection coefficient

Nexus

VXI-DAQ

Amplifier

T

Pos 1Pos 2

Figure 6.2: Schematic of the experimental setup used to determine the origin of the oscilla-
tions.

were similar as those presented in figure 6.1, and also in the literature similar results can be
found [37, 69, 70].

Two trends can be distinguished from the measured magnitudes of the reflection co-
efficient, the first trend is a linear decay with increasing frequency, and the second is an
oscillating behaviour around the trend line as function of frequency. In this section, these
two trends will be discussed and possible explanations investigated.

6.2 Oscillations in the reflection coefficient

The first trend that be discussed is the oscillatory trend in the reflection coefficient. Mea-
surements have been performed where the oscillatory trend on the results are not present,
and the schematic of the setup is given in figure 6.2.

The setup is very similar to the one presented in the previous chapter (figure 5.1), how-
ever there is a microphone placed in the rigid end to acts as a reference.

Using this setup, it is possible to determine the reflection coefficient from the rigid wall
with two independent measurements, by determining the transfer functions not with re-
spect to the excitation signals, but with respect the acoustic signal measured at the rigid
wall. In this case, no calibration is needed and the influence of multiple microphones in the
duct can be determined. The influence of duct vibrations, excited by the sound field in the
duct, is investigated by burying the measurement section in very fine gravel.

Three configurations were measured, and an overview of the measurement configura-
tions is given in table 6.2. For configuration 1, the acoustic pressures are measured at two
different positions in two separate measurements and the measurement section was buried.
In this case, the cross-influence of the microphones will not be present and the extra load-
ing of the duct by the sand will increase the stiffness of the duct and the damping of the
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Table 6.2: Overview of the different measurement configurations. The symbols ⊙ and ⊕
indicate the two different microphones that are used.

Configuration Microphone position Boundary condition
Pos 1 Pos 2

1a ⊙ Buried
1b ⊙ Buried
2a ⊙ Suspended
2b ⊙ Suspended
3a ⊙ ⊕ Suspended
3b ⊕ ⊙ Suspended

wall vibrations. In configuration 2, the duct is suspended by rubbers. In this case, the me-
chanical boundary conditions of the measurement section can be considered to be free-free
and the damping of the structural waves is only due to the internal losses of the aluminium
and sound radiated from the measurement section to the environment. In configuration 3,
the duct is also suspended by rubbers, but the acoustic pressure is measured simultaneously
at two different positions. The measurement is repeated by switching the microphones.
Comparing the measurements results from this configuration, with those obtained from
configuration 2, the cross-influence of the presence of the microphones can be assessed.

The microphone positions have been determined using the method as explained in the
previous chapter 5.3, but only for the first configuration. For the other configurations, the
same calibrated microphone positions are used to be able to exclude errors in the optimiza-
tion procedure during the comparison of the measurement results.

Themeasurement results are shown in figure 6.3. The figure shows the measured reflec-
tion coefficient as function of frequency for the three cases. For the configuration where
the measurement section is buried in sand gives the most smooth measurements, and the
effect of the oscillations is almost not present. Comparing this to the measurement results
from the second configuration, we see that the absolute value is slightly lower than that of
case 1 and the amplitude of the oscillations have increased slightly. For the phase, the oscil-
lations have clearly increased. For the third configuration, the presence of the oscillations
can clearly be seen for both the magnitude and the phase. From these observations it can
be concluded that the effect of the presence of the microphones and the non-rigidity of the
wall pay a role in the observed systematic error.

Comparing the amplitude of the oscillations and the slope of the decay of the absolute
value for the measurements presented in this figure (figure 6.3) and those obtained from
measurements with multiple microphones (figure 6.1), we see that for the current measure-
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Figure 6.3: Measured reflection coefficient for the various measurement configurations as
shown in table 6.2. Configuration 1, ( ); Configuration 2, ( ); Configuration 3, ( ) and the
analytical model ( ).

ments the oscillations are larger and the slope steeper. The increase of the errors can be
appreciated by the fact that the presence of the microphone in the rigid wall will lead that
the wall becomesmore compliant and thus a lowered amplitude of the reflection coefficient.
Also, the results from figure 6.1 are obtained using a linear least squares estimate from four
microphones, and the effect of the bias error will be distributed.

As shown in the previous chapter, the optimization procedure for the microphone posi-
tions obtained values for the last microphone which are larger than the microphone diam-
eter. This behaviour can be appreciated by the effect of the microphones on the measure-
ments, the transfer function between the microphones are derived for the ideal case and
the influence of the microphones is not taken into account, leading to a bias error in the
estimated acoustic centers.

The influence of the microphones on the sound field will also affect the calibration data.
Currently, the microphones are calibrated with respect to each other by placing them flush
mounted in a duct, in the same cross sectional plane close to a rigid wall. For frequencies
smaller than the first cut-on frequency of the duct, the microphones should measure only
the plane wave mode and in theory, they will measure the same frequency. However, as the
impedance of the duct wall is not uniform in the circumferential direction, higher order
modes will be excited and the measured pressures will also have contribution due to these
modes, which may be different for each of the microphones introducing a bias error in the
determined calibration factors.

Measurements, similar to that of configuration 2 and configuration 3 have been per-
formed in the setup at the DLR, however in these circumstances the differences in the mea-
surements are negligible. In that case, the influence of the microphone impedances seems
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Figure 6.4: Schematic drawing of the microphone as a three port model.

implausible and the resulting error ismost probably due to the compliance of thewaveguide.
For themeasurements performed in LeMans, there were also oscillations present on the

measurement data. That setup ismade of thickwalled steel (1cm) and has a smaller radius of
the duct (15mm). Themass of the setup ismuch larger and it is stiffer, compared to the setup
at the KTH and the influence of the pipe vibrations will be comparatively smaller. Therefore,
the observed error is most probably only induced by the presence of the microphones.

In conclusion, it is plausible that the oscillations on the measurements are caused by the
influence of the microphones on the measurements and the compliance of the waveguides.
These effects are highly dependent on the actual measurement configuration and the way
how the microphones are mounted in the duct.

Microphone impedance

It is shown that the presence of the microphones introduces a bias error which introduce
oscillations in the measured reflection coefficients. The influence on the wave propagation
can be modelled using a lumped parameter model. The wavelengths of the acoustic waves
are much longer than the diameters of the microphones and thus the pressure difference
across the microphone can be regarded as negligible. Therefore, the microphone mounting
can be seen as a continuous pressure junction where the microphone can be seen as a side
junction with a certain impedance 𝑍𝑚. In figure 6.4, a schematic of the idea is given.

Two equations describe the junction, the first is that the pressure at each junction should
be the same following from the continuity of pressure and the second is that the acoustic
volume flux is constant:

𝑝𝛿− = 𝑝𝛿+ = 𝑝𝑚, (6.1)

where 𝑝𝛿− is the pressure just before the junction, 𝑝𝛿+ the pressure just behind the junction
and 𝑝𝑚 the pressure at the microphone. The volume flux is given by

𝑆𝑢𝛿− + 𝑆𝑢𝛿+ + 𝑆𝑚𝑢𝑚 = 0. (6.2)
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Figure 6.5: Schematic of the microphone scattering matrix model and the combination of two
elements.

where 𝑢𝛿− is the acoustic particle velocity just before the junction, 𝑢𝛿+ the acoustic particle
velocity just behind the junction, 𝑢𝑚 the velocity of the microphone membrane, 𝑆 the cross
sectional area of the waveguide and 𝑆𝑚 the cross sectional area of the microphones. The
relation between 𝑝𝑚 and 𝑢𝑚 is given by themicrophone impedance𝑍𝑚 = 𝑝𝑚/𝑢𝑚. To estimate
the influence of the microphone on the measurement, the scattering transfer matrix 𝑇𝑠 is
determined. The scattering transfer matrix relates the two travelling wave components at
each side of the junction in comparison with the scattering matrix which relates the waves
travelling to the junction with the waves travelling away from the junction. The pressure 𝑝
and velocity 𝑢 can be decomposed in the travelling wave components by

𝑝 = 𝑝+ + 𝑝−, (6.3)

and

𝑢 = 1
𝜌𝑐 (𝑝+ − 𝑝−) , (6.4)

where 𝜌 is the density and 𝑐 the speed of sound. Using the microphone impedance, the
scattering transfer matrix of the microphone section can then be determined,

[
𝑝+

𝛿−

𝑝−
𝛿−]

=
[

− 1
2

𝜌𝑐0𝑆𝑚
𝑆2𝑍𝑚

1 − 1
2

𝜌𝑐0𝑆𝑚
𝑆2𝑍𝑚

1 + 1
2

𝜌𝑐0𝑆𝑚
𝑆2𝑍𝑚

1
2

𝜌𝑐0𝑆𝑚
𝑆2𝑍𝑚

] [
𝑝+

𝛿+

𝑝−
𝛿+]

. (6.5)

From the equation it can be seen that the influence of the microphone itself scales with 𝑆−2

and thus the effect becomes more noticeable for smaller pipes (assuming that the micro-
phone cross section remains constant).

The second step is to relate the travelling wave components at a certain distance Δ𝑥𝑗
from the microphone and those at the microphone. A schematic of the situation is given in
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figure 6.5. It is found by matrix multiplication and is given by,

⎡
⎢
⎢
⎣

[1 − 1
2

𝜌𝑐0𝑆𝑚
𝑆2𝑍𝑚 ] 𝑒𝑖𝑘Δ𝑥𝑗 − 1

2
𝜌𝑐0𝑆𝑚
𝑆2𝑍𝑚

𝑒−𝑖𝑘Δ𝑥𝑗

1
2

𝜌𝑐0𝑆𝑚
𝑆2𝑍𝑚

𝑒𝑖𝑘Δ𝑥𝑗 [1 + 1
2

𝜌𝑐0𝑆𝑚
𝑆2𝑍𝑚 ] 𝑒−𝑖𝑘Δ𝑥𝑗

⎤
⎥
⎥
⎦ [

𝑝+
𝑖

𝑝−
𝑖 ]

=
[

𝑝+
𝑗

𝑝−
𝑗 ]

. (6.6)

The pressure at the microphone position is given by 𝑝+
𝑗 + 𝑝−

𝑗 and the pressure at the micro-
phone is only a function of the impedance at a distance Δ𝑥𝑗 because the pressure at side 1
and 2 of the junction should be equal.

The pressure at a second microphone can be related to the impedance at the measuring
cross section 𝑥𝑎, by multiplying two scattering transfer matrix elements (Fig. 6.5). As the
relation between the travelling wave components is known at each microphone as function
of the impedance, the wave decomposition method can be performed with the inclusion of
themicrophone impedance. For the twomicrophone case, the pressure at twomicrophones
is then given as:

𝑝1 = 𝑝+
1 + 𝑝−

1 = [𝑨11
1 + 𝑨21

1 ] 𝑝+
𝑎 + [𝑨12

1 + 𝑨22
1 ] 𝑝−

𝑎 ,
𝑝2 = 𝑝+

1 + 𝑝−
1 = [𝑩11

1 + 𝑩21
1 ] 𝑝+

𝑎 + [𝑩12
1 + 𝑩22

1 ] 𝑝−
𝑎 ,

(6.7)

in which 𝑨 is the matrix relating the pressures at 𝑥𝑎 to the pressures at 𝑥1 and matrix 𝑩
the result of the multiplication of two scattering transfer matrix elements and relates the
pressures at 𝑥𝑎 and 𝑥2. The superscripts 𝑖𝑗 denote the specific element of that matrix.

The expressions for 𝑝1 and 𝑝2 are given by:

𝑝1 =𝑝+
𝑎 𝑒𝑖𝑘Δ𝑥1+

𝑝−
𝑎 𝑒−𝑖𝑘Δ𝑥1 ,

𝑝2 =𝑝+
𝑎 [𝑒𝑖𝑘Δ𝑥1+𝑖𝑘Δ𝑥2 + 1

2
𝜌𝑐0𝑆1
𝑆2𝑍1

𝑒−𝑖𝑘Δ𝑥1 (𝑒−𝑖𝑘Δ𝑥1 − 𝑒𝑖𝑘Δ𝑥2)] +

𝑝−
𝑎 [𝑒−𝑖𝑘Δ𝑥1−𝑖𝑘Δ𝑥2 + 1

2
𝜌𝑐0𝑆1
𝑆2𝑍1

𝑒−𝑖𝑘Δ𝑥1 (𝑒−𝑖𝑘Δ𝑥1 − 𝑒𝑖𝑘Δ𝑥2)] .

(6.8)

Also in the two microphone case, the pressure at the second microphone is only depen-
dent on the influence of the first microphone, the distance to the first microphone and the
distance between the first microphone and the measuring cross section.

Under special circumstances, the extra terms related to the microphone impedance can
become zero. Rearranging the second equation gives rise to,

𝑝2 =𝑝+
𝑎 [𝑒𝑖𝑘Δ𝑥1+𝑖𝑘Δ𝑥2 + 1

2
𝜌𝑐0𝑆1
𝑆2𝑍1

𝑒−𝑖𝑘Δ𝑥1 (𝑒−𝑖𝑘Δ𝑥1 − 𝑒𝑖𝑘Δ𝑥2)] +

𝑝−
𝑎 [𝑒−𝑖𝑘Δ𝑥1−𝑖𝑘Δ𝑥2 + 1

2
𝜌𝑐0𝑆1
𝑆2𝑍1

𝑒−𝑖𝑘Δ𝑥1 (𝑒−𝑖𝑘Δ𝑥1 − 𝑒𝑖𝑘Δ𝑥2)] .
(6.9)
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Figure 6.6: Comparison between the analytical model of the microphone impedance ( )
and the measurement results from two setups: setup 1, ( , figure 5.1), setup 2, ( , figure 6.2).
The ( ) denote the frequencies where there is no influence of the microphone impedance on the
measurements, e.g. (cos(𝑘Δ𝑥1) = 0. The used microphone impedance for the model has been
set to 𝜌𝑐0𝑆𝑚/2𝑆2𝑍𝑚 = 5 ⋅ 10−3(1 + 5𝑖).

It shows that when sin(𝑘𝑥2) = 𝑛𝜋, 𝑛 ⊂ 0, 1, 2, ... the extra terms related to the microphone
impedance vanish. Unfortunately this is also themoment at which the two rows in the wave
decomposition become dependent and there is no solution to wave decomposition method
(3.62). However, there is another special circumstance, which arises when measuring a
surface whose reflection coefficient is equal to 1, i.e. 𝑝+

𝑎 = 𝑝−
𝑎 , then the above relation can

be rewritten as,

𝑝2 = 𝑝+
𝑎 [ 𝑒𝑖𝑘Δ𝑥1+𝑖𝑘Δ𝑥2 + 𝑒−𝑖𝑘Δ𝑥1−𝑖𝑘Δ𝑥2+

1
2

𝜌𝑐0𝑆1
𝑆2𝑍1

(𝑒−𝑖𝑘Δ𝑥1 + 𝑒𝑖𝑘Δ𝑥1) (𝑒−𝑖𝑘Δ𝑥2 − 𝑒𝑖𝑘Δ𝑥2)] ,
(6.10)

showing that the influence of themicrophone vanisheswhen sin(𝑘Δ𝑥2) = 𝑛𝜋, 𝑛 ⊂ 0, 1, 2, ...
and cos(𝑘Δ𝑥1) = 1

2 𝑛𝜋, 𝑛 ⊂ 0, 1, 2, ....
In figure 6.6 the results of the measurements of the rigid wall on the upstream side are

shown. The data is the same as from the figure of 6.1, however now only the first two mi-
crophones have been used to calculate the reflection coefficient of the wall. Also, the mea-
surement results obtained from the experimental setup depicted in figure 6.2 with the third
configuration are shown. In the figure, the analytical model, for which the microphone
impedance is modelled as a complex constant, is plotted. Furthermore, the positions where
cos(𝑘Δ𝑥1) = 0 are denoted by circles.
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It can be seen that the oscillatory behaviour present in the measurements is reproduced
by the analytical model and that the peaks of the analytical model coincide with those from
the measurements. It should be noted that the exact positions of the peaks have a depen-
dence on the imaginary part of the microphone impedance, and that the positions of the
peaks do not exactly coincide with the positions where cos(𝑘Δ𝑥1) = 0. The amplitude
of the oscillation in the analytical model is governed by the real part of the microphone
impedance which shows the amount of acoustic energy dissipated by the microphone. The
imaginary part has a strong influence of the phase of the reflection coefficient (not shown
in the figure).

Efforts have been made to directly determine the microphone impedance from mea-
surements in the setup at the KTH. It proved impossible to obtain reliable and convincing
data for the microphone impedance itself. There are several possible explanations for the
difficulties in determining the microphone impedance. For the lower frequencies, the mag-
nitude of the induced error is similar to the error induced by the second systematic error,
the apparent absorption (discussed in the next section). Whenmeasuring the impedance of
the reflection coefficient using two microphones, they have to be calibrated relative to each
other, however with the current method to calibrate the microphones, the calibration itself
is affected by the influence of the microphones on the measurement. On the other hand,
with the setup as shown in figure 6.2, the reflection coefficient of the rigid wall is no longer
equal to the theoretical results and the extra compliance induced by the microphone placed
in the rigid wall introduces an error which is similar in magnitude as the error induced by
the presence of the microphones in the waveguide.

6.3 Apparent absorption

The second trend that will be discussed is the linear decay of the measured reflection co-
efficient with increasing frequency, leading to an apparent absorption. It is interesting to
note that in the first half of the previous century, there was a large controversy whether the
wall losses that were predicted by the model by Kirchhoff [23] were correct. Many workers
measured a 10-15% larger increase of the absorption than predicted by the model [66, 71–
73]. Kirchhoff has derived the results in 1868 [23] and it has been thoroughly scrutinized
to find an explanation to the extra absorption[74, 75]. It has been shown that the assump-
tions made in the model should all be correct and the large measured difference cannot be
explained by a violation of the assumptions made in the model. Three decades later, re-
searchers reported experimental results that the losses, induced by the walls and predicted
by Kirchhoff, are in agreement with the model [16, 76, 77].

