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ABSTRACT
Thermoacoustic instabilities have the potential to restrict

the operability window of annular combustion systems, primar-
ily as a result of azimuthal modes. Azimuthal acoustic modes are
composed of counter-rotating wave pairs, which form traveling
modes, standing modes, or combinations thereof. In this work,
a monitoring strategy is proposed for annular combustors that
accounts for azimuthal mode shapes. Output-only modal identi-
fication has been adapted to retrieve azimuthal eigenmodes from
surrogate data, resembling acoustic measurements on an indus-
trial gas turbine. Online monitoring of decay rate estimates can
serve as a thermoacoustic stability margin, while the recovered
mode shapes contain information that can be useful for control
strategies. A low-order thermoacoustic model is described, re-
quiring multiple sensors around the circumference of the com-
bustor annulus to assess the dynamics. This model leads to a
second order state space representation with stochastic forcing,
which is used as the model structure for the identification pro-
cess. Four different identification approaches are evaluated un-
der different assumptions, concerning noise characteristics and
preprocessing of the signals. Additionally, recursive algorithms
for online parameter identification are tested.

NOMENCLATURE
Acc cross-sectional area of the annular combustion chamber
E[·] expected value

∗Address all correspondence to this author.

C state space output matrix
F̂ acoustic wave amplitude traveling along θ -coordinate
Ĝ acoustic wave amplitude traveling against θ -coordinate
I identity matrix
M thermoacoustic system matrix
N heat release response strength
Q̇ heat release rate per cubic meter
R radius of the annular combustion chamber
fs sampling frequency
i imaginary unit

√
−1

m azimuthal mode number
n heat release interaction index
p̂ acoustic pressure in the annulus
q state space vector
r radial coordinate
s acoustic sensor output
t time
vθ azimuthal bulk velocity in rad/s
x axial coordinate
α decay rate
γ ratio of specific heats
ε discrete Gaussian noise
ζ acoustic attenuation
θ azimuthal coordinate
λ system eigenvalue
τ heat release time delay
υ eigenvector ratio
∆t discrete time step
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INTRODUCTION
Thermoacoustic stability in combustion systems remains a

major concern in industrial applications. As industry moves to-
wards lean premixed combustion, the susceptibility of combus-
tion systems to the problem of combustion instability has in-
creased. Potential problems with thermoacoustic feedback often
cannot be ruled out in the design phase of a combustion system.
Common practice is to define a safe operational window upon
commissioning, in which combustion parameters can be changed
without risking thermoacoustic instability. However, increased
requirements for flexible power generation, efficiency and emis-
sion reduction, demand a wider operational window.

One promising strategy is to monitor the combustion sys-
tem continuously, by assessing the prevalent stability margin of
the thermoacoustic modes. The first such output-only identifica-
tion method, quantifying the decay rate of the autocorrelation
function of an acoustic time series, was proposed in 2005 by
Lieuwen [1]. More recently, methods from the field of dynamical
system theory and chaos theory, suitable for nonlinear dynamics,
have been adapted [2,3,4]. Instead of representing a linear decay
rate, precursors quantify how structured (or chaotic) the dynam-
ics is, on basis of a representative time series.

In annular combustion systems, acoustic waves can travel
around the combustion chamber and plenum annulus without ex-
periencing severe obstructions. Although the azimuthal waves
propagate through an environment that is far from quiescent, the
attenuation of these waves is relatively low, making azimuthal
modes the major concern regarding thermoacoustic stability in
annular combustion systems, like heavy duty annular gas tur-
bines. As a result, annular combustion systems have been studied
quite extensively, from low-order mathematical descriptions to a
costly LES-simulation, see [5, 6, 7] to name just a few. In ad-
dition, active control strategies have been proposed, based on a
network model description of an annular combustor [8]. Annu-
lar test rigs are quite rare, yet some valuable experimental results
are available [9]. Considering pure azimuthal acoustic modes,
two eigenmodes are associated with each (positive integer) az-
imuthal mode order m. Fundamentally, the modes are degen-
erate, i.e. they have the same eigenvalue. For various reasons,
including azimuthal bulk flow and azimuthally distributed heat
release characteristics, the eigenvalues can become nondegen-
erate. When the split strength of the eigenvalue pair is of the
magnitude of their decay rates, the nondegeneracy of the system
cannot be neglected.

Measurable precursors that presage thermoacoustic instabil-
ity are generally developed and tested on axial laboratory com-
bustors, in which the acoustic field can be considered geometri-
cally fixed. Annular combustion systems do not have the con-
venience of a priori knowledge on the azimuthal mode shapes.
A dense distribution of sensors around the circumference would
be required to assess uniquely both the temporal and spatial dy-
namics of the acoustic field in the annulus. Assuming azimuthal

acoustics with a constant speed of sound and exploiting the phase
information of measured signals, it can be shown that a minimum
of two sensors would be required to solve for the modal contri-
butions. Previously mentioned monitoring methods use a single
input signal from the thermoacoustic system and would therefore
suffer a dependency on measurement position. To illustrate this
dependency, consider a standing wave solution where a single
sensor could be located in one of the acoustic nodes, in which
the modal fluctuations would not be registered.

