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The present study investigates the physics of Helmholtz resonators under a large range
of excitation amplitudes through an approach based on incompressible computational fluid
dynamics simulations. By doing so, this work proposes and assesses an alternative ap-
proach to the more widespread one based on compressible flow simulations to analyze the
non-linear regime of Helmholtz resonators. In the present methodology, the resonator is
decomposed into its two main components: an assumed incompressible orifice neck and
a compressible backing volume. The transfer impedance of the single orifice is obtained
by means of an incompressible solver of the flow equations without turbulence modeling,
whereas an analytical model accounts for the compliance of the gas in the backing cavity.
The proposed methodology is compared for validation purposes to both numerical results
of the full compressible equations and experimental data for the complete resonator at
different SPLs. The agreement between the results of the two numerical approaches is
found to be good. Numerical results match also fairly well with experimental data but
a systematic over-prediction of the resistance by simulations is observed. The effect of
micro-rounded edges, presumably present due to manufacturing processes, was found to
be insufficient to explain the discrepancy.

Nomenclature

Au, Af , Af,o Input amplitudes, [m/s] u′ Fluctuating velocity in duct, [m/s]
c Speed of sound, [m/s] u′o Fluctuating velocity in orifice, [m/s]
dcav Back-cavity diameter, [m] z Normalized acoustic impedance, [−]
do Orifice diameter, [m] Z Acoustic impedance, [Rayl]
fr, gr Riemann invariants, [m/s] ∆p Pressure loss, [Pa]
He Helmholtz number, [−] λa Acoustic wavelength, [m]
lcav Back-cavity length, [m] ρ Density, [kg/m3]
lo Orifice thickness, [m] σ Open area ratio, [−]
p Pressure, [Pa] φ Acoustic velocity potential, [m2/s]
P Total pressure, [Pa] Ω Vorticity, [m−1]
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Rexp/num Reflection coefficient, [−]

Superscripts
•̂ Fourier transform
•′ Time fluctuating quantity

I. Introduction

Acoustic damping systems, such as Helmholtz resonators, perforated liners, or quarter wave length cavities
are commonly used in multiple industrial applications to reduce sound transmission and to control acoustic
feedback that can lead to instabilities, for instance in combustion systems like aero-engines or gas turbines.
When designed properly, such devices dissipate the acoustic energy at a specific bandwidth. The behavior of
such an acoustic damper is often characterized by its acoustic impedance, which is defined in the frequency
domain as the ratio of the pressure to the normal acoustic velocity. The acoustic dissipation mechanisms, and
therefore the impedance values, differ significantly depending on the amplitude of the acoustic excitation.
For low excitation amplitudes, the viscous dissipation dominates. In this case, the impedance is independent
of the sound amplitude and the resonator or orifice behaves like a linear system. Numerical methods based
on linearized equations, like the linearized Navier-Stokes equations, allow for an efficient treatment of this
linear regime with limited computational costs1 . By increasing the excitation amplitudes, nonlinear effects
appear and become progressively dominant. Such nonlinear effects originate from flow separation at the
neck of the resonator, which transfers acoustic energy to the hydrodynamic field. The creation of vortices at
the orifice neck increases considerably the dissipation of the acoustic energy. This feature is of importance
for the design of acoustic dampers, as it impacts substantially the sound wave attenuation. The nonlinear
regime is however more complex to predict accurately due to the intricate nature of the physical phenomena
taking place. Linear numerical methods are therefore not suitable at medium and high excitation amplitudes
and nonlinear time domain solvers are needed.

The present work investigates the capability of an incompressible unsteady computational fluid dynamic
approach to study numerically the aeroacoustic response of a Helmholtz resonator to an external acoustic
excitation. Different Sound Pressure Levels (SPLs) are included in this study to cover the different regimes
of an investigated Helmholtz resonator. Incompressible flow computations have already successfully been
used in the past to characterize the acoustic behavior of confined flow systems. In the work of Mart́ınez-Lera
et al.2 , an approach combining incompressible CFD and vortex sound theory3 was applied successfully to a
two-dimensional laminar flow through a T -joint. This methodology has been further improved and applied
to corrugated pipes by Nakiboğlu4 and to a large orifice configuration with through-flow by Lacombe et
al.5 for whistling prediction. In contrast to those previous works, the present study focuses on both linear
and nonlinear regimes of Helmholtz resonators in absence of mean flow. The extension to the case with
flow can be done easily due to the present general formulation and arguments presented by Nakiboğlu4 and
Golliard et al.6

Sec. II explains in detail the methodology applied here for the numerical acoustic characterization of a
Helmholtz resonator. The numerical set-up is described as well as the post-processing steps used to determine
the surface impedance of the resonator. In Sec. III and Sec. IV, the results for the impedance describing
functions estimated by the proposed approach are shown for the linear and nonlinear regimes, respectively.
In both cases, the results are compared to impedance values obtained using compressible flow computation
of the complete resonator and validated against measurements data. Section V concludes this paper with
an overview of the main observations of this study.