First the presence of the apparent absorption will be shown using themeasurement data
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that has been obtained from several setups. The setup used to perform the measurements
at the KTH has been described in 5.2. The second setup is an experimental setup present
in the LAUM. It consists of circular ducts made of steel with an inner radius of 15mm and
a wall thickness of 5mm and is similar to the setup used in [78] The third setup is found in
the DLR Berlin. The wave guide is rectangular with an inner dimension of 60x80mm, made
from aluminium and has a wall thickness of 10mm. More information can be found in [25,
59].

To be able to determine themagnitude of the apparent absorption, it is assumed that the
reflection coefficient of the rigid wall can be correctly described with the analytical models.
The fluid is considered to have a finite viscosity and thermal conductivity, and an acoustic
wave incident on the rigid wall will also excite the entropy and vorticity mode (section 3.2).
Assuming that the temperature perturbations, induced by the acoustic wave, of the rigid
wall are zero and that the velocity of the rigid wall is zero, the reflection coefficient can be
derived. The impedance of the rigid wall is given by [13],

1
𝑍 = 𝑒−𝑖𝜋/4

𝜌𝑐 (
𝜔𝜇
𝜌𝑐2 )

1
2 𝛾 − 1

√Pr
, (6.11)

where 𝜌 is the density of the air, 𝜇 the dynamic viscosity, 𝛾 the heat capacity ratio, Pr the
Prandtl number, 𝑐 the speed of sound and 𝜔 the angular frequency. Consequently, the
reflection coefficient at the wall can be calculated using,

ℛ = 𝑍 − 𝜌𝑐
𝑍 + 𝜌𝑐 . (6.12)

The apparent absorption coefficient can be calculated by measuring the acoustic reflection
coefficient at the position of the first microphone (𝑥1 = 0 in equation (3.62)). The ratio
between the reflection coefficient at the rigid wall and the measured reflection coefficient at
the first position is given by,

ℛ(𝑥1)
ℛ(𝑥𝑤) = 𝑒2𝑖𝑘(𝑥1−𝑥𝑤). (6.13)

The wave number 𝑘 consists of a real and imaginary part and the imaginary part, 𝛼 = ℑ (𝑘)
is the absorption coefficient per unit length. The imaginary part of the wave number is the
absorption per unit length and can then be determined with,

𝛼 = 1
2(𝑥1 − 𝑥𝑤) ln| ℛ(𝑥1)

ℛ(𝑥𝑤) |. (6.14)

To put the experimentally determined absorption in perspective, it is compared against the
first order wall losses obtained by Kirchhoff, equation (3.56).
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Figure 6.7: Measured absorption coefficient 𝛼𝑚𝑒𝑎𝑠 relative to the theoretical wall losses 𝛼𝑤 as
function of frequency for the measurement setup at the KTH ( ), LAUM ( ) and the
DLR ( ). Also, the linear regression is shown.

In figure 6.7, the measured absorption coefficient per unit length relative to the theo-
retical wall losses are shown as function of the square root of the angular frequency for the
three different setups. For all the measurements, it can be seen that the effective absorption
is higher and it depends on the setup and frequency how large the deviation is. The devia-
tion itself is in the order of 5-30 % of the wall losses. By plotting the effective absorption as
function of the square root of the frequency, a linear trend can be seen which comes close
to the origin when the frequency goes to zero. As the wall losses are also proportional to the
square root of the frequency, the deviation seems to be a factor that is linearly proportional
to the frequency, which also has been observed by Fay [66].

The next part of the section is the discussion of several possible explanations of the
observed apparent losses. The first explanation that will be discussed are the volumetric
losses, caused by inter-molecular relaxation effects. The second hypothesis is based on the
Konstantinov effect, which is present when an acoustic wave interacts is scattered at a fluid-
fluid boundary. The third effect that will be discussed is the cross sectional dependency
of the acoustic field close to the rigid wall. These hypotheses do not give a satisfactory
answer to the observed absorption and the last part is dedicated to a literature survey to
determine whether there is any correlation between the measured absorption and the used
experimental setups.

Volumetric losses

The first error that comes to mind is the exclusion of the volumetric losses. The volumetric
losses are induced by the bulk viscosity (chapter 3) and the moleculare relaxation effects.
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The relaxation effects are induced by the finite time for a volume of gas to adjust to changes.
If the induced changes are too fast compared to the relaxation times of the intermolecular
interactions, the volume of gas does not reach a state of equilibrium and lead to losses. These
effects can be taken into account in the complex wave number [13, 79] and the constants in
the model are derived from experimental data [80–83].

In figure 6.8, the contour plot of the ratio of the volumetric losses to the wall losses is
given as function of theHelmholtz number and shearwave number. TheHelmholtz number
in this figure is defined as,

He = 𝜔
𝑐0

1
2𝐷ℎ, (6.15)

where the characteristic dimensions is given by half of the hydraulic diameter 𝐷ℎ which for
a circular duct reduces to the radius and the shear wave number is defined by,

Sh = 1
2𝐷ℎ√

𝜌0𝜔
𝜇 , (6.16)

The shear wave number gives the relative importance of thewall losses versus the volumetric
losses. For larger ducts, the volumetric losses will be more important and for smaller ducts,
the wall losses will dominate the total losses.

The parameter area that is covered with themeasurements at the KTH, DLR and LAUM
are indicated with squares in the figure. Comparing the relative contribution of the volu-
metric losses to the wall losses with the deviation from the wall losses in figure 6.7, it can
be seen that the contribution of the volumetric losses are much smaller than the apparent
deviation. This contradicts the hypothesis of a significant contribution of the volumetric
losses to the observed apparent absorption.

Konstantinov effect

Legusha proposed an explanation based on the Konstantinov effect [84, 85]. The Konstanti-
nov effect is the influence of the acoustic boundary layers on the acoustic fields, when a plane
harmonic wave impinges on the boundary between two materials [86].

Legusha derives the relationships between the acoustic fields in a viscous fluid at a gas-
gas interface and the acoustic reflection and transmission coefficients are obtained as func-
tion of ratios of the physical parameters of the gasses. As the relations are dependent on the
ratios of the fluid parameters, Legusha argues that by taking appropriate limits, the gas-gas
boundary can be modelled as a gas-solid boundary.

The obtained absorption coefficient for a wave incident on the surface is not a mono-
tonic increasing function of frequency, but shows a distinct maximum. Legusha argues that
the presence of this maximum is the reason of the observed extra absorption in literature,
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is covered with the measurements performed at the KTH ( ), LAUM ( ) and DLR
( ).

as the value of the absorption coefficient at this maximum is around 10% larger than the
absorption coefficient predicted by Kirchhoff.

Analytical efforts have been made to reproduce these findings, by assuming a gas-solid
interface where the heat conduction in the solid is governed by a Fourier’s law and the solid
assumed to be motionless. The results show that the influence of the thermal boundary
layer in the solid can be neglected when the product of the thermal capacity and the thermal
conductivity of thewall ismuch larger than that of the gas, in accordancewith other findings
[13, Chapter 10.3].

A possible explanation of the different results, is the derivation of the results. Legusha
assumes a gas-gas boundary and consequently a constitutive relation for a gas has to be
used, creating a relation between the pressure and temperature for both gasses. By deriving
the relations between the impinging, reflected and transmitted waves and taking the appro-
priate limits of these relations to resemble a gas-solid boundary, the obtained relationships
incorrectly describe a relation between the pressure and temperature for the solid.

Edge effect

An effect that is not taken into account when determining the impedance of the wall is the
three dimensional nature of the acoustic field close to the rigid wall. The acoustic pressure
fields are assumed independent of the axial direction in the impedance tube, however at the
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Figure 6.9: Schematic of the numerical model. The dimensions are in mm, and the hashed
surface indicates a refined mesh compared to the overall mesh. The boundary conditions (in
grey) are given by: 1. Prescribed velocity, 2. Iso-thermal wall and no-slip, 3. Periodic bound-
ary.

rigidwall this is no longer true as in the regionwhere the acoustic wave guide connects to the
rigid wall, the acoustic boundary layers of the waveguide and rigid wall merge. This region
is not taken into account when determining the reflection coefficient and could influence
themeasured reflection coefficient. This influence of the region is investigated by simulating
the impedance tube with a finite element method and taking into account the presence of
the acoustic boundary layer. Both a 1-D model and a 2-D model have been simulated and
the results are compared with the analytical expressions for the reflection coefficient of a
rigid wall [13]. For the 1-D model, there is no influence of the boundary layers at the side
walls and the results can be verified against the analytical models.

In figure 6.9 the numerical domain is shown. The waveguide is modelled as axisym-
metric duct with an inner radius of 25mm and a length of 1010mm, similar to the acoustic
waveguide used in the experiments of chapter 5. The walls of the ducts are modelled to be
rigid and isothermal.

The linearised Navier-Stokes equations in the frequency domain are used to model the
acoustic wave propagation in the duct. For the velocity and temperature, second order el-
ements were used and for the pressure linear elements for the pressure where used. The
numerical model was solved with a direct linear solver.

Close to the boundaries, the mesh is refined to be able to resolve the acoustic boundary
layers accurately. The thickness of these layers is in the order of 100 𝜇m, as shown in sec-
tion 3.2. Far away from the rigid wall, it was ensured that the acoustic boundary layer was
discretized by at least 20 points in the radial direction and the axial spacing was such that a
wavelength was discretized by at least 10 points. The region were the boundary layers meet,
the mesh was refined evenmore both in the axial and radial direction close to the rigid wall.
The region was within a distance of 1mm of both side walls, as shown in figure 6.9.
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Figure 6.10: Comparison between the analytical model for the reflection coefficient of a rigid
wall ( ) and results from the one dimensional numerical solution for two different mesh
sizes, with an axial spacing of 0.1mm ( ) and a spacing of 0.01mm ( ).

As the wave is propagating in a viscous medium and the wave propagation is not adi-
abatic, the dispersion relation is not equal to 𝑘 = 𝜔/𝑐. For the 1-D simulations, there is
no influence of the walls and the dispersion relation can be obtained using the linearised
mass conservation equation (3.8), linearisedNavier-Stokes equation (3.9) and the linearised
Fourier-Kirchhoff energy equation (3.10).

For the two dimensional case, the influence of the boundary layers at the pipe wall af-
fect the wave propagation and the dispersion relation obtained by Bruneau [87] is used to
determine the wave numbers. The reflection coefficient of the rigid wall from the numeri-
cal simulations has been determined with the wave decomposition method (3.62) and two
pressures sampled at the positions 𝑥1 = 0.51m and 𝑥1 = 0.56m.

In figure 6.10 the results are shown from the 1-D simulations for two numerical models
with different mesh-sizes, one with an axial spacing of 0.1mm and 0.01mm in the complete
domain, except for the boundary layers at the wall and in the area where themesh is refined.
The same figure also shows both the absolute value and the phase of the reflection coefficient
from the analytical model (6.11). It can be seen that there is a good agreement between
the analytical model and the numerical models. The relative difference in absolute value
is in the order of 0.001% and the difference in phase is in the order of 10−6 degree. The
difference between the two simulations do not differ much, indicating that the results will
not significantly change when reducing the mesh size even more.

In figure 6.11 the results of the determined reflection coefficient of the wall for the 2D
simulations are shown together with the analytically model for the one dimensional model.
Again two different mesh sizes have been used for the axial spacing, the first with a spacing
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Figure 6.11: Comparison between the analytical model for the wall impedance of a rigid wall
( ) and results from the numerical calculation for the two dimensional case for two different
mesh sizes, an axial spacing of 1mm ( ) and 0.1mm ( ).
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Figure 6.12: Normalized total acoustic power dissipation in the region close to the rigid wall
at a 1000Hz, using the alternative coordinate system [𝑟′, 𝑧′] as shown in figure 6.9. Plotted for
𝑟′/Δ𝜈 ∈ [0, 15] and 𝑧′/Δ𝜈 ∈ [0, 15].

of 1mm and the second with a spacing of 0.1mm and the difference between the two results
is small. The two calculations give similar results for the absolute values, however the phase
shows a larger spread in the values for the coarsemesh. This spread is caused by numerically
dispersion. Simulations with an increased element order and the same axial spacing didn’t
show the oscillatory behaviour. The good correspondence between the one dimensional
analytical model and the 2D calculations shows that the edge effect does not significantly
change the measured reflection coefficient.
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Even though that the results for the 2D agree well with the 1D theory, it is interesting to
see what the effect is of the edge effect. To investigate the effect, the acoustic power dissipa-
tion due to viscous and thermal effects have been plotted in the region close the rigid wall.
The total acoustic power dissipation, normalized with the square of the wall pressure, is
shown in figure 6.12 for a frequency of 1000 Hz. The data is shown using the alternative co-
ordinate system [𝑟′, 𝑧′] as indicated in figure 6.9 and the coordinates have been normalized
with the acoustic boundary layer thickness Δ𝜈 , (3.45).

In the area relative far away from the edge, but on the wall or side wall, the determined
acoustic dissipation is equal to that induced by the boundary layers, without any extra ef-
fects. When moving closer the corner, from both directions [𝑧 → 0mm, 𝑟 = 25mm] and
[𝑟 → 25mm, 𝑧 = 0mm] the dissipation increases slightly and decreases to zero in the cor-
ner where the side wall and wall meet. The small increase in dissipation is counteracted by
the decrease in absorption in the corner and in the corner where the pipe wall and the rigid
wall meet, the acoustic dissipation vanishes.

As the absorption at the side wall goes to zero at the corner, the losses are slightly less
and the true reflection coefficient will be higher. Also, when decomposing the sound field,
the wall losses at the pipe walls are assumed to be constant up to the side walls, and the
losses are slightly overestimated. Therefore, the measured reflection coefficient will slightly
higher than what it truly is. These both effects make that the influence of the edge effect
create an increase of the measured reflection coefficient, compared to the value obtained
from the analytical model.

In conclusion, there is an effect of the edge of the wall on the acoustic power dissipation,
however the influence on the measured reflection coefficient is very small and can be safely
neglected.

Literature survey

In the previous sections, possible hypotheses of the observed increased acoustic absorption
have been discussed and it was shown that they could not explain the phenomena. The extra
absorption has been reported by other researchers and in this section a literature survey of
the experimental results will be given to possibly identify parameters that are correlated
with the observed apparent absorption. The next part will discuss the literature, the used
gas in the cited literatures is always air at normal temperature and pressure, 20∘, and absolute
pressure of 1 atmosphere, unless otherwise noted.

Fay measured the acoustic absorption of ducts using a setup similar to a Kundt’s tube
[66]. In the setup, a microphone is fixed in the side wall of the duct and a second micro-
phone is used to terminate the tube. By moving the second microphone and measuring the
resulting sound field at the first microphone, the damping of the duct is determined. He de-
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Table 6.3: Overview of the literature. For the blank table entries, the information is not avail-
able.

Reference Year Error Frequency Radius Material Sh He
[%] [kHz] [mm]

Mason 1928 1.5-15

0.20-4.00 8.51 Brass

34-347 0.01-0.620.20-4.00 6.87 Brass
0.20-4.00 5.25 Brass
0.20-4.00 3.70 Brass

Waetzmann 1939 10-15
0.17-2.05 3.00 Brass

25-293 0.01-0.400.17-2.05 5.50 Brass
0.15-2.30 9.50 Steel

Fay 1939 7-16 0.90-4.90 9.52 184-429 0.16-0.85

Beranek 1940 15 0.40-1.20 38.10 Steel 204-850 0.12-0.840.40-2.00 15.88 Steel

Weston 1953 3

10.07 0.20 Glass

13-90 0.04-0.36
10.07 1.00 Glass
19.57 1.00 Glass
19.57 0.40 Monel
19.57 1.00 Monel

Fritsche 1960 2.4 1-1000 45 Brass

Roesler 1966 1 1-1000 34.96

Ahrens 1971 0.3-2 27.5-63 300-700 0.15-2.3

Yazaki 2007 0.6-2 Copper 0.1-15

KTH 2016 5-20 0.2 - 4 25 Aluminium 250-1000 0.12-12

LAUM 2016 5 0.02-2 15 Steel 40-430 0.005 - 0.55

DLR 2016 15-35 0.2-2 Aluminium 300-9801 0.11 - 1.83 1

1 Calculated using equation (6.15) and (6.16).
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termined the damping for a brass tube with a radius of 9.51mm, and the tube was packed in
sand to prevent vibrations of the tube wall. Fay shows that the measured damping consists
of two parts,

𝛼 = 𝐴√𝑓 + 𝐵𝑓 𝐴 = 2.92 ⋅ 10−5 [Hz−1/2cm−1] 𝐵 = 6.75 ⋅ 10−5 [Hz−1cm−1], (6.17)

the first part proportional to the square root of the frequency and identified as the damping
predicted by Kirchhoff. The measured value, 𝐴, is 0.6% off from the value predicted by
Kirchhoff ’s theory. The size of systematic error, due to the linear part can be estimated to
be 7%-16%

Fay also performed the analysis on measurement data obtained by Mason a decade ear-
lier. Mason determined the attenuation of four different straight brass tubes straight tubes
by determining the acoustic resistances of the tubes with an acoustic impedance bridge [71].
The tubes had radii of 0.851cm, 0.687cm, 0.525cm and 0.370cm, with corresponding lengths
of 6.22m, 4.885m, 4.26m and 7.634m. Mason observes that the measured attenuations are
in good agreement with the Helmholtz-Kirchhoff law, within the experimental error of 5%
but does not quantify the measurement error. Fay determines from the experimental data
by Mason the constants of equation (6.17) and concludes that the contribution of the linear
part is in the range of 1.5%-15% of the measured absorption coefficient.

Waetzmann and Wenke investigated the acoustic absorption of ducts made of various
materials, such as brass, steel, cardboard and wood [72]. The sound field in the ducts was
created using a thermophone and one end and the resulting pressure at the other end was
measured. The absorptionwasmeasured by determining two resonance lengths of the pipes
and quotient of the corresponding pressures at the ends. Waetzmann and Wenke deter-
mined the absorption coefficient for brass and steel pipes. The pipes had an inside diameter
of 6mm, 11mm and 19mm. They found that the absorption coefficient as around 10-15%
higher than that predicted by Kirchhoff ’s theory. Measurements were also performed on
glass tubes, which showed a larger absorption compared to the metal tubes and they inves-
tigated in a simplified manner the influence of wall roughness, by creating a glue layer of
2mm thick in a metal waveguide. After drying, the glue formed cracks and the measured
absorption coefficient increased three-fold.

