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In this study, we numerically model a vibro-acoustic system consisting of a flexible micro-perfora-
ted plate (f-MPP) and an acoustic medium. Combined with a back-cavity, micro-perforated plates
are considered as a promising noise control technology due to their tunable, wide-band sound
absorption characteristics and robust performance. An MPP consists of a plate with uniformly
distributed perforations whose diameters are in the order of a millimeter. These perforations
are small enough to dissipate the acoustic perturbations due to the viscous effects caused by the
presence of the Stokes layers. When the plate is rigid, the sound dissipation mechanism for a
specific frequency bandwidth is determined by the perforation diameter, plate thickness, plate
porosity and the back cavity depth. Yet, when the plate is flexible, additional absorption peaks,
which cannot be determined by the parameters mentioned before, are observed in the measure-
ments. This phenomenon is due to the vibro-acoustic coupling of the flexible plate and the acoustic
medium. To model the vibro-acoustic system numerically, we couple two 3D cylindrical acoustic
mediums, i.e. incident and back cavity regions, with a flexible plate consisting of shell elements.
The perforations are separately located on the plate as independent transfer admittance elements
with impedance values obtained from existing models. The system is disturbed with a plane wave
excitation and the assessment of the model is done by comparing the calculated absorption co-
efficient with the experimental results from the literature. In the future, we plan to investigate
the effect of perforation positions with the help of the model built in this study.

1. Introduction

Micro-perforated plates (MPPs) have been a popular subject in acoustics since their high potential
in sound absorption was pointed out by Maa [1]. MPPs are plates with very small perforations that
are used for absorbing sound when utilized with a back-cavity. Although this configuration is quite
similar to Helmholtz resonators, the size of the perforations causes viscous dissipation and increases
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the absorption bandwidth compared to purely reactive sound absorbers. In our previous studies, we
have investigated the effect of perforation geometry [2] and non-linearity [3].

Another reason for MPPs becoming popular recently is the fact that they can be produced from
a large number of materials. In some cases, the size of the plate and material properties lead to a
vibro-acoustic system. These effects have been noticed by Lee and Swenson first, as an additional ab-
sorption peak [4]. The first attempt to model this vibro-acoustic coupling effect in MPPs is performed
by Lee et al. [5]. They propose a theoretical model to capture the vibro-acoustic effects on the sound
absorption for a rectangular, finite flexible micro-perforated plate (f-MPP). They use Maa’s transfer
impedance definition and couple the particle velocity with plate vibrations after a modal analysis.
Toyoda et al. follow a similar procedure to the one used by Lee et al. in order to estimate the absorp-
tion coefficient for circular f-MPPs [6]. Additionally, they discuss the effect of surface impedance
of the plate in absorption. They compare their model with impedance tube measurements. Zheng et
al. use the knowledge of f-MPPs to design a hybrid passive-active noise control system and have
verified their model with experiments [7]. Furthermore, Bravo et al. analyse a more complicated
case. In their study not only the MPP, but also the back wall of the back cavity is flexible [8]. They
propose an analytical model for this fully coupled system, which is validated by experiments. Later
on, Bravo et al. propose a fully coupled modal model for multiple layers of f-MPPs to optimize the
sound absorption [9]. They have tested this model for a 2-layer f-MPP configuration. Quite recently,
Li et al. have investigated the effect of the perforation position on a f-MPP [10]. To do that, they
redefine the transfer impedance definition as a function of perforation position on the plate.

Although all of the above mentioned approaches are inspirational, they are valid for uniformly dis-
tributed perforations, except for Li et al. [10], which requires re-calculation of the transfer impedance
for each perforation and plate mode separately. To be able to investigate the perforation distribution
and optimize it, the need for a versatile and efficient tool is present.

In this study, we propose a numerical model which takes the positions of the perforations into
account even though they are not distributed uniformly. To do that, we consider an impedance tube
configuration and calculate the absorption coefficient of the f-MPP backed by a cavity (see Figure 1a).
The model solves the Helmholtz equation for the acoustic medium and the f-MPP is represented as
a shell on which the perforations are defined by transfer impedance boundary condition. We have
verified the model with previous results from the literature and we obtain good agreement in both
purely acoustic and vibro-acoustic cases.

