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Abstract
In annular combustion systems, azimuthal thermoacoustic modes can manifest themselves predominantly as traveling
or standing waves. Several phenomena can influence the modal behavior of annular thermoacoustics. In monitoring
the stability of azimuthal thermoacoustics in industrial installations, a better understanding of the dynamics is required
to correctly interpret online measurements. In this work the dynamic solutions of annular combustion systems are
investigated, using a low-order analytic model. Heat release fluctuations are considered as a weak source term for
a given acoustic eigenmode. The heat release is modeled as a linear feedback to the local acoustics, in which the
feedback response is a function of the azimuthal coordinate, causing cylindrical symmetry breaking. A bifurcation map
is generated as a function of azimuthal mean flow velocity around the annulus. A bifurcation between solutions fixed
by the combustion chamber coordinate system and solutions convected with the azimuthal bulk flow is observed. Due
to the interaction with non-uniform thermoacoustic feedback, an azimuthal flow with low Mach number can significantly
influence the system stability. At the bifurcation point, the system matrix is defective, which yields unbounded transient
growth for vanishing stability.
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Introduction
The risk to encounter thermoacoustic instability in com-
bustion systems increases under lean and flexibly varying
operation conditions. A thorough understanding of the ther-
moacoustic dynamics is required for efficient control or
monitoring strategies. In particular the complex dynamics in
annular gas turbines has not yet been fully understood. The
lack of an acoustic boundary condition in azimuthal direc-
tion adds a degree of freedom to the system, allowing for
standing waves, traveling waves and combinations thereof.
Fundamentally, the two azimuthal waves corresponding to an
azimuthal mode number have equal growth rates and form
an eigenspace in linear stability analysis. Any breaking of
the cylindrical symmetry, either geometric or in the flame
response, will lead to split eigenvalues. Considering the
acoustics from the fixed coordinate system, an azimuthal
flow splits the eigenvalues too.

In this work, the interaction between azimuthal flow and
cylindrical symmetry breaking is analyzed analytically. The
latter promotes standing wave behavior, whereas the former
counteracts the formation of standing wave solutions by
rotating the acoustic field with respect to the gas turbine. As
both effects are likely to occur to a certain extent in practical
annular combustors, their interaction may contain dynamical
behavior of interest. The solution regimes resulting from
these effects have been recognized in Bauerheim et al.
Bauerheim et al. (2014), but the interaction has not been
investigated in detail. In the work of Noiray Noiray et al.
(2011) the effect of nonlinear and non-uniform heat release
response strength is investigated. A full LES-simulation of an
annular combustion chamber shows a bulk velocity emerging

Wolf et al. (2012), exceeding an azimuthal Mach number of
1% as a result of co-rotating swirl burners.

Azimuthal flow and cylindrical symmetry
breaking
In this section it is elaborated how the two phenomena -
azimuthal flow and cylindrical symmetry breaking - can arise
in annular combustion systems.

Azimuthal flow
In most annular combustion systems, flow around the
annulus is restricted in neither the combustion chamber,
nor the plenum. In axial direction there is a constant flow
of fresh and burnt gases, that can reach high velocities at
certain positions. It is to be expected that (depending on
the operating conditions) some net momentum transfer in
azimuthal direction occurs, for example at the compressor
exit in the plenum of a gas turbine, or at the swirl
burner in the combustion chamber. Experimental evidence
of azimuthal flow, or at least different acoustic propagation
velocities in the opposing azimuthal directions, can be found
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Figure 1. Tested azimuthal velocity profiles as a function of the
radius. A quarter of the mesh used for the computation is shown
on the right side.

in Worth and Dawson (2013) for varying burner separation
distances.

Besides an actual azimuthal bulk flow, another mechanism
is investigated here that can cause a difference in effective
propagation speed between clockwise and anticlockwise
traveling acoustic waves. Such difference in propagation
speed is caused by a gradient of azimuthal velocity with
respect to the radial coordinate, refracting the acoustic
waves. Such shear flow in an annulus refracts waves in
one azimuthal direction towards the center of the annulus,
whereas the wave in the other direction is constantly
refracted towards the outer wall. A radially distributed
azimuthal velocity field can be expected in annular
combustion systems when co-rotating swirlers are used, see
Bourgouin et al. (2013) for the cold flow velocity field
downstream of a swirl burner. Strong refraction can also be
expected as a result of temperature gradients, however, this
will affect the two waves in opposite direction identically.