The objective of this work is to develop an online monitor-
ing strategy, specifically designed for annular combustion sys-
tems. The monitoring algorithm, based on acoustic measure-
ments, should constantly be able to quantify the stability of the
thermoacoustic modes. Such quantification would allow an op-
erator or operating system to maintain a safe margin from in-
stability under the prevailing conditions, including the machine
state, ambient and operating conditions. By slowly changing the
system parameters under stable operating conditions the influ-
ence on the system stability can be inferred. Using this strategy
would help to optimize operation conditions with respect to re-
quired power output, efficiency and pollution emission, whilst
limiting the risk of entering into a state of thermoacoustic limit
cycle. A model structure based on low-order modeling is pro-
posed, that can be used for online stability estimation, that works
by identification of the decay rates and mode shapes of azimuthal
eigenmodes.

A low-order model closely related to the models found in
[10] and [11] is described. The model captures the key dynam-
ics of the system in the form of a state space model with two
complex state variables that shows traveling, standing and mixed
acoustic field solutions. Assuming that the thermoacoustic cou-
pling is predominantly linear in the stable regime, a stochasti-
cally forced state space model structure can be used to estimate
the decay rates of the potentially split eigenvalues, belonging to
a certain order of azimuth. In the first section the low-order ther-
moacoustic model is introduced and evaluated. Subsequently,
identification methods are tested on surrogate time series. Spe-
cial focus is on robust online monitoring of signals, including re-
cursive implementations of the methods on finite time windows
for quasi-steady dynamics.

LOW-ORDER MODELING OF ANNULAR THERMOA-
COUSTICS

Modal dynamics of annular thermoacoustics often show pre-
dominant standing or traveling wave behavior. In limit cycles this
can be observed clearly in both experiment and modeling even
though the process noise results in some spread in the observed
modal behavior [9, 12]. Preferences for certain mode shapes are
also present in the stable regime, although strongly obscured by
process and measurement noise. To identify the stability and
mode shapes of a thermoacoustic system, a model structure that
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FIGURE 1. SKETCH OF AN ANNULAR COMBUSTOR WITH 1D
ACOUSTIC WAVES F̂m AND Ĝm IN THE COMBUSTION CHAM-
BER. PREMIXING DUCTS OF THE BURNERS CONNECT THE
COMBUSTION CHAMBER WITH THE PLENUM

captures the key dynamics with the least amount of parameters
is pursued. The objective therefore, is to describe the different
azimuthal mode shapes using the simple model possible.

In the combustion chamber annulus, 1D plane wave prop-
agation is modeled in the azimuthal direction, expanded in a
Fourier series. A mean azimuthal bulk flow and global damping
are included in the azimuthal acoustic description. Heat release
is modeled by an n− τ model, relating heat release fluctuations
to the axial velocity fluctuations in premixing ducts which supply
fuel to the combustion chamber. Velocity fluctuations are driven
solely by the fluctuating pressure difference between the plenum
and the combustion chamber. This corresponds to a side branch
in an acoustic network (applied in [13] as an example), in which
the cross-sectional area of a branch is very small compared to
the cross-sectional area of the annulus. Heat release forms an
acoustic source according to the Rayleigh criterion, closing the
thermoacoustic feedback mechanism. Heat release parameters
can be prescribed locally, as a function of the azimuth. The az-
imuthal mode orders in the model (i.e. the azimuthal Fourier
components that form the acoustic field) are orthogonal and are
individually considered as such.

Acoustics
One-dimensional acoustics are fully described by two Rie-

mann invariants F and G traveling with the speed of sound in the
positive and negative direction of the coordinate respectively. In
the azimuthal coordinate system of an annulus, any shape of the
two invariants can be suitably expressed as a Fourier series. The
mth Fourier coefficient is the contribution to the acoustic vari-
able of azimuthal mode order m. A modal contribution p̂m to
the acoustic pressure field p̂ is then given by a clockwise (F̂m)

Pl
en

um

p = 0

⊗
xθ

r

ûx(θ , t) ˙Q(θ , t)

⊙
Ĝm(θ , t)

⊗
F̂m(θ , t)

Combustion
Chamber

`

Premixing duct

Burner

FIGURE 2. SECTION VIEW, SHOWING THE PREMIXING
DUCT WITH REFERENCE VELOCITY ûx FOR THE HEAT RE-
LEASE MODEL. THE COMBUSTION ZONE IS SUBJECT TO THE
PRESSURE FLUCTUATIONS IN THE COMBUSTION CHAMBER,
BUT SECLUDED FOR AZIMUTHAL PARTICLE VELOCITY

and anti-clockwise (Ĝm) traveling wave amplitude. Refer to the
sketch of an annular combustor in Fig. 1 for graphical support.
The hat on a variable denotes that it is a complex quantity.

p̂m(θ , t) = F̂meim(ω0t−θ)+ Ĝmeim(ω0t+θ) (1)

The modal eigenfrequencies of the annulus are the azimuthal
mode order m times the fundamental frequency ω0. The complex
amplitudes F̂m and Ĝm can change slowly over time as a result of
an azimuthal bulk flow velocity vθ and a global acoustic attenu-
ation rate ζ , which can be considered as a simple description of
acoustic losses.

