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Abstract
This paper investigates the vibro-acoustic behavior of flexible micro-perforated plates through a finite ele-
ment method approach, in which each single orifice can be modeled independently. The role of the vibrations
on the local orifice impedance values is included in the numerical model and analyzed for the case of PVC
perforated plates with different orifice sizes. Two expressions for the modified local orifice impedance are
compared, depending on the extension of the correction to the attached mass of air at the orifice ends or not.
The effect on the global plate absorption properties is quantified. It is found that accounting for the orifice
impedance alteration through the structural motion is more important for larger orifice diameters and at low
frequency. This effect is nevertheless rather limited for the investigated micro-perforated plates and can be
neglected in first instance.

1 Introduction

Micro-perforated plates (MPPs) have been a popular subject in acoustics since their high potential in sound
absorption was pointed out by Maa [1]. Mounted on top of a cavity, they benefit from an increased absorp-
tion bandwidth compared to purely reactive sound absorbers, due to the viscous dissipation taking place at
the small perforations. MPPs have the extra advantage that they can be produced from a large number of
materials, broadening their range of applications from room acoustic panels to industrial applications like au-
tomotive mufflers. Depending on the plate material and dimensions, the effects of vibrations on the acoustic
response of a MPP can be of major importance. As the plate porosity decreases, the effect of plate vibration
tends to increase [2]. It is therefore to be considered when studying MPPs or flexible MMPs (f-MPPs) as
sound absorbers, as typical open area ratios are of the order of 1 %. This issue should be addressed in the
early stages of the design process. The role of vibrations on the acoustic characterization of MMPs has been
first noticed by Lee and Swenson, as an additional absorption peak [3].

A standard way to investigate the vibro-acoustic behavior of micro-perforated panels is the fully coupled
modal approach, in which both structural motion of the perforated panel and the acoustic field are described
in terms of their constituting modes. Such a theoretical model requires the a priori knowledge of the modal
decomposition of the structural response of the perforated plate. It is therefore limited to cases with simple
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geometrical configurations. On the other hand, it delivers a set of equations which is fast to solve and provides
an efficient tool for optimization purposes. Such a modal approach has been applied, through the years, to
the study of both Helmholtz-type and panel-type resonances, from the case of an infinite plate backed by
a cavity [4] to cases of finite perforated plates and membranes [5, 6], and multi-layer micro-perforated
absorbers [7].

In a previous work [8], a numerical Finite Element Method (FEM) model based on the representation of each
single orifice has been investigated as an alternative to the modal approach. It consists of solving in a direct
manner the set of equation resulting from the coupled vibro-acoustic problem. This approach has shown to
deliver results with good agreements compared to experimental data from the literature [9]. The presented
FEM model offers an additional flexibility in terms of design estimation for f-MPP, as no structural modes
are imposed, allowing the use of more complex geometry and boundary conditions for the plate structure. It
gives as well a handy investigation tools for the overall positioning of the orifices for design optimization.

In all the previously mentioned works, the acoustic impedance of the orifices has been assumed homogeneous
through the entire plate and determined from the standard Maa model under rigid-wall assumption [1]. The
effect of the vibrations on the orifice impedance itself is therefore entirely neglected. The aim of this work is
to investigate, for the case of micro-perforated plates, the impact of the structural vibrations on the acoustic
impedance of the orifices constituting the perforated plate. For this purpose, the alternative boundary condi-
tion at the inner orifice walls proposed by Li [10], which was applied and verified in the case of perforated
membranes, will be investigated for the case of a MPP placed inside an impedance tube (see Fig. 1). This
is done in the present FEM model through an additional step in which the modified local orifice impedance
is determined from the previously computed plate impedance. The coupled vibro-acoustic system is then
solved using the local acoustic impedance values for each orifice. The global impact of this additional step
in the numerical modeling of a circular f-MPP will be quantified for different orifice diameters in terms of
the absorption coefficient of the complete MPP. The particular question to know if this impedance correction
should be extended or not to the air mass attached at the orifice ends will be further discussed with some
quantitative arguments.

The paper is organized as follows. In Sec. 2, the expressions for the local orifice impedance accounting for
the plate vibration are presented, along with the theoretical treatment of the plate motion. Sec. 3.1 describes
the coupled vibro-acoustic problem and the numerical FEM model for its resolution. The investigated con-
figuration of a MPP inside an impedance tube is detailed in Sec. 3.2. Finally, the results on the computed
plate impedances, on the modified orifice impedance values and on the overall acoustic responses of the
perforated plates are shown and discussed in Sec. 4.