II. Description of the methodology and case study

A. Decomposed Helmholtz resonator

The basic idea of using an incompressible solver to study the acoustic behavior of a Helmholtz resonator,
placed at the termination of a duct as depicted in Fig. 1(a), appears as a contradiction at first thought.
The incompressible nature of the fluid violates indeed the principle of mass conservation if a non-zero inlet
velocity is prescribed at the open side of the duct closed by the resonator, which makes impossible the
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direct study of this configuration by incompressible Computational Fluid Dynamics (CFD) simulation. The
methodology proposed here to face this issue is to decompose the complete Helmholtz resonator into its
two main components: the orifice neck and the backing cavity (see Fig. 1(b)). Such a decomposition has
already been proposed by Ingard and Ising7 . For most of the configurations of interest, the orifice can be
considered acoustically compact, i. e., the Helmholtz number He, which describes the ratio of the neck length
or diameter to the acoustic wavelength λa, is small (He � 1). Thus, the flow through the orifice can be
treated as incompressible. The compressible effects occur solely in the backing volume. The orifice transfer
impedance Zo is often used to quantify the acoustic behavior of an orifice. It is defined as the ratio of the
Fourier component (̂.) of the fluctuating pressure drop ∆p̂′ = p̂′1 − p̂′2 and velocity normal to the reference
surface in the duct front of the resonator u′, i. e.,

Zo =
∆p̂′

û′
. (1)

Note that in the above definition, the velocity û′ is the velocity in the resonance tube. There are other
authors using the velocity in the orifice u′o instead. These two velocities are related via the porosity of the
resonator plate σ, such that u′ = σu′o. The porosity is defined as σ = Ao/Abc, with Ao and Abc denoting
the surface areas of the orifice and backing cavity, respectively.

� 	

� 	

(a) Complete Helmholtz resonator. (b) Decomposition into orifice and backing volume.

Figure 1: Sketch of the considered geometry and reference cut planes 1 and 2 for the decomposed resonator model.

The contribution of the backing volume can be described in terms of a surface impedance Zbc = p̂′2/û
′
2,

which is done here analytically, as described in part A.2. The orifice transfer impedance can therefore be
expressed as:

Zo =
p̂′1 − Zbcû

′
2

û′1
. (2)

Due to the acoustically compact neck and the same areas on both sides of the orifice, it is reasonable to assume
û′1 = û′2. Thus, the surface impedance of the resonator Zr is given in this lumped model as (c. f. Ingard and
Ising7):

Zr = Zo + Zbc . (3)

The present study builds on this Helmholtz resonator decomposition and aims to investigate the validity of
this decomposition at different levels of sound excitation. In doing so, the advantages of an incompressible
solver are exploited for the simulation of the flow through the orifice, including the vortex generation re-
sponsible for the nonlinear acoustic losses. Details on the estimation of the orifice transfer impedance and
backing volume surface impedance are given in the following sections.

1. Orifice impedance Zo

The methodology to get the orifice transfer impedance from the incompressible simulations is explained in
this section. In the plane wave regime, a 1-D approximation along the duct is possible and the area-averaged
absolute pressure at several sections of the duct is stored at each time step of the flow simulation. This
allows computing the pressure differences between two arbitrary chosen sections separated by the orifice:
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∆p′AB

u’

FFT Ztot =
∆p′

AB

u′ Ztot = Zo + Zduct,pot

Zo

1

∆p′o = ∆p′AB −∆p′duct,pot

u’
FFT Zo =

∆p′
o

u′2

Figure 2: Diagram of the two approaches to get the transfer impedance of the orifice from ∆p′ - approach 1 (top),
approach 2 (bottom).

∆pAB = pA − pB is the pressure jump (or loss) between positions xA on the inlet side and xB on the outlet
side.