Beranek investigates a new method to determine the acoustic impedances using a res-
onance tube [73]. The resonance tube is made from steel, has a wall thickness of 6.35mm
and a radius of 38.1mm. He determines the absorption coefficient of the resonance tube
itself and measures an absorption coefficient that is 15% higher than the losses predicted by
Kirchhoff. He hypothesized that the difference is due the radiation from the side walls to
the environment and the acoustic dissipation in the pores of the tube walls.

Weston discusses the attenuation in ”wide ducts [75] and uses an acoustic interferometer
to determine the acoustic absorption [76]. The used tubes where made of Veridia with a
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precision bore, with a radius precise up to 5𝜇m. The absorptionwasmeasured at 10kHz and
20kHz and are in good agreement with Kirchhoff ’s formulae. The measured absorption for
air is within 3% of the theoretical model. Weston mentions that large deviations between
the theoretical and experimental results could be traced back to tube imperfections. Weston
also mentions the tube walls as a source of error, “an imperfect wall surface is a frequent
cause of experimental disagreement with Kirchhoff ’s formulae” [75] and “it is possible in most
previous experimental work to ascribe any real excess tube effect to one or more factors in the
list, in particular wall roughness” [76].

Fritsche uses a cylindrical resonator to determine the acoustic absorption [88] of var-
ious pure gasses. He derives correction factors for the resonator to take into account the
effect of the acoustic driver on the measurement [16] The brass resonator has an internal
radius of 45.000mm and a height of 94.97mm and the surfaces have been honed, however
no quantitative measure of the surface roughness has been given. With the resonator, the
absorption for a variety of gasses is measured between 1kHz and 1MHz and the measured
coefficients agree with the theoretical values within the conservative experimental accuracy
of 2.4%.

The work of Fritsche has been extended by Roesler [77], where the absorption of gasses
at elevated pressures have been measured. The cylindrical acoustic resonator has an inner
radius of 34.96mm and a height of 297.888mm, the inner side walls have been honed and
have a surface roughness of ±2 𝜇𝑚. Roesler observes excellent agreement between the the-
ory and experiments and the deviations are under 1%.

Ahrens and Ronneberger investigated the influence of wall roughness on the acoustic
damping due to turbulence [28]. The measured the acoustic damping of a circular waveg-
uide with radii of 27.5mm, 37.5mm and 63mm. The damping is determining by measuring
the acoustic sound pressure along the axial direction of the ducts using a traversing micro-
phone in a frequency range of 300-2000Hz.

Several wall roughnesses were created by glueing sandpaper of different grains to the
inner walls of the duct. Ahrens and Ronneberger show that the measured damping coef-
ficient for the untreated ducts is larger than those predicted by Kirchhoff theory, and also
observe that this extra absorption seems to be independent of the mean flow speed. The
measurements for the treated ducts without flow (with an average grain size of 242 𝜇m),
show an increase of the acoustic damping by around 50% compared to the untreated duct.
No statements are made on the accuracy of the measurement data.

Yazaki et al. determined the acoustic wave numbers for a wide range of conditions using
a travelling wavemethod [89]. An acoustic pulse was created and led through a thick walled
copper tube. Several tubes, with radii of 0.6mm, 1.0mm and 2.0mm where used to cover
a large range of shear wave numbers. The tubes where long enough (40m-55m) such that
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the travelling pulse is completely attenuated before it reaches the other side of the duct. The
pulse has beenmeasured by transducersmounted in the sidewalls of the duct, with a spacing
of 1.51m. The authors mention that the presence of the periodic array of microphones,
undesirable Bloch wave-type dispersion was presented and it was removed by filling the
dead volumes of themicrophones with viscous silicon oil. Good agreement for a wide range
of shear wave numbers is obtained, verifying the theory by Zwikker and Kosten [90, 91]
which encompasses the asymptotic theory byKirchhoff. There is nomention of the accuracy
of the results.

An overview of the published experimental results is shown in table 6.3. The table shows
the reported systematic error in the results, the frequency range of the measurements, the
radius of the used waveguides and the material of the wave guide, the shear wave numbers
and Helmholtz numbers covered in the experiments. The shear wave number is given by,

Sh = 𝑅√
𝜔𝜌
𝜇 , (6.18)

where 𝑅 is the radius. For the table entries where the shear wave entries are calculated, the
used gas is air and the density 𝜌 and viscosity 𝜇 are taken from [92]. The second parameter
is the Helmholtz number, also based on the duct radius,

He = 𝜔
𝑐 𝑅. (6.19)

The table shows that there is a wide spread in all the parameters and no clear correla-
tion with the accuracy of the measurements and the listed parameters can be seen. On the
other hand, for the measurements where a high accuracy is seen, information on the wall
roughness is present.

Significant effects of the wall roughness on the measured absorption coefficient can be
seen from the results reported by Waetzmann [72] and Ahrens [28], this together with the
notions made by Weston, that the discrepancy between measurements and modelling are
most probably due to imperfect walls, indicates that the imperfect wall condition can be
the source of error. The increase of the apparent absorption with increasing frequency sup-
ports the hypothesis, as the boundary layer thickness decreases with increasing frequency
and thus the effect of roughness will increase. From the measurements results presented in
figure 6.7, the only setup of which the wall roughness is known is that of the LAUM. The
waveguides in this setup have been honed to have surface accuracy of 0.1 𝜇m [78]. The
results have the smallest difference and the slope of the linear regression is the lowest for
these measurements, supporting the hypothesis.
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6.4 Conclusion

In this chapter, the remaining systematic error in impedance tubes has been discussed. Two
trends have identified and the first trend is oscillations in themeasured reflection coefficient
and the second a decay of the measured reflection coefficient with increasing frequency,
leading to apparent loss of acoustic energy. With the help of a simplified setup, the plausible
sources of the oscillations are identified, which are the influence of the microphones on the
sound field and the presence of wall vibrations. A simplified analytical model to explain the
effect of a finite microphone impedance agrees qualitatively well with the measured data.
Unfortunately, no quantitative data of the microphone impedances could be obtained from
the measurements, because the effect due to the microphones has a similar magnitude as
that of the apparent absorption.

For the apparent absorption, several hypotheses have been discussed. These hypotheses
included the effect of volumetric losses, the Konstantinov effect and the acoustic field in
corners where the walls of the waveguide meet the rigid wall. These hypotheses can not
explain the observed apparent absorption and after a literature survey, the most plausible
source of error, the imperfect walls of the waveguides, is identified.
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CHAPTER7
Flow acoustic interaction at the

area expansion
In this chapter, the area-acoustic interaction at an area expansion is measured.
Using the techniques presented in the previous chapters, the uncertainty in the
measurements are determined and the accuracy improved. The results are com-
pared against modelling results and show a slight deviation between themeasured
scattering coefficients and those obtained from the models. The acoustic absorp-
tion for waves incident from the upstream side of the area expansion is measured
to be less than that predicted by the models.

7.1 Introduction

The simple configuration of a sudden area change of a waveguide has found the interest
of many scholars [93, 94] and the acoustic properties of the area expansion without flow
are well known [57, 95]. In most industrial applications, the main purpose of ducts is to
facilitate a fluid flow and the presence of sudden area expansions or other duct irregularities
can lead to flow separation. The flow separation opens a pathway for acoustic energy to
be converted in hydrodynamic energy, and the relation between the acoustic fields up and
downstream of the area expansion become dependent on the flow conditions.

In the beginning of the last century, simplifiedmodels were proposed to predict the flow
acoustic interaction and it’s influence of the acoustic behaviour of sudden area expansions.
Quasi-steady statemodels were investigatedwhere the flowprofile was expanded behind the
area expansion [96] and models where the flow kept the jet-shape [97]. It was concluded
that the main influence of the flow on the acoustics was the presence of the unstable shear
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layer and the flow should be modelled as a jet. The presence of entropy fluctuations at the
area expansions was regarded to be of minor importance [98]. During the last decade, more
sophisticated models where reported, both numerical [99–102] and analytical [103], which
take into account the presence of non-uniform flow profiles.

Unfortunately experimental data to validate the models is not widely available. Dupére
et al. [104, 105] investigated the absorption of acoustic energy at the area expansion in a
setupwith fixed acoustic boundary conditions. Lambert has experimentally investigated the
upstream reflection coefficient for a fairly large expansion ratio of 0.25 [106]. The expansion
ratio 𝜂 is defined as the ratio of the cross sectional area of the upstream waveguide, 𝑆𝑎, to
the cross sectional area of the downstream waveguide, 𝑆𝑏. The most complete results are
reported by Ronneberger, first he experimentally investigated the reflection coefficient of
the area expansion for waves incident upstream of the area expansion for various expansion
ratios [96]. Later, he published results for the scattering matrix for a single area expansion
ratio, 𝜂 = 0.346. The scattering coefficients were measured for a wide range of flow speeds
with the upstreamMach-number between 0 and 0.5, at five distinct frequencies [107].

The goal of this chapter is to present new experimental data accurate enough to compare
it against recent modelling efforts. Experimental data in the plane wave range will be pre-
sented for 5 different flow speeds in the incompressible regime and with a high frequency
resolution. First the scattering matrix of the area-expansion without a mean flow will be
determined using a multi-microphone method and the uncertainty of the measurements
is assessed using a linear uncertainty analysis. Comparing the confidence intervals against
establishedmodels gives confidence in the precision of the experimental results. Thereafter,
scattering matrices are presented for different mean flow speeds and the results compared
with model predictions.

7.2 Acoustic sound interaction

The nature of the flow acoustic interaction is determined by the ratio of two time scales, the
convective time scale of the flow and time scale of the perturbations.

The convective time scale is governed by the time needed for the pressure in the pressure
recovery zone, downstream of the area-expansion, to settle to its new value when the flow
is suddenly perturbed. This time is related to the time it takes for a fluid particle to travel
through the pressure recovery zone and the size of the recovery zone is largely independent
of flow velocity. Therefore, the convective time scale is inversely proportional to the flow
velocity [96].

The time scale of the perturbations is inversely proportional to the frequency, and the
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flow acoustic interaction can be characterized by the Strouhal number,

St = 𝜔𝑅𝑎
𝑈 , (7.1)

where 𝜔 is the angular frequency of the perturbations, 𝑅𝑎 the radius of the smaller duct and
𝑈 the mean flow velocity, averaged over the duct cross section, of the smaller duct.

At high Strouhal numbers, the convective processes can not adjust to the fast acoustic
oscillations and the main alteration to the acoustic wave propagation are convective effects.
Therefore, the nature of the flow profile and the specific edge condition do not have a signif-
icant influence on the scattering coefficients [102, 108]. On the other hand, at low Strouhal
numbers, the acoustic time scale is slow enough such that the hydrodynamic field can adjust
itself to the perturbations. For these Strouhal numbers, acoustics have an effect to the vortex
shedding and the resulting acoustic field is sensitive to the flow profile and edge conditions
at the area expansion.

The mathematical models that are used to determine the acoustic sound interaction are
often derived in the frequency domain. For a duct with a uniform flow, the solution of the
acoustic wave equation is given by modes for which the axial wavenumber is proportional
to the ratio of the angular frequency to the sound speed, the so called acoustic modes. For
ducts where the flow is stratified with layers of different flow velocities, the solution to the
equations consists of the acoustic modes and a set of extra modes, called the hydrodynamic
modes.

For these hydrodynamic modes, the solution to the wavenumber is proportional to the
ratio of the angular frequency and the flow speed 𝜔/𝑈 . The velocity perturbations and the
gradient of the vortex sheet of the solution will tend to infinity near the edge of the area
expansion for both types of modes and to have a solution that it is finite, an extra condition
has to be imposed, the so called Kutta condition [109].

The Kutta condition is not a universal boundary condition and there are multiple pos-
sibilities, which all lead to a finite solution of the acoustic scattering problem [109, 110]. In
the following, the Kutta condition is a referred to as the boundary condition for which the
vortex sheet at the trailing edge of the area expansion has zero gradient in the axial direction.

The Kutta condition is essential to have flow-acoustic interaction. For an open pipe
Cargill [110] has shown that causal solutions can exist that do not satisfy theKutta condition.
However, in such situations, no acoustic power is transferred from the acoustic field to the
hydrodynamic field and he concluded that the imposition of a Kutta condition is necessary
to transfer power from the acoustic to the hydrodynamic field [110]. Cargill showed also
that in the low frequency limit, the absorption of power is independent of the frequency.
Howe showed that the exact modelling of the flow does not significantly affect the coupling
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Figure 7.1: Schematic overview of the experimental setup.

between the hydrodynamic and acoustic field, but that the assumption of an infinitely thin
shear layer overestimates the conversion from acoustic to hydrodynamic energy [111].

An open question is whether the Kutta condition can always be used or if the edge-
condition should be dependent on the Strouhal number. Ronneberger hypothesized that the
difference between his model predictions and measurements could be due to the frequency
dependent separation position of the flow. He hypothesized that at higher frequencies, the
acoustic boundary layer thickness becomes smaller than the hydrodynamic boundary layer.
Under these conditions, the separation point of the flow will not be stationary but oscillate,
leading to a modulation of the jet cross sectional area at higher frequencies. A simplified
model indicated that this hypothesis agrees with the measurement data [107].

Michalke [112] has shown that the shear layer is only unstable for small Strouhal-numbers.
To include the effect of a stable shear layer, Boij et al. [108] changed the Kutta condition
in their model at the edgeto a relaxed Kutta conditions, such that size of the amplitude of
the hydrodynamic could be controlled. At high Strouhal numbers, the effect of the hydro-
dynamic modes is reduced and the results with the normal Kutta condition and relaxed
Kutta condition seemed to converge. At low Strouhal numbers, the effect of hydrodynamic
modes are important and the normal Kutta condition agrees better with the experimental
results compared with the relaxed Kutta condition. For Strouhal numbers close to the criti-
cal Strouhal numbers for the stability of the shear layer, the relaxed Kutta condition showed
an improvement in the correspondence between theory and experiment.

7.3 Experimental setup andmethods

A schematic of the experimental setup is given in figure 7.1. It consists of two circular ducts
connected to each other to create a sudden area expansion. The edge at the area expansion
has been carefully machined to be as sharp as possible with conventional methods, leading
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to a well defined separation point of the flow. Upstream of the area expansion, the duct
diameter is 𝐷𝑎 = 50mm and downstream the duct diameter is 𝐷𝑏 = 90mm, resulting in an
area expansion ratio of 𝜂 = 0.309.

The acoustic excitation is provided by loudspeakers attached to the upstream and down-
stream duct far from the area discontinuity. The acoustic reflections at the two ends of the
duct have been reduced by connecting the upstream duct to anechoic chamber with a horn
shaped duct and the downstream duct to a muffler. If there are strong reflections, partial
standing waves are created which reduce the signal to noise ratio at the microphones. Fur-
thermore, it can lead to dependent sound fields when determining the scattering matrix
increasing the sensitivity to errors (see chapter 4). Both effects will be taken into account
by the uncertainty analysis and will result in enlarged confidence intervals in the results.

The pressure fluctuations are registered by eight flush mounted microphones, placed in
the upstream and downstream duct. The microphones are Brüel and Kjær 1/4 inch con-
denser microphones of type 4938, attached to a NEXUS signal conditioner. The distance
between the microphones and the loudspeakers and the microphones and the area expan-
sion is large enough to ensure that only propagating waves are measured. Themicrophones
have been calibrated in gain andphase relative to each other by exposing all themicrophones
to the same sound field in a calibrator [63].

The flow through the sudden area expansion is created by pressurizing an anechoic
chamber. The mean flow is determined by assuming a fully turbulent flow profile and mea-
suring the centreline velocity of the upstreamduct using a Prantl-tube. The exact flowprofile
at the area expansion has been measured to characterize the bias error in the determination
of the mean flow speed. Results of the measurements will be shown in the next section. The
temperature of the flow is monitored via two thermocouples, both attached to the outside
of the aluminium waveguides upstream and downstream of the area expansion. Five dif-
ferent flow speeds have been measured and correspond to a cross sectional averaged Mach
number of the smaller upstream duct, 𝑀𝑎, equal to 0.05, 0.10, 0.15, 0.20 and 0.25. These
flow speeds result in a range of Reynolds numbers (based on the hydraulic diameter of the
upstream duct) of 5.2 ⋅ 104 < Re < 2.7 ⋅ 105.

The acquisition of the measurement signals and the excitation of the loudspeakers are
controlled by a HP-VXI system. The signal to noise ratio is increased by driving the loud-
speakers by a single tone and to reduce the measurement time, the loudspeakers up- and
down-stream of the area expansion are simultaneously driven. The upstream speakers are
excited at a different frequency than the downstream speakers. These frequencies are cho-
sen randomly and ensured that the frequencies of the up- and down-stream speakers are
not a multiple of each other. The transfer functions between the excitation signal and the
measured acoustic pressure are obtained using a synchronous demodulation technique [11].
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Figure 7.2: Schematic overview of the used wave definitions.

More information can be found in chapter 2. Before acquiring data, the sound field in the
duct has been decomposed in incoming and reflected acoustic plane waves and the ampli-
tude of the reference signal towards the loudspeaker has been automatically regulated to
have the same incident wave amplitude for each frequency.

Methods

The measurement frequencies are below the first cut-on frequencies of the higher order
modes and only plane waves are able to propagate in the duct.

The wave propagation equation (3.62) for each side of the area expansion is reduced in
this case to:

⎡
⎢
⎢
⎣

exp(−𝑖𝑘(𝑒𝑀 ⋅ 𝑒𝑥𝑀)𝑥1) exp(+𝑖𝑘(𝑒𝑀 ⋅ 𝑒𝑥𝑀)𝑥1)
⋮ ⋮

exp(−𝑖𝑘(𝑒𝑀 ⋅ 𝑒𝑥𝑀)𝑥𝑛) exp(+𝑖𝑘(𝑒𝑀 ⋅ 𝑒𝑥𝑀)𝑥𝑛)

⎤
⎥
⎥
⎦

[
𝑝+

𝑝−]
=

⎡
⎢
⎢
⎣

𝑝1
⋮
𝑝𝑛

⎤
⎥
⎥
⎦

. (7.2)

Herein is 𝑥𝑛 the axial position of the 𝑛-th microphone, 𝑘 the wavenumber in the duct,
which is a function of the cross sectional averaged Mach number 𝑀 and the flow direction
𝑒𝑀 ⋅ 𝑒𝑥 within the duct and 𝑝𝑛 the measured complex pressure at position 𝑥𝑛. A schematic
representation of the wave definition is given in figure 7.2.