Table 1. Increment of the eigenfrequencies as a result of
azimuthal velocity gradients, with respect to frequency in the
quiescent case ωm. The first two mode orders m are given.

Velocity profile m ωcw/ωm − 1 ωacw/ωm − 1

No velocity 1 0 0
0.05 Sine 1 −7.3 · 10−3 10.7 · 10−3

0.05 Linear 1 −8.6 · 10−3 11.0 · 10−3

0.20 Linear 1 −19.9 · 10−3 57.8 · 10−3

No velocity 2 0 0
0.05 Sine 2 −6.7 · 10−3 10.0 · 10−3

0.05 Linear 2 −8.0 · 10−3 10.2 · 10−3

0.20 Linear 2 −18.5 · 10−3 53.9 · 10−3

To demonstrate eigenvalue splitting as a result of a
gradient of azimuthal velocity in radial direction, a 2D
annular geometry with a ratio between the outer and inner
radius of ro/ri = 1.5 is considered. Over the width of the
annulus azimuthal velocity profiles are prescribed, without
bulk flow contribution. A linear and harmonic profile with
a peak to peak azimuthal Mach number of Mp2p = 0.1 are
used. Additionally, a linear profile with a peak to peak of
Mp2p = 0.4 is tested. The velocity in the latter case is too
high to be expected in practice, but this case can be used
for analytical validation as the refraction radius is equal to

the radius of the annulus. Acoustic solutions are obtained
by solving the Euler equations numerically. A quarter of the
mesh is shown in Fig. 1, together with the three velocity
profiles. It must be noted that the velocity profiles have a
small offset, in order to force the mean flow (integrated in
polar coordinates) to be zero.

The influence of the velocity profiles on the eigenfre-
quencies of azimuthal orders m = 1 and m = 2 are given
in Table 1. The eigenfrequencies ωcw and ωacw correspond
to a clockwise and anticlockwise wave respectively. It is
concluded that waves that are refracted towards the center
of the annulus (which are clockwise waves for the used
profiles in Fig. 1), experience a decreased frequency. This
can be explained in a loss of the radial wave number.
When the refraction radius is equal to the radius of the
annulus, plane wave propagation is obtained and the lowest
frequency is obtained as the radial wave number is zero.
The waves refracted away from the center have a increased
frequency. On basis of the analytic acoustic solution in
an annulus (Bessel functions), the value for 0.20 Linear
should have actually been ωcw/ωm − 1 = −19.7 · 10−3. As
this investigation is focusing on orders of magnitude, the
deviation is considered acceptable. For higher mode orders
(shorter wavelengths) the deviation from the analytical solu-
tion increases.

For m = 1 and a peak to peak azimuthal Mach number of
Mp2p = 0.05, a difference in frequency of almost 0.02ω1 is
observed, which can be translated to an ”effective azimuthal
Mach number” of Mθ ≈ 0.01.

This investigation shows that a velocity gradient in
the azimuthal flow, can cause a significant split in wave
propagation speed in the two directions. In the bifurcation
study all possible effects that cause an ”effective azimuthal
bulk flow” are represented by the azimuthal bulk flow
velocity vθ.

Cylindrical symmetry breaking
For prescribed wavenumbers in the spatial directions, the
acoustic field in an annulus is described by two complex
amplitudes. In case of cylindrical symmetry (geometry and
parameters are invariant under angular rotation), the system
manifests a pair of degenerate eigenvalues. Through non-
uniformities in azimuthal direction, the eigenvalues can split,
i.e. loose the degeneracy. A constriction in an annulus causes
two standing wave solutions, with the eigenvalue splitting
predominantly resulting in two different eigenfrequencies
Choe (1997). Similarly, acoustic sources (or sinks) varying
with the azimuth can cause splitting of the growth rates.

A non-uniform flame response to the acoustics of the
burners can cause eigenvalue splitting, as the heat release
is an acoustic source. The alternating use of two burner
types could be applied in an annular combustor as a form
of staging, such that a smoother overall flame response
is obtained, that is less prone to instabilities Joos et al.
(2002). In such case, the chosen burner pattern influences
the splitting strength Berenbrink and Hoffmann (2000) and
therewith the stability of the system.