In a general manner, for an incompressible fluid the momentum equation yields

∇P = −ρ∂u

∂t
− ρ(Ω× u) + ρν∇2u , (4)

where P is the total pressure P = p + ρ ‖u‖2 /2 and Ω = ∇ × u denotes the vorticity. The second term
on the right-hand side of Eq. (4) is related to the acoustic power in an inviscid and homentropic flow
according to Howe’s energy corollary3 . The third term describes the viscous dissipation effects. The total
pressure difference ∆P between two sections can be expressed as the sum of two distinct contributions:
∆P = ∆Ppot + ∆Ps. The pressure difference ∆Ppot is related to a potential flow solution (first term on the
right-hand side of Eq. (4)) which would be the solution in absence of vorticity and viscous effects, whereas
∆Ps is linked to sink/source terms for the sound with both vorticity and viscous effects taken into account
(last two terms on the right-hand side of Eq. (4)). In the numerical models, the viscous dissipation at the
walls of the main duct is neglected and slip boundary conditions are applied. As a consequence, the vorticity
and viscous effects can be neglected for the wave propagation in the ducts, so that ∆Pduct,s = 0 inside the
duct segments. ∆Ppot can be expressed as

∆Ppot = −ρ
∫
L

∂ux
∂t

dx , (5)

with L the total length between the two sections, x the coordinate along the duct axis, and ux the axial
component of the velocity at the x-location. Inside the duct segments, ∆Pduct,pot can be interpreted as a
result of the propagation along the duct of the fluctuation in velocity ux. The pressure losses can be divided
spatially between ducts and orifice parts, leading to

∆PAB = ∆Po + ∆Pduct ,

= ∆Po + ∆Pduct,pot +���
��:0

∆Pduct,s ,
(6)

with ∆PAB the total pressure losses between the measurement sections A and B, and ∆Pduct the total
pressure losses in the two duct segments. From this, the expression to compute the orifice pressure drop
∆Po is

∆Po = ∆PAB −∆Pduct,pot. (7)

There are two different ways to determine the orifice transfer impedance values from the measured
pressure time series, depending on whether the potential flow pressure loss correction inside the duct is done
directly on the pressure time data, or in the frequency domain on the impedance itself. Those two approaches
to estimate the orifice impedance from the pressure and velocity time series are schematized in Fig. 2.

In approach 1, the impedance due to the duct potential pressure loss Zduct,pot is subtracted from the
total measured impedance Ztot to estimate the transfer impedance from the orifice Zo as

Zo = Ztot − Zduct,pot. (8)

4 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

ar
ia

 H
ec

kl
 o

n 
Ju

ly
 2

5,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
29

17
 



Preprint

lo [mm] do [mm] lcav [m] dcav [m] σ [%] lsim [m]

4.0 4.2 0.02 0.05 0.71 0.5

Table 1: Geometry of the considered Helmholtz resonator.

Zduct,pot is computed as:
Zduct,pot = jρω(LAB − lo)u′ , (9)

where LAB is the distance between the measurement sections A and B and u′ is the velocity perturbation
inside the duct parts.

In approach 2, the duct pressure loss is directly subtracted from the time pressure data. As u′ does not
depend on the position x in the duct segments, one gets

∆Pduct = ρ(LAB − lo)
∂u′

∂t
. (10)

∂u′/∂t can be computed analytically for harmonic excitation inlet velocity or has to be computed numerically
from the velocity time series in case of broadband excitation.

2. Backing volume impedance Zbc

The contribution of the backing volume can also be described in terms of a surface impedance Zbc = p̂′2/û
′
2,

which can be determined through an analytical model. Two analytical expressions for the backing volume
are shown here. Using the one-dimensional acoustic equations, the impedance is given as

Zbc = −i cot(k lcav)ρc , (11)

where k denotes the wave number k = ω/c and lcav the length of the backing cavity. When the whole volume
is compressed and expanded simultaneously, the following expression for the impedance can be derived using
the isentropic compressibility β ≡ 1/(ρc2):

Zbc = −i ρc
2Abc

V ω
. (12)

This is the same formulation as, e. g., in Keller and Zauner.8 Both Eqs. (11) and (12) describe the same
behavior for lcav � λ. This can be observed by means of the Laurent series of Eq. (11): Zbc/(ρc) =
−i [1/(klcav)− klcav/3− k3l3cav/45 +O(k5l5cav)]. The first term of the expansion is identical to the expression
in Eq. (12). Note that both expressions deliver a purely reactive contribution from the backing cavity.
Equation (12) is used in the present study.