An estimation of the wave numbers upstream and downstream of the area expansion is
obtained using a model by Weng et al. [21]. The model takes into account the presence of
the convective effects and the thermo-viscous damping. The effects of turbulent interaction
and refraction effects are not taken into account. The turbulent interaction becomes impor-
tant when the acoustic boundary layer thickness is larger than the turbulent boundary layer
[113] [34] and in the current experiments, the frequencies used are sufficiently high such
that the turbulent interaction can be neglected. The speed of sound, used to calculate the
wavenumbers, is determined with the model by Cramer [65] which takes into account the
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effect of temperature, humidity and barometric pressure. The physical transport properties
of the fluid in the duct, air, are calculated using the model by Tsilingiris [92], which takes
into account the effects of humidity.

The scattering matrix, relating the upstream and downstream propagating wave is ob-
tained by measuring two linearly independent sound fields, (3.60), which are created by
exciting the sound fields using the upstream and downstream loudspeakers. In this case,
the plane wave scattering matrix 𝑺 is given by,

𝑺 =
[

ℛ𝑎 𝒯𝑏→𝑎
𝒯𝑎→𝑏 ℛ𝑏 ]

. (7.3)

The scattering matrix consists of four coefficients, which are the upstream reflection coef-
ficient ℛ𝑎, the transmission coefficient from the upstream to downstream side 𝒯𝑎→𝑏, the
reflection coefficient on the downstream side ℛ𝑏 and the transmission coefficient from the
downstream to the upstream side 𝒯𝑏→𝑎.

From the above coefficients, other quantities can be derived, such as the end correction
𝑙. The end correction is a measure of the linear dependency of the phase of the reflection
coefficient on the frequency. The dimensionless end correction, 𝛿 = 𝑙/𝑅𝑎, based on the
upstream duct radius is related to the phase angle of the reflection coefficient as [114] [93],

ℛ𝑎 = −|ℛ𝑎| exp (2𝑖𝑘𝛿𝑅𝑎) , (7.4)

where 𝑖 is the imaginary unit. This quantity is derived for fluids which are quiescent, and
to extend it to flowing fluids, the convective effect on the wave propagation has to be taken
into account [103],

ℛ𝑎 = −|ℛ𝑎| exp(
2𝑖𝑘𝑅𝑎

1 − 𝑀2
𝑎

𝛿) , (7.5)

where 𝑀𝑎 is the cross sectional averaged Mach number of the upstream duct 𝑎.
Another derived quantity is the acoustic absorption coefficient, which gives a mea-

sure of the absorption or production of acoustic energy per unit time and is dependent
on the acoustic boundary conditions. In the presence of mean flow and viscous and ther-
mal damping, the determination of acoustic intensity becomes problematic because of the
non-uniformity of the flow and acoustic velocity profiles and therefore some simplifying
assumptions have to be made. Therefore, the calculation of the energy flows is based on
the assumption of a uniform flow and excluding the effects of the acoustic boundary layer
[115].

Under this assumption, the acoustic power scattering matrix is related to the acoustic
scattering matrix [116] through,

𝑺𝒫 = 𝑻 −𝑺 (𝑻 +)−1 , (7.6)
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where 𝑻 ± is a diagonal matrix,

𝑻 ± =
[

±(1 + 𝑒𝑀 ⋅ 𝑒𝑥𝑀𝑎)√𝑌𝑎 0
0 ±(1 + 𝑒𝑀 ⋅ 𝑒𝑥𝑀𝑏)√𝑌𝑏]

. (7.7)

with on the diagonal ±(1 + 𝑒𝑀 ⋅ 𝑒𝑥𝑀𝑖)√𝑌𝑖. The variable 𝑌𝑎,𝑏 is given by 𝜌0𝑆𝑎,𝑏/𝑐0, where
𝜌0 is the density of the acoustic medium, 𝑆𝑎,𝑏 the cross sectional area of respectively the
upstream and downstream duct and 𝑐0 the speed of sound in the specific duct.

With the acoustic power scattering matrix, the acoustic absorption/generation coeffi-
cients for waves incident from the upstream duct and a reflection free termination at the
downstream duct 𝛼𝑎, or vice versa 𝛼𝑏 can be calculated using,

𝛼𝑎 =
2

∑
𝑗=1

|𝑺𝒫 [1, 𝑗]|2 − 1, and, (7.8)

𝛼𝑏 =
2

∑
𝑗=1

|𝑺𝒫 [2, 𝑗]|2 − 1. (7.9)

Experimental precision and accuracy

In order to obtain accurate measurement results, several techniques have been applied to
reduce the bias errors in the measurement.

The acoustic centers of the microphones are acoustically determined by measuring the
impedance of a rigid wall and optimizing the microphone positions, such that the discrep-
ancy between theoretical and measured pressures are minimized (see section 5.3).

The duct where the loudspeaker are positioned and the measurement duct where the
microphones are situated are physically detached to reduce the influence of mechanical vi-
brations caused by the loudspeakers. The gap between the two sections is made as small as
possible (∼0.1mm) and the sections are connected using duct-tape to have no leakage. With
this arrangement, the bias errors caused bymechanical vibrations from the loudspeakers are
significantly reduced (see section. 5.3).

The travelling wave components have been estimated with the widely linear minimum
variance unbiased estimator of the solution to equation (7.2) (see also appendix B.3), which
takes into account the statistical information from the measurements. The statistical infor-
mation on the measured transfer functions is obtained using a methodology based upon
synchronous demodulation (appendix B.2). With the estimator, the error introduced by
the flow noise, which is the dominant error at lower frequencies (<200Hz), is reduced.

The flow profiles of the jet at the area expansion have been measured to determine if
the fluid flow is fully developed. In figure 7.3 the measured flow profile at the expansion is
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Figure 7.3: Measured flow profile at the area expansion for three flow speeds:( ) 𝑈𝑚𝑎𝑥 = 10.67
m/s, ( ) 𝑈𝑚𝑎𝑥 = 57.93 m/s,( ) 𝑈𝑚𝑎𝑥 = 105.0 m/s, ( ) fully developed profile from DNS
modelling (Re = 24 000) [117].

shown for three flow speeds corresponding to upstream Mach numbers of M ≈ 0.03, 0.15
and 0.3. The flow profile on the upstream side shows a good agreement with that of a fully
developed turbulent profile obtained from DNS simulations [117] for all measured speeds.
The slight asymmetry that is present in the flow is caused by the loudspeakers attached to the
pipe. At the loudspeaker position, a pattern of holes has been drilled to be able to excite the
sound field, which also influence the hydrodynamic boundary layer and the velocity profile
does not fully develop itself before it reaches the area expansion.

Even though the flow profiles agree well with theoretical profiles, the differences lead
to an over-determination of the average wave convection flow speed of around 5% for the
highest flow speeds [58]. Furthermore, due to the turbulent boundary layer at the duct
walls, momentum is converted in heat. If the duct walls are adiabatic, the wall temperature
will be higher than that of the bulk flow [118]. This effect is larger than the measurement
uncertainty in the temperature, but is not well defined because the thermal boundary con-
ditions of the duct walls are not regulated. To reduce the bias errors caused by an incorrect
wave convection flow speed and temperature of the bulk flow, the wave convection flow
speed and the temperature are optimized by minimizing the frequency averaged residual of
equation (7.2) [119],[120].

The influence of compressibility has been addressed using the compressible relations for
a one-dimensional flow with friction [15]. The friction factor has been estimated [121] to
be equal to 𝑓 = 0.0035 and the Mach number just at the outlet of the are expansion taken
to be 0.3. The velocity between the area expansion and the last microphone in the upstream
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Table 7.1: Standard deviation of the measurement parameters (see appendix A.3)

Quantity No flow flow

Microphone Positions 0.1mm 0.1mm
Temperature 0.0625 𝑜C 0.5𝑜 C
Humidity 5 % 5 %
Ambient Pressure 0.1 hPa 0.1 hPa
Mean velocity N.A. 2% Full scale
Microphone pressures From measurements From measurements

section differs at most 1.6%. As the wave numbers are proportional to (1 ± 𝑀)−1, the
resulting error is at most 0.7%. In light of the error made in the determination of the flow
velocity this effect is small. Therefore, the compressibility effects, such as a wave number
that depends on the position along the duct [107], are not taken into account.

7.4 Results

In this section, the results from the measurements are shown and compared to model re-
sults. First the results of the quiescent area expansion, obtained to validate themeasurement
procedure, are discussed. Thereafter, the scattering coefficients for the case where there is a
mean flow will be shown and compared against models results available in literature.

To show the effect of frequency dependency, the absolute values of the scattering coef-
ficients will be normalized against the quasi-steady state response. The quasi-steady state
response is determined by assuming a uniform mean flow in both ducts and applying the
conservation of mass, momentum and energy [96, 107].

A linear multi-variate analysis has been used to determine the uncertainty in the mea-
surements as explained in chapter 4. The covariance matrix has been scaled and rotated
to determine the uncertainty with respect to the amplitude and phase of the scattering co-
efficients [60]. The uncertainty is presented using two Bonferonni intervals [45],the first
interval is the 65% confidence interval and the second the 95% confidence interval. The un-
certainties used to calculate the intervals are given in table 7.1, and are based on technical
documentation and measurements (see appendix A.3).

Quiescent area expansion

The results of the quiescent area expansion will be compared against two models. The first
model is a model by Kergomard [95], where approximate relations are given based on the
exact solution to the problem. The secondmodel is that of Aurégan [122], which is a simpli-
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Figure 7.4: Measured absolute values () of the scattering and absorption coefficients as func-
tion of the frequency and Helmholtz number together with the 95% and 65% confidence inter-
vals ( , respectively). Model results by Aurégan ( ) and Kergomard ( ).

fied solution to the problem, obtained by integrating the governing equations. The influence
of viscous thermal effects at the edge of the area expansion can be neglected, because the
acoustic boundary layer is much smaller than the duct radii for the investigated frequency
range [57].

In the first two rows of figure 7.4 the amplitudes of the measured scattering coefficients
are shown together with the 65% and 95 % confidence intervals. In the bottom row of the
figure, the calculated sound absorption coefficient for sound incident from the upstream
respectively downstream side of the area expansion. Figure 7.5 shows the measured phase
of the scattering coefficients. The scattering coefficients are relative to the quasi-steady re-
sponse and for reference these values are given by,

𝑺0 =
[

−0.528 1.528
0.472 0.528]

. (7.10)

In the same figures, the model results from the models of Kergomard [95] and Aurégan
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[122] are shown.
The quasi-steady state response of the area expansion is governed by the continuity of

mass and momentum. However, higher order modes are excited when an acoustic wave is
incident and these higher ordermodes represent a reactive acoustic loadwhich is dependent
on the frequency. The influence of this reactive load on the absolute value of the acoustic
scattering coefficients is small for the current configuration, the absolute values differ at
most 5% from the quasi-steady state value over themeasured frequency range. The influence
is more noticeable in the phase of the scattering coefficients, which are linear proportional
to the frequency and the largest phase shiftwith respect to the steady state value is 30 degrees
at 2000 Hz for the upstream reflection coefficient ℛ𝑎.

A good agreement between the models and measurements is seen for the upstream re-
flection coefficient, ℛ𝑎, and transmission coefficient from the upstream to the downstream
side, 𝒯𝑏→𝑎. The relative difference between the absolute values of the model predictions
and the measured results is in the order of 1% over the complete range of the investigated
Helmholtz number 𝑘𝑟𝑎 = [0 - 1.6].

The influence of thermo-viscous losses at the edge of the area expansion can be ne-
glected [57], and thus the absorption coefficient for waves incident from the upstream and
downstream side should both equal to zero. The scattering coefficients for waves incident
from the upstream side show good agreement with the model results, and consequently the
absorption coefficient for waves incident on the upstream side is adequately represented, as
the deviation between the theoretical case, 𝛼𝑎 = 0, and the measurements are within 1%.

For the downstream reflection coefficient ℛ𝑏, there is a deviation seen between the
model and measurement results, which is slightly larger than the 95 % confidence inter-
val and the difference is around 2%. On the other hand, the transmission coefficient from
the downstream to the upstream side 𝒯𝑏→𝑎, is within the 95% confidence interval bounds
from themeasurement results. As themeasured reflection coefficient is lower than that pre-
dicted by the model, the measured absorption coefficient is larger than zero, indicating that
acoustic energy is lost.

The phase of all the scattering coefficients is in a good agreement with the models and
the model of Kergomard shows the best agreement. The measured phase deviates at most
1∘from the measured value and the model results are within the 95 % confidence intervals.
In figure 7.6, the non-dimensional end correction is shown as function of frequency. For the
higher frequency, the end correction agrees with the end correction predicted by the model
of Kergomard. For the lower frequencies, the phase difference induced by the reactive load
becomes smaller and approaches the precision of the measurement setup, resulting in an
increase of the scatter.

The origin of the systematic deviation between the measurements and the downstream
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Approximate Mach number 0.05 0.10 0.15 0.20 0.25
Measured Mach number 0.0469 0.0960 0.1435 0.1936 0.2433

Table 7.2: Measured Mach numbers

reflection coefficient is not known, butmost probably it is related to the observed systematic
error in the impedance tube (see chapter 6). Unfortunately it is difficult to assess how this
systematic error affect the measurements when flow is present, and care should be taken
when interpreting the confidence intervals. Nevertheless, the observed error is deemed
small as it leads to a maximum relative error of 1% in the absolute values of the scattering
coefficients and a maximum error of 2% in the absorption coefficient.

Area expansion with flow

The scattering matrix has been measured for five different flow speeds such that averaged
mass flow would correspond to that of uniform mean flow of a Mach number of approxi-
mately 0.05, 0.10, 0.15, 0.20 and 0.25. In table 7.2 the measured upstream Mach number,
obtained from the optimization procedure is shown. Hereafter, for ease of reading the re-
sults will be referred by using the approximate numbers indicated in the table. The mea-
surement results with mean flow will be compared with three models using the coefficients
of the individual scattering coefficients, the reflection free absorption coefficients and the
end correction.

The first model that will be considered is a model by Kooijman et al. [102, 123]. The
model discretizes the linearised equations of an isentropic fluid with an arbitrary mean flow
profile in both ducts and uses a mode-matching technique to obtain the scattering matrix.
In the calculations, a 7th power law model has been used to estimate the velocity profile in
the upstream duct. This velocity profile has no axial velocity at the wall, and therefore the
Kutta-condition does not have to be specified in the model.

The second model that will be considered is a model by Boij and Nilsson. The used ge-
ometry is a rectangular duct, where one half has a uniform flow profile and in the other half
there is no mean flow. The two parts are divided by a semi-infinite wall and the problem is
solved with the Wiener-Hopf technique [108, 124]. As the results are obtained for a rect-
angular configuration, a scaling proposed by Boij and Nilsson is used to scale the data to
circular geometries [124]. The scaling is determined by the normalized Helmholtz number,
He∗, where theHelmholtz number is scaled by the cut-on frequency of the first higher order

102



7.4. Results

mode in the downstream duct. The scaling is given by,

He∗ = 1
𝜂

(𝑘ℎ)𝑟𝑒𝑐
𝜋 = 1

√𝜂
(𝑘𝑟𝑎)𝑐𝑦𝑙

𝜅0
, (7.11)

where ℎ is the height of the upstream rectangular duct and 𝜅0 is the first zero crossing of
the derivative of zero-th order Bessel function. The numerical value is given by 𝜅0 ≈ 3.832.

Kooijman compared the obtained results from the circular and rectangular geometry,
using the proposed scaling by Boij and Nilsson. He calculated the scattering coefficients
as function of Mach number at a distinct Helmholtz number, based upon the upstream
duct radius, for two expansions ratios 𝜂 = 0.33 with 𝑘𝑟𝑎 = 0.2113 and 𝜂 = 0.5 with
𝑘𝑟𝑎 = 0.1725. For the rectangular case, there is a distinct increase of the absolute value
for the upstream reflection coefficient ℛ𝑎 and the transmission coefficient from the down-
stream to the upstream side 𝒯𝑏←𝑎 at a Strouhal number of 1. Kooijman showed that the
largest relative deviation of the absolute value of the scattering coefficients is obtained for
the area expansion ratio of 𝜂 = 0.33. Of the four coefficients, the absolute value of the
upstream reflection coefficients |ℛ𝑎| showed the largest difference between the rectangular
and circular geometry at a Strouhal number of 1. The relative deviation is in the order of
3%.

The third model that will be considered is a simplified model by Aurégan [116]. The
model determines the dispersion relation for a channel where there are two zones, a jet
core with uniform flow and annulus around the core with no flow. The dispersion rela-
tion is found integrating the governing equations over the different zones and match the
equations at the interface. It gives rise to three travelling waves, the plane acoustic wave, a
higher order acoustic mode and an exponential growing hydrodynamic mode. Using the
boundary conditions at the area expansion, the relation between waves at the upstream and
downstream acoustic waves can be found. This model is similar to models proposed by
Cummings [97, 98] and Ronneberger [107].