2 Modified impedance model accounting for the local displacement
of the plate

2.1 Modified orifice transfer impedance

In most of the studies on the vibro-acoustic response of micro-perforated plates/panels in the literature, the
impedance chosen to describe the acoustic behavior of the perforations is based on Maa’s classical model.
This model is derived assuming a rigid plate [11], for which vplate = 0. The fluid particle velocity at the
hole wall v(r = rp) is taken equal to zero (see Fig. 2), and the effect of the plate vibration on the acous-
tic impedance of the perforations is neglected. Under these assumptions, the normalized acoustic transfer
impedance for a single perforation zp is given by zp,Maa [1]:
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Figure 1: Configuration for the circular MPP clamped inside
an impedance tube.
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Figure 2: Description of the velocity field
v(r) in the local coordinate system for each
single perforation.

where ∆p = p1 − p2 is the sound pressure difference between the two ends of the orifice tube, v̄ is the
averaged acoustic particle velocity in the perforation, tp is the orifice length (equal to the plate thickness), Jn
is the Bessel function of the first kind of order n, Sh = dp

√

ωρ0/(4µ) is the Shear number with µ and ρ0 the
dynamic viscosity and the density of the acoustic medium (i.e. air in this study), respectively. c0 is the speed
of sound in the medium. The term zp,Maa−inner represents only the inertial and damping effects happening
inside the orifice length. The contribution of the end-corrections zp,Maa−outer to the total normalized orifice
impedance zp,Maa is defined by the surface resistance Rs = 0.5

√

2µρ0ω, and both resistive and reactive
end-correction coefficients α and δ (see [12]).

Li et al. [10], in a work on the acoustic behavior of perforated membranes, proposed recently an alternative
to the classical Maa’s model by modifying the boundary condition at the wall inside a perforation to account
for a non-zero plate velocity. The fluid particles adhere at the moving hole wall boundary due to the no-slip
boundary condition, and therefore their velocity is supposed to be equal to the panel/membrane velocity. The
proposed velocity boundary condition, expressed as a function of the distance r from the perforation axis in
the local coordinate of an orifice of radius rp, is expressed as

v(r = rp) = vplate ≠ 0 . (2)

Applying the boundary condition (2) to the general solution of the motion equation of the fluid particles
inside a cylindrical (axisymmetric) orifice [13], short compared to the acoustic wavelength, leads to the
following expression for the particle velocity inside a hole:

v(r) = vplate
J0(kar)

J0(karp)
−

∆p

tpµk2a
[1 −

J0(kar)

J0(karp)
] , (3)

where k2a = −jρ0ω/µ = −j(Sh/rp)
2, with Sh the Shear number.

The expression (3) can be integrated over the area of the orifice section to compute an averaged particle
velocity v̄, and the following formula can be derived [10] for the normalized acoustic impedance of a single
hole:
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The second term of the denominator in Eq. (4) corresponds to the internal part of the hole acoustic impedance
under Maa’s rigid wall assumption zp,Maa−inner.
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stituted of the MPP and the backing cavity - case with no
effect of the plate vibrations on the impedance of the ori-
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Figure 3: Electrical analogy for the investigated system.

The term zplate = ∆p/(ρ0c0vplate) in Eq. (4) can be defined as the local normalized impedance of the plate.
Equation (4) describes the direct effect of the plate vibration on the local orifice acoustic impedance. This
correction of the orifice impedance at a position R from the center of the plate is thus given by

zp(R) =

1

αcirc

zplate(R)

+

1

zp,Maa−inner

, (5)

where

αcirc =
2

Sh
√

−j

J1(Sh
√

−j)