B. Case configuration and numerical set-up

The geometric configuration for the incompressible simulations as well as the definition of the boundary
conditions for the unsteady CFD are illustrated in Fig. 3. The numerical domain consists of an orifice of
diameter do and thickness lo, placed in a duct of diameter dcav. Those dimensions have been chosen according
to the reference data9 (see Sec. II.C) used for comparison and listed in Tab. 1. The extension of the duct
in the axial direction lsim should be long enough to allow measurement sections to be put out of the area
that is influenced by hydrodynamic fluctuations. For the investigated case described through this work, lsim
equals 0.5 m and has been taken long to allow different measurement sections at x = [−0.4 m, −0.3 m, −0.2 m,
−0.1 m, 0.1 m, 0.2 m, 0.3 m, 0.4 m] along the duct for assessment of the methodology. Numerically determined
impedance results have been shown independent of the location of the chosen measurement sections after
post-processing. This ensures that the impedance results are not polluted due to vortices crossing the
measurement sections. The length lsim = 10 cm has been found to be sufficient for the investigated geometry
at the investigated SPLs, and it reduces considerably the computational cost and time.

Figure 3 presents also the boundary conditions used for the unsteady incompressible CFD computations.
The wall of the duct is defined as slip-wall boundary condition. This assumption implies that no boundary
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Figure 3: Geometrical configuration for the Helmholtz resonator study and boundary conditions: ( ) slip wall,
( ) no-slip wall, ( ) prescribed fluctuating velocity, and ( ) fixed pressure boundary conditions.

layer develops along the duct and that the velocity profile is constant through the section. Such hypothesis
is fair, as it has been observed in various compressible studies, e.g. the Large Eddy simulation (LES)
computations performed by Alenius10 , that changing this boundary condition does not affect the local
orifice behavior. This assumption is of importance for the present study, as it allows easily to discard
pressure losses occurring in the duct upstream and downstream of the orifice. The wall of the orifice plate
is however prescribed as no-slip boundary condition as the resolution of the boundary layers in the vicinity
of the orifice is of major importance for a correct orifice impedance estimation. The velocity is prescribed at
the duct inlet boundary as a time-dependent harmonic fluctuation with zero mean. Finally, a fixed pressure
boundary condition is applied to the outlet side of the duct to close the problem definition.

The present approach is limited to cases where the hydrodynamic vortex structures are contained inside
the numerical domain. As the boundary conditions for the incompressible simulations are defined through
prescribed velocity and pressure values, vortices crossing the domain limits are not accounted for by boundary
treatment. Violation of this rule has shown to deliver inaccurate results as the numerical problem formulation
is inconsistent in that case. If vortices approach the in-/outflow boundaries, the computational domain has to
be extended. This can be required for configurations with orifices of small size at high excitation amplitudes,
as for those cases the vortices can travel far away from the production zone.

In this work, the incompressible finite volume solver of a commercial code (ANSYS Fluent v14/v15) is
used to characterize the flow. The chosen solver is pressure-based, time-dependent, implicit and second-
order in time and space. The pressure correction scheme applied is the Semi-Implicit Method for Pressure-
Linked Equations (SIMPLE). No turbulence modeling is applied for the presented simulations results as the
Reynolds number based on the orifice size and velocity fluctuation amplitude at the orifice is rather low
(maximum Re ≈ 3000 at high excitation levels). Turbulence modeling has shown very limited impact on
the estimated orifice transfer impedance under the present operating conditions. Comprehensive parameter
studies regarding grid, time-step, and solver parameters have been performed to ensure that the presented
results are independent of those numerical settings. Standard parameters for the results presented here are:
minimal size of mesh cell hmin = 1× 10−5 m, time-step dt = 1× 10−6 s, number of iterations per time-step
Niter = 20 iter/time-step. Both 2-D axi-symmetric and 3-D simulations have been carried out in this work
to investigate 3-D effects.

C. References for the validation of the method

As mentioned in Section I, the results computed from incompressible unsteady CFD simulations are compared
to two different data sets: compressible CFD results and experimental data performed on a particular
Helmholtz resonator geometry. This paragraph describes briefly those references and the geometric definition
of this particular case. More detailed on the reference works can be found in the papers9,11 .
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1. Numerical compressible CFD reference data

Compressible simulations of the Navier-Stokes equations with both laminar and turbulent models (LES
with k-equation eddy-viscosity model) performed with the Pimple algorithm of OpenFOAM12 are used
for comparison11 . In order to distinguish, for the estimated resonator acoustic impedance, between the
possible differences originating from the numerical solvers and from the modeling part, both open-end tube
(without accounting for the cavity backing wall) and closed-end tube (Helmholtz resonator) configurations
are simulated with the compressible solver. It was also verified that the turbulence modeling leads only to
very minor differences. With the turbulence model activated, the acoustic resistance increased slightly. This
shows that turbulent structures as represented by the sub-grid scale model do not have a significant impact
on the separation mechanism itself in the chosen SPL range.