The absolute values of the measured scattering coefficients for three mean flow speeds,
𝑀𝑎 ≈ 0.05, 𝑀𝑎 ≈ 0.15 and 𝑀𝑎 ≈ 0.25 are shown respectively shown in figure 7.7, 7.9
and 7.11 as function of frequency and Strouhal number. The measured angles are shown in
figure 7.8, 7.10 and 7.12. For the model by Boij, the frequencies have been scaled according
to (7.11). The Strouhal number is based on the cylindrical Helmholtz number. The absolute
values are shown relative to the quasi-steady state response, given by,

𝑀𝑎 ≈ 0.05 𝑺0 =
[

−0.5524 1.5517
0.4789 0.5213]

, (7.12)
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Figure 7.9: Measured absolute values () of the scattering coefficients for an upstream Mach
number of 𝑀𝑎 ≈ 0.15. Shown as function of the frequency and Strouhal number together
with the 95% and 65% confidence intervals ( , respectively). Experimental results by
Ronneberger ( ). Model results by Aurégan ( ), Kooijman ( ) and Boij ( ).
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Figure7.10: Measured phase () of the scattering coefficients for an upstreamMach number of
𝑀𝑎 ≈ 0.15. Shown as function of the frequency and Strouhal number together with the 95%
and 65% confidence intervals( , respectively). Experimental results by Ronneberger
( ). Model results by Aurégan ( ), Kooijman ( ) and Boij ( ).
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Figure 7.11: Measured absolute values () of the scattering coefficients for an upstream Mach
number of 𝑀𝑎 ≈ 0.25. Shown as function of the frequency and Strouhal number together
with the 95% and 65% confidence intervals ( , respectively). Model results by Aurégan
( ), Kooijman ( ) and Boij ( ).
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Figure 7.12: Measured phase () of the scattering coefficients for an upstream Mach number
of 𝑀𝑎 ≈ 0.25. Shown as function of the frequency and Strouhal number together with the
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𝑀𝑎 ≈ 0.15 𝑺0 =
[

−0.6068 1.5993
0.4934 0.5083]

, (7.13)

𝑀𝑎 ≈ 0.25 𝑺0 =
[

−0.6703 1.6471
0.5079 0.4966]

. (7.14)

The measurement results by Ronneberger [107], obtained for an area expansion ratio of
𝜂 = 0.346 and at 3 frequencies, 500, 1000 and 2000 Hz, are also shown for a qualitative
comparison in figure 7.9 and 7.10. The results are shown relative to the response given in
equation (7.13).

From the results it can be seen that the relative change of the absolute values over the
investigated frequency range is small, the changes for the upstream reflection coefficientℛ𝑎
is the largest, which is on the order of 10% whereas the changes of the other coefficients are
in the order of 5%. The changes of the phase of the coefficients is similar to those obtained
for the area expansion without flow and are at most 30∘.

The model by Kooijman is consistently lower than the measured absolute value of the
upstream reflection coefficient ℛ𝑎 for all measured flow speeds. The model by Aurégan
shows a fair agreement and the model by Boij over predicts the results, at large Strouhal
numbers. In the low frequency limit, both the model by Aurégan and Boij predict the same
absolute value of the reflection coefficient and are close to the quasi-steady state values by
Ronneberger [107] whereas the model by Kooijman does not reach the same value.

For the absolute values of the transmission coefficient from the upstream to downstream
side 𝒯𝑎→𝑏 all the models are below the measured values. The deviations, compared to the
uncertainty intervals are larger than those obtained for the upstream reflection coefficient.
The measurement results tend to the quasi-steady state results, but it is difficult to asses due
to the comparatively large scatter at the lower frequencies.

Themodel by Boij over predicts the absolute values of the downstream reflection coeffi-
cientℛ𝑏, especially at higher Strouhal numbers, but bothmodels by Kooijman andAurégan
show fair agreement. For the downstream to upstream transmission coefficient 𝒯𝑏→𝑎, all
the model results are in fair agreement and the deviations are all in the order of the size of
the confidence intervals.

For the phase of the scattering coefficient, the model predictions by Boij and Kooijman
are very similar and agree well with the measured phase of the coefficients. The model
predictions by Aurégan show slightly larger deviation. For the phase of the transmission
coefficient of the upstream to the downstream side, it is seen that the deviation between the
models and the measured values increase with increasing Mach number, and at the highest
Mach number, 𝑀 ≈ 0.25 the deviation is larger than the 95% confidence interval.
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Figure 7.13: End correction as function of Strouhal number. The measurements are given by
( ). The model results by Aurégan ( ), Kooijman ( ) and Boij ( ).

In figure 7.13 the non-dimensional end correction as function of Strouhal number is
shown. The results at low Strouhal number, St < 2, show large scatter, which can be ac-
counted to two effects. The first effect is that the phase shift is linearly dependent on the
frequency and thus the relative influence of noise on the phase shift becomes stronger at
lower frequencies. Furthermore, the flow noise has a pink noise characteristic and the sig-
nal to noise ratio decreases with lower frequencies.

In the same figures, the model results of the models are also shown. The results by the
model of Boij are scaled such that they correspond to the Strouhal number with respect to
the cylindrical Helmholtz number. The non-dimensional end correction is based on the
upstream duct radius. The model by Aurégan over predicts the end correction for all the
measured Strouhal numbers, but the trend is captured reasonably well. The model pre-
dictions by Kooijman are in good agreement with the measured results, especially for the
higher Strouhal numbers, Strouhal > 2.

Boij andNilsonpredicted aminimum in the end correction for Strouhal numbers around
1 [103]. The results show a decaying trend for Strouhal numbers smaller than 2, however
due to the scatter it is impossible to determine whether a minimum is achieved. The differ-
ence between the end corrections of Kooijman and Boij in figure 7.13 at a Strouhal number
of 2 between Kooijman and Boij, corresponds to a difference in phase shift of 3∘at a Mach
number of 𝑀 ≈ 0.25. This induced phase shift is fairly small and it is difficult to determine
these shift accurately with the current setup.

In figures 7.14 and 7.15 the acoustic absorption coefficient is shown for waves incident
upstream from the area expansion, 𝛼𝑎, andwaves incident downstream from the area expan-
sion, 𝛼𝑏. The results show that for flow speeds higher than 𝑀 > 0.05 and Strouhal numbers
lower than 2, the absorption coefficient for waves incident from the upstream side, 𝛼𝑎, in-
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creases with lowering Strouhal number, and comes close to the quasi-steady state values.
For higher Strouhal numbers, the absorption remains approximately constant or slightly
increases when the flow speed is large.

For the absorption coefficient of waves incident of the downstream side, 𝛼𝑏, the absorp-
tion does not depend strongly on the Strouhal number and slowly increases with increasing
flow speed. For the lowest flow speeds 𝑀 ≈ 0.05 and 𝑀 ≈ 0.10, the measurements are
close to the quasi-steady state values, but this deviation increases at higher Mach numbers.

In the samefigures, themodel predictions are also shown. Themodel predictions by Boij
and Aurégan have the same absorption for low frequencies, in concordance with the results
obtained from the scattering matrices. For the upstream absorption coefficient, the low
frequency limit coincides with the absorption predicted by the quasi-steady statemodel, but
for the downstream absorption coefficient, the limit and the quasi-steady state predictions
do not coincide for the highest flow speeds. Themodel by Kooijman predicts an absorption
coefficient that is too high for both absorption coefficients, but the deviations is the largest
for the upstream absorption coefficient 𝛼𝑎.

For the absorption coefficient when waves are incident from the downstream side, 𝛼𝑏,
both the models from Aurégan and Kooijman agree reasonably well and show the same
trends as the observed measurements. The model predictions by Boij under predict the
absorption coefficient and show a distinct behaviour at a Strouhal number of 2 which is not
seen in the measurements.

On the other hand, for the upstream absorption coefficient, 𝛼𝑎, the model predictions
by Aurégan and Kooijman are not in agreement with the measured quantities. The low
frequency limit absorption predicted by the model by Aurégan corresponds to the quasi-
steady state model, but it predicts an increasing trend of the absorption with increasing
Strouhal numbers. The model by Kooijman predicts a quasi-steady state absorption that is
too high comparedwith themodels by Boij andAurégan, but the trend ismodelled correctly
and the absorption decreases with increasing Strouhal number. The decrease of absorption
coefficient with increasing Strouhal number is smaller than the experimentally observed
difference. The model predictions by Boij, are qualitatively more in agreement with the ob-
servations. The values of the absorption coincidewith the values obtained at higher Strouhal
numbers. The sudden increase of absorption at Strouhal numbers of around 2 is not clearly
seen in the measurement results, but they show a distinct increase in the absorption for the
lower Strouhal numbers.

The results from the upstream absorption coefficient hint at the existence of the flow-
acoustic interaction. At low Strouhal numbers, the fluid flow can adjust to the acoustic
perturbations and the acoustic field loses energy to the hydrodynamic field. On the other
hand, at high Strouhal number the hydrodynamic field can not adjust to the fast oscillating
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acoustic field. The interaction reduces and less acoustic energy is absorbed and only the
convective effects on the sound propagation dominate. Unfortunately the interaction does
not lead to large changes in the absorption coefficient andwith the current setup it is difficult
to reach low Strouhal numbers, leading to results that show quite a bit of scatter for the lower
Strouhal numbers.

The difference in the quasi-steady state results of the upstream absorption coefficients
between the models of Kooijman and the models by Boij and Aurégan could be the mod-
elling of themean flowprofile. For themodel byKooijman, themodel with a fully developed
flow profile has been used and themodels by Boij and Aurégan both use uniformmean flow
profiles.

Apart from the difference in the quasi-steady state, it is interesting to note that themodel
by Kooijman predicts a dependency of the absorption on the Strouhal number that is less
than observed in the measurement data. One explanation of this discrepancy could be the
modelling of the shear layer. In the models used by Boij, the shear layer is assumed to be
infinitely thin. In the case of the model by Kooijman, the shear layer has finite thickness
and Howe [111] has shown that incorporating a finite thickness of the shear layer leads to
a lowered effectiveness of the acoustic sound absorption. Another explanation could be
the difference in geometry, as the largest difference between the rectangular and circular
geometry are seen at the Strouhal numbers corresponding to the transition region between
the low and high Strouhal regimes.

It is interesting to see that the observed absorption for waves incident from the down-
stream side agree well with the models by Kooijman and Aurégan and the difference be-
tween the measurements and the model predictions by Boij are large, which could indicate
a difference caused by the geometry.

7.5 Conclusion

In this chapter the aero-acoustic interaction at the area expansion has been experimentally
determined. The purpose of the investigation is to obtain new experimental data that is
accurate enough to validate models. Measurements on an area expansion without flow have
been performed to asses the precision and the measurement results are within 1% of the
analytical models. The scattering matrices have been determined of an area expansion with
an expansion ratio of 𝜂 = 0.309 for 5 upstream mean Mach number in the range of 0.05-
0.25. The measurement results have been compared with three models from literature with
the individual scattering coefficients, the end correction and the absorption coefficients.

The models agree well compared to the experimental accuracy, except for the transmis-
sion coefficient from the upstream to the downstream side, where the measurements are
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consistently larger than the predicted measurement data. For the absorption coefficients,
hints of the existence of flow-acoustic is shown, but the accuracy of the measurement data
and the relatively small changes induced by the flow-acoustic interaction inhibits to make
definite statements. Each of the models predict different trends for the acoustic absorption
coefficients and partially agree with the observations.

For the end-correction, the more intricate models agree well with the measured end
correction at high Strouhal numbers. For lower Strouhal numbers, where the flow-acoustic
interaction alters the end correction, the measurement scatter is too high to discern these
effects clearly.
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CHAPTER8
Conclusions and

recommendations

The goal of this thesis was to obtain reliable data of the flow-acoustic interaction in the form
of scattering matrices, and to achieve that goal the influence of measurement errors on the
results had to be assessed. In the introduction, the steps taken to reach that goal have been
summarized in four questions and the main conclusions of this thesis are formulated using
the research questions.

How can the stochastic error on transfer functions measured with stepped sine exci-
tation be determined?

In chapter two, the stochastic error on measured transfer function is determined with the
help of the measured signal that is not associated to the excitation signal. With the syn-
chronous demodulation technique, the deviation from the transfer function as function of
the noise is derived in the time domain.

Threemodels are used tomodel the noise in the frequency domain andusing themodels,
estimates of the variance and kurtosis are obtained as function of the auto spectral density
of the noise. The derived relations are validated against experiments and a good corre-
spondence between the predicted variance and the measured variance is shown for all the
models. The kurtosis is only predicted by two models and show a good correspondence
with the measured kurtosis.
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Furthermore, using the derived expressions, the assumption that the real and imagi-
nary parts are uncorrelated and have the same variance have been investigated. It is shown
that the variance on the real and imaginary parts depend on the noise spectrum and the
measurement time for a single sample.

Are linear uncertainty analyses appropriate toquantify the stochastic errors onmea-
sured scatteringmatrices?

The validity of the linear uncertainty analysis to determine the uncertainty in the scattering
matrix coefficients has been investigated by analyzing the source of non-linearities in the
uncertainty analysis. It has been shown that a linear multi-variate analysis can only be used
when plane waves are measured and conditions have been derived when such an analysis
gives valid information on the uncertainty bounds for the wave decomposition method.
For higher order modes, the amount of conditions increases significantly and no general
conditions can be formulated when a linear uncertainty analysis can be used. Therefore, to
determine accurate uncertainty intervals, a Monte-Carlo method should be used.

The use of an alternative linear method, based on matrix perturbation theory is also in-
vestigated. With themethod partial condition numbers are obtained for the problem. These
partial condition numbers are a computational inexpensive alternative to obtain qualitative
information on the measurement quality.

The findings are tested on experimental data of higher order mode measurements. The
results show a large variance in the measured reflection coefficients for different excitation
conditions. Using the partial condition numbers, it is shown that these difference are caused
by the changes in distribution of the modal amplitudes.

Which systematic errors are present in acoustic impedance tubes?

The systematic errors occurring in impedance tubes have been investigated by measuring a
calibration standard, defined by a rigid wall. Four error sources have been treated, mechan-
ical vibrations induced by the loudspeakers, the influence of a temperature drift and the
finite size of the microphones. The most prominent error source are vibrations induced by
the actuator exciting the sound field, which lead to large errors in the measured values and
sharp peaks in the determined reflection coefficients. The presence of a temperature drift
predominantly affects the phase of the measured reflection coefficient. It has been shown
that the determination of the exact acoustic center of themicrophone leads to improvements
of the results, especially with respect to the measured phase.

After accounting for the identified errors, the measurement results have been analyzed
using a linear uncertainty analysis. The observed deviation between the measured ampli-
tude of the reflection coefficient and the calibration standard are significantly larger than
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the 95% confidence intervals for the absolute values of the reflection coefficient, indicating
that there are still systematic errors present.

The systematic error creates two distinct trends on the measured results. The first trend
are oscillations in the measured reflection coefficient and the second trend is a decay of the
measured reflection coefficient with increasing frequency, leading to apparent loss of acous-
tic energy. With the help of a simplified setup, the plausible sources of the oscillations are
identified, which are the influence of the microphones on the sound field and the presence
of wall vibrations, excited by the sound field in the impedance tube. A simplified analytical
model to explain the effect of a finite microphone impedance agrees qualitatively well with
the measured data.

For the apparent absorption, several hypotheses have been discussed, including the ef-
fect of volumetric losses, the Konstantinov effect and the influence of the acoustic field in
the corners where the walls of the waveguide and the rigid wall meet. These hypothesis did
not give a convincing explanation and after a literature survey, the most plausible source of
error, the imperfect walls of the waveguides is identified.

Do measurements agree with recent predictions of the area-acoustic interaction at
an area expansion?

In the last chapter, the aero-acoustic interaction at the area expansion has been experimen-
tally determined. Results have been obtained without flow to asses the precision and the
absolute values of the measurement results are within 2% of the absolute value and within
2∘of phase angle of the predictions by analytical models. The scattering matrices have been
determined of an area expansion with an expansion ratio of 𝜂 = 0.309 for 5 upstreammean
Mach number in the range of 0.05-0.25. Themeasurement results have been compared with
three models from literature with the individual scattering coefficients, the end correction
and the absorption coefficients.

The models agree well compared to the experimental accuracy, except for the transmis-
sion coefficient from the upstream to the downstream side, where the measurements are
consistently larger than the predicted measurement data. For the absorption coefficients,
hints of the existence of flow-acoustic is shown, but the relatively small changes induced by
the flow-acoustic interaction and the limited accuracy of the measurement setups inhibits it
to make definite statements. Different trends are predicted by the models and they partially
agree with the observations.

For the end-correction, the more intricate models agree well with the measured end
correction at high Strouhal numbers. For lower Strouhal numbers, where the flow-acoustic
interaction alters the end correction, the measurement scatter is too high to discern these
effects clearly.
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8.1 Recommendations

As always, there is room for improvement and there are many ways to continue the present
work. It has been shown for the impedance tube that the measurement precision is much
better than the measurement accuracy and in order to significantly improve the measure-
ment results, the systematic errors have to be taken into account into the analysis.

The use of optimization routines to improve the results based on the canonical expres-
sions for acoustic waves in hardwalled ducts will only improve the results to a certain extent,
as sources of systematic errors that are not captured by the expressions are not taken into
account.

In chapter 6 the sources of the systematic errors have been identified, but no satisfacto-
rily model given to take the effect into the measurement routine. One of those systematic
errors is the microphone impedance. The influence of the microphone impedance should
be taken into account, as it even affects the calibration procedure of the measurement. Fur-
thermore, the measurements of higher order modes are gaining interest, for which a large
amount of microphones are used to be able to perform the wave decomposition, whichmay
affect the obtained results. The proposed model is far from complete, as the effect of the
excitation of higher order modes are not taken into account and may lead to a substantial
influence when the microphone spacing is small.

Another issue is the presence acoustic-structure interaction. This effect is noticeable but
not the major error source in the current measurements, however when measuring higher
order modes, the used waveguides tend to be larger with similar wall thicknesses and thus
less stiff. As the acoustic vibrational pattern changeswith themodes and theirwave numbers
are dispersive, theymay coincide with the vibrational pattern of the structural motion of the
waveguide, leading to a strong coupling.
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APPENDIXA
Measurement setup

In this chapter, additional information on the measurement setup used to deter-
mine the aero-acoustic properties of the area-expansion is given. Detailed dimen-
sions are shown, together with the estimation of the uncertainty in the measure-
ments and the measured flow profiles in the setup are shown.

A.1 Measurement geometry

A schematic of the dimensions of the complete setup is shown in figure A.1, all themeasures
are inmeters and relative to the positions of the area expansion, denoted with the red arrow,
unless otherwise denoted. Themeasurement setup ismade of aluminium and the pipes have
a wall thickness of 5mm.

A.2 Flow profiles

Theflow profiles in themeasurement setup have beenmeasured to see whether the assump-
tion of a fully developed flow is justified and how large the error in the determined volumet-
ric flow rate is when using this assumption. In themeasurements the Reynolds numbers are
in the order of Re = 𝒪(104), resulting in a turbulent flow.

To determine the profiles, a manually operated traversingmechanism has been attached
to the pipes. It has the possibility to rotate around the axis of the tube to measure at differ-
ent different angles across the pipe cross section. A (static)-pitot tube is attached to the
traversing mechanism to determine the flow velocity at various radii. The measurement
plane lied just outside the exit of the pipes 𝒪(0.1mm) (Fig. A.2). Both the flow profiles at
the downstream pipe and at the upstream pipe have been measured.