Figure 1: (a) Impedance Tube configuration: 1© tube domain, 2© back-cavity domain; (b) Cross-
section of the MPP (zoomed); (c) Cross-section of the f-MPP (zoomed).

2. Theoretical Background

Assuming harmonic plane waves and neglecting the thermal and viscous effects in the acoustic
mediums 1© and 2© shown in Figure 1-a, the wave equation in frequency domain is given by the
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Helmholtz equation [11]

ω2p̂n(z) + c20∇2p̂n(z) = 0, (1)

where ω = 2πf is the radial frequency, c0 is the speed of sound,∇2 is the Laplacian operator, and p̂n
is the acoustic pressure in medium n©.

The flexible MPP is assumed to be a thin, homogeneous plate (Figure 1c) whose equation of
motion is given by [12]:

Dp∇2∇2w(r)− ρptpω2w(r) = F̂ . (2)

In Eq. (2), ρp is the density, w(r) is the displacement of the MPP; F̂ is the external point force acting
on the plate surface; Dp = E(1 + ̇η)t3p/[12(1 − ν2)] is the flexural rigidity where E is the Young’s
modulus, η is the loss factor, ̇ =

√
−1 is the imaginary number and ν is the Poisson ratio of the MPP

material.
In case of rigid MPP, the acoustic mediums 1© and 2© are connected through the micro-perforations

that are defined by perforation diameter dp, and plate thickness tp, in Figure 1b. This relation is ex-
pressed as the acoustic transfer impedance for a single perforation Zt, and given by [1]

Zt =
∆p̂

ûp
= ̇ωtpρ0

[
1− 2

Sh
√
−̇

J1(Sh
√
−̇)

J0(Sh
√
−̇)

]−1

+ 2αRs + ̇δωρ0
dp
2
, (3)

where ∆p̂ = p̂1 − p̂2 is the acoustic pressure difference across the MPP, ûp is the acoustic particle
velocity in a perforation, ρ0 is the density of the acoustic medium, Jn is the Bessel function of the
first kind of order n, Sh = dp

√
ωρ0/(4µ) is the Shear number where µ is the dynamic viscosity

of the acoustic medium; (2αRs) and (̇δωdp/2) are the resistive and reactive end-corrections where
Rs = 0.5

√
2µρ0ω is the surface resistance, and α and δ are the resistive and reactive end-correction

coefficients, respectively.
Provided that the perforations are uniformly distributed and far enough from each other, the poros-

ity, σ, is also required to calculate the transfer impedance of the entire plate, ZT = Zt/σ [1].
Assuming that the flexible plate is infinitely thin, the vibro-acoustic coupling of the f-MPP and

the acoustic mediums is performed using the following relations:

F̂ = p̂1(0
−)− p̂2(0+), (4a)

û1,2(r, 0) = ̇ωw(r), (4b)

on the plate surface.
We evaluate the acoustic performance of the model by calculating the absorption coefficient β =

1− |(p̂−/p̂+)1|2, where p̂+ and p̂− are the complex amplitudes of the left and right traveling pressure
waves in domain 1© and can be calculated by using the multi-microphone method [13]. Although this
method is proposed for experimental studies, it is completely applicable in numerical models as well.
To read the pressure values, we define several pressure probes along the z-axis in domain 1© of our
numerical model and perform the pressure decomposition based on these readings.

3. Numerical Model

We build our numerical model in LMS Virtual.Lab R© [14] based on the impedance configuration
shown in Figure 1a. The schematic description of the model is given in more detail in Figure 2. The
acoustic domains 1© and 2© are modeled by Eq. (1); the inlet ΩP is the imposed pressure boundary,
and the f-MPP is a combination of the imposed transfer impedance boundary ΩZt and vibro-acoustic
coupling boundary ΩS that need to satisfy Eqs. (3) and (4). The remaining boundaries are defined as
the sound-hard boundary, ΩZ∞ .