In the compressible flow simulations, the computational domain is excited from the boundary opposite to
the resonator at a distance lsim = 10 cm by imposing a propagating characteristic wave fr of amplitude Af .
For this purpose, the Navier-Stokes characteristics boundary condition (NSCBC), c. f. Poinsot and Lele13 , is
applied. Particular care has been taken to match Af with the value of the amplitude Au in the incompressible
flow simulations to ensure the same excitation state of the orifice in both closed or open tubes. The method to
define correctly the excitation amplitude is discussed in detail in Section II.D. The fr wave can be imagined
as a wave traveling in the right direction towards the orifice location whereas gr is the reflected one traveling
back to the inlet. Shortly after the inlet, area averaged pressure and velocity fluctuations are evaluated across
a reference plane to determined fr and gr time series to evaluated the reflection coefficient Rnum. For those
harmonically excited simulations, the reflection coefficient is determined through Rnum(ω) = ĝr(ω)/f̂r(ω),
with angular frequency ω. The reflection coefficient is transformed to the resonator normalized surface
impedance zr, using the relation zr = (1 +Rnum/exp)/(1−Rnum/exp).

2. Experimental reference data

In addition to the numerical results, a measurement campaign has been performed by Temiz M. A. and
co-workers at the Eindhoven University of Technology.9 The experiments have been carried out with an
impedance tube in a semi-anechoic chamber. The tube has six BSMA MPA microphones with the average
sensitivity of 50.45 mV/Pa, equally distributed along the 1-m long tube. The microphones have been cal-
ibrated to measure the reflection coefficient Rexp in the frequency range [100 Hz - 700 Hz]. The numerical
work will limit itself to this frequency range. The reflection behavior of the test object has been studied for
various SPLs. Data for the cases 89.3 dB and 119.7 dB are presented here for assessment of the investigated
methodology. Those SPL values are controlled over the entire frequency range at a reference position, here
the closest microphone from the resonator front plate placed 49.7 mm away. The 89.3 dB case is in the linear
regime while in the 119.7 dB case nonlinearities are present.

D. Setting the excitation amplitudes

For the purpose of comparing results of the incompressible simulations with existing experimental data,
it is necessary to ensure that the velocities in the orifice agree with each other for the different set-ups.
This fact is also relevant for comparison with the compressible solver, as the definition of the excitation
between compressible and incompressible solvers is fundamentally different. The excitation is given by a
time varying axial velocity fluctuation at the inlet boundary for the incompressible simulations, whereas it is
defined through injection of a fr wave for the compressible ones. The reflection coefficient is therefore a key
parameter to match results in the nonlinear regime. This has been found to be a challenge from a practical
point of view. Drawing impedance curves from a particular resonator at a certain SPL given at a reference
position can also be achieved by the present incompressible approach without any knowledge of intermediate
variables such as the reflection coefficient, but it would require an iterative process.

To compare the results from the investigated methodology to existing data sets, the following procedure
has been applied, based on the relations between propagating waves fr and gr and primitive variables p′ and
u′. Below the cut-on frequency of the duct, and in case of no mean-flow, the acoustics can be described as
the superposition of the Riemann invariants defined by fr = 1/2 (p′/(ρc) + u′) and gr = 1/2 (p′/(ρc) − u′).
In the resonance tube, a standing wave is developed with a fluctuating pressure at the position x

p′(x) = ρc (fr(x) + gr(x)) . (13)
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Frequency [Hz] 340 360 380 400 420

SPL = 89.3 dB

Af [m/s] 0.0020 0.0033 0.0019 0.0013 0.0011

Au [m/s] 0.0021 0.0043 0.0024 0.0014 0.0009

Af,o [m/s] 0.0076 0.0165 0.0097 0.0057 0.0041

SPL = 119.7 dB

Af [m/s] 0.0552 0.0601 0.0574 0.0490 0.0401

Au [m/s] 0.0411 0.0474 0.0471 0.0407 0.0295

Af,o [m/s] 0.1500 0.1823 0.1891 0.1693 0.130

Table 2: Example of inlet excitation amplitudes for fr and u′ at three different SPLs.