1
F̂m

∂ F̂m
∂ t = imvθ −ζ

1
Ĝm

∂ Ĝm
∂ t =−imvθ −ζ

(2)

The azimuthal flow causes a direction dependent wave prop-
agation velocity. Although vθ is considered here as a bulk flow
velocity, other physical phenomena might also contribute to a di-
rection dependent wave propagation velocity.

Premixing Ducts Premixed fuel enters the annular com-
bustion chamber through premixing ducts, shown in Fig. 2. The
ducts, which connect the combustion chamber with a plenum,
are assumed to be narrow and acoustically compact with respect
to the considered azimuthal wavelengths. According to the 1D
momentum equation, a pressure difference between the annuli
induces a plug flow in the fuel lines. In this work, the pressure
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fluctuations in the plenum are set to zero as a boundary condi-
tion. The (uniform) axial particle velocity ûx in the premixing
duct causes the heat release fluctuations in the next subsection.

ûx(m,θ , t) =
−1
ρc

∫ dp̂m

dx
dt ≈ i

mω0ρc`
p̂m(θ , t) (3)

Newly introduced variables are the cold fuel density ρc and
premixing duct length ` and the low azimuthal Mach number as-
sumption Mθ = vθ/ω0 � 1 is applied to obtain the right hand
side of Eq. (3). The expected order of magnitude for the burner
impedance Ẑm given in Eq. (4) is 0.1 for the first few mode num-
bers.

Ẑm =
p̂m

ρ0cûx
=
−iρcm`

ρ0R
(4)

In this equation, the speed of sound c is rewritten to the prod-
uct of the radius R and fundamental frequency ω0 of the annu-
lus. Note the appearance of a density ratio between the supplied
fuel ρc and the combustion gases ρ0 in the combustion chamber.
The acoustic response of a side branch to azimuthal waves for
unity and very low burner impedance can be found in Blimbaum
et al. [14]. The axially induced particle velocity ûx is of inter-
est here and follows the azimuthal acoustic pressure passively.
Note that coupling is easily included by setting the impedance
in Eq. (4) such that it matches the coupled acoustic field, lead-
ing to a description with coupled plenum, burner and combustion
chamber (PBC).

Heat Release Model
An n-τ model has been adapted to describe the heat re-

lease in the annular combustion chamber. The heat release fluc-
tuations in the combustion chamber are locally prescribed by
Q̇ ∝ nûx(t−τ). Physically it can be explained as fuel split modu-
lations in the premixing duct being convected to the flame front,
or to pulsating mass flow at the burners due to the axial particle
velocity. The interaction index n is scaled to a real dimension-
less amplification factor N using Eq. (3), yielding the heat release
based on pressure fluctuations: Q̇m ∝ N p̂m(t− τ). Note that this
amplification factor includes the effect of the burner impedance.
Choosing another acoustic boundary condition that describes the
coupling with the plenum simply yields another (possibly com-
plex) value for N.

Q̇m(θ , t) =
2iω0N(θ)

(γ−1)m
p̂m(θ , t− τ(θ)) (5)

One strategy to control thermoacoustic stability is to install
burners with different characteristics, or feeding some burners

with a different fuel mixture. To mimic a so-called staging effect,
the flame response strength N is a function of the circumference,
written as a harmonic expansion with coefficients Nk and corre-
sponding angles θk.

N(θ) = N0 +2
∞

∑
k=1

Nk cos(kθ − kθk) (6)

The time delay τ can also be varied azimuthally. A con-
tinuous description of the heat release characteristics around the
combustor circumference has been used, rather than modeling
a discrete set of individual burners. Note that breaking of the
azimuthal uniformity does not have to result from a staging strat-
egy. It can also be present unintentionally, due to varying fuel
line lengths connecting the main fuel supply to their respec-
tive premixing ducts for example, which affects their acoustic
impedances.

Rayleigh Criterion
For a 1D annular geometry, the acoustic equations with heat

release source leads to a differential equation for the total sound
energy E.

DE
Dt

=
γ−1
γ p0

AccR
∮

Q̇pdθ (7)

In order to keep the model simple, the heat release location
is kept fixed, despite the azimuthal particle velocity and bulk ve-
locity in the combustion chamber.

System of Equations Assembly
Evaluating the change in acoustic energy of the wave pair

belonging to a mode order, Eqs. (1) and (2) inserted into Eq. (7),
yields a linear system of ordinary differential equations. Cou-
pling between the waves is established through the heat release
response.

q̇ = Mq (8)

In Eq. (8), the state vector q = [ F̂m Ĝm ]T contains the
acoustic variables and the 2× 2 system matrix M includes all
system parameters. So that only the slow amplitude and phase
modulations are described, fast dynamics with time scales corre-
sponding to an acoustic period or smaller have been eliminated
from the system of equations by integrating over an acoustic pe-
riod. This averaging can be justified for |λ1,2|�mω0, where λ1,2
are the two eigenvalues of the system matrix M. By requiring that
the amplitude modulations of F̂m and Ĝm are slow compared to
the corresponding eigenfrequency, this has been assumed implic-
itly in the model description.
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Uniform Time Delay If the time delay τ is uniform
around the circumference, the system matrix M is given by
Eq. (9), with ϖ± = m(ω0± vθ ).