J0(Sh
√
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is a weighting factor linked to the orifice circular shape, and depending only on the Shear number Sh for
the given circular geometry. As it is highlighted in Eq. (5), the analytical expression of the correction to
be applied on the orifice acoustic impedance is derived only for the internal part, and neglects the effect
of vibration on the end-corrections. No evidence has yet been shown that this correction can be applied
similarly to the resistive and reactive contributions related to the attached mass of air outside of the orifice.
The precise answer to this question is beyond the scope of the present paper and cannot be treated with the
numerical model used here. It is nevertheless possible to assess in the present study the relevance of this
consideration for the acoustic behavior of the vibrating MPP. For this purpose, the two following limit cases
will be investigated: applying the correction to only the internal part of the orifice impedance and keep-
ing the end-corrections unaltered by the vibration (7a), and applying the correction to the complete orifice
impedance (7b). Equation (7b) corresponds to the case where the plate vibration is considered affecting in
a similar manner both the orifice inner part and the attached mass of air on the sides, whereas Eq. (7a) dis-
regards entirely the effect of the vibration on the outer air mass. The final expressions used for the acoustic
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impedance of one perforation at the location R are thus the following:

zp(R) =
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In [10], the expression (7b) is applied. We will quantify in this work the differences between the previous two
assumptions for the case of f-MPPs, both in terms of local acoustic impedance and global acoustic response.
Figure 3 illustrates, through an electrical analogy, the different modeling options compared in this study for
a MPP. As the plate impedance is a complex number, the vibration can be expected to affect both resistive
and reactive parts of the orifice impedance (see Eq. (5)). This point will be discussed further in Sec. 4.

2.2 Vibration of thin plate

In order to compute the local value of the orifice impedance accounting for the plate vibration, it is shown
necessary, from Eq. (7), to know the value of the plate impedance zplate at the orifice position. The present
work is limited to the case of a circular plate placed in a duct (see Fig. 1). For such a simple geometry, an
analytical treatment of the structural behavior of the plate is often applied in the literature [9]. This theoretical
approach is briefly described here and will be further compared to the obtained MPP behavior gotten from
Finite Element Method treatment.

The flexible MPP is assumed to behave as a thin, homogeneous plate of radiusR0 =D/2. This means that the
hole diameters and the open surface ratios are considered sufficiently small that the effect of the perforations
on the plate motion can be neglected. Therefore the structural analysis will be limited here to the symmetric
vibrations of a uniform circular diaphragm, with the local displacement w(R) of the plate only depending
on the radial position R from the plate center (see Fig. 1). The equation of motion for the thin plate, whose
restoring force results from its stiffness, is given by [14]:

Dp∇
4w(R) − ρptpω

2w(R) = ∆p , (8)

where ρp is the volume density of the material, ∆p is the external pressure difference acting as driving force
on the plate surface; Dp = E(1+ jη)t3p/[12(1−ν2)] is the flexural rigidity where E is the Young’s modulus,
η is the loss factor, j =

√

−1 is the imaginary number and ν is the Poisson ratio of the MPP material. Applied
oscillatory forces are assumed. The steady-state solution for the local plate displacement w(R) has thus
the form w(R) = Ψ(R)ejωt. For this particular circular symmetry case, and by further assuming perfectly
clamped condition at the boundary in contact with the duct wall, i.e. Ψ(R0) = 0 and ∂Ψ/∂r(R0) = 0, the
complete solution of Eq. (8) is given by
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with Jj and Ij are the jth order Bessel functions and modified Bessel functions of the first kind. For a given
mth modal vibration, the parameter γm, which is a constant for the present clamped condition, is defined by
the following transcendental equation

J0(γm)

J1(γm)

= −

I0(γm)

I1(γm)

. (10)
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Figure 4: Schematic representation of the coupled vibro-acoustic numerical model for the configuration of a
f-MPP inside an impedance tube.

From the value of γm given by Eq. (10), the natural frequencies of the clamped thin plate can be computed
by

fn,m =

tpγ
2
m

2πR2
0

¿

Á
ÁÀ

(

E(1 + jη)

12ρp(1 − ν2)
) . (11)

In the present frequency domain Finite Element Method framework, the displacements of the plate are nu-
merically computed from a first coupled vibro-acoustic simulation, where an homogeneous orifice impedance
is imposed for all orifices over the plate. From this step, the MPP velocity field vplate(R) is derived from the
computed displacement w(R). The pressure fields on both sides of the MPP are further extracted to obtain
the averaged pressure difference ∆p through the plate. This allows to compute the local values of the plate
impedance

zplate(R) =

∆p

vplate(R)

. (12)

The corrected impedance value for an orifice at the position R can be obtained using Eq. (7). The fully
coupled vibro-acoustic problem is finally run again with, this time, the locally modified orifice impedance
values.