Unintended azimuthal non-uniformities are likely to be
present in industrial applications. One can think of clogged
fuel injection holes, deviations in acoustic impedance of
the fuel injections and acoustic reflections from supporting
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Figure 2. Example of an acoustic field of first azimuthal mode
order, which could be described by Eq. (1)

structures, just to name a few. In this work it is implied that
the eigenvalue splitting is caused by a non-uniform flame
response, but it might as well be of acoustic nature.

Modeling approach
The acoustics is described by a three-dimensional acoustic
solution in an annulus, with two azimuthal wave amplitudes
as free variables. The acoustic solution is convected passively
with an azimuthal bulk flow. Axial flow does not seem to
influence the dynamic solution Evesque et al. (2003) and
is therefore not considered. As in Noiray et al. (2011),
heat release fluctuations are continuously modeled over the
azimuth of the annulus, rather than considering discrete
burner locations. Local acoustic fluctuations result in heat
release fluctuations at the corresponding angular location,
through a linear flame response description. The heat release
acts as a source to the acoustic pressure fluctuations,
described on a Fourier basis over the azimuth.

Linear relations are used, since the dynamic behavior
in the stable regime is sought, i.e. before exponential
growth and saturation to a limit cycle occurs. It is assumed
that the magnitude of combustion noise does not cause
a significant nonlinear response. Also, it is assumed that
instantaneous growth rates and the angular bulk velocity
are small compared to the considered eigenfrequency under
all circumstances, such that time scales of amplitude
modulations can be separated from the time scale of an
acoustic cycle. The resulting system of equations is a state
space model with two complex degrees of freedom per
degenerate acoustic eigensolution. The dynamic behavior of
this system is very suited to be evaluated analytically.

Acoustic field
Thermoacoustics is described by a sum of independent
eigenmodes, based on solutions of the acoustic field. Assume
that one modal solution of the 3D acoustic pressure field p̂
with frequency ωa is separable in the following way

p̂(x̃, t) = ψ(x, r)φ(θ̃)eiωat (1)

The particle velocity follows directly from the acoustic
pressure, according to the acoustic momentum equation. The
spatial function ψ(x, r) is assumed to be known, fulfilling
the wave equation for given longitudinal and radial boundary
conditions in the annular combustion chamber. Azimuthal

dependency φ(θ̃) is not fully determined by boundary
conditions, as no boundary is present in this direction.

φ(θ̃) = F̂ e−imθ + Ĝeimθ̃ = bT z (2)

In which the vector z = [F̂ Ĝ]
T contains the two

Riemann invariants as free acoustic parameters, while
b = [e−imθ̃ eimθ̃]

T contains their respective azimuthal basis
functions. These basis functions fulfill the wave equation
harmonically for a domain with uniform acoustic properties
in azimuthal direction, for positive definite azimuthal mode
number m. The azimuthal coordinate θ̃ is defined relative
to the azimuthal bulk velocity component vθ, since the
acoustics are passively convected by the flow field. In
the coordinate system of the combustor, the acoustics
is considered relative to the azimuthal bulk flow vθ by
substitution of θ̃ = θ − vθt.

Equation (1) is the fundamental solution of a 3D acoustic
field in a cylindrically symmetric geometry with azimuthal
bulk flow. Choosing the amplitudes F̂ and Ĝ, standing,
traveling and mixed solutions can be constructed. The two
amplitudes and complex angles give four free variables.

Thermoacoustic feedback
Weak thermoacoustic feedback is added to the acoustic
mode, to find the combined dynamics. A relatively low
acoustic damping ratio ζ � 1 is assumed such that the
acoustics dominate the resulting modal eigenfrequency.
The thermoacoustic feedback is considered as small linear
perturbations to the acoustic field, allowing separation of the
acoustic time scale and the time scale of the thermoacoustic
coupling. Dynamics dominated by the time scale of the
combustion, such as intrinsic thermoacoustic instability
Emmert et al. (2015), are not considered.