M =

[
iω0
m N0e−iϖ+τ + imvθ −ζ

iω0
m N2me2imθ2m−iϖ−τ

iω0
m N2me−2imθ2m−iϖ+τ iω0

m N0e−iϖ−τ − imvθ −ζ

]
(9)

Averaging contributions around the circumference elimi-
nates all products of orthogonal harmonics, such that only N0 and
N2m of the flame response strength expansion in Eq. (6) remain.
This shows that burners do not have to be considered individ-
ually and only their average and the effect on one spatial basis
function have to be accounted for. Simple analytic expressions
for the eigenvalue problem can be obtained, revealing a pair of
eigenvalues that are typically nondegenerate.

λ1,2 =
iω0

m

(
N0 cos(mvθ τ)±N2m

√
1−η2

)
eimω0τ −ζ (10)

η =
m2vθ

iω0N2m
eimω0τ − N0

N2m
sin(mvθ τ) (11)

The real part of the eigenvalues are the growth rates of the
modes, whereas the imaginary part contains the deviation from
the average acoustic modal frequency mω0.

α1,2 = −ℜ(λ1,2)
ω1,2 = mω0 +ℑ(λ1,2)

(12)

Eigenvectors of the 2DOF system are fully defined by the
ratio υ = F̂/Ĝ.

υ1,2 =
(

iη±
√

1−η2
)

e2imθ2m−imvθ τ (13)

Nonuniform Time Delay When the heat release time
delay τ is also a function of the circumference, the integral over
the circumference cannot be evaluated in the general case.

M =

[
Γ
+
0 + imvθ −ζ Γ

−
2

Γ
+
2 Γ

−
0 − imvθ −ζ

]
(14)

For given distributions of N and τ , the integrals Γ as defined
in Eq. (15) need to be evaluated.

Γ
±
k =

iω0

2πm

∮
N(θ)e∓ikmθ−iϖ±τ(θ) dθ (15)

Model Validation
The low-order thermoacoustic model introduced in this

work is compared to ATACAMAC [15, 11], an annular thermoa-
coustic network model. In ATACAMAC the combustor is mod-
eled by burner ducts in which the combustion is described by
acoustic jump conditions, also based on an n-τ formulation. The
burner ducts joint with annular duct sections, forming the annu-
lar geometry. A plane wave solution describes the transfer func-
tion across the ducts. An analytic estimation of the eigenvalue
problem is found by a Taylor expansion of the system around the
acoustic eigenfrequency of the annulus, yielding the decay rate
and thermoacoustic frequency of the considered mode order.

Validation Case The example system in Bauerheim et
al. [11] is considered, which is a combustor with 4 burners, two
of which share a variable delay τ1 in the heat release model, or-
dered in the pattern 1212. The first azimuthal mode order is con-
sidered as a function of τ1 and vθ , fixing τ2 = 2.21ms, ζ = 0 and
all other system parameters listed in [11], Table 1.

The discrete set of burners can be described with the use
of the Dirac delta functions before evaluation of the integrals in
Eq. (14). For comparison between the two models, the acoustic
contribution of the burner duct length in ATACAMAC is elim-
inated. Moreover a correction factor matching the impedance
ratio between the hot and cold domain was required, because
in ATACAMAC the heat is released in the cold domain. Fol-
lowing these adjustments the model results are identical, apart
from the mixed regime (i.e. nonzero vθ and τ1 6= τ2) where small
discrepancies are discerned. The frequency and decay rate ver-
sus τ1 for both models are shown in Fig. 3 for the (mixed) case
with vθ/ω0 = Mθ = 0.01, according to Eq. (12) in this work
and Eq. (18) in [11]. The Taylor expansion of the ATACAMAC
model matrix around the acoustic eigenfrequency yields a dis-
continuity in its roots, visible at mω0τ1/2π = 0.8. Close to the
point where the eigenfrequencies are equal, both roots result in a
positive decay rate α , seen by two markers at this location.

It is concluded that the two models predict the exact same
key features as a result of variable heat release and azimuthal
bulk velocity. Both low-order models show that deviations from
a uniform and quiescent annular thermoacoustic system cause
split eigenvalues for a given mode order. The present model
starts with continuous flame response distributions, such that the
general effect of system parameters can be evaluated, without
specifying the amount of burners and their characteristics. If de-
sired, a discrete set of burners could be represented by a corre-
sponding continuous description as shown in this validation case.
Moreover, the model described here is more reliable in the mixed
region, since it returns continuous eigenvalue solutions.