3 Numerical model and study case

3.1 Finite Element Model for the coupled vibro-acoustic system

The numerical model is built in 3-D within LMS Virtual.Lab® [15]. The discretized problem is solved
through a FEM formulation in the frequency domain. The schematic description of the configuration is
illustrated in Fig. 4. Assuming harmonic plane waves and neglecting the thermal and viscous effects in the
acoustic mediums 1 and 2 shown in Fig. 1, the acoustic wave equation in frequency domain is given by
the Helmholtz equation

ω2pn(z) + c
2
0∇

2pn(z) = 0, (13)

where ω = 2πf is the radial frequency, c0 is the speed of sound, ∇2 is the Laplacian operator, and pn is the
acoustic pressure in medium n©. The acoustic domains 1 and 2 are governed by this equation. High-order
Lobatto shape functions are used to described the discrete field of pressure. The inlet ΩV is defined by an
imposed velocity boundary Vin, with a chosen velocity amplitude ∣Vin∣ = 1 m/s here.

Due to the small thickness of the MPPs considered, it is appropriate to assume that the displacement field
w(R) can be characterized in terms of the displacement components of the shell middle surface. The thin
MPP is therefore modeled as a combination of 2-D elastic shell elements to solve for the plate structural
displacement field, and of imposed transfer impedance boundary ΩZt to model the acoustic behavior of each
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perforation. The vibro-acoustic coupling boundary ΩS , between the surfaces of the acoustic domain and the
structural shell elements, is defined by the following relations:

F = p1(Z = 0−) − p2(Z = 0+) , (14a)

v1,2(R,0) = jωw(R) , (14b)

where F is the point force acting on the plate surface and v is the velocity. Equation (14b) ensures the con-
tinuity of the normal shell velocities and the normal fluid velocities at the fluid-structure coupling interface.
The remaining boundaries are defined as hard-wall boundary, ΩZ∞ .

The resulting finite element model for the unconstrained degrees of freedom of the coupled vibro-acoustic
problem takes the form:

{[
Ks Kc

0 Ka
] + jω [

Cs 0
0 Ca

] − ω2
[
Ms 0
Mc Ma

]}{
wu

pu
} = {

Fsi
Fai

} , (15)

where K is the stiffness, M is the mass, C is the dissipation and F is the forcing matrix. The subscripts
‘a’, ‘s’ and ‘c’ represent the words acoustic, structural and coupling. The vectors wu and pu represent the
degrees of freedom for the plate displacement and acoustic pressure vectors that need to be solved for. The
stiffness coupling matrix Kc represents the force loading of the fluid on the structure, which is proportional
to the pressure. The coupled mass matrix Mc expresses the structural force applied on the fluid, which is
proportional to the plate acceleration. The forcing matrices Fai and Fsi introduce the prescribed pressure
and displacement vectors into the set of equations.

The described FEM approach for investigating the problem of f-MPP has already been successfully compared
to measurement and literature data for validation [8]. The present work aims at introducing the additional
impact of the plate vibration on the local orifice acoustic impedance, following the methodology detailed
in Sec. 2.2. The influence of accounting or not for this phenomenon is evaluated for the global acoustic
absorption characteristic of the investigated f-MPP geometries. It is done by calculating the absorption
coefficient β = 1 − ∣p−/p+∣2, where p+ and p− are the complex amplitudes of the left and right traveling
pressure waves in domain 1 and can be calculated by using the standard multi-microphone method [16] in
the plane wave regime. The frequency range of this work, defined by f ∈ [125 Hz − 2000 Hz], satisfies this
assumption for the chosen dimensions of the impedance tube.

3.2 Study case of a circular MPP in an impedance tube

The configuration in this work is represented in Fig. 1, and consists of a perforated plate of diameter D =

100 mm and thickness tp = 0.5 mm. To study the effect of the modified boundary condition applied to the
orifice impedance, different orifice sizes are considered. The plates are constituted from 69 perforations of
diameters dp = 0.5 mm for the case P1, dp = 1 mm for the case P2, and dp = 2 mm for the case P3. The
configuration of a plate without perforation (referred as the case NP) is included in this work as well, for
the analysis of the impact of perforation size on the modified plate impedance. The structural parameters
such as the Young’s modulus E, Poisson ratio ν and the loss factor η of the MPP are listed, along with the
geometrical parameters, in the Table 1.