The Rayleigh criterion states that acoustic energy is
generated when heat release fluctuations Q̇ are in phase
with the pressure fluctuations. The growth of the acoustic
mode in consideration is obtained by integrating over the
volume in which the heat is released. Using ? to denote the
complex conjugate, the following equation can be derived
(see Appendix A).

dz

dt
= κ

∮
b?Q̇dθ − vθ

(
b? · z · db

dθ̃

)
(3)

The proportionality constant κ is related to the volume of
the acoustic domain and the ratio of specific heats. Prevailing
methods for the modeling of heat release fluctuations assume
a linear response to the acoustics at the burners, for low
perturbation amplitudes. Examples are the flame transfer
function and the sensitive time lag model. A general linear
heat release response to the two acoustic waves could be
written as

κQ̇(θ) = bT
([
ĈF (θ) ĈG(θ)

]T · z) (4)

In which the complex-valued coefficients ĈF and ĈG

represent the amplitude and phase of the heat release
response to the respective waves in q. These response
coefficients are a function of the azimuth in case of non-
uniform heat release, causing cylindrical symmetry breaking.
Apart from the heat release, the coefficients can also
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include acoustic effects, such as attenuation and reflections.
Combining the linear heat release response in Eq. (4) with
the acoustic modal growth Eq. (3) yields the thermoacoustic
system of ordinary differential equations.

dz

dt
=

∮ [
ĈF + imvθ ĈGe2imθ

ĈF e−2imθ ĈG − imvθ

]
dθ z (5)

From the integration of the system matrix over the
azimuthal coordinate, it can be directly deduced that the
diagonal only depends on the average of ĈF and ĈG. On the
other hand, the antidiagonal is only sensitive to coefficient
2m of the azimuthal Fourier decomposition of ĈF and ĈG.
Describing the coupling coefficients Ĉ as Fourier series
over the azimuth therefore allows to perform the integration
directly.

Ĉ(θ) =
∞∑

k=−∞

ĉke
ikθ (6)

The general description of the thermoacoustic dynamics
is reduced to a complex second order system of ODE’s
per acoustic eigenvalue pair. In the work of Bauerheim
Bauerheim et al. (2014) this solution structure was also
found, modeling the heat release with an n− τ model.

dz

dt
=

[
ĉF0 + imvθ ĉG−2m

ĉF2m ĉG0 − imvθ

]
z (7)

The coupling coefficients ĉk can be a function of the
frequency to be solved for, for example in the case of an
n− τ model, in which the phase linearly decreases with
frequency.

ż = M(ω)z (8)

The system matrix M describes the coupling between
the two (complex) acoustic degrees of freedom, including
thermoacoustic interaction. Under additional flame response
assumptions, the coupling coefficients can be specified in
more detail.

Solution strategy
Equation (8) is valid when the model parameters (the
coupling coefficients and radial bulk velocity) are very
small compared to the acoustic eigenfrequency and the
dominating azimuthal acoustics behave linearly. In order
to come to an analytic eigensolution of the system, the
system matrix must be independent of the frequency. When
this is not the case, the characteristic equation of M(ω)
is a transcendent equation for the eigenvalues (or complex
frequency) that must be solved numerically. For small
frequency dependency, however, a linearized eigensolution
will yield accurate solutions.

The imaginary part of an eigenvalue of the system
matrix M represents the frequency deviation ∆ω from the
acoustic eigenfrequency ωa. When the coefficients Ĉ(ω)
hardly change on the interval [ωa −∆ω < ω < ωa + ∆ω],
the dependency can be neglected.∣∣∣∣∣∆ωĈ dĈ

dω
|ωa

∣∣∣∣∣� 1 (9)

As ∆ω is of the order of |Ĉ|, it can just be stated that
the derivative of the coupling parameters with respect to
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Figure 3. Effect of the phase of the non-uniform feedback
arg(S) on the eigenvalues of the thermoacoustic system,
without azimuthal bulk velocity vθ. Normalization by the
cylindrical asymmetry strength |S|

the frequency should be very small. Weak thermoacoustic
feedback - as stated in the previous subsection - should be
interpreted as dĈ/dω � 1, such that an accurate analytical
solution can be found.

Results: Feedback based on axial velocity
Heat release fluctuations, due to vortical structures and
equivalence ratio modulations, are usually attributed to the
axial particle velocity, see for example Paschereit and Polifke
(1998). When axial particle velocity is held responsible
for the fluctuating heat release, the thermoacoustic system
is a function of the pressure fluctuations and independent
of the azimuthal particle velocity. Also assuming coupling
constants that are (locally) independent of the frequency
(dĈdω = 0), the coupling parameters are equal (ĈF = ĈG =

Ĉ). These assumptions are made only to obtain a compact
analytic eigensolution.

dz

dt
=

[
ĉ0 + imvθ ĉ−2m

ĉ2m ĉ0 − imvθ

]
z (10)