119



Measurement setup

Mic #5
0.433

Mic #6
0.465

Mic #7
0.495

Mic #8
0.680

Speaker #4
2.530

Temp # 2
0.470

Mic #1
0.485

Mic #2
0.553

Mic #3
0.587

Mic #4
0.757

Temp #1
0.660

Speaker #1
1.301

Speaker #2
1.591

Speaker #3
2.056

Pitot-tube
2.165

1.061.25

Upstream section

Excitation section Measurement section

Downstream section

50mm

Measurement section Excitation section

1.901.50

90mm

1.00

Muffler

Flow direction

Flow direction

FigureA.1: Dimensions of the experimental setup used for the area-expansion measurements
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Figure A.2: Schematic overview of the setups used to determine the flow profiles.
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A.2. Flow profiles

The measurement time was much larger (~500 times) than the integral time scale of
the flow, the so-called eddy turn over time. The measurement range was constricted to be
smaller than the pipe radiiminus 1.5 times the tube diameter. If onewants tomeasure closer
to the wall, a correction should be applied which becomes larger than 0.25% of the dynamic
pressure [125, chap 3]. Before measuring, the flow is allowed to settle, because measuring
immediately after a position change will introduce an error in the measurement value. The
time constant of the measurements has been set to 0.5s. Compressibility effects have been
included as the highest flow speed measured is around 𝑀 ≈ 0.3, leading to a correction of
1% compared to the determined velocities with the incompressible assumption [15]. The
flow velocity is calculated using the relation,

𝑣 = 𝑐0

√√√
⎷

2
𝛾 − 1 [(

𝑝0
𝑝𝑠𝑡𝑎𝑡 )

𝛾−1
𝛾

− 1
]

, (A.1)

in which 𝑐0 is the speed of sound in air, 𝛾 the specific heat capacity ratio, both determined
using the relations from Cramer [65], 𝑝0 the measured stagnation pressure and 𝑝𝑠𝑡𝑎𝑡 the
static (ambient) pressure.

The flow profiles for the downstream pipe have been measured with a static pitot tube
with a diameter of 2.5 mm and three static pressure holes and the profile has been deter-
mined 1.5 m downstream of the area expansion equivalent to around 17 pipe diameters.
For the upstream pipe a glass pitot-tube has been used with a diameter of 0.1 mm. The
flow profile has been measured just at the exit of the upstream pipe, the static pressure has
been measured close to the exit of the tube where quiescent conditions were present. The
difference between the static and stagnation pressure has been measured with a SWEMA
3000 manometer. The temperature of the flow is monitored via a thermo-couple attached
to the outer wall of the pipes and the barometric pressure has been recorded by a BKUZ001
manometer.

The flow profiles of the jet at the area expansion have been measured to determine if
the fluid flow is fully developed. In figure A.3 the measured flow profile at the expansion is
shown for three flow speeds corresponding to upstream Mach numbers of M ≈ 0.03, 0.15
and 0.3. The flow profile on the upstream side shows a good agreement with that of a fully
developed turbulent profile obtained from DNS simulations [117] for all measured speeds.
The slight asymmetry that is present in the flow is caused by the loudspeakers attached to the
pipe. At the loudspeaker position, a pattern of holes has been drilled to be able to excite the
sound field, which also influence the hydrodynamic boundary layer and the velocity profile
does not fully develop itself before it reaches the area expansion.

In figure A.4 the measured velocity profile at the upstream side is shown for flow speeds
corresponding to upstreamMach numbers of M ≈ 0.03, 0.15 and 0.3. The results show that
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Figure A.3: Measured flow profile at the area expansion for three flow speeds:( ) 𝑈𝑚𝑎𝑥 =
10.67 m/s, ( ) 𝑈𝑚𝑎𝑥 = 57.93 m/s,( ) 𝑈𝑚𝑎𝑥 = 105.0 m/s, ( ) fully developed profile from
DNS modelling (Re = 24 000) [117].
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Figure A.4: Measured flow profile of the downstream pipe for three flow speeds:( ) 𝑈𝑚𝑎𝑥 =
3.62 m/s, ( ) 𝑈𝑚𝑎𝑥 = 19.31 m/s,( ) 𝑈𝑚𝑎𝑥 = 34.23 m/s, ( ) fully developed profile from DNS
modelling (Re = 24 000) [117].

the flow velocity profile of the large pipe is not fully developed for all the measured flow
speeds, which can be explained by the close proximity of the measurement plane to the area
discontinuity.
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A.3 Uncertainty in themeasurands

In this section the uncertainty in the measurands is determined. The section follows the
guidelines and terminology as those presented in ”Guide to the Expression of Uncertainty
in Measurement“[126, 127] First the measurement process is defined giving the relation
between the measured quantity and the desired quantity. Thereafter the error model is de-
veloped by identifying the error sources and the error distributions. The information of the
error model is used to determine the sensitivity coefficients and together with the knowl-
edge on the error sources the uncertainty is determined. The uncertainties are presented in
the form of the standard uncertainty, which is the square root of the variance, and the data
is condensed in the form of tables.

The first part of each table consists of all the known constants needed to determine the
uncertainty, i.e. measurement conditions and/or sensitivity components. The middle parts
contains the information on the various measurement errors, their distributions, standard
uncertainty of each measurand itself, the sensitivity components when the measurand is
used to calculate a subject parameter and the component uncertainty of the subject param-
eter which is the standard uncertainty multiplied with the sensitivity. The last grey line of
each table gives the information on the final output value and the uncertainty of this output
value.

In the measurements presented in chapter 5, 6 and 7, the following quantities have to
be measured: barometric pressure, ambient humidity, ambient temperature, pipe radii, mi-
crophone positions, acoustic pressures and flow velocity. In the following part, all these
quantities are treated separately and the measurement uncertainty in each measurand is
presented.

The sensitivity coefficient depend on the measuring circumstances, i.e. what are the
ambient conditions and the measured flow speed. The information presented in this part is
with reference to ambient conditions at SATP (25 ∘C and 100 kPa) and a flow speed of 105
m/s (≈0.3M). The total uncertainty is determined assuming that there are no correlations
between the various error sources.

The frequency accuracy of the digital source in the measurement system is ±0.012%
[128]. As this error is much smaller than the expected errors from the other sources it is
not taken into account into the analysis.

The barometric pressure is measured using a Brüel & Kjær barometer (type UZ 0001),
which has a reading accuracy of 2 hPa. The relative humidity is measured with a Brüel
& Kjær hygrometer, which has a reading accuracy of 5% RH and the pipe radii are mea-
sured using a Vernier calliper. For the three devices, the two common error sources are the
operator bias and the resolution error. The resolution error is assumed to have a uniform
distribution, a 100% confidence level and the error limits equal to the reading accuracy. The
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operator bias is assumed to have a normal distribution with a confidence level of 90% with
error limits equal to half of the reading accuracy.

Unfortunately no information is available for the pressure gauge and the hygrometer on
the repeatability of the device and there is no calibration history present for all the three
devices. Therefore, no statement on other sources of error can be made. The evaluated
uncertainty in the determination of the humidity, the ambient pressure and the pipe radii
are respectively 4.81% RH and 1.93 hPa and 0.097 mm.

The positions of the microphones have been determined via a fitting procedure de-
scribed in section 5.3. The determined uncertainty is 0.02% of themean value. The variance
is directly determined from the data fitting procedure and as the estimate is based upon a
large number of measurement points, the distribution is assumed to be normal based on
the central limit theory.

The temperature ismeasuredusing a thermocouple and circuit incorporating anAD595-
AQ temperature chip. The output of the circuit has a sensitivity of 10 mV/K and is attached
to the VXI system. The resolution error of the VXI system is small compared to the un-
certainty of the output and therefore only the uncertainty in the measurand is taken into
account. The temperature is measured with a standard uncertainty of 0.0625 ∘C [58].

The flow velocity is determined bymeasuring the pressure difference between two ports
of a static-pitot tube with a SWEMA 3000 with the SWA07 pressure probe. The identified
measurement errors of the determination of the differential pressure are the resolution un-
certainty, the reading accuracy of the device and the temperature dependence of the device.
Long term effects have been omitted because there is no information on the calibration
history. The accuracy of the device is ±0.3% of the read value with a minimum of 0.3Pa.
The accuracies stated in the technical documentation have a confidence level of 95% and
the probability density function is assumed to be normal. The reading resolution is 0.1Pa
with an uniform probability density function and a 100 % confidence interval. The temper-
ature dependence of the probe is 0.2Pa/∘C and this source of error is included into the total
differential pressure uncertainty.

By determining the first order Taylor expansion of equation (A.1) with respect to the
measured parameters, the uncertainty in the flow velocity due to uncertainties in the am-
bient conditions can be calculated. The previously determined uncertainties in the temper-
ature and the absolute pressure will be used to determine the measurement errors in these
quantities.
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Error source Value Error limits Conf.
level

Error dist. Estimate
type

DOF Standard un-
certainty

Sensitivity co-
efficient

Component
uncertainty

Humidity measurement

Operator bias ±2.5% RH 90 Normal B ∞ 1.51% RH 1 1.51% RH
Resolution error ±5% RH 100 Uniform B ∞ 2.86% RH 1 2.86% RH
Output 25% RH ∞ 3.23% RH

Barometric pressure

Operator bias ±1 hPa 90 Normal B ∞ 0.61 hPa 1 0.61 hPa
Resolution error ±2 hPa 100 Uniform B ∞ 1.15 hPa 1 1.15 hPa
Output 100 kPa ∞ 1.30 hPa

Temperature

Calibration error A 5 0.0675 ∘C 1 0.0675 ∘C
Output 25 ∘C 5 0.0675 ∘C

Pipe diameter

Operator bias ±0.05 mm 90 Normal B ∞ 30.4 𝜇m 1 30.4 𝜇m
Resolution error ±0.10 mm 100 Uniform B ∞ 57.7 𝜇m 1 57.7 𝜇m
Output 50 mm / 90 mm ∞ 65.2 𝜇m

Flow velocity

Nominal temperature 25 ∘𝐶 5 0.0675 ∘C 176.2 mm/sK 11.89 mm/s
Nominal ambient pressure 100 kPa ∞ 1.39 hPa 0.26 mm/sPa 36.51 mm/s
Nominal pressure difference 6450 Pa
Accuracy ±0.3% min 0.3 Pa [129] ±23.19 Pa 95 Normal B ∞ 11.81 Pa 8.14 mm/sPa 96.29 mm/s
Resolution error ±0.1 Pa 100 Uniform B ∞ 58.7 mPa 7.39 mm/sPa 0.433 mm/s
Temperature dependence 0.2 Pa/∘C [129]
Temperature error ∞ 0.0675 ∘C 0.32 mm/sK 0.022 mm/s
Output 105 m/s 11 103.6 mm/s

Table A.1: Measurement process uncertainties for various variables at SATP and a flow speed of 105 m/s.
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The acoustic pressure is measured by a chain of devices. It consists of a type 4938 BK
(Brüel & Kjær) condenser microphone cartridge attached to a type 2670 BK pre-amplifier.
The output of the pre-amplifier is attached to a BK Nexus signal conditioning amplifier and
the signals are recorded by a Hewlett Packard 1432A data acquisition card inside a VXI
mainframe.

To evaluate the uncertainty in the completemeasurement chain of the acoustic pressure,
the uncertainty in each module has to be calculated and the uncertainties of the previous
modules have to be propagated until the final output is reached. In the following parts, each
module is treated separately and the information about the error sources is given for each
module. The information is summarized in table A.2.

The microphones are calibrated relatively to each other by exposing them to the same
sound field. The repeatability of this calibration gives information about the random error
present in the measurement chain such as internal noise. Such a calibration can be seen as
the microphones are calibrated against an ideal reference which has no bias error associ-
ated with it [127, sec. 8.4]. The repeatability of the measurement process is determined by
performing the calibration several times over a short period (2 days). The repeatability of
the total measurement chain is included as an error source in the VXI system. The deter-
mined variance of the repeatability is lower than the discretization error of the VXI system,
showing that the output of the microphones is very stable.

The microphone cartridge together with the pre-amplifier is considered as a complete
measurement module. The relation between the input (acoustic pressure 𝑝𝑎𝑐) and output
(voltage 𝑈𝑚𝑐) of the microphone is given by

𝑈𝑚𝑐 = 𝑆𝑚𝑐 ⋅ 𝑝𝑎𝑐 , (A.2)

where 𝑆𝑚𝑐 is the sensitivity of the microphone cartridge.
The error sources for the microphone cartridge are identified from the technical data

sheet and these errors are related to temperature variations and ambient pressure variations.
The influence of the humidity is not taken in to account as it is negligible [130]. Furthermore
the influence of electro-magnetic fields and vibrations have been omitted. The effect of flow
noise is not evaluated as an error source in the microphone cartridge but as an error source
at the VXI output as the flow noise is an integral part of the measurand itself.

Introducing the various error sources, the relationship between input and output can be
written as

𝑈𝑚𝑐 = [𝑆𝑚𝑐 + 𝑆𝑡Δ𝑇 + 𝑆𝑝𝑎𝑚𝑏Δ𝑝𝑎𝑚𝑏] 𝑝𝑎𝑐 , (A.3)

where 𝑆𝑡 is the temperature dependence of the microphone sensitivity, Δ𝑇 the temperature
difference relative to the calibration temperature, 𝑆𝑝𝑎𝑚𝑏 the dependence of the microphone
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sensitivity on the ambient pressure and Δ𝑝𝑎𝑚𝑏 the difference in ambient pressure relative to
the calibration conditions.

Themicrophones are calibrated relatively to each other and therefore the environmental
influence on the measured pressures depends on the environmental conditions during the
calibration. After the calibration, the measured values are not compensated for the ambi-
ent variations, leading to an additional biased error source due to changes in the ambient
parameters. To determine the uncertainty in the microphone output, a first order Taylor
expansion is made of equation (A.3) giving rise to,

𝜖𝑈𝑚𝑐 = 𝑆𝑡𝑝𝑎𝑐𝜖𝑇 + 𝑆𝑝𝑎𝑚𝑏𝑝𝑎𝑐𝜖𝑝𝑎𝑚𝑏 , (A.4)

wherein 𝜖𝑇 the error in the temperature and 𝜖𝑝𝑎𝑚𝑏 the error in ambient pressure. The dif-
ference in the temperature at calibration and the temperature during the measurements is
assumed to be within 2 ∘C with an associated 95% confidence limit with normal distribu-
tion. The error limits of the absolute pressure is assumed to be 100Pa with an associated
95% confidence limit and normal distribution. The inherent noise from the microphone
cartridge and pre-amplifier is assumed to have a normal distribution with a 99% confidence
interval. In this analysis an acoustic pressure amplitude 𝑝𝑎𝑐 of 1Pa,corresponding to 94 dB,
is used to calculate the sensitivity coefficients. Assuming that there are no correlations be-
tween the error sources, the uncertainty of the output of the microphone is calculated to be
1.6mV ± 2.83𝜇V.

The microphone is connected to a Nexus signal conditioning system which amplifies
the measured input from the microphone cartridge. In this analysis the amplification is
assumed to be equal to 62.5, such that the output will have a response of 100mV/Pa. The
associated errors with this device is the harmonic distortion of the output signal caused by
the amplification. The error sources is assumed to be normal distributed and the error limits
fall within a 99% confidence interval. The amplitude accuracy and channel to channel phase
match of the Nexus system are not taken into account as these error sources are assumed
to be bias errors which are accounted for during the calibration procedure. By determining
the error model and applying the error sources the uncertainty in the output of the Nexus
system is calculated to be 100mV ± 0.109mV

The last module in the measurement chain is the data acquisition system, consisting
of a VXI-mainframe with an HP1432A data acquisition module (DAQ). The DAQ stores
the information digitally and thus there is a resolution error associated with this process.
The resolution error of the VXI system depends on the measurement range of the chosen
channels. During the measurement procedure the channels are auto-ranged to have the
optimum range for the measurement. For this case, the measuring range is set to 2V, the
lowest range available to the VXI system.
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The repeatability of the calibration process is used to evaluate the random error, not
induced by the flow noise, of the measured pressures. It is assumed that the short term
variations in the channel to channel phase match and the amplitude accuracy of both the
Nexus system and theDAQare taken into account in this typeA error source. Themeasured
values are complex quantities and therefore the uncertainty has been determined as the
frequency averaged deviation of the absolute value of the measured transfer function from
itsmean value. This definition assumes that the uncertainties in the real and imaginary parts
are equal and uncorrelated. The associated degree of freedom of this estimate is 𝜈 = 𝑁 − 1,
where 𝑁 is the number of frequencies used to determine the calibration . The calibration
data that is obtained from the calibration process is a relative quantity and therefore the
obtained uncertainty has to bemultipliedwith themagnitude of the pressure signal to obtain
the real measurement uncertainty.
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Error source Value Error limits Conf.
level

Error dist. Estimate
type

DOF Standard un-
certainty

Sensitivity coeffi-
cient

Component
uncertainty

Microphone Cartridge

Acoustic pressure 1 1Pa
Microphone sensitivity 1.6 mV/Pa [131]
Temperature coefficient 0.003 dB/K [131]
Atm Pressure coefficient −0.003 dB/kPa [131]
Temperature error ±5 ∘C 95% Normal B ∞ 2.55 ∘C 1.106 𝜇V/PaK 2.82 𝜇V
Atm pressure error ±5 hPa 95% Normal B ∞ 2.55 hPa −1.106 𝜇V/PakPa 0.28 𝜇V
Output 1.6 mV ∞ 2.83 𝜇V

Nexus

Input 1.6 mV ∞ 2.83 𝜇V 62.5 0.177 mV
Signal amplification 62.5
Harmonic distortion < 0.003% [132] 99% Normal B ∞ 1.16 𝜇V 1 1.16 𝜇V
Output 100 mV ∞ 0.109 mV

HP1432A

Input 100 mV ∞ 1 0.109 mV
Resolution 16bit [133] ±0.153 mV 100% Uniform B ∞ 17.6 𝜇V 1 17.6 𝜇V
Repeatability amplitude Normal A 6600 0.99 𝜇V 1 0.99 𝜇V
Output 100 mV ∞ 0.1104 mV

Table A.2: Measurement process uncertainty for the acoustic pressure at SATP and a flow speed of 105 m/s.
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APPENDIXB
Measurementmethods

In this chapter the procedures to obtain the experimental data are clarified. The
first part introduces the measurement routine. Thereafter the signal processing,
to determine the statistical parameters on the measurements is introduced. The
chapter concludes with the concept of the widely linear minimum variance unbi-
ased estimator.