Please note that, although Figure 2 illustrates 2D drawings for the sake of simplicity, the model
we describe in this study is built in 3D.
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Figure 2: Schematic representation of the numerical model investigated in this study: (a) general
geometry for a coupled vibro-acoustic model; (b) impedance tube configuration.

3.1 Finite Element Model for the Coupled System

Writing Eqs. (1) and (2) in weak form, choosing appropriate shape functions and implementing
the coupling equations given in Eq. (4), we obtain the set of equations for the coupled system:{[

Ks Kc

0 Ka

]
+ ̇ω

[
Cs 0
0 Ca

]
− ω2

[
Ms 0
Mc Ma

]}{
wu

pu

}
=

{
Fsi

Fai

}
, (5)

where K is the stiffness, M is the mass, C is the dissipation and F is the forcing matrix. The subscripts
‘a’, ‘s’ and ‘c’ represent the words acoustic, structural and coupling. The vectors wu and pu represent
the unconstrained plate displacement and acoustic pressure vectors that need to be solved for. The
stiffness coupling matrix Kc relates the acoustic pressure to plate acceleration; and the coupled mass
matrix Mc relates the acoustic pressure to the plate displacement. The forcing matrices Fai and Fsi

introduce the prescribed pressure and displacement vectors into the set of equations.

3.2 Numerical Study Cases

We consider two study cases for the validation of the numerical model: (1) Purely acoustic case,
(2) vibro-acoustic case. In both cases the configuration is the same as the one in Figure 1a. The
differences in the parameter values are described in this section.

3.2.1 Case 1: Purely Acoustic

In this case study, we compare the classical MPP theory with the numerical model we propose.
The former one is implemented into the FEM as a boundary condition connecting domains 1© and
2©. This boundary is modeled as an imposed transfer impedance relation, ΩZ , whose expression is

an averaged transfer impedance over the plate, ZT , as discussed in Secion 2. Thus, we refer to this
model as the lumped model in the rest of the paper.

By contrast, the proposed model represents the perforations as transfer impedance patches on
the whole plate surface. Since this model allows us to treat each perforation separately, it will be
referred to as the discrete model. The transfer impedance expression for each patch is calculated
from the expression given in Eq. (1). Nevertheless, since the solution of the Helmholtz equation
already includes the effect of the area change in the acoustic domains, the last term (̇δωρ0

dp
2

) should
be omitted to prevent excess reactance. For the resistive end-correction term (2αRs), this does not
apply due to the fact that Helmholtz equation does not include viscous terms.

For the purely acoustic case, the MPP is not flexible. As a result the entire plate except for the
transfer impedance patches is modeled as a sound-hard boundary, ΩZ∞ .

3.2.2 Case 2: Vibro-Acoustic

The parameters for this case study are taken from Toyoda et al. [6] to be able to compare to
their measurements. The coupling in the vibro-acoustic models is achieved through defining the
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Figure 3: Boundaries connecting domains 1© and 2©: (a) boundary for the lumped model, (b) bound-
ary for the purely acoustic discrete model, (c) boundary for the vibro-acoustic discrete model.

boundary between domains 1© and 2© as the vibro-acoustic coupling interface, ΩS . Furthermore,
the perforations are modeled as local impedance patches on this flexible boundary, hence the vibro-
acoustic models are also discrete models as shown in Figure 3c. To define the flexibility of ΩS ,
additional structural parameters such as Young’s modulus, Poisson ratio and the loss factor of the
flexible plate are needed for this case study.

All the models and their describing properties are given in Table 1.

Table 1: Model parameters.

Parameter Model 1A Model 1B Model 2A Model 2B Model 2C
dp [mm] 0.20 0.20 N/A 0.5 2.0
tp [mm] 0.20 0.20 0.50 0.50 0.50
b 1 [mm] 2.5 2.5 10 10 10
np

2 [-] 1 9 0 69 69
σ [-] 0.5% 0.5 % 0% 0.2% 2.8%
D [mm] 2.82 8.46 100 100 100
L1 [mm] 8.46 25.4 300 300 300
L2 [mm] 60 60 50 50 50
E [N/m2] N/A 3× 109

η [-] N/A 0.03
ν [-] N/A 0.3

4. Results and Discussions

For the validation of the purely acoustic case, we first compare the absorption coefficient values
given by the discrete model proposed in this paper, lumped model based on the study by Maa [1] and
the experiment results from his study. Secondly, we compare the effect of number of perforations in
our discrete model. These comparisons are performed in the frequency span of 200 Hz<f<2000 Hz.