From a monitoring perspective it is key that the dynamics
can be described by a state space representation in Eq. (8) with
two complex state variables, independent of system parameters
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FIGURE 3. COMPARISON OF THE CURRENT MODEL WITH THE ANALYTIC (LINEARIZED) ATACAMAC MODEL. EIGENFREQUEN-
CIES AND DECAY RATES OF A SYSTEM WITH BURNER PATTERN 1212 FOR VARIABLE TIME DELAY τ1. BOTH SOLUTIONS COINCIDE
VERY WELL AFTER ENFORCING THE SAME CONDITIONS, NOTING THE SMALL DEVIATIONS AROUND mω0τ1/2π = 0.8

and the amount of burners.

ANNULAR SYSTEM IDENTIFICATION
Due to the complex coupling of physical phenomena, an ac-

curate prediction of the thermoacoustic stability of a combus-
tor is not straightforward, even when accurate descriptions of
the geometry and flame response measurements are available.
Moreover, the behavior can change with extend variables, such as
weather conditions, transient heating of the system, etc. Uncer-
tainties in model parameters can have a significant influence on
the stability, see for example [16]. For optimal operational flex-
ibility, the thermoacoustic state of the system is best evaluated
online, i.e. during operation. For satisfactory identification, a
model structure is required, describing the relevant physics with
a limited amount of free parameters. Evaluating the decay rate
of the autocorrelation function of an acoustic sensor as in [1],
proves to be insufficient in case of eigenvalue splitting.

The simplest explanatory model structure in this case would
have two degrees of freedom, describing the evolution of two
complex acoustic amplitudes around the combustor circumfer-
ence, as found in the thermoacoustic model described in the first
part of this work. In this section possibilities to identify matrix
M, or its characteristics, are evaluated. The model for the time
series s at the sensor locations follows a state space representa-
tion with stochastic input.

q̇ = Mq+wq
s = Cq+ws

(16)

The matrix C is the output matrix relating the analytic sensor

output s to the two modal amplitudes in the state vector q. Heat
release fluctuations in the turbulent combustion process perturb
the system through wq, while ws denotes measurement noise on
the sensor channels.

System parameters listed in Tab. 1 that define M, are chosen
as the order of magnitude that can be expected in a heavy duty
annular gas turbine. The time delay of the flame is set so that
a positive feedback between acoustics and heat release occurs.
Subsequently the response strength is chosen so that the system
approaches marginal stability. Moderate nonuniformity N2m and
bulk velocity vθ are included to have a mixed system with nonde-
generate eigenvalues. The resulting thermoacoustic system fea-
tures two eigenvalues with decay rates α1,2 = [5.7 21.1 ]s−1

and respective eigenfrequencies f1,2 = [191 193 ]Hz.

Time Series Generation
Identification methods have been tested on surrogate time

series data, generated by the model description in Eq. (16). The
stochastic differential equation for q is numerically integrated us-
ing the Euler-Maruyama scheme given in Eq. (17), generating
one hundred minutes of data. Stochastic forcing εq and sensor
noise εs are discrete time series of Gaussian processes.

q j+1 = (M∆t + I)q j +
√

∆tεq
j

s j = Cq j + εs
j

(17)

Relatively large time steps of ∆t = 10−4 s are used for the
integration, which is possible as only slow amplitude changes
are described. Real time signals are constructed for sensor po-
sitions θs = [0 π/8 π/3 ]T , with a sampling frequency of
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TABLE 1. PARAMETERS USED FOR THE SIMULATION OF
THE ACOUSTIC TIME SERIES, YIELDING A SYSTEM IN THE
MIXED REGIME

m ω0 ζ mω0τ N0ω0 N2mω0 θ2m vθ

2 200π 100 2π/3 200 20 0 −3

- rad/s s−1 - rad/s rad/s rad rad/s

0.94 0.96 0.98 110−3

10−2

10−1

ω1,2/mω0

PS
D

[P
a2 ]

|F̂(ω−mω0)|2

|Ĝ(ω−mω0)|2

FIGURE 4. MODAL PEAK IN THE POWER SPECTRAL DEN-
SITY OF CLOCKWISE AND ANTICLOCKWISE WAVES OF THE
SURROGATE TIME SERIES DATA GENERATED BY Eq. (17)

fs = (4∆t)−1 = 2.5 kHz. The signals are divided in one hundred
segments of one minute, that are analyzed individually by the
identification methods introduced in the following subsection.
The power spectral densities of the clockwise and anticlockwise
traveling waves are shown in Fig. 4. Spectral analysis of a sensor
output, which is some linear combination of these two spectra,
do not suggest that two eigenmodes with different decay rates
underlie the time series.

Identification Methods
A set of four different output-only modal identification

methods has been tested on the segments of simulated time se-
ries. A brief description of the methods is given below. As the
slow dynamics are of interest, the spectrum of a window was
shifted towards the origin by mω0 as a preconditioning step.
Only accounting for the (originally) positive frequencies yields
an analytic time signal relative to the expected frequency, upon
back-transformation to the time domain.

Stochastic Subspace Identification Stochastic Sub-
space Identification (SSI) is a time domain method, identifying

exactly a state space structure as Eq. (16). Both an observabil-
ity matrix and a controllability matrix are identified, which are
the matrices M and C respectively, under some (non-singular)
linear transformation. A balanced stochastic realization algo-
rithm based on LQ decomposition is adapted [17], explained
more thoroughly in [18], including an implementation algorithm.
In this specific method it is not possible to prescribe matrix C,
which is known for a given mode order and sensor locations.