The modified orifice impedance, as defined in Eq. (7), is spatially varying over the plate, depending on the
position of the orifice considered. The FEM representation allows to define the exact acoustic impedance
for each of the orifices. Nevertheless, for practical reason in the present axisymmetric configuration, orifices
have been grouped by zones, as illustrated in Fig. 5, depending on their distance to the plate center. An
averaged impedance value is assigned for all the orifices inside one specific zone. In the presented case, the
plate area is divided into five zones with respective orifice impedance Zp,i, for i ∈ {1, ..,5}.
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Figure 5: Zonal splitting of the plate sur-
face to defined the local values for the ori-
fice impedance, depending on the distance
R from the plate center: orifice sur-
face area, impedance zones,
( ) position chosen for impedance esti-
mation.

Parameter Case NP Case P1 Case P2 Case P3

dp [mm] N/A 0.50 1 2.0
tp [mm] 0.50
b [mm] N/A 10 10 10
np [-] 69
σ [-] 0 % 0.2 % 0.7 % 2.8 %
D [mm] 100
L [mm] 300
Lcav [mm] 50
E [N/m2] 3 × 109

η [-] 0.03
ν [-] 0.3

Table 1: Configuration parameters of the study cases.

4 Results and discussions

4.1 Vibro-acoustic response of the MPP and plate impedance

To start this results section, a closer look is taken on the plate displacement field Ψ(R). Figure 6 shows
the absolute value of the numerically computed plate displacement ∣Ψnum∣ at frequencies close to the first
three natural frequencies of the plate fn,1/2/3. The displacement fields found match with the shapes of the
normal axi-symmetric modes for a plate with fixed rim, as expressed in Eq. (9). The modes (0,1), (0,2) and
(0,3) are shown for the case dp = 2 mm in Fig. 6a, Fig. 6b and Fig. 6c, respectively. Figure 6d presents the
obtained plate absorption coefficient over the frequency range f ∈ [125 Hz− 2000 Hz], for both perforations
of diameter dp = 0.5 mm ( ) and 2 mm ( ). For both curves, the absorption peaks related to the
Helmholtz-type resonance (around 400 Hz and 850 Hz, respectively), and the two peaks linked to panel-type
resonance (the ones closer to the plate natural frequencies) can be clearly observed. No peak can be observed
near the first natural frequency fn,1. This is due to the stronger coupling between the first plate structural
mode and the Helmholtz resonance. The latter phenomenon is driving this peak frequency. For the case with
dp = 0.5 mm, the panel-type resonance peaks visible in the absorption curve of Fig. 6d are very close to
the analytically estimated natural frequencies of the plate. For the larger orifice diameter case, those peaks
are shifted towards lower frequency values. It can result from the effect of the increased porosity on the
structural behavior of the plate (explained by a decreased stiffness compared to the NP case) or from the
vibro-acoustic coupling itself. The higher the order of the plate mode, the less coupling happens with the

Plate structural mode i 1 2 3 4
A Analytical natural frequency fn,i [Hz] 149.5 582 1304 2315

B Computed resonance frequency fnumn,i [Hz] 272 590 1291
C Computed structural peak frequency fnumpeak,i

for dp = 0.5 mm [Hz]
- 595 1288

D Computed structural peak frequency fnumpeak,i

for dp = 2 mm [Hz]
- 561 1271

Table 2: Summary of the peak frequencies obtained for the vibro-acoustic response of the investigated plates.
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Helmholtz-type resonance. It appears that mostly the two first plate vibration modes are relevant for the
vibro-acoustic coupling in the present MPP configuration. Looking at the Helmholtz-type resonance peak
frequencies obtained from the coupled vibro-acoustic problem compared to the ones by neglecting the plate
motion, it shows also that the vibro-coupling is stronger for orifices of small dimensions.

Table 2 summarizes the peak frequencies obtained from: A the plate natural frequencies from the analyt-
ical expression defined by Eq. (11) assuming no effect of the perforations on the structural modes, B the
resonance peak frequencies computed with the present FEM approach for a non-perforated plate (see [8]),
C with perforation diameter dp = 0.5 mm and D with perforation diameter dp = 2 mm.

(a) Ψnum at 150 Hz (b) Ψnum at 575 Hz (c) Ψnum at 1300 Hz

Frequency [Hz]
0 500 1000 1500 2000

-
 [-

]

0

0.2

0.4

0.6

0.8

1

?

fn,1

?

fn,2

?

fn,3

(d) Absorption coefficient β

Figure 6: Magnitude of the plate displacement field obtained numerically ∣Ψnum∣ for the frequencies f =

150 Hz (a), f = 575 Hz (b), and f = 1300 Hz (c) for the case P3 (i.e. d = 2 mm). (d) Absorption coefficient
β in function of the frequency from the direct fully coupled vibro-acoustic FEM solver: ( ) dp = 0.5 mm
and ( ) dp = 2 mm.

