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The present work investigates numerically the temperature effects on the behavior of Helmholtz
resonators with the help of the Linearized Navier-Stokes equations. The equations are solved in
the frequency domain using a high-order Finite Element Method. The numerical method is ap-
plied to the case of Helmholtz resonators with given temperature profiles inside their neck and
cavity. The obtained impedances are compared to an existing model for the equivalent cold flow
case with modified fluid properties (density, viscosity and speed of sound) to assess the quality of
this approximation. Simulations with the complete set of equations, accounting for viscous and
thermal effects in the energy equation, are compared to simulations under the isentropic assump-
tion in terms of the different dissipation mechanisms and global absorption coefficient. It is found
that the isentropic assumption is not suitable at low Helmholtz number, and that the discrepancy
increases with growing temperature gradient inside the resonator neck.

1. Introduction

Perforates of small dimensions, coupled with a backing volume, are commonly used as acoustic
dampers for both noise emission reduction and control of combustion instabilities. For some of those
applications, like inside the combustion chamber of a turbine or for hot stream acoustic liners in an
engine exhaust duct, perforates can be subjected to a wide range of temperatures and to significant
temperature gradients. Even if research on impedance modeling of perforates has been going for
several decades, most of the existing impedance models have been derived at ambient temperature.
This is a consequence of the difficulties to perform pressure measurements under hot conditions,
especially when flow is present. Some experimental works have been done under non-isothermal
conditions, both in the absence of mean flow [1] and in presence of a hot grazing flow [2, 3]. The
influence of non-isopycnic conditions on the length corrections at the resonator neck has also been
investigated with cold-flow experiments with the mixing of different gases [4].

This paper investigates numerically the high temperature and temperature gradient effects on the
acoustic behavior of a Helmholtz resonator in absence of mean flow. For this purpose, the complete
set of the non-isentropic Linearized Navier-Stokes (LNS) equations are solved here in the frequency
domain. By accounting for the coupling of acoustic, vorticity and entropy modes, the simulations
allow to quantify each of the physical source/sink terms responsible for the acoustic damping. An
estimation of the impedance including temperature effects can be obtained by scaling the impedance
resulting from measurements under cold conditions with modified fluid properties (density, viscosity
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and speed of sound). This scaling is investigated, along with the impact of temperature gradients in
the resonator neck. Additionally, results from both isentropic and non-isentropic sets of equations are
compared to assess in detail the accuracy of isothermal non-isopycnic approaches.

This paper describes first the governing equations and the applied numerical technique in Sec. 2.1
and Sec. 2.2. The method to evaluate the different dissipation mechanisms on an acoustic perturbation
is described in Sec. 2.3. The case of a Helmholtz resonator at different temperatures is presented in
Sec. 3, both for homogeneous temperature field and in presence of a linear temperature profile.

2. Computational method and evaluation of the dissipation mechanisms

2.1 Linearized Navier-Stokes equations for non-isentropic conditions

The linear regime of an orifice under non-isothermal conditions can be simulated by the perturbed
version of the full compressible Navier-Stokes equations. The traditional approach is to consider any
instantaneous variable q(x, t) as the sum of a variable describing the time averaged quantity q0(x)
and a relatively smaller harmonic perturbation q′(x, t). Applying such decomposition, the linearized
Navier-Stokes equations under non-isentropic conditions can be written as:
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where ρ, u, p,T , and s are the density, velocity, pressure, temperature, and entropy fields. µ is the
dynamic viscosity, λt the thermal conductivity, Cp the heat capacity at constant pressure, R0 the
specific gas constant, δ the Kronecker delta function and τsr is the viscous stress tensor. q̇′V represents
internal heat sources, but in this work we assume q̇′V = 0. As temperature gradients are present in the
investigated cases, the local values of the fluid viscosity as well as the other mean flow properties are
considered. Under the assumption of isentropic conditions, the set of equations is simply obtained
from Eq. (1) by taking the right-hand side of the energy equation (1c) equal to zero.

2.2 High-oder Finite Element Method implementation

The set of the Linearized Navier-Stokes equations Eq. (1), for both isentropic and non-isentropic
versions, are solved using a high-order FEM (p-FEM) frequency domain solver [5, 6]. A set of Lo-
batto shape functions is used here for the expansion of each field variable. The perturbation quantities
are assumed to be harmonic time dependent variables that can be written as q′(x, t) = q̂(x)e+jωt,
where q̂ is a complex quantity and ω is the angular frequency.