Least Squares When the sensor noise can be neglected,
matrix M can be determined simply by least squares fitting
(LSQ) of the two equation lines in Eq. (17). First state vec-
tor q is determined by the pseudoinverse of C, using the known
(or determined) mode order m. Subsequently also (Ml/ fs + I)
is estimated by least squares, evaluating Q1→J−l/Q1+l→J over a
window with length J, where matrix Q is formed by horizontal
concatenation of q j.

Q1→J = [q1 q2 . . . qJ−1 qJ ] (18)

Note that the latter least squares fitting is based on a time
step l/ fs = 4l∆t, in which l is a free to choose integer identifica-
tion parameter. The eigenvalues of M are found by

eiv(M) =
fs

l
log(eiv(Ml/ fs + I)) (19)

Eigenvector Ratio Instead of identifying the entire sys-
tem matrix, just the eigenvector ratio (EVR) can be identified.
The (normalized) time derivative of the wave ratio υ̇/υ , can be
written as a quadratic equation in υ using the differential system
Eq. (16): υ̇/υ = ξ X. Where X = [υ 1 υ−1 ]T and ξ repre-
senting a vector with the polynomial coefficients to be identified.
Eigenvalues of the system have the property υ̇ = 0, therefore the
roots of ξ provide the eigenvector ratios υ1,2. Solving for coeffi-
cients ξ by weighted least squares yields

ξ = (XT WX)−1XT Wυ̇/υ (20)

The weighting with W= |F̂Ĝ| is required to avert strong out-
liers caused by the singularities at zero wave amplitudes. Once
the eigenvectors are determined, the signals can be projected on
its eigenbasis and the decay rate and frequency can be estimated
from the corresponding autocorrelation functions in the time do-
main.

Fourier Domain Decomposition In Fourier Domain
Decomposition (FDD), singular value decomposition is per-
formed on the power spectral density matrix of the signals at

7



Preprint

the modal frequency. The singular vectors contain the (approxi-
mate) eigenvectors of the system. For the details of the method,
the interested reader is referred to Brincker et al. [19]. The fre-
quency is picked by finding the maximum of the power spectra,
introducing some uncertainty, especially for the least dominant
eigenmode. Again, the decay rate and frequency are found from
the autocorrelations of the projected modal dynamics.

Identification Results
The surrogate data was identified under different assump-

tions, regarding the driving combustion noise wq and measure-
ment noise ws. Additionally the consequences of applying a
bandpass filter around the modal peak was evaluated. Results
are presented for an academic and a practical case. Elimination
of the fast dynamics allows for larger time steps in the estima-
tion of q̇. This strategy is beneficial in case of limited high fre-
quency excitation and/or the application of a bandpass filter that
eliminates high frequencies. Methods are performed on the 100
windows independently to get a statistical mean and variance of
the estimated parameters.

Academic Case In the academic case, there is no mea-
surement noise εs, nor any signal filtering applied. The state
space model is numerically integrated with Gaussian white noise
εq as driving force, with unit variance. It is tried whether the
methods are able to recover the correct system characteristics,
especially the modal decay rates, listed on the top of Tab. 2. Al-
though the results are rather close to the theoretical values over-
all, it is worth mentioning that the second mode identified by
FDD (red shaded cell) failed the statistical test hypothesizing
that the estimate is unbiased, using a 95% confidence interval.
All methods are accurate for the first (least stable) eigenmode
and uncertainties (standard deviations) are similar.

Practical Case Combustion noise features spatio-
temporal correlations, mainly due to the heat release response
to turbulent structures in the fuel flow. A second time series is
generated to evaluate the identification under forcing by colored
noise. The power spectral density of εq is prescribed by Eq. (21),
representing a noise spectrum with a power law energy fall-off
for ω � ωc.

E[|εq(ω)|2] ∝
1

1+(ω/ωc)3/2 +(ω/ωc)−3/2 (21)

This serves as a generic function, since the actual noise power
spectrum will depend on multiple parameters related to geome-
try, flow conditions and the combustion process. Important is the
decrease of excitation power for high frequency. The character-
istic frequency is chosen ωc = 600π .

TABLE 2. TABLE WITH AVERAGE ESTIMATED DECAY RATES
α1,α2, USING THE DIFFERENT IDENTIFICATION METHODS
BASED ON 100 SURROGATE DATA SEGMENTS. TOP: ACA-
DEMIC CASE, BOTTOM: PRACTICAL CASE. STANDARD DEVI-
ATIONS GIVEN IN PARENTHESIS. SHADED CELLS FAILED THE
TEST FOR BEING AN UNBIASED ESTIMATE

theory* SSI LSQ EVR FDD

α1 5.54 5.57(.4) 5.54(.3) 5.60(.4) 5.52(.4)

α2 21.03 21.1(.8) 21.1(.7) 20.8(1.2) 21.4(.8)

α1 5.54 5.63(.3) 4.79(.3) 5.57(.4) 5.51(.4)

α2 21.03 21.1(.7) 17.9(.6) 19.9(1.5) 21.3(.8)
* Slight deviation from Eq. (10) caused by the discrete differentiation of q̇

White noise is added to the sensor signals s, representing
measurement noise εs. The standard deviation of this Gaussian
noise is set to 10% of the standard deviation of the signal. For
the identification of a modal peak, it might be necessary to fil-
ter out dynamics dominating at other frequencies. A brick-wall
bandpass filter is applied on the signals from 150 to 250 Hz.