In the experimental set-up, the reference microphone was mounted at a distance of lref = 0.0497 m away from
the resonator front face. This is selected as the reference position xref for the SPL. Moreover, the reflection
coefficient R = gr/fr depends on both frequency and amplitude. The reflected wave at the reference position
is thus gr(xref ) = R(ω,SPL) exp(−jω 2lref/c)fr(xref ). Accordingly, the fluctuating pressure at position
xref is given as p′/(ρc) = [1 +R(ω,SPL) exp(−jω 2lref/c)] fr(xref ). Considering the ratio of RMS values to
harmonic amplitude being 1/

√
2, the amplitude Af of the incoming wave fr = Af exp(jωt) is given as

Af = 10SPL/20

√
2 pa

|1 +R(ω,SPL) exp(−jω 2lref/c)| ρc
, (14)

where pa = 20µPa is the commonly used reference sound pressure in air.
The fluctuating velocity u′ is given as the difference of the Riemann invariants, i. e., u′ = fr − gr. Thus,

the amplitude of the velocity Au at the resonator mouth position (at xo = −lo/2 in this work) can be
calculated as

Au(xo)(ω,SPL) = Af (ω,SPL) |1−R(ω,SPL)| . (15)

For the incompressible simulations, the inlet amplitude prescribed at the inlet boundary is directly given by
Eq. (15). For the compressible simulations, in the case of the full resonator configuration, the inlet boundary
condition is Af given by Eq. (14). Finally, exchanging the backing cavity with an non-reflecting outlet
(Z = ρc), the amplitude of the fr wave has to be corrected. The reflection coefficient of the corresponding
orifice Ro (i. e. open tube) can be estimated as

Ro =
zr − zbc

zr − zbc + 2
. (16)

Thus, the amplitude of the f wave in the open-end tube configuration Af,o should be set as

Af,o = Af
|1−R|
|1−Ro|

. (17)

Table 2 lists the values of the different excitation amplitudes needed to ensure the same state at the
orifice neck for five frequencies close to the resonator eigenfrequency and for the two investigated SPLs. As
the primitive variables and Riemann variables are linked through the reflection coefficient, values of velocity
at the orifice coming from the compressible simulations were still slightly different, but these deviations have
been judged to have only a small impact on the estimated impedance values. Note that for the linear case
(at 89.3 dB), even if specific values are given in Table 2, computations give the same impedance values taking
different inlet conditions, as long as small enough.

III. Results obtained for small excitation amplitudes - linear regime

For harmonic pulsating flows at the orifice, the impedance value for each excitation frequency is computed
by dividing the Fourier coefficients of the fluctuating pressure loss through the orifice ∆p̂′ with the velocity
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Figure 4: Normalized resistance Re(zr) (left) and reactance Im(zr) (right) of the Helmholtz resonator, obtained
with the methodology based on incompressible simulations, compared to experimental data and broadband compressible
numerical results (Case SPL = 89.7 dB): ( • ) 2,5-D incompressible, ( ) 3-D compressible with broadband excitation,
( × ) experimental data.

perturbation û′. Each frequency requires therefore one CFD simulation. The harmonic fluctuating inlet
velocity is given for a given angular frequency ω by:

u′(t) = Au sin(ωt), (18)

where the amplitude of inlet velocity Au is defined as described in Sec. II.D.

A. Resonator impedance in the linear regime

Figure 4 shows the obtained normalized surface impedance curves for the case SPL = 89.3 dB over the
frequency range [100 Hz - 700 Hz] compared to the experimental data and the values obtained from the
system identification of the complete 3-D resonator model with the compressible solver. Impedance values
are normalized by the characteristic isentropic impedance Z0 = ρc. For each simulation set, it is verified
that the impedance values are independent of the measurement sections selected for determining the pressure
loss.

All the results show a good agreement in the linear regime. The reactance Im(zr) matches well with
the experimental data over the entire frequency range. However one can see that the discrepancies increase
slightly with increasing frequency. The incompressible harmonic results lead to a better reactance prediction
than the compressible solver far from the resonator eigenfrequency. Same observation can be made on the
resistance Re(zr). Notice also that both experimental and compressible values present a large error far from
the resonance frequency as the impedance values are obtained using the reflection coefficient Rexp or Rnum,
so that even a small error on the reflection coefficient gives a larger uncertainty on the impedance in such
condition. This comes from the fact that the transformation from Rexp/num to Re(zr) is ill-conditioned
away from the eigenfrequency. The resistance obtained by incompressible simulations seems a bit lower than
experimental data, but the trend in frequency (given by the slope) is well predicted.