All walls of the physical domain are assumed impermeable and acoustically rigid. One can apply
wall slip boundary conditions (u′.n = 0) where the acoustic boundary layer is expected to play no
significant role and no-slip wall boundary condition otherwise (u′ = 0). An additional condition on
the temperature field is required for the non-isentropic problems, on the boundaries where the thermal
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boundary layer is resolved. Walls are assumed here to have a constant temperature T0, meaning that
the temperature fluctuations vanish, i.e. T ′ = 0 (Dirichlet type). From the linearized state equation,
this leads to p′ − ρ′p0/ρ0 = 0. Non-reflecting characteristic boundary conditions are further applied on
the truncated boundaries of the domain, in order to avoid outgoing waves to be artificially reflected
back inside the physical domain.

2.3 Post-processing of the acoustic energy dissipation mechanisms

Myers [7] derived an exact equation governing the transport of energy associated with distur-
bance in an arbitrary steady flow. The generalized formulation of this corollary has been obtained by
perturbation expansion of the energy conservation equation of fluid and is valid at any nth order of
magnitude of the unsteady disturbance, for n ∈ N. For order n = 1, it yields for the energy of the
perturbed field:

∂E ′

∂t
+
∂W ′

i

∂xi
= D′ , (2)

where E ′ defines the first-order disturbance energy density, W ′ is the first-order energy flux vector,
and D′ represents the source/sink term for the first-order energy. D′ describes the volumetric rate at
which the first-order disturbance energy is being dissipated. This equation, which contains only first-
order perturbation quantities, satisfies the principle of total fluid energy conservation at the second
order. The disturbance energy density E ′ is further given by:

E ′ =
p′2

2ρ0c0
+

1

2
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′ +
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2Cp
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The source terms D′ can be expressed as the sum of the contributions of each of the physical mech-
anisms involved in the growth/decrease of the perturbed energy inside the control volume. We dis-
tinguish here between mechanisms related to the vorticity D′v, entropy D′s, viscous diffusion D′µ,
internal heat source D′q, and thermal diffusion D′t. These terms can be expressed as:
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where m′ = (ρ0u′ + ρ′uo) is the mass flux vector perturbation and Ω the vorticity ∇ × u. For the
present case, where u0 = 0 and q̇′V = q̇V 0 = 0, it follows that D′v = 0 and D′q = 0. The component in
the i-direction of the first-order disturbance energy flux vectorW ′ is defined as:
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The first term of the right-hand side in Eq. (5) corresponds to the perturbed acoustic energy flux,
whereas the second gives the viscous stress power and the two last ones represent entropy and thermal
effects.

Similarly to [8], but accounting here for the visco-thermal losses, the time-average of the perturbed
energy equation defined in Eq. (2) is integrated over the volume V with surface S and unity normal
vector n to describe the overall energy balance. It gives:

∫
V

∂E ′

∂t
dV + ∫

S
W ′ ⋅ ndS = ∫

V
D′ dV ⇔ E′ +W′ = D′ . (6)

The integral terms in the energy balance are referred to here as E′, W′, and D′. In the following, the
integration volume V represents the complete numerical domain and the integrals defined in Eq. (6)
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are computed in a post-processing step after solving the initial problem described in Sections 2.1 and
2.2. Due to the choice of harmonic perturbation fields, the first term in Eq. 6 is equal to zero, i.e.
E′ = 0. The same subscript conventions are kept for the source/sink integral terms D′

● to distinguish
between the different types of dissipation mechanisms.

3. Temperature effects on the acoustic behavior of Helmholtz resonators

The configuration of a 2-D Helmholtz resonator with orifice diameter do = 1.5 mm, orifice thick-
ness lo = 1 mm, back cavity length lcav = 17.5 mm and diameter dcav = 10 mm is investigated at
three different temperatures, T0 ∈ {300 K, 500 K, 700 K}. The resonator (see Fig. 1) is placed at
the extremity of an impedance tube of length lduct = 500 mm and diameter dduct = 40 mm, in which
a multi-microphone system identification technique is performed to extract the resonator reflection
coefficient R and acoustic impedance z.

3.1 High temperature resonator without temperature gradient

As the temperature increases, the resonance frequency shifts towards higher values, as illustrated
in Fig. 2. This shift originates from the increase in the speed of sound inside the backing volume,
whereas the cavity dimensions stay the same. It is captured correctly by the numerical LNS simula-
tions. This change in the wavenumber can be filtered out by representing the results in terms of the
Helmholtz number He, defined here as He = k0do. Only temperature effects on the visco-thermal
losses remain then.

lolduct

dduct

lcav

dcavdo

x

x

T

T

T0

T0 ∆T0|2
|1

Figure 1: Helmholtz resonator configura-
tion and temperature profiles: 1) Homoge-
neous, 2) Linear profile.
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Figure 2: Absorption coefficient α in func-
tion of the frequency at three different tem-
peratures: results at T0 = 300 K ( ),
T0 = 500 K ( ), and T0 = 700 K ( )
from the non-isentropic LNS solver.