This reduced system of differential equations, as a
function of mvθ and the Fourier components of Ĉ(θ), is
used as the starting point of the analytic parameter study
performed in this work. The eigensolution is:

λ1,2 = ĉ0 ±
√
ĉ2mĉ−2m −m2v2θ (11)

In Eq. (11) it is visible how azimuthally varying heat
release characteristics and azimuthal velocity split the
eigenvalues λ1,2 of the thermoacoustic system. Also the
ratios of F̂ and Ĝ corresponding to the eigenvectors are
readily obtained

ν1,2 =
imvθ
ĉ2m

± 1

ĉ2m

√
ĉ2mĉ−2m −m2v2θ (12)

The influence of the model parameters on the acoustic
eigensolution and their interaction will now be explained
in detail. From the eigensolution it can be seen that the
interacting parameter groups are mvθ, i.e. radial velocity
with respect to the azimuthal wave length, and the cylindrical
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Figure 4. Normalized effect of the interaction between mvθ
and cylindrical symmetry breaking S on the eigenvalues of the
thermoacoustic system, with arg(S) = 0. In gray thin lines the
result for arg(S) = π/6

symmetry breaking

S =
√
ĉ2mĉ−2m (13)

Uniform feedback ĉ0 only (mvθ = S = 0)
Without azimuthal non-uniformity of the thermoacoustic
feedback response and no bulk velocity, the eigenvalues
of the system are simply given by the constant feedback
strength ĉ0 on the diagonal of the system matrix. With
repeated eigenvalues, the system is degenerate, with
solutions in the eigenspace spanned by F̂ and Ĝ. This means
that linear combination of the two waves is an eigensolution,
covering standing, traveling and mixed modes. The growth
rate and frequency difference as a function of arg ĉ0 are the
cosine and sine function respectively. With ĉ0 located on the
matrix diagonal, it does not interact with the other system
parameters.

Azimuthal flow mvθ, with S = 0

Only considering azimuthal bulk flow still yields the trivial
solution, rotating with the mean flow. The rotation is visible
in the imaginary split eigenvalues by ±imvθ for F̂ and Ĝ
respectively.

Cylindrical symmetry breaking S, with mvθ = 0

A pair of standing waves evolve as a result of non-uniform
feedback, with eigenvalues that are split by S, as defined in
Eq. (13). When S has a real contribution, a saddle point is
formed by two orthogonal standing waves, one with positive
and one with negative feedback. It can be comprehended
that the azimuthal order 2m of Ĉ(θ) causes this splitting,
as it excites the 2m anti-nodes of these standing waves
respectively. In Fig. 3 the growth rate and frequency are
shown as a function of arg(S), which is the phase between
the acoustic pressure and heat release in the considered case
where the heat release is proportional to the axial particle
velocity. This phase is directly related to the phase of a flame
transfer function, describing the heat release.

Interaction between mvθ and S

As both mvθ and S appear in the root in the eigensolution
equations (11,12), some interaction takes place, shaping
the modal solutions. What the eigenmodes look like is not
directly clear from the analytic expressions. The interaction
in this intermediate regime can be understood qualitatively
as follows; the azimuthal feedback non-uniformity tries to
develop a standing wave solution, but the bulk velocity
constantly rotates the acoustic field away from its standing
wave angle. Two new equilibria will therefore evolve, given
by the full eigensolution. The interaction is most pronounced
when the two effects are of similar magnitude; |S| ≈
|mvθ|. In the regime where |mvθ/S| � 1, solutions are
predominantly standing waves, whereas |mvθ/S| � 1 can
be characterized as traveling waves.

The velocity term can cancel out the eigenvalue splitting
as a result of the heat release non-uniformity. The important
observation is that only limited azimuthal velocity is
required for noticeable changes for the stability analysis.
Instability is most likely to occur in very underdamped
(thermo)acoustic eigenmodes, say with a damping ratio
of the order ζ = −<(λmin)/2/ωa = O(10−2). Azimuthal
velocity can potentially change the stability with strength
mvθ, therefore azimuthal Mach numbers of the same order
Mθ = O(10−2), are already relevant in the presence of
cylindrical symmetry breaking.