As show in Figure 4a, if the boundary condition expression is not corrected for the reactive end-
correction, we observe discrepancies in the absorption coefficient values. When this correction is
performed, the discrepancy between the lumped model and the detailed model decreases significantly.
Additionally, Figure 4b shows that the number of perforations is not an important factor with the given

1Distance between two neighboring perforations.
2Number of perforations.
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(a) Verification of Model 1A.
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(b) Comparison between Model 1A and 1B.

Figure 4: Verifying the proposed discrete model: (a) comparing the model with experiments by
Maa [1]; (b) investigating the effect of number of perforations in the model. (•): experiment Data;
(—): lumped model; (– –): detailed model with excess reactance; ( ): discrete model with correc-
tion[1 perforation]; ( ): discrete model with correction[9 perforations].

value of b, which is the distance between two neighboring perforations. In conclusion, the proposed
discrete model represents the purely acoustic case fairly well.

In Case 2, we compare our results with the experiments by Toyoda et al. [6]. The parameters
defining models 2A, 2B and 2C are taken from their study and used for building the vibro-acoustic
model. We compare the results from our numerical model with their experiments in Figure 5.
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(c) Model 2C

Figure 5: Verification of Case 2 (vibro-acoustic coupling): (—): discrete model; (•): experiment data
by Toyoda et al. [6].

In Figure 5, we observe two structural and one absorption peaks. The acoustic one changes dras-
tically with respect to the perforation size, but the structural ones are not influenced by that. Toyoda
et al. report that the 2nd and 3rd eigenfrequencies of the flexible plate are 560 Hz and 1255 Hz [6]. As
it can be seen in Figure 5a, the proposed discrete model captures these peaks successfully.
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In Figures 5b and 5c, except for the structural peaks, the model underestimates the absorption
coefficient measured experimentally. Toyoda et al. explains this discrepancy with the presence of
surface admittance [6, 15] and our discrete model can be improved to capture this effect in the future.

To see if the surface impedance is the only effect responsible of the discrepancies in Figures 5b
and 5c, we run simulations with models 2B and 2C in Case 1 and compare the results with the lumped
version of these models. Figure 6 shows the results of these extra simulations.
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Figure 6: Discrepancy between the lumped and discrete models as the perforation diameter increases.

The comparison of discrete models 2B and 2C with their lumped version shows us there can be
an additional source of discrepancy observed in Figures 5b and 5c. As it can be seen in Fig. 6, there
is a larger difference between the discrete and lumped models for the model with the larger diameter.
We consider this as an implication of the imperfect reactive end-correction. Further study is planned
to investigate this issue.

5. Conclusions

This study proposes an efficient numerical model that couples the vibration characteristics of a
flexible micro-perforated plate with the acoustics of a fluid domain. Since this model solves the
Helmholtz equation for the acoustic part, we introduce the viscous effects as local impedance patches
on the flexible plate boundary. As a result of this hybrid approach, the computation time is signifi-
cantly lower than models solving the Navier-Stokes equations in the entire domain.

In our simulations, we observe a discrepancy between the lumped and discrete models that de-
pends on the perforation diameter. Although omitting the reactive end-correction term helps reducing
this difference notably, it does not completely eliminate it. Further study addressing reactive end-
correction term is planned.

The proposed discrete model captures the vibro-acoustic system response satisfactorily, especially
at the absorption coefficient peaks. Nevertheless, in the rest of the frequency span of interest, there is
a slight underestimation of the absorption coefficient value compared to the measurement data. This
is another aspect in which our model can be improved.

With this proposed discrete model, it is possible to calculate the sound absorption of f-MPPs
whose perforations are not uniformly distributed. It is also possible to model the acoustic character-
istics of f-MPPs that have perforations of different size on the same plate. Thus, this approach is a
promising tool for parametric studies to optimize the sound absorption of f-MPPs.
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