Figure 3(a) shows the impact of the temperature on the reflection coefficient. From the reflection
coefficient curves, it can be seen that the visco-thermal losses rise with increasing temperature. A
slight shift towards lower Helmholtz numbers can be observed for the resonance peak as well. This
shift appears to be larger between T0 = 500 K and 700 K than between T0 = 300 K and 500 K. By
comparing the results from the isentropic LNS p-FEM solver and the ones coming from the complete
set of non-isentropic LNS equations, one can see that only very little additional thermal dissipation is
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Figure 3: Acoustic behavior of the studied Helmholtz resonator in different homogeneous tempera-
ture environments: results at T0 = 300 K ( ), T0 = 500 K ( ), and T0 = 700 K ( ) from the
isentropic LNS solver ( ) and from the non-isentropic one ( ).
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(a) Normalized resistance
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(b) Normalized reactance

Figure 4: Normalized resistance (left) and reactance (right) of the investigated Helmholtz resonator at
three temperature levels - T0 = 300 K ( ), T0 = 500 K ( ), and T0 = 700 K ( ) - obtained from
Maa/Allam [9, 10] model discarding end-corrections ( ), from complete Maa/Allam model scaled
with fluid properties ( ) and computed from p-FEM LNS solver ( ).

found by resolving the thermal boundary layer inside the resonator neck. This fact holds for the three
investigated temperatures.

The normalized mass reactance, representing the end-correction effects for the resonator neck, is
shown in Fig. 3(b). An increase in this quantity is found for rising temperature and can be related to
the shift towards lower He values for the reflection peak. The slope of the curves is nearly the same
for the higher part of the investigated He range. The results given by the two solvers are also here
very close, with discrepancies in the predicted normalized mass reactance appearing only for the very
low He limit (for He < 0.025). Additional thermal losses appear to increase the end-corrections for
very small He.

Figure 4 shows the computed impedance values for the studied Helmholtz resonator compared to
the impedance values predicted with a semi-empirical model scaled with the fluid properties (ρ0, µ and
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c0) according to the temperature. As the present simulations are carried out for a 2-D geometry and
end-corrections for 2-D models are not easily available in the literature, the semi-empirical impedance
model used here is the one given by Maa [9] and Allam [10] for a slit-shaped orifice. This model
defines the normalized resistance and reactance in the linear regime as

Re(z) = Re
⎛

⎝

jωto
σc0

[1 −
tanh (κ

√
j)

κ
√
j

]

−1
⎞
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, (7)

Im(z) = Im
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√
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κ
√
j

]
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⎞

⎠
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+ 0.5

σBCδsω
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. (8)

Here, the dimensionless shear number κ relates the orifice radius to the viscous boundary layer thick-
ness and is defined as κ = do

√
ωρ0/(4µ). Note that the model is expressed here for the case where

the back cavity diameter differs from the duct diameter in which the resonator is placed, as it is the
case in the present work. σ represents the open area ratio on the side of the impedance duct, whereas
σBC is the one on the backing volume side. The end-correction parameter α for the resistance and the
one for the reactive part δs, which depends on the supposed third dimension of the orifice ls through
an equivalent diameter deq = 2

√
dols/π, have been fitted to match the numerical results for the case at

T0 = 300 K. This case is taken here as reference, as such model has been first developed for ambient
conditions. The values found for these parameters are: α = 2.25 [−], δs = 0.85deq with ls = 0.01 m.

The basic scaling of the model with respect to the fluid properties appears to deliver very good
results for the reactance (see Fig. 4(b)). A close-up view of the curves reveals however a slight
increase in the inertia in the numerical results, which is not captured at all by the semi-empirical
model. Considering the wide range of temperature condition in this study, it is nevertheless expected
that this discrepancy is not of importance for practical applications. Concerning the resistive part,
the applied scaling is found to be less suitable. Even if the trend of increasing resistance with rising
temperature is found similar between the model and the numerical predictions, the scaling of the semi-
empirical model is unable to capture correctly the amount of additional visco-thermal losses due to
higher temperature. The end-corrections in terms of visco-thermal damping do not only depend on
the fluid properties, but have an extra dependency on the temperature. The higher the temperature,
the more inaccurate the model is. The experimental work done by Elnady et al. [1] leads to similar
conclusions, even if in their case some nonlinear effects and the impact of a small temperature gradient
through the orifice might be present as well. In their study, the impedance model by Elnady tends
nonetheless to overestimate the visco-thermal losses.