To judge the impact of the additional perforations on the structural behavior of the circular plate itself, the
computed plate impedance zplate(R) for the different perforation sizes is compared and confronted to the no-
perforation case. The values of the plate impedance at the center of the plate zplate(0) are shown in Fig. 7, as
well as the absolute changes compared to the no-perforation reference case. It appears that the effect on the
plate impedance due to the presence of perforations is very limited. The impedance curves divert further from
the reference case as the orifice size increases, but nevertheless the impact is kept small for the investigated
cases, as the porosity values are also small (max. 2.7 %). The absolute changes in terms of impedance appear
predominant in-between the natural frequencies (see Fig. 7c). Due to this little impact of the perforations on
the structural response of the plate, the analytical expression of the plate impedance (derived from Eq. (9)
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by using v(R) = jωΨ(R)) can be used to correct the local orifice impedance zp. Nevertheless, the plate
impedance used in this work is the one directly computed from the coupled vibro-acoustic FEM solver.
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Figure 7: Impact of the orifices on the normalized plate impedance zplate at the center of the duct (R=0):
case with no perforation ( ) and cases with orifices of diameter d = 0.5 mm ( ), d = 1 mm ( ), and
d = 2 mm ( ).

4.2 Impact on single orifice impedance

This section presents the corrected orifice impedance accounting for the local velocity of the MPP, as given
by the two expressions of Eq. (7a) and Eq. (7b). Results are shown here for a single orifice, at a given location
R from the plate center.

Figure 8 illustrates, for two orifice geometries, the corrected orifice impedance computed from Eq. (7b) at
different locations on the plate. The correction accounting for the plate impedance influences the orifice
impedance predominantly near the plate natural frequencies. Over the remaining of the frequency range, the
impedance is very close to the value obtained under rigid-wall assumption. Unlike the results for membranes
presented in [10], the impact on the orifice reactance is observed to be negligible (see Fig. 8a and Fig. 8b)
for the considered perforated plates. The impedance correction mostly impacts the resistive part. The modi-
fication appears to be of the same magnitude for both orifice sizes (mainly because the plate impedance. i.e.
the correction, is independent of the orifice size), but as the resistance is higher for the smallest dimension,
the relative change is lower for small orifices. It is therefore expected to get more impact of the investigated
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effect for large orifices than smaller ones, as will be shown for the absorption coefficient β in Sec. 4.3. Com-
paring the values at different radial locations on the plate, the closer to the center the orifice is, the more
effective are the vibrations on its local impedance. This is consistent with the clamped condition applied
on the rim of the plate, limiting the plate motion closeby. As expected, the impedance values computed
at R = 0.05 m, i.e. on the plate edge, gives a similar result as the standard impedance model neglecting
vibration effects, as Ψ(R = 0.05) = 0 is imposed.

Figure 9 compares the impedance values obtained from the two proposed corrections (see Eq. (7)) for an
orifice placed at the center of the plate. The same trend for the corrected impedance is observed from both
corrections. Including the end-correction part to the correction ( curve) as defined by Eq. (7b) delivers
however significantly more deviation from the standard impedance values ( curve).
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Figure 8: Normalized resistance Re(zp) (left) and reactance Im(zp) (right) of a single orifice, depending
on its location: homogeneous Maa impedance ( ) compared to the corrected impedance of an orifice
at R = 0 m ( ), R = 0.01 m ( ), R = 0.02 m ( ), R = 0.03 m ( ), R = 0.04 m ( ), and
R = 0.05 m ( + ).
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Figure 9: Modified normalized resistance Re(zp) for an orifice of dp = 2 mm at the center of the plate (R = 0):
( ) correction applied to the inner part only as defined in Eq. (7a), ( ) extended to the end-corrections
terms as defined in Eq. (7b), and ( ) reference Maa model.