Bifurcation point
The case where ĉ2m = ĉ?−2m is of most interest, because
the feedback contributes optimally to the real part of
the eigenvalues and thus to the system stability. The
symmetry breaking S is real and the feedback phase
is constant around the azimuth. The bifurcation diagram
with mvθ the bifurcation parameter, forms a unit circle
and unit parabola for the growth rate and frequency
difference respectively, when normalized by |S| (see Fig.
4). Without azimuthal velocity, two standing wave solutions
in orthogonal orientations are found, with pure positive
and negative feedback. In a phase plot this solution is
represented by a saddle point, as shown in the first plot
of Fig. 5. As a mean flow is introduced the growth rate
splitting decreases and simultaneously the eigenvectors lose
their mutual orthogonality. A bifurcation point at |mvθ| = S
emerges as the discriminant in the root of the dynamical
system crosses zero. At this point the two eigenvectors
coincide, as Fig. 5 suggests. In other words, the eigenvectors
are linearly dependent and the system matrix is defective. For
comparison, a case with complex S is shown in Fig. 4 (gray
lines), that does not cross the bifurcation point. In that case,
the feedback partially acts on the frequency, preventing the
discriminant in the eigensolution (Eqs. (11,12)) to become
zero.

The bifurcation point as shown in Fig. 4 can be dangerous
during the operation of an annular combustion system. As
the bifurcation parameter varies a little, the stability abruptly
changes at the bifurcation point.

Non-normal growth
In case of non-normality - coinciding eigenvectors in special
- perturbations to the system can experience transient
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Figure 5. Phase plots of the thermoacoustic system for real azimuthal symmetry breaking S, in the vector space of two orthogonal
standing wave angles per azimuthal wavelength: mθ. All phase trajectories represent the dynamics of standing waves. A real
azimuthal asymmetry S results in a saddle point, with an instable standing wave at the orientation mθ = 0 and a stable standing
wave at mθ = π/2. Increasingly adding azimuthal velocity - a center node - brings the eigenvectors together, shown as red dashed
lines. In the bifurcation point (|mvθ| = S), a neutrally stable improper node found, with coinciding eigenvectors. For higher velocities
the solutions are convected by the flow and are no longer pure standing waves. A contribution of ĉ0 could be included by
superposing a star node, influencing the overall stability.

amplification. When the system has a nonlinear response to
the amplitude, an instability can be triggered in the linearly
stable regime. Non-normal growth has been studied in
thermoacoustic systems, based on modeling Juniper (2010)
as well as experiments Kim and Hochgreb (2012). In this
section non-normal growth in annular combustion systems
is demonstrated in the bifurcation point of the model system.
Due to the annular geometry, the amplitude amplification can
occur at a single mode order, revealing an insightful physical
mechanism behind the transient growth.

The dynamic solution of the defective system matrix takes
the form

z(t) = 2S
(
Ateĉ0t +Beĉ0t

)
v +Aeĉ0tw (14)

Where v is the (repeated) eigenvector, while w is chosen
as the standing wave orthogonal to v. Amplitudes A and B
follow from initial conditions.

The term Ateĉ0t causes the transient behavior before the
exponential decay sets in. Transient growth can occur only
when the system would have been unstable in one orientation
(saddle point), if there were no azimuthal bulk flow. From
the solution in Eq. (14), the maximum transient growth can
be obtained analytically (see Appendix). For <(ĉ0)2 � S2,
the time after which the maximum amplification occurs
is approximately tmax = −1/<(ĉ0), reaching a maximum

possible amplification ratio of about

|z(t)|
|z0|

=
−2S

<(ĉ0)e
(15)

The transient growth is demonstrated for S = mvθ =
10s−1 and an overall thermoacoustic decay of <(ĉ0) =
−2s−1. The phase plot of the dynamic system is shown in
the top of Fig. 6. The two thick green solutions experience
the maximum possible transient growth, starting on the gray
unit circle. In the plot below this transient growth of the
amplitude is shown as a function of time. A maximum
amplitude amplification of 3.7 is reached, as estimated by
Eq. (15), which is equivalent to an amplification factor of
over 13 for the acoustic energy.

Alternatively the maximum amplification and their corre-
sponding initial conditions can be found computationally, as
for example in Nagaraja et al. (2009). Using this approach the
same results have been found (not shown). For this specific
low-dimensional model, the amplification can be computed
analytically in the bifurcation point. This way it is found that
theoretically, infinite transient growth can be obtained, for
nonzero splitting strength and vanishing stability. Refer to
|mvθ/S| = 1 in Fig. 5, where a perturbation away from the
eigenvector pair linearly grows to infinity, even though the
system is marginally stable.