B. Comparison of the two approaches in the harmonic case

The two approaches to extract Zo from the incompressible results, as discussed in Sec. II.A, are investigated
here in the case of the linear regime with harmonically excited resonator. The difference in concept between
those approaches lies in the correction of the pressure losses in the duct segments: in the frequency domain
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Figure 5: Normalized resistance Re(zr) (left) and reactance Im(zr) (right) of the Helmholtz resonator evaluated with
the approaches 1 and 2: ( • ) approach 1, ( + ) approach 2, ( × ) experimental results.

(approach 1) or in the time domain (approach 2). Figure 5 shows that there is a good agreement between
impedance values resulting from both approaches. The reactance values in particular are very similar. More
discrepancies can be noticed on the resistive part of the impedance with the difference between the approaches
growing when the frequency is increasing. It was observed that approach 2 is more sensitive to the simulation
parameters (time-step, mesh refinement, dependency of measurement section) than approach 1, but both
approaches converge to the same impedance values. Approach 1 can therefore be favored for its robustness.
Those conclusions drawn for the linear regime with harmonic signal excitation have been verified to be valid
for the nonlinear regime and for the linear regime with broadband excitation as well.

IV. Results obtained for higher excitation amplitudes

This section presents the results obtained for higher excitation amplitudes, where flow separates at the
edges of the orifice, i. e. in the nonlinear resonator regime.

A. Resonator impedance in the nonlinear regime

Figure 6 presents the normalized impedance obtained from the different numerical methods performed on the
investigated resonator geometry compared to the experimental data. 3-D simulations have been performed
with a much shorter computational domain with lsim = 10 cm. The 3-D mesh consists of nearly 1.5 million
cells. Impedance results from different measurement sections have been shown to be identical.

The main conclusion from this work is that the tested numerical models, in spite of their differences in
terms of physics and methodology, are in very good agreement. Nevertheless, a systematic over-prediction
of the resistance compared to experimental results can been seen. The discrepancy is expected to be of
physical nature, as mesh/time-step influences have been discarded. The reason for this discrepancy is still
under investigation. The comparison of the results for the whole resonator and the results obtained by
simulating separately the orifice and the back cavity shows overall that the combined model gives very
satisfying results and that this model is still valid for this range of moderately high sound amplitudes. Some
small differences between the 2,5-D and 3-D models can be observed, but the overall impact of 3-D effects
is rather small, although it clearly increases with increasing velocity at the orifice. The flow visualization
(not shown here) suggests that the eddies dissipate in an asymmetrical manner, but that this asymmetry
does not influence the separation process itself. Thus, the 3D effects are not important from an acoustical
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Figure 6: Comparison of numerical results from the different solvers with experimental data: ( × ) experimen-
tal results11 , (× ) 2,5-D incompressible decomposed model, ( ◦ ) 2,5-D compressible decomposed model, ( • ) 2,5-D
full resonator, (× ) 3-D incompressible decomposed model, ( ◦ ) 3-D compressible decomposed model, ( • ) 3-D full
resonator.

point of view for the considered SPLs. For the reactance, numerical and experimental data are very similar,
with a very good match of all numerical results. In detail, it seems however that the numerical approaches
underpredict to some very small extent the reactance, giving a slightly higher resonance frequency. When
compared to the previous linear regime case, one can note that the reactance is only in a minor way affected
by variation of the excitation amplitude.

Complementary computations have been run for a different Helmholtz resonator geometry, based on the
case studied by Hersh et al.14 (see Fig. 12(a) in the referred work), to see if the over-prediction in resistance is
also present. For this second resonator geometry, the dimensions of the acoustic resonator are lo = 1.59 mm,
do = 6.35 mm, lcav = 25.4 mm, and dcav = 50.8 mm. Figure 7 shows the comparison of the numerical results
from both incompressible and compressible numerical approaches to the experimental data of the literature.
The general trends for both resistive and reactive parts with respect to increasing excitation amplitudes are
correctly captured by the numerical methods. A good quantitative agreement is also obtained. A shift in the
resonance frequency can be clearly observed in Fig. 7. This shift occurs due to a decrease of the reactance
for increasing excitation amplitudes, which is related to a reduction of the effective length. Since the neck
geometric length is smaller in this case than for the first resonator configuration investigated, this effect is
much more visible here. The resistance over-prediction from the numerical methods seems to be still present
in this case, even if significantly less pronounced.