It is found that LSQ is affected most, by both the measure-
ment noise and the bandpass filter. In determining the change of
q, the time delay (l/ fs) should be large enough when a bandpass
filter is applied, otherwise the filter characteristics dominate the
result. This time delay is typically taken 12 ms in the identifica-
tion algorithms. The results for the practical case, found at the
bottom of Tab. 2, are clearly less accurate compared to the aca-
demic case. The uncertainties on the other hand hardly changed.

Online Monitoring of Decay Rates
In this part the capability of the methods is tested, to mon-

itor the stability of a system that changes in time. To monitor
a combustion process online, it is important that the results be-
come available directly with limited calculation costs. Instead
of waiting for sufficient data for parameter estimation, recursive
methods can be applied that constantly update knowledge about
the system on which the estimates are based. With help of a
forgetting factor, weight can be put on the most recent measure-
ments, allowing slow changes of the underlying dynamics to be
followed.

Windows of 1024 data points (≈ 0.4 s) have been analyzed
by the methods, resulting in imprecise and biased parameter es-
timation based on a single window. The recursive approach is
imperative to obtain an unbiased estimation over a longer period.
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FIGURE 5. ONLINE IDENTIFIED DECAY RATES ᾱ1,2 OF THE THERMOACOUSTIC SYSTEM DURING SLOW PARAMETER VARIATION.
THEORETICAL DECAY RATES α1,2 FOLLOWING FROM THE PRESCRIBED PARAMETERS BY Eq. (12) ARE GIVEN IN DASHED LINES

Cycle Description In the parameter space of the ther-
moacoustic model, a cycle is defined in a span of 10 minutes.
The bulk velocity and nonuniformity parameter have been var-
ied slowly, leaving the other settings as in Tab. 1. A time se-
ries with slowly changing system parameters according to the
parametrization in Eq. (22) was generated. In the first three min-
utes the bulk velocity vθ linearly changes from 0 to -60 rad/s. As
vθ reverted in the following 3 minutes, the geometrical nonuni-
formity coefficient N2m rose from 0 to 15 s−1. From 6 to 9 min-
utes N2m vanished again to return to the degenerate state found
at the start of the cycle, with the remaining minute spent at rest.
In this cycle, the system crosses through traveling, mixed, and
standing mode behavior respectively. This test may also be use-
ful to find identification problems under specific system condi-
tions.

vθ (t) = −60 +|t/3−60| 0 < t < 360
N2m(t) = 15 −|t/12−30| 180 < t < 540 (22)

Noise characteristics and bandpass filtering are applied ac-
cording to the practical case described in the previous subsection.

Monitoring Results The stability monitoring results are
shown in Fig. 5, in which the estimated dynamic decay rates are

compared to the theoretical split decay rates (thick dashed lines).
The forgetting factor is set to 0.975, as a trade-off between noise
suppression and the ability to follow the slowly changing dynam-
ics. All methods can be calculated in a fraction of the physical
time, about a few seconds for the 10 minutes of data. Therefore,
regarding computational costs, all methods are considered viable
candidates for online monitoring.

The main challenge for the parameter estimation is the
passage between 300 and 400 seconds, where the eigenmodes
change from dominantly traveling waves to standing wave solu-
tions. The trajectory through the mixed regime ends with a steep
decrease of the decay rate. As future data is unavailable, past
data is used for smoothing, meaning that estimated parameters
lag behind the physical state.

SSI and LSQ have very similar estimates, with LSQ show-
ing a slight bias towards lower decay rates, observed also in the
steady practical case. When the splitting is strong, EVR has
problems in estimating the mode with high decay rate, although it
may be noted that this most stable mode is of limited interest for
stability monitoring. Potentially hazardous is the overestimating
of the first mode by FDD. The changing of the eigenfrequencies
is expected to cause the troubles in FDD, in which the power
spectral density matrix is updated recursively. Determination of
the decay rate by means of the autocorrelation function always
yields a bias towards stability for a decay rate approaching zero.
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SSI and LSQ do not suffer this drawback and could in principle
also identify negative decay rates. In practice when the decay rate
becomes negative, the thermoacoustics would saturate quickly to
limit cycle behavior, from which point the linear stability of this
new dynamic state is determined.