4.3 Global effect on MPP absorption coefficient

After having observed the local changes in impedance which ensue from the modified boundary condition at
the inner wall of the orifices, the global impact on the acoustic behavior of the MPP is analyzed and quantified
in the following. Results are presented here in terms of MPP absorption coefficient β. These absorption
curves have been obtained from the numerically computed pressure fields by standard multi-microphone
approach from different probes placed inside the duct domain, as mentioned in Sec. 3.1. The absorption
coefficient obtained from orifice impedance under Maa’s rigid wall assumption (β) will be compared to the
corrected ones (β∗), resulting from the modified boundary condition at the orifice wall. Results with both
corrections, defined by Eq. (7), are presented.

Figure 10 shows, for two different sizes of orifice (dp = 0.5 mm in Fig. 10a and dp = 2 mm in Fig. 10b), the
relative changes in terms of absorption coefficient. The impact on the absorption curve by accounting for the
vibration effect on the orifice impedance is overall of limited magnitude for the investigated cases. It is only
of significance for the low frequency range, and predominantly near the first MPP natural frequency. For the
rest of the spectrum, the changes are kept below 1 %. Note that the 2nd peak in Fig. 10b, appearing at 325 Hz,
is not relevant because the absorption coefficient itself is very close to zero. This does not appear for the case
with dp = 0.5 mm. We only get one peak in relative change of β∗ which matches with a natural frequency,
i.e. the 1st one. Considering the absolute changes (not represented here), the impedance modification has an
impact 4 times larger on the absorption coefficient for dp = 2 mm than for dp = 0.5 mm. Another appearing
trend is that the absorption coefficient is not modified the most, in relative consideration, at the natural
frequency but left and right near this natural frequency. It is important to remember that the correction on the
orifice impedance is only affecting the numerical model on the surface related to the orifices. Therefore, the
impact of the modified boundary condition at the orifice inner wall is weighted by the porosity of the plate.
As the porosities of the investigated plate samples are rather low (max. 2.8 %), the influence on the MPP
absorption curve is limited.

The effect of vibration on the orifice impedance appears to be more important for the case with the largest
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Figure 10: Relative change in the MPP absorption coefficient β∗ due to the modified orifice impedance,
compared to absorption coefficient obtained with the standard Maa Model case β: impedance correction
done on the complete impedance ( ), correction on the internal part only ( ).

orifice diameter. This can stem from two facts. First, the relative change in resistance due to the vibration is
found larger for large orifices, because the resistance is overall lower. Secondly, the increase in orifice size
leads, in the present case of a fixed number of perforations in the plate, to larger porosity values. This larger
porosity delivers more weight to the modified orifice impedance.

Applying the correction to the complete orifice impedance leads, as expected from the local impedance
curves, e.g. Fig. 9, to larger relative changes in terms of absorption coefficient. The trends between the
curves are very similar, but extending the correction to the end-correction part of the Maa impedance model
appears to strengthen considerably its effect, over the entire frequency range. Following what has been stated
before, this is again mostly of importance for the low frequency and the lowest plate natural frequency.

5 Conclusions

This paper explores the impact of the vibrations on the orifice acoustic impedance and the consequences for
the absorption performance of MPPs. The numerical vibro-acoustic FEM model, in which each orifice can
be modeled independently, allows to define a local value for the impedance of each orifice depending on the
plate impedance. Unlike the case of membranes, vibrations are found to only alter the resistive part of the
orifice impedance. Due to the role of the plate impedance for the modified orifice acoustic impedance, a
detailed analysis of the plate displacements in presence of the orifices has been done. For the investigated
MPPs, only the two first structural modes seem to participate to the vibro-acoustic coupling. The presence of
the orifices has shown to have a small impact on the obtained plate impedance but could be still responsible
for a shift in panel-type resonance peak frequencies.

Two expressions for the modified local orifice impedance have been compared. Including the effect of
vibrations on the end-corrections appears to be as important as the contribution of the orifice inner part.
Applying the correction to the sum of the impedance related to the attached air mass at the orifice ends and
the internal part is nevertheless not justified by the theory and results are presented here as a limit case to
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show the implications linked to this particular phenomenon. An exact answer would require to solve the
coupled vibro-acoustic problem for a moving orifice considering the viscous-thermal losses.

The results for the absorption curves of MPPs with different orifice size have shown that accounting for the
orifice impedance alteration through the structural motion is more important for larger orifice diameters and
at low frequency. This effect is nevertheless rather limited for the investigated micro-perforated plates. It is
however expected to be more significant for perforates with a higher porosity. For the present configurations,
this effect can be neglected without it leading to significant error on the absorption characteristics of the
MPPs.
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