B.1 Measurement routine

To obtain accurate measurements, several calibrations have to be performed before the ac-
tual measurement is conducted. In figure B.1 the flow chart of the measurements is given.

Themicrophones are calibrating by exposing them to an equal sound field in a calibrator
and the transfer functions w.r.t. an arbitrary microphone are calculated [63]. These transfer
functions are used to adjust the measured complex pressures. The microphones have been
calibrated at distinct pressure with a stepped sine measurement procedure and controlling
the amplitude of excitation. This procedure has been repeated 5 times to check short term
repeatability and finally averaged to obtain the calibration data.

The second step is to experimentally determine themicrophone positions. First the am-
bient conditions are noted and then a stepped sine excitation is used as an excitation source.
The amplitude of the incident sound wave is iteratively adjusted to a specified value by per-
forming the wave decomposition and adjusting the source level prior to measuring. There-
after the pressures at the microphone positions are measured for a predetermined time to-
gether with the temperature. The microphone positions are then fitted to the measurement
data to obtain the best agreement with an analytical model computing the wave-numbers
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Figure B.1: Flowchart of the acoustic measurements on the area expansion.
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for each frequency using the ambient data and the measurement temperature. This method
is described in more detail in section 5.3.

The actual measurement is conducted in a similar manner, first the ambient conditions
are measured and thereafter an excitation is applied. An excitation is applied at both sides
of the error expansion, with different frequencies at each side of the expansion. The in-
coming wave strength for each side is iteratively adjusted to a specified value and when the
amplitudes reach the desired levels, the time signals are recorded for a pre-specified time.
The transfer function between the excitation source and the measured signal at the micro-
phones is obtained using the synchronous demodulation technique, as explained in chapter
2. The signal processing to determine the statistical estimates will be explained in the next
section.

B.2 Signal analysis

Statistical estimates

Using the time dependent transfer function, the statistical quantities of the transfer function
can be obtained by measuring the transfer function at different times and determining the
statistical parameters of the real and imaginary part of the transfer function.

To determine the statistical parameters, consider a vector of observed transfer functions
at a specific time, obtained with the synchronous demodulation technique,

𝑯 = [𝐻1 … 𝐻𝑛 … 𝐻𝑁 ] , (B.1)

The expected value of the transfer functions is given by

𝐻𝜇 = E [𝑯] , (B.2)

where the expectation operator is taken over multiple observations. The covariance matrix
is then given by,

Cov [𝐻] = E [(ℜ [𝑯 − 𝐻𝜇]) (ℑ [𝑯 − 𝐻𝜇])𝑇
] , (B.3)

which gives information on the variance of the real and imaginary part of each transfer func-
tion and the correlation between the real and imaginary parts of the 𝑁 measured transfer
functions.

To determine the covariance matrix, the samples have to be statistically independent
from each other. When performing measurements under flow conditions, the flow is a ma-
jor source of noise. This noise is caused by large and small scale flow structures that induce
hydrodynamic pressure fluctuations that are recorded by the microphones. Consequently,
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FigureB.2: A schematic overview of the signal processing used to obtain the transfer functions
between the acoustic source and the measured acoustic pressures and their statistical parame-
ters.

when the flow structures are large, the measured pressure perturbations will have a finite
correlation time. The correlation time of the flow is determined by measuring the pressure
fluctuations and determining the autocorrelation time of the signal. The autocorrelation
time is determined by measuring the time it takes for the scaled autocorrelation function to
be smaller then 0.05.

Furthermore, multiple frequencies are excited during the measurements and the mea-
sured signals consists of multiple tones. As these parts are deterministic, they have to be
filtered away to obtain unbiased estimates. After applying the synchronous demodulation,
the tones not associated with the used reference signal will also create slow and fast oscil-
lating parts (2.4). The frequencies of these parts are given by the difference and sum of the
frequency of the tone and the reference frequency, and have to be filtered away using the
appropriate integration time.

When all deterministic parts have been filtered away, the resulting signal can be sampled
at times larger then the integration times of the used filter, to obtain uncorrelated samples.
A flow chart of the signal processing is shown in figure B.2.

B.3 Widely linear minimum variance unbiased estimator

To decompose the acoustic field, the inverse relation between the acoustic field and the
modal amplitudes, (3.62), has to be determined. The inverse problem can be seen as the
regression of a linear model on observations, which is extensively used in statistics. The
linear system is given by,

𝑨𝒙 = 𝒃, (B.4)

where 𝑨 is the model, 𝒙 are the vector of model parameters and 𝒃 the vector of observa-
tions. As there are more observations then unknowns, the solution to the system is not
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unique. One often used estimator of the modal amplitudes is obtained by pre-multiplying
the measured pressures with the Moore-Penrose pseudo inverse, which obtains the linear
least square estimator for the modal amplitudes. The linear least square estimator makes
assumptions on the errors on the model and the observations. The first assumption is that
the model itself is true, secondly the errors on observations are assumed to have the same
variance, are normally distributed and are uncorrelated with each other. If the above as-
sumptions are not full-filled, the model coefficients will have a bias.

In general, some of these assumptions are violated when there is a flow present. As will
be shown in chapter 2 the variance on the real and imaginary part of the measured trans-
fer functions do not have to be the same and is dependent on the background spectrum.
Furthermore, the variance of the measured transfer function is caused by the flow-noise. A
part of this unwanted signal is caused by large scale flow structures that induce a hydrody-
namic pressure at the microphones. When the length scale of these flow structures is in the
order of, or larger than the microphone separation distance, the unwanted signal will be
correlated between the microphone positions.

On the other hand, it can be shown that the error on the measured transfer functions
can be approximated to be normally distributed, when the integration time is long enough
(Chap. 2). Thebias induced due the cross-correlation between the error sources can be taken
into account, with aweighted estimator such as the generalized least squares solution. As the
model (3.62) is given in the complex domain, some extra considerations have to be taken
into account to obtain an estimator which takes into account the presence of correlated
noise.

A complex number can be represented by two real numbers, but a relationship between
two complex numbers is fundamentally different when the relationship is the complex do-
main or in the two-dimensional real space [46]. This can be appreciated by considering the
ℂ linear relationship between two complex scalars, 𝑥 = 𝑢 + 𝑖𝑣 and 𝑦 = 𝑎 + 𝑖𝑏,where 𝑖 is the
imaginary unit, is given by

𝑦 = 𝑘𝑥. (B.5)

This relation can be represented by a linear system of equations relating the real and imag-
inary part of 𝑥 and 𝑦,

[
𝑎
𝑏]

=
[

ℜ [𝑘] −ℑ [𝑘]
ℑ [𝑘] ℜ [𝑘] ] [

𝑢
𝑣]

, (B.6)

on the other hand, a general transformation on ℝ2 is given by,

[
𝑎
𝑏]

=
[

𝑀11 𝑀12
𝑀21 𝑀22] [

𝑢
𝑣]

, (B.7)
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where the elements of𝑴 can be freely chosen. The complex equivalent of the general trans-
formation (B.7), called the widely linear transformation, is represented in the complex do-
main by using the complex conjugate, denoted by�∗,

𝑦 = 𝑘1𝑥 + 𝑘2𝑥∗. (B.8)

Therefore, to obtain general results that both hold in ℝ2𝑛 and ℂ𝑛, the system of equations
have to be represented using the equations and their complex conjugates. To do so, the
augmented vector is introduced,

𝒙 =
[

𝑥
𝑥∗]

, 𝒚 =
[

𝑦
𝑦∗]

. (B.9)

and the widely linear transformation can be represented with,

𝒚 = 𝑲𝒙, 𝑲 =
[

𝑘1 𝑘2
𝑘∗

1 𝑘∗
2]

. (B.10)

Using the above representation, the linear system (B.4) is given by,

𝑨𝒙 + 𝒏 = 𝒃. (B.11)

The unbiased estimator of the above augmented linear system, the widely linear mini-
mum variance unbiased estimator, or in statistics language the Best Linear Unbiased Esti-
mator (BLUE), is given by,

�̂� = (𝑨𝐻 𝑹−1
𝑛𝑛 𝑨)−1 𝑨𝐻 𝑹−1

𝑛𝑛 𝒚. (B.12)

in which 𝑹𝑛𝑛 is the augmented covariance matrix of 𝒏. The above formulation is analogous
to the standard best linear unbiased estimated for linear systems in the real domain, the
general linear least squares [45]. The augmented covariance matrix is given by,

𝑹𝑛𝑛 = E [(𝒏 − 𝝁
𝑛) (𝒏 − 𝝁

𝑛)
𝐻

] . (B.13)

Using the signal processing as explained in the previous section, the augmented covari-
ance matrix can be obtained and the widely linear minimum variance unbiased estimator
of (3.62) can be determined.

It should be noted that when including the statistical information of the added noise
into the model formulation, the linear least squares method becomes sensitive to errors in
the (augmented) covariance matrix and enough samples have to be taken to ensure that
the measured covariance matrix is representative for the problem and that the errors are
normally distributed [134]. If this not the case, the obtained results can fall outside the
confidence intervals of the observations when strong correlations are present [135–138].

136



Bibliography

[1] Burden of disease from environmental noise. Quantification of healthy life years lost in Europe.
World Health Organization, 2011.

[2] The European Parliament and Council. „Decision No 1386/2013/EU. on a General Union
Environment Action Programme to 2020 ‘Living well, within the limits of our planet’“. In:
Official Journal of the European Union (2013).

[3] M. J. Lighthill. „On Sound Generated Aerodynamically. I. General Theory“. In: Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences 211.1107 (Mar. 1952),
pp. 564–587.

[4] S. Sack andM.Åbom. „Onacousticmulti-port characterisation including higher ordermodes“.
In: Acta Acustica united with Acustica 102.5 (Sept. 2016), pp. 834–850.

[5] Todd Schultz, Mark Sheplak, and Louis N. Cattafesta III. „Uncertainty analysis of the two-
microphone method“. In: Journal of sound and vibration 304 (2007), pp. 91–100.

[6] Lin Zhou and Hans Bodén. „A systematic uncertainty analysis for liner impedance eduction
technology“. In: Journal of Sound and Vibration 356 (Nov. 2015), pp. 86–99.

[7] Julius S. Bendat and Allan G. Piersol. Engineering Applications of Correlation and Spectral
Analysis, 2nd Edition. Wiley-Interscience, 1993.

[8] H. Van der Auweraer et al. „Accurate modal analysis measurements with programmed sine
wave excitation“. In: Mechanical Systems and Signal Processing 1.3 (July 1987), pp. 301–313.

[9] R. Pintelon, Y. Rolain, andW. VanMoer. „Probability density function for frequency response
function measurements using periodic signals“. In: Proceedings of the 19th IEEE Instrumenta-
tion and Measurement Technology Conference (2002).

[10] Todd Schultz,Mark Sheplak, and LouisN. Cattafesta. „Application ofmultivariate uncertainty
analysis to frequency response function estimates“. In: Journal of Sound and Vibration 305.1-2
(Aug. 2007), pp. 116–133.

[11] Michael Feldman. „Hilbert transform in vibration analysis“. In:Mechanical Systems and Signal
Processing 25.3 (Apr. 2011), pp. 735–802.

137



Bibliography

[12] S. O. Rice. „Mathematical analysis of random noise“. In: Bell System Technical Journal 23.3
(July 1944), pp. 282–332.

[13] AllanD. Pierce.Acoustics: an introduction to its physical principles and applications. Acoustical
Society of America, 1994.

[14] S.W. Rienstra and A. Hirschberg. An introduction to acoustics. July 2012.

[15] John D. Anderson. Modern Compressible Flow: With Historical Perspective. McGraw-Hill Sci-
ence/Engineering/Math, 2002.

[16] L. Fritsche. „Theorie des akustischen Zylinderresonators unter Berücksichtigung der Schal-
lanregung (II)“. In: Acustica (1960).

[17] M.Thiesen. „ZurTheorie des geschlossenenResonators“. In:Annalen der Physik 329.13 (1907),
pp. 401–438.

[18] Sjoerd W. Rientsra. Fundamentals of duct acoustics. 2015.

[19] L. J. Eriksson. „Higher order mode effects in circular ducts and expansion chambers“. In:
Journal of the acoustical society of america 68 (1980), pp. 545–550.

[20] ChenyangWeng, SusannBoij, andArdeshirHanifi. „On the calculation of the complexwavenum-
ber of plane waves in rigid-walled low-Mach-number turbulent pipe flows“. In: Journal of
Sound and Vibration 354 (Oct. 2015), pp. 132–153.

[21] Chenyang Weng and Friedrich Bake. „An analytical model for boundary layer attenuation
of acoustic modes in rigid circular ducts with uniform flow“. In: Acta Acustica united with
Acustica 102.6 (Nov. 2016), pp. 1138–1141.

[22] Ralph E. Beatty. „Boundary layer attenuation of higher order modes in rectangular and cir-
cular tubes“. In: Journal of the Acoustical Society of America 22.6 (1950), p. 850.

[23] G. Kirchhoff. „Über den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung“.
In: Annalen der Physik und Chemie 210.6 (1868), pp. 177–193.

[24] Marten Nijhof. „Viscothermal Wave Propagation“. Phd thesis. University of Twente, 2010.

[25] ChenyangWeng et al. „Experimental investigation of sound field decomposition with higher
order modes in rectangular ducts“. In: 22nd AIAA/CEAS Aeroacoustics Conference. American
Institute of Aeronautics and Astronautics (AIAA), May 2016.

[26] E. Dokumaci. „Sound transmission in narrow pipes with superimposed uniform mean flow
and acoustic modelling of automobile catalytic converters“. In: Journal of Sound and Vibration
182.5 (May 1995), pp. 799–808.

[27] Erkan Dokumaci. „On the effect of viscosity and thermal conductivity on sound propagation
in ducts: A re-visit to the classical theory with extensions for higher ordermodes and presence
of mean flow“. In: Journal of Sound and Vibration 333.21 (Oct. 2014), pp. 5583–5599.

[28] C. Ahrens and D. Ronneberger. „Luftschalldämpfung in turbulent durchströmten, schall-
harten Rohren bei verschiedenen Wandrauhigkeiten“. In: Acustica (1971).

138



Bibliography

[29] Chenyang Weng. „Theoretical and numerical studies of sound propagation in low-Mach-
number duct flows“. PhD thesis. Kungliga Tekniska Högskolan, 2015.

[30] R.B. Marks and D.F. Williams. „A general waveguide circuit theory“. In: Journal of Research of
the National Institute of Standards and Technology 97.5 (1992), pp. 533–562.

[31] Ernest S. Kuh and R.A. Rohrer. Theory of linear active networks. Holden-Day Inc., 1967.

[32] Carl Gerhold, Randolph Cabell, andMartha Brown. „Development of an experimental rig for
investigation of higher order modes in ducts“. In: 12th AIAA/CEAS Aeroacoustics Conference
(27th AIAA Aeroacoustics Conference). American Institute of Aeronautics and Astronautics
(AIAA), May 2006.

[33] Stefan Sack et al. „Generation and scattering of acoustic modes in ducts with flow“. In: 20th
AIAA/CEAS Aeroacoustics Conference (June 2014).

[34] ChenyangWeng. „Modeling of sound-turbulence interaction in lowmachnumber duct flows“.
Licentiate Thesis. Royal institute of Technology Stockholm Sweden, 2013.

[35] Mats Åbom andHans Bodén. „Error analysis of two-microphonemeasurements in ducts with
flow“. In: Journal of the Acoustical Society of America 83 (1988), pp. 2429–2438.

[36] Hans Bodén. „Influence of errors on the two-microphone method for measuring acoustic
properties in ducts“. In: The Journal of the Acoustical Society of America 79.2 (1986), pp. 541–
549.

[37] H.Hudde and U. Letens. „Untersuchung zum akustischen Meßleitungsverfahren mit festen
Meßorten“. In: Acustica 56.4 (1984), pp. 258–268.

[38] Brian F. G. Katz. „Acoustic absorption measurement of human hair and skin within the audi-
ble frequency range“. In:TheJournal of theAcoustical Society ofAmerica 108.5 (2000), pp. 2238–
2242.

[39] René Boonen et al. „Calibration of the two microphone transfer function method with hard
wall impedance measurements at different reference sections“. In: Mechanical Systems and
Signal Processing 23.5 (July 2009), pp. 1662–1671.

[40] Paul Dickens, John Smith, and Joe Wolfe. „Improved precision in measurements of acoustic
impedance spectra using resonance-free calibration loads and controlled error distribution“.
In: The Journal of the Acoustical Society of America 121.3 (2007), pp. 1471–1481.

[41] Vincent Gibiat and Franck Laloë. „Acoustical impedance measuremetns using the two mi-
crophone three calibration method.“ In: Journal of the acoustical society of america 88 (1990),
p. 2533.

[42] Takao Suzuki and Benjamin J. Day. „Comparative study on mode-identification algorithms
using a phased-array system in a rectangular duct“. In: Journal of Sound and Vibration 347
(July 2015), p. 2745.

[43] HughW.Coleman andW.Glenn Steele.Experimentation,Validation, andUncertaintyAnalysis
for Engineers. Wiley, 2009.

139



Bibliography

[44] J. Lavrentjev andM.Åbom. „Characterization of fluidmachines as acousticmulti-port source“.
In: Journal of Sound and Vibration 197.1 (Oct. 1996), pp. 1–16.

[45] Richard A.Johnson and Dean W. Wichern. Applied Multivariate Statistical Analysis. 2007.

[46] Peter J. Schreier and Louis L. Scharf. Statistical Signal Processing of Complex-Valued Data.
Cambridge University Press (CUP), 2009.

[47] Travis V. Anderson andChristopher A.Mattson. „Propagating skewness and kurtosis through
engineering models for low-cost, meaningful, nondeterministic design“. In: Journal of Me-
chanical Design 134.10 (2012), p. 100911.