CONCLUSIONS
A low-order model for azimuthal thermoacoustic modes in

annular combustion systems has been introduced, which shows
dynamics observed in practice, such as the possibility to have
dominant standing or traveling wave behavior. A continuous de-
scription of the flame characteristics around the azimuth yields
analytic solutions, which can be useful to assess staging strate-
gies without going into the detail of individual burner positioning
for example. It has been observed that splitting of eigenvalues
can influence the stability of the system significantly and should
thus be accounted for in monitoring strategies. Two complex
wave amplitudes is the lowest amount of state variables required
(per mode order) to describe the key features in the dynamics.
To monitoring a peak in the spectrum of an annular combustor,
at least two sensors around the azimuth must be adapted in or-
der to identify split eigenvalues. A state space representation is
proposed as model structure in order to apply output-only modal
identification on annular combustors.

Online monitoring of the resulting decay rates serves as a
physical and quantitative stability margin. Frequency and mode
shape information can help to find more robust combustor con-
figurations or operating conditions. Four different identification
methods are evaluated as candidates for online monitoring of the
modal decay rates. All four methods return a reasonable indica-
tion of the system stability and considering computational costs
found to be utilizable online.

Stochastic Subspace Identification performed better than the
other methods, as it is suited to identify the exact model structure.
A drawback for this method is that not all system knowledge can
be exploited, since the mode order cannot be prescribed. This
may cause interference with dynamic behavior not accounted for
in the modeling, such as axial modes in the combustion chamber.
Although a bias should be expected under practical conditions,
least squares of the matrix coefficients (LSQ) functions robustly
when used for monitoring a slowly changing thermoacoustic sys-
tem. The volume of system data stored for recursive updating of
LSQ is slightly lower compared to SSI, as well as the amount
of computational operations per window. In contrast to SSI, the
mode order is prescribed for an investigated frequency range. For
these reasons a least squares implementation might be preferred
over SSI in monitoring industrial annular combustion systems.

Decay rate estimation based on the autocorrelation yields
biased estimates when marginal stability is approached, forming
the main disadvantage for methods such as EVR and FDD.

ACKNOWLEDGMENT
The presented work is part of the Marie Curie Initial Train-

ing Network Thermo-acoustic and aero-acoustic nonlinearities
in green combustors with orifice structures (TANGO). We grate-
fully acknowledge the financial support from the European Com-
mission under call FP7-PEOPLE-ITN-2012.

REFERENCES
[1] Lieuwen, T., 2005. “Online Combustor Stability Margin

Assessment Using Dynamic Pressure Data”. Transactions
of the ASME, 127, pp. 478–482.

[2] Nair, V., Thampi, G., Karuppusamy, S., Gopalan, S., and
Sujith, R., 2013. “Loss of chaos in combustion noise as a
precursor of impending combustion instability”. Interna-
tional Journal of Spray and Combustion Dynamics, 5(4),
Dec., pp. 273–290.

[3] Nair, V., and Sujith, R., 2014. “Multifractality in combus-
tion noise: predicting an impending combustion instabil-
ity”. Journal of Fluid Mechanics, 747, pp. 635–655.

[4] Gotoda, H., Shinoda, Y., Kobayashi, M., Okuno, Y., and
Tachibana, S., 2014. “Detection and control of combus-
tion instability based on the concept of dynamical system
theory”. Physical Review E, 89(2), p. 022910.

[5] Evesque, S., and Polifke, W., 2002. “Low-Order Acoustic
Modelling for Annular Combustors: Validation and Inclu-
sion of Modal Coupling”. In Int’l Gas Turbine and Aero-
engine Congress & Exposition, ASME GT-2002-30064.

[6] Campa, G., Camporeale, S., Guaus, A., Favier, J., Bargiac-
chi, M., Bottaro, A., Cosatto, E., and Mori, G., 2011. “A
Quantitative Comparison Between a Low Order Model and
a 3D FEM Code for the Study of Thermoacoustic Com-
bustion Instabilities”. In Int’l Gas Turbine and Aeroengine
Congress & Exposition.

[7] Staffelbach, G., Gicquel, L. Y. M., Boudier, G., and
Poinsot, T., 2009. “Large Eddy Simulation of self excited
azimuthal modes in annular combustors”. Proceedings of
the Combustion Institute, 32(2), pp. 2909–2916.

[8] Morgans, A. S., and Dowling, A. P., 2007. “Model-based
control of combustion instabilities”. Journal of Sound and
Vibration, 299(1-2), pp. 261 – 282.

[9] Worth, N. A., and Dawson, J. R., 2013. “Modal dynamics
of self-excited azimuthal instabilities in an annular com-
bustion chamber”. Combustion and Flame, 160(11), Nov.,
pp. 2476–2489.

[10] Noiray, N., Bothien, M., and Schuermans, B., 2011. “Inves-
tigation of azimuthal staging concepts in annular gas tur-
bines”. Combustion Theory and Modelling, 15(5), pp. 585–
606.

[11] Bauerheim, M., Cazalens, M., and Poinsot, T., 2015. “A
theoretical study of mean azimuthal flow and asymmetry
effects on thermo-acoustic modes in annular combustors”.

10



Preprint

Proceedings of the Combustion Institute, 35(3), pp. 3219–
3227.

[12] Noiray, N., and Schuermans, B., 2013. “On the dynamic
nature of azimuthal thermoacoustic modes in annular gas
turbine combustion chamber”. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sci-
ence, 469(2151), p. 20120535.
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