B. Effects of rounded edges

One possible reason for the systematic difference between experimental and numerical impedance results has
been thought to originate from the existence of some rounding of the edges for the experimental Helmholtz
resonator test sample. It was already shown in previous works9,15 that the presence of chamfers strongly
changes the structures of the produced vortices at moderate and high excitation amplitudes. In the present
study, the size of the considered chamfers is much smaller, so that one can speak about micro-chamfers
or micro-rounded edges. These micro-rounded edges are investigated as representing more realistic edges,
similarly to the ones expected from manufacturing processes.

Figure 8 shows the impact of micro-rounded edges on the impedance for both linear and nonlinear regimes.
In the linear regime, the micro-rounded edges do not affect either the determined resistance or reactance. This
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Figure 7: Normalized resistance Re(zr) (left) and reactance Im(zr) (right) for the Hersh Helmholtz resonator con-
figuration at three SPLs - ( ) 120 dB, ( ) 130 dB, ( ) 140 dB: obtained from ( + ) incompressible method,
( ◦ ) compressible method, and ( ) experimental data from Hersh.14

is expected as the volume of the orifice is not considerably modified by the micro-chamfering and therefore
the reactance, related to the inertial effects, is not altered. The geometrical modification at the orifice edges
does not influence the flow path, producing no change for the pressure drop and therefore no change in
the resistance either. In the nonlinear regime, one can observe from Fig. 8 that even small micro-rounded
edges can affect significantly the predicted resistance values. Results for two different rounded edge radii are
shown, Rf = 40µm and Rf = 80µm, respectively. These radii represent 1% and 2% of the orifice thickness.
From those observations, accounting for rounded edges tends to decrease the resistance. The extent of
this change seems however to not fully explain the observed discrepancies in resistance between numerical
and experimental approaches. No impact on the reactance can be noticed. Additional flow computations
have shown that the impact of rounded edges on the impedance is captured in a similar manner for both
compressible and incompressible cases, for both rounded edges and straight chamfer situations. The actual
micro-scale geometry does not change significantly the results.

V. Conclusions

A method to characterize numerically the aero-acoustic behavior of Helmholtz resonators without mean
flow has been investigated. Both linear and nonlinear regimes have been studied. A procedure to assess the
present methodology, by ensuring the same velocities in the orifice, is described in this paper. The impedance
values obtained with the incompressible CFD simulation of the orifice combined with an analytical backing
volume model are in good agreement with results from a compressible simulation of a complete resonator.
The numerical results for the resistance in the nonlinear regime show a systematic over-prediction with
respect to experimental data. The impact of micro-rounded edges on the estimated impedance has been
investigated, and was deemed insufficient to explain the discrepancies completely.

The presented approach has shown, nevertheless, to give satisfying results for the acoustic impedance of
Helmholtz resonators. It is an alternative for the study of the nonlinear regime of such acoustic damping
systems. The proposed methodology can be applied for the study of both linear and nonlinear regimes of
Helmholtz resonator with commercial CFD software with moderate computational costs. One of the most
significant advantages of this methodology is that it does not rely on the reflection coefficient to estimate the
impedance (as in experiments or compressible simulations) and instead the impedance is directly computed
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(b) Nonlinear regime

Figure 8: Impact of edge rounding on the computed Helmholtz resonator impedance for the configuration described
in Table. 1, in the (a) linear and (b) nonlinear regimes: ( • ) sharp edges incompressible, ( × ) experimental data,
( + ) Rf = 40 µm rounded edges incompressible, ( ◦ ) Rf = 80 µm rounded edges incompressible.

from the pressure and velocity. Impedance curves are therefore valid on a broader frequency range than
just around the resonator resonance frequency. This approach can be extended to the study of an orifice
with bias or grazing flow in a straightforward manner following previous works2,4, 6 . In the no mean-flow
case, two possible approaches in the post-processing of the orifice transfer impedance have been studied.
The difference in concept between those approaches lies on the correction of the pressure losses in the duct
segments: in the frequency domain (approach 1) or in the time domain (approach 2). A general conclusion
is that both approaches investigated in this work leads to similar impedance prediction but approach 1 has
been shown to be more robust. Finally, the possible impact of 3-D effects on the impedance results presented
in this work has been investigated and judged minor for the applied conditions.
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