With help of the phase plot representations, the transient
behavior of this system can be easily understood physically.
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Figure 6. Transient growth of the acoustic amplitude in the bifurcation point of the system, with S = mvθ = 10s−1 and
λ = <(ĉ0) = −2s−1, starting from the initial conditions that lead to the maximum transient growth. Above the evolution in the
phase plot (eigenvector aligned with the x-axis) shows the rotation of the acoustic field. Below, the growth is plotted as a function of
time, compared to the case of normal decay (dashed line). The maximum growth amplification is very accurately approximated by
Eq. (15)

A perturbation in an unstable orientation of the symmetry
breaking will initialize exponential growth. In the phase
plot of Fig. 6, these orientations are located in quadrant
1 (positive-positive) and quadrant 3 (negative-negative).
The azimuthal flow then convects the growing amplitude
around the circumference, towards the stable orientation
of the saddle node. The growth will come to a halt and
the perturbation will eventually converge to the least stable
eigenmode and decay accordingly.

Amplitude statistics under stochastic excitation
The maximum transient amplification shows what amplitude
can be reached for an optimized initial condition. More
interesting is what effect the non-normality of the system
has on the characteristics under constant stochastic forcing.
To investigate this, the system of equations (Eq. (10))
is integrated numerically with white noise, using the
Euler-Mayurama scheme. The system is compared to the
uncoupled, degenerate case (uniform heat release response)
with the same set of eigenvalues <(λ1,2) = <(ĉ0) = −2.
Part of the two time series, that were subjected to the
same excitation noise, are shown in Fig. 7. The average
amplitude (RMS) of the non-normal system is found to
be 5 times higher (25 times for the acoustic energy) than
the degenerate system, which is higher than the maximum
possible non-normal growth ratio. This result suggests it is
more interesting to look at the integral of the amplitude
over time for all initial conditions, rather than looking at the
maximum possible amplification.

The probability density function of the euclidean norm of
four independent, normal distributed variables (two complex

amplitudes) is given by the χ4 distribution. The histogram of
the bottom time series in Fig. 7 shows that the χ4 distribution
accurately describes the likeliness of the amplitudes found
for the uncoupled thermoacoustic system. For the non-
normal system matrix, however, the amplitude distribution
is much better described by the χ2 distribution, i.e a
process with only two independent variables. This result
can be explained by the strong coupling of the waves
(caused by the anti-diagonal in the system matrix, Eq. (10)),
predominantly yielding standing waves under a preferred
angular orientation. The latter distribution has a higher
kurtosis than the former, which means that the observed
peaks in the time series are relatively high with respect to
the mean amplitude. As a last note, the autocorrelation of the
absolute acoustic amplitude of the defective system matrix
does not decay exponentially and decays slower than one
might expect from the eigenvalue pair.

Conclusion
An annular thermoacoustic system with both azimuthal bulk
flow and non-uniform response can show very interesting
dynamics, even under linear assumptions. As the damping
ratio is typically very low, it is found that small azimuthal
Mach numbers can be relevant for the thermoacoustic
stability through the interaction with azimuthal non-
uniformities. Solving the acoustic field numerically, it is
demonstrated that a velocity gradient in the azimuthal flow
acts as an ”effective azimuthal bulk flow”. The effective
azimuthal flow in the annulus can stabilize standing wave
solutions that would otherwise be unstable as a result of
eigenvalue splitting. The other way round, a loss of bulk
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Degenerate case (uncoupled). The RMS value of the non-normal system is 5 times higher compared to the degenerate case, both
under unit forcing strength. Note the difference in amplitude histograms (based on 14 minutes) on the right, compared to χ2 and χ4

distributions respectively

flow can cause a sudden decrease of thermoacoustic stability.
As the azimuthal flow follows from operating conditions
in some non-trivial way, instability can occur unexpectedly.
Coupling between the acoustic field and the azimuthal
flow field could be an important nonlinear phenomenon in
thermoacoustics of annular gas turbines.

The type of eigenmode solution depends on the ratio
between the azimuthal flow velocity per wavelength and the
cylindrical asymmetry. When their strengths are of the same
order of magnitude, both phenomena have to be regarded
in the stability analysis of annular thermoacoustic systems.
When the ratio is close to one, the system can behave in a
strongly non-normal manner. A bifurcation point exists in
which the system matrix is defective. It is shown analytically
that the maximum transient growth in this point goes to
infinity for vanishing system stability.