3.2 High temperature resonator with temperature gradient

For the case with T0 = 700 K, an arbitrary linear temperature profile is imposed, defined between
the resonator face sheet at T0 and the temperature at the backing wall Tw = T0 − ∆T0, for ∆T0 ∈

[0 K − 500 K], see Fig. 1. It provides a maximal temperature gradient of 21.6 K through the orifice.
Figures 5(a,b,c) show for different temperature conditions the distinct terms of the perturbed en-

ergy balance in Eq. (4), displayed as 10 log (∣D′
●∣
2). Results are represented in function of the fre-

quency, as it is not evident yet which relevant temperature is to be considered for the definition of He
in presence of a temperature gradient. First, we can see that in all cases the energy balance given in
Eq. (2) is satisfied, with the relation W′ = D′ verified over the entire frequency range of this study.
The dissipation terms are maximal at the resonance frequency (around f = 3700 Hz), as the ampli-
tudes of the velocity and temperature fluctuations are maximal at the resonance. For the homogeneous
temperature case, i.e. Fig. 5(a), the viscous losses are clearly the predominant ones. Thermal losses
are quantitatively not varying significantly through the frequency range and are of importance only at
low frequencies. The dissipation term related to entropy is, as expected, close to zero in the absent of
temperature gradient.
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(a) T0 = 700 K and ∆T0 = 0 K
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(b) T0 = 700 K and ∆T0 = 100 K
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(c) T0 = 700 K and ∆T0 = 500 K
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(d) T0 = 700 K

Figure 5: (a)(b)(c) Evaluation of the integral terms defined in Eq.(4) for the energy balance over the
computational domain from the non-isentropic set of LNS equations: total energy source D′ ( ),
total energy flux W′ ( ), and the contributions of D′

v ( ), D′
s ( ), D′

µ ( ), D′
q̇V ( ),

and D′
t ( ). D′ obtained with simulations under isentropic assumption is also indicated ( ).

(d) Deviation in estimation of the peak magnitude of the absorption coefficient between the isentropic
and non-isentropic p-FEM solvers, in function of the temperature gradient ∆T0.

For ∆T0 ≠ 0, it can be observed in Fig. 5(b) and Fig. 5(c) that the terms related to entropy D′
s

and thermal diffusion D′
t increase significantly with ∆T0. The range of frequencies for which these

mechanisms are determinant is getting wider. It is also found that the term D′
s rises faster than D′

t for
rising temperature gradients. In Fig. 5(c), D′

s and D′
t reach a similar order of magnitude. Overall, the

peak amplitude of the total dissipation term D′ varies very little with increasing ∆T0, with an increase
of the order of 1 dB from ∆T0 = 0 K to ∆T0 = 500 K. This observation is actually the superposition
of two opposite effects: an overall drop of the average temperature inside the orifice (which tends to
decrease the dissipation) and an increasing temperature gradient (which contributes to enhance the
dissipation).

As the entropy and thermal effects grow with increasing temperature gradient, the discrepancy
between the results from the isentropic and non-isentropic solvers become larger with growing ∆T0.
This can be observed directly looking at the absorption coefficient α, as shown in Fig. 5(d). The
relative deviation for the absorption coefficient εα between the two solvers is doubled for ∆T0 = 500 K
compared to the homogeneous condition. However, even if this discrepancy is increased with larger
∆T0, the relative difference between the solvers is found to be small in the investigated cases, with
εα ≤ 1.25 %. From the detailed description of the dissipation mechanisms given in this study, it
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is however to be expected that the deviation between the two solvers will increase significantly for
acoustic resonators with lower resonance frequencies. This will be further investigated using the
methodology described in the present work.

4. Conclusion

This paper investigates temperature and temperature gradient effects on the acoustic response of a
Helmholtz resonator by using a FEM solution of the LNS equations. The numerical method showed
to capture very well observations made experimentally. Compared to high-temperature experiments,
the numerical approach allows a better control over the temperature field inside the resonator neck
and the thorough investigation of the different mechanisms involved in the acoustic energy dissipation
in presence of temperature gradients. For the present configuration and considered conditions, both
isentropic and non-isentropic set of Linearized Navier-Stokes equations deliver similar results for
the absorption peak amplitude, with a relative deviation of the order of 1 %. However, the analysis
of the different mechanisms involved in the dissipation of acoustic energy has shown that entropy
and thermal effects become relevant in the low Helmholtz numbers range in presence of temperature
gradients through the resonator neck. This is expected to be of importance for practical applications
with Helmholtz resonators designed for a maximal damping at low frequency.
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