[48] B.D. Hall. Note on complex measurement uncertainty - part 1. Tech. rep. Measurement stan-
dards laboratory of New Zealand, 2010.

[49] G. W. Stewart and Ji-Guang Sun. Matrix Perturbation Theory. ACADEMIC PR INC, 1990.
374 pp.

[50] Assem Deif. Sensitivity Analysis in Linear Systems. Springer, 1986. 240 pp.

[51] A. J. Geurts. „A contribution to the theory of condition“. In: Numerische Mathematik 39.1
(Feb. 1982), pp. 85–96.

[52] Mario Arioli, Marc Baboulin, and Serge Gratton. „A Partial Condition Number for Linear
Least Squares Problems“. In: SIAM Journal on Matrix Analysis and Applications 29.2 (Jan.
2007), pp. 413–433.

[53] Marc Baboulin et al. „Computing the conditioning of the components of a linear least-squares
solution“. In: Numerical Linear Algebra with Applications 16.7 (July 2009), pp. 517–533.

[54] S.Gratton. „On the conditionnumber of linear least squares problems in aweighted Frobenius
norm“. In: BIT Numerical Mathematics 36.3 (Sept. 1996), pp. 523–530.

[55] Per-ÅkeWedin. „Perturbation theory for pseudo-inverses“. In: BIT 13.2 (June 1973), pp. 217–
232.

[56] S. Chandrasekaran and I. C. F. Ipsen. „On the Sensitivity of Solution Components in Linear
Systems of Equations“. In: SIAM Journal on Matrix Analysis and Applications 16.1 (Jan. 1995),
pp. 93–112.

[57] Philip McCord Morse and K. U. Ingard. Theoretical Acoustics. Princeton University Press,
Jan. 1, 1987. 949 pp.

[58] L.B.W. Peerlings. „Methods and techniques for precise and accurate in-duct aero-acoustic
measurements“. Licentiate Thesis. Kungliga Tekniska Högskolan Stockholm, 2015.

[59] Stefan Busse-Gerstengarbe et al. „Comparative Study of Impedance Eduction Methods, Part
1: DLR Tests and Methodology“. In: 19th AIAA/CEAS Aeroacoustics Conference. American
Institute of Aeronautics and Astronautics (AIAA), May 2013.

[60] D. F. Williams, C. M. Wang, and U. Arz. In-Phase/Quadrature Covariance-Matrix Represen-
tation of the Uncertainty of Vectors and Complex Numbers. Tech. rep. National Institute of
Standards and Technology, 2004.

140



Bibliography

[61] P.E. Doak. „Excitation, transmission and radiation of sound from source distributions in
hard-walled ducts of finite length (I): The effects of duct cross-section geometry and source
distribution space-time pattern“. In: Journal of Sound and Vibration 31.1 (Nov. 1973), pp. 1–
72.

[62] P.E.Doak. „Excitation, transmission and radiation of sound from source distributions in hard-
walled ducts of finite length (II):The effects of duct length“. In: Journal of Sound and Vibration
31.2 (Jan. 1973), pp. 137–174.

[63] G. Krishnappa. „Cross-spectral method of measuring acoustic intensity by correcting phase
and gain mismatch errors by microphone calibration“. In:The Journal of the Acoustical Society
of America 69.1 (1981), p. 307.

[64] Brian F. G. Katz. „Method to resolve microphone and sample location errors in the two-
microphone duct measurement method“. In: The Journal of the Acoustical Society of America
108.5 (2000), pp. 2231–2237.

[65] Owen Cramer. „The variation of the specific heat ratio and the speed of sound in air with
temperature, pressure, humidity, and CO2 concentration“. In: The Journal of the Acoustical
Society of America 93.5 (1993), pp. 2510–2516.

[66] R. D. Fay. „Attenuation of Sound in Tubes“. In: Journal of the Acoustical Society of America
10.3 (1939), p. 259.

[67] Thomas Lavergne et al. „Dynamic behavior of the circular membrane of an electrostatic mi-
crophone: Effect of holes in the backing electrode“. In: The Journal of the Acoustical Society of
America 128.6 (Dec. 2010), pp. 3459–3477.

[68] Dorel Homentcovschi and Ronald N. Miles. „An analytical-numerical method for determin-
ing the mechanical response of a condenser microphone“. In: The Journal of the Acoustical
Society of America 130.6 (Dec. 2011), pp. 3698–3705.

[69] J. Han, D.W. Herrin, and A.F. Seybert. „Accurate measurement of small absorption coeffi-
cients“. In: 23rd International Congress on Sound & Vibration. 2007.

[70] Francesco Taddei et al. „Setup of a test rig for the characterization of devices for acoustic
measurements in hot flow“. In: 23rd International congress on sound and vibration. 2016.

[71] W. P.Mason. „The Propagation Characteristics of Sound Tubes and Acoustic Filters“. In: Phys-
ical Review 31.2 (Feb. 1928), pp. 283–295.

[72] E. vonWaetzmann undW.Wenke. „Schalldämpfung in Rohren und Schlauchen“. In:Akustis-
che Zeitung 1 (1939), pp. 1–9.

[73] Leo L. Beranek. „PrecisionMeasurement of Acoustic Impedance“. In: Journal of the Acoustical
Society of America 12.1 (1940), p. 3.

[74] P. S. H. Henry. „The tube effect in sound-velocity measurements“. In: Proceedings of the Phys-
ical Society 43.3 (1931), p. 340.

141



Bibliography

[75] D.E.Weston. „TheTheory of the Propagation of Plane SoundWaves in Tubes“. In: Proceedings
of the Physical Society. Section B 66.8 (Aug. 1953), pp. 695–709.

[76] D.E. Weston and I.D. Campbell. „Experiments on the Propagation of Plane Sound Waves in
Tubes I: The Adiabatic Region: II: The Transition Region“. In: Proceedings of the Physical So-
ciety. Section B 66.9 (Sept. 1953), pp. 769–774.

[77] H. Roesler. „Der Zylinderresonator für Präzisionsmessungen der Schallabsorption in Gasen“.
In: Acustica 17 (1966).

[78] M.C.A.M. Peters et al. „Damping and reflection coefficient measurements for an open pipe at
low Mach and low Helmholtz numbers“. In: Journal of Fluid Mechanics 256 (1993), pp. 499–
534.

[79] L. B. Evans. „Atmospheric Absorption of Sound: Theoretical Predictions“. In: Journal of the
Acoustical Society of America 51.5B (1972), p. 1565.

[80] H. E. Bass. „Atmospheric absorption of sound: Update“. In: Journal of the Acoustical Society
of America 88.4 (1990), p. 2019.

[81] H. E. Bass. „Atmospheric absorption of sound: Further developments“. In: Journal of theAcous-
tical Society of America 97.1 (1995), p. 680.

[82] Allan J. Zuckerwar. „Low-frequency absorption of sound in air“. In: Journal of the Acoustical
Society of America 78.3 (1985), p. 946.

[83] Allan J. Zuckerwar. „Resonant tube for measurement of sound absorption in gases at low
frequency/pressure ratios“. In: Journal of the Acoustical Society of America 68.1 (1980), p. 218.

[84] F.F. Legusha. „The Konstantinov effect and sound absorption in inhomogeneuos media“. In:
Soviet Physics Uspekhi 27.11 (1984).

[85] F.F. Legusha. „Impedance effet of a liquid interfacewith allowance for theKonstantinov effect“.
In: Sovjet Physics Technical Physics (1984).

[86] A. Ya Savel’ev. „Konstantinov effect in certain acoustical problems“. In: Sovjet Physical Acous-
tics 19.2 (1973).

[87] M. Bruneau et al. „General formulation of the dispersion equation in bounded visco-thermal
fluid, and application to some simple geometries“. In:Wave Motion 11.5 (Sept. 1989), pp. 441–
451.

[88] L. Fritsche. „Präzisionsmessung der klassischen Schallabsorption mit hilfe des Zylinderres-
onators (I)“. In: Acustica 10.4 (1960).

[89] T. Yazaki, Y. Tashiro, and T. Biwa. „Measurements of sound propagation in narrow tubes“. In:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463.2087
(Aug. 2007), pp. 2855–2862.

[90] C. Zwikker and C. W. Kosten. Sound absorbing materials. 1949.

[91] H. Tijdeman. „On the propagation of sound waves in cylindrical tubes“. In: Journal of Sound
and Vibration 39.1 (Mar. 1975), pp. 1–33.

142



Bibliography

[92] P. T. Tsilingiris. „Thermophysical and transport properties of humid air at temperature range
between 0 and 100∘C“. In: Energy Conversion and Management 49.5 (May 2008), pp. 1098–
1110.

[93] Baron Rayleigh JohnWilliam Strutt. The theory of sound. Vol. 2. London Macmillan and CO,
1878.

[94] John Miles. „The Reflection of Sound due to a Change in Cross Section of a Circular Tube“.
In: The Journal of the Acoustical Society of America 16.1 (1944), p. 14.

[95] J. Kergomard and A. Garcia. „Simple discontinuities in acoustic waveguides at low frequen-
cies: Critical analysis and formulae“. In: Journal of Sound and Vibration 114.3 (May 1987),
pp. 465–479.

[96] D. Ronneberger. „Experimentelle untersuchungen zum akustischen reflexionsfaktor von un-
stetigen querschnittsanderungen in einem luftdurchströmten rohr“. In: Acustica 19 (1967),
pp. 222–235.

[97] A. Cummings. „Sound transmission at sudden area expansions in circular ducts, with super-
imposed mean flow.“ In: Journal of sound and vibration 38 (1975), pp. 149–155.

[98] A. Cummings. „Sudden area change in flow ducts: Further thoughts“. In: Journal of sound and
vibration 54 (1977), pp. 611–612.

[99] Renzo Arina. „Validation of a Discontinuous Galerkin Implementation of the Time-Domain
Linearized Navier–Stokes Equations for Aeroacoustics“. In: Aerospace 3.1 (Feb. 2016), p. 7.

[100] S. Föller and W. Polifke. „Identification of aero-acoustic scattering matrices from large eddy
simulation. Application to a sudden area expansion of a duct“. In: Journal of sound and vibra-
tion 331 (2012), pp. 3096–3113.

[101] A. Kierkegaard, S. Boij, and G. Efraimsson. „Simulations of the scattering of sound waves at
a sudden area expansion“. In: Journal of Sound and Vibration 331.5 (2012), pp. 1068–1083.

[102] G. Kooijman, A. Hirschberg, and Y. Aurégan. „Influence of mean flow and geometrical ratio
on scattering of sound at a sudden area expansion in a duct“. In: Journal of sound and vibration
329 (2010), pp. 607–626.

[103] Susann Boij. „Flow effects on the acoustic end correction of a sudden in-duct area expansion“.
In: The Journal of the Acoustical Society of America 126.3 (2009), pp. 995–1004.

[104] I. D. J. Dupére, re, and A. P. Dowling. „Absorption of Sound near Abrupt Area Expansions“.
In: AIAA Journal 38.2 (Feb. 2000), pp. 193–202.

[105] I.D.J. Dupére and A.P. Dowling. „The absorption of sound near abrupt axisymmetric area
expansions“. In: Journal of sound and vibration 239.4 (2001), pp. 709–730.

[106] R. F. Lambert. „Acoustic synthesis of a flowduct area discontinuity“. In: The Journal of the
Acoustical Society of America 67.1 (1980), p. 59.

143



Bibliography

[107] D. Ronneberger. Theoretische und experimentelle Untersuchung der Schallausbreitung durch
Querschittssprünge und Lochplatten in Strömungskanälen. Tech. rep. Drittes Physikalisches
Institut der Universität Göttingen, 1987.

[108] S. Boij and B. Nilsson. „Scattering and absorption of sound at flow duct expansions“. In: Jour-
nal of Sound and Vibration 289.3 (2006), pp. 577–594.

[109] D.G. Crighton. „Radiation Properties of the semi-infinite vortex sheet“. In: Proceedings of the
Royal society of London. Series A, Mathematical and Physical Sciences 1581 (330 Oct. 3, 1972),
pp. 185–198.

[110] A. M. Cargill. „Low-frequency sound radiation and generation due to the interaction of un-
steady flow with a jet pipe“. In: Journal of Fluid Mechanics 121.-1 (Aug. 1982), p. 59.

[111] M. S. Howe. „Attenuation of sound in a low Mach Number nozzle flow“. In: Journal of Fluid
Mechanics 91.02 (Mar. 1979), p. 209.

[112] A.Michalke. „On spatially growing disturbances in an inviscid shear layer“. In: Journal of Fluid
Mechanics 23.03 (Nov. 1965), p. 521.

[113] D. Ronneberger and C. D. Ahrens. „Wall shear stress caused by small amplitude perturba-
tions of turbulent boundary-layer flow: an experimental investigation“. In: Journal of Fluid
Mechanics 83.03 (Dec. 1977), p. 433.

[114] Harold Levine and Julian Schwinger. „On the Radiation of Sound from anUnflanged Circular
Pipe“. In: Physical Review 73.4 (Feb. 1948), pp. 383–406.

[115] C.L. Morfey. „Sound transmission and generation in ducts with flow“. In: Journal of Sound
and Vibration 14.1 (Jan. 1971), pp. 37–55.

[116] Y. Aurégan and R. Starobinski. „Determination of acoustical energy dissipation production
potentiality from the acoustical transfer function of a multiport“. In: Acta acustica 85 (1999),
pp. 788–792.

[117] XiaohaWu and ParvizMoin. „A direct numerical simulation study on themean velocity char-
acteristics in turbulent pipe flow“. In: Journal of Fluid Mechanics 608 (July 2008).

[118] Ascher H. Shapiro. The dynamics and thermodynamics of compressible flow. Vol. 2. 1954.

[119] C. Lahiri et al. „Attenuation of sound in wide ducts with flow at elevated pressure and tem-
perature“. In: Journal of Sound and Vibration 333.15 (July 2014), pp. 3440–3458.

[120] Andreas Holmberg, Mats Åbom, and Hans Bodén. „Accurate experimental two-port analysis
of flow generated sound“. In: Journal of Sound and Vibration 330.26 (Dec. 2011), pp. 6336–
6354.

[121] Lewis F. Moody and N.J. Princeton. „Friction factors for pipe flow“. In: Transactions of the
ASME 66.8 (1944), pp. 671–684.

[122] Y. Aurégan, A. Debray, and R. Starobinski. „Low frequency sound propagation in a coaxial
cylindrical duct: application to sudden area expansions and to dissipative silencers“. In: Jour-
nal of Sound and Vibration 243.3 (June 2001), pp. 461–473.

144



Bibliography

[123] G. Kooijman et al. „Multimodal method for scattering of sound at a sudden area expansion
in a duct with subsonic flow“. In: Journal of sound and vibration 310 (2008), pp. 902–922.

[124] S. Boij and B. Nilsson. „Reflection of sound at area expansions in a flow duct“. In: Journal of
Sound and Vibration 260.3 (2003), pp. 477–498.

[125] P. Bradshaw. Experimental Fluid Mechanics Second Edition. Pergamon Press, 1970.

[126] Evaluation of measurement data - Guide to the expression of uncertainty in measurement. Tech.
rep. Bureau International des Poids et Mesures, 1995.

[127] National Aeronautics and space administration. Measurement uncertainty analysis principles
andmethods, NASA Measurement Quality Assurance Handbook - ANNEX 3. Tech. rep. NASA-
HDBK-8739.19-3. 2010.

[128] Agilent E1434A 4-Channel 25.6 kHz Arbitrary Source Technical Specifications. Agilent Tech-
nologies.

[129] Manual for Swema 3000. Version 1151 5.21. Swema AB.

[130] Microphone Handbook. BE 1447-11. Brüel & Kjær. 1996.

[131] Product Data Quarter inch Pressure- Field Microphone Type 4938. Brüel and Kjær.

[132] The NEXUS ™Range of Conditioning Amplifiers Types 2690, 2691, 2692 and 2693 User Manual:
Operation and Interface. BE 1522-13. Brüel Kjær. 2007.

[133] Agilent E1432A 4-16 Channel 51.2 kSa/s Digitizer plus DSP. Agilent Technologies.

[134] Michael Burger and Jozef Repiský CSc. „Problems of Linear Least Square Regression And
Approaches to Handle Them“. In: Advanced Research in Scientific Areas. 2012.

[135] Kenneth M. Hanson. „Probabilistic Interpretation of Peelle’s Pertinent Puzzle and its Resolu-
tion“. In: AIP Conference Proceedings (2005).

[136] Tom Burr et al. „Defense of the Least Squares Solution to Peelle’s Pertinent Puzzle“. In: Algo-
rithms 4.4 (Feb. 2011), p. 2839.

[137] Tom Burr et al. „Alternatives to the Least Squares Solution to Peelle’s Pertinent Puzzle“. In:
Algorithms 4.2 (June 2011), pp. 115–130.

[138] D. Neudecker et al. „Adequate Treatment of Correlated Experimental Data in Nuclear Data
EvaluationsAvoidingPeelle’s Pertinent Puzzle“. In:NuclearData Sheets 118 (Apr. 2014), pp. 364–
366.

145


	Contents
	Introduction
	Description of errors
	Thesis outline
	Contributions and division of work

	Estimating the statistical parameters of transfer functions based on the background signal
	Introduction
	Theory
	Statistical moments
	Results and discussion
	Conclusion

	Acoustic Theory
	Governing equations
	Wave equations in a stationary viscous medium
	Acoustic modes in ducts
	Scattering matrix
	Summary

	Assessing the quality of acoustic scattering matrices
	Introduction
	Linear uncertainty analysis
	Perturbation theory
	Results and discussion
	Conclusion

	Accuracy of impedance tube measurements
	Introduction
	Experimental setup
	Identified errors
	Conclusion

	Errors in impedance tube measurements
	Introduction
	Oscillations in the reflection coefficient
	Apparent absorption
	Conclusion

	Flow acoustic interaction at the area expansion
	Introduction
	Acoustic sound interaction
	Experimental setup and methods
	Results
	Conclusion

	Conclusions and recommendations
	Recommendations

	Acknowledgements
	Measurement setup
	Measurement geometry
	Flow profiles
	Uncertainty in the measurands

	Measurement methods
	Measurement routine
	Signal analysis
	Widely linear minimum variance unbiased estimator

	Bibliography