The defective system can yield significantly higher
amplitudes under stochastic forcing, compared to the
degenerate counterpart with equal eigenvalues. This effective
amplification under random excitation is considered more
relevant than the maximum possible transient amplification
ratio. Also, the statistical moments of the acoustic amplitude
change as a result of the linear coupling between the waves.
The increased peakedness of the amplitude should not be
mistaken with intermittency due to nonlinearities.
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Appendix A
Derivation of Eq. (3): The Rayleigh criterion can be written
as

1

γ − 1

D

Dt
(p̂?p̂) = Q̇p̂? + Q̇?p̂ (A-1)

Regarding the slow azimuthal dynamics

1

γ − 1

D

Dt
(φ?φ) = Q̇φ? + Q̇?φ (A-2)

Seeking the complex growth of φ as a function of the heat
release Q̇, we can keep the following part

φ?
Dφ

Dt
= (γ − 1)Q̇φ? (A-3)

The equation has to hold for both amplitudes in z
independently as the basis functions are orthogonal, so we
can write

Db · z
Dt

= (γ − 1)Q̇ (A-4)

writing out the total derivative

b · dz

dt
+ vθ

(
z · db

dθ̃

)
= (γ − 1)Q̇ (A-5)

to retrieve the effect on z

dz

dt
= (γ − 1)b?Q̇− vθ

(
b? · z · db

dθ̃

)
(A-6)

The average effect over the volume V can be written as

dz

dt
= (γ − 1)V

∮
b?Q̇dθ − vθ

(
b? · z · db

dθ̃

)
(A-7)

because the right-most term is not a function of θ. The
volume and ratio of specific heats are combined in a single
proportionality constant: κ = (γ − 1)V

dz

dt
= κ

∮
b?Q̇dθ − vθ

(
b? · z · db

dθ̃

)
(A-8)

Appendix B
Derivation of Eq. (15): We have the solution in terms of two
standing waves (Eq. (14))

z(t) = 2S
(
Ateĉ0t +Beĉ0t

)
v +Aeĉ0tw (B-1)

A solution that starts on a unit circle and reaches the
maximum, will start tangential to the unit circle and then
grow. This means the first derivative of the acoustic energy is
zero (and the second positive). The acoustic energy is

|z2(t)| =
(
4S2(At+B)(A?t+B?) +AA?

)
e2<(ĉ0)t

(B-2)
We know that traveling waves decay with −<λ without
growing transiently (on a time scale longer than a cycle).
Therefore any traveling energy content would reduce the
transient growth. For this reason, we reduce our search to
real values for A and B. Derivative at t = 0, starting on the
unit circle: A2 + 4S2B2 = 1

|z2|′t=0 = 4ABS2 + <(ĉ0) = 0 (B-3)

Solutions for A and B are

A = ±

√
1

2
± 1

2

√
1− <(ĉ0)2

S
(B-4)

B =

√
1−A2

2S
= ±

√
1

8S2
∓ 1

8S2

√
1− <(ĉ0)2

S2
(B-5)

One of the (positive and negative) solution pairs are the initial
condition for maximum growth, whereas the other pair points
to the conditions where the maximum amplitude is located.
This can be deduced by looking at the second derivative of
the acoustic energy. Inserting the found initial amplitudes in
the derivative of acoustic energy, the time to the maximum
amplitude can be solved for

1

2
|z2(t)|′e−2<(ĉ0)t =

4S2(A2t(<(ĉ0)t+ 1) +AB(2<(ĉ0)t+ 1)) + <(ĉ0)

(B-6)

Solving the polynomial for the time t, the time tmax is found
at which the maximum amplitude is reached

tmax =
−1

<(ĉ0)

√
1− <(ĉ0)2

S2
(B-7)

Backsubstitution of tmax and amplitudes A and B in Eq. (B-
2) yield the maximum amplitude growth, given by

| z
z0
|max =

−<(ĉ0)

S

e
−
√

1−<(ĉ0)2

S2

1−
√

1− <(ĉ0)
2

S2

(B-8)

Clearly for S2 = ĉ2mĉ−2m � <(ĉ0)2 this can be simplified
to

| z
z0
|max =

−<(ĉ0)

eS

1
<(ĉ0)2
2S2

=
−2S

<(ĉ0)e
(B-9)
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