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The acoustic equivalence of a mass and heat source

Luck Peerlings∗ Hans Bodén†and Susann Boij‡

KTH Royal Institute of Technology,
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In combustion systems, unsteady heat release acts as a source term to the acoustic field within the
combustor and under the right conditions the energy of the acoustic field can exponentially grow, leading
to a combustion instability. An acoustic driver such as a loudspeaker or horn also acts as a source term
to the acoustic field and is often modelled as a fluctuating mass source. Considering the similarity of the
flame and the acoustic driver to acts as a source to the acoustic field, the question arises if these two types
of sources can be interchanged.

This contribution investigates that question by considering a 1-D system with mean flow. In the gov-
erning equations a mass source term is included which is linearly related to velocity fluctuations. The
results are compared with that of a system with a compact heat source. It is found that the two systems
are equivalent when there is no mean flow. In the presence of flow, the response of both systems can
approximately be the same when special conditions are met.

I. Introduction

COMBUSTION instabilities are a concern in the design and commissioning of combustion equipment. These
instabilities are governed by a complex interaction between acoustic fluctuations, unsteady heat release and

hydrodynamics in the combustor and may cause undesirable noise, vibrations and local thermal and mechanical
stresses. In the last decades, several methods have been explored to predict the occurrence of these thermo-
acoustic instabilities which can be used to avoid thermo-acoustic instabilities in the early design phase.1,2

The instabilities arise when the so called Rayleigh criterion is met.3 When the criterion is met, the unsteady
heat release of the flame is feeding energy into the acoustic field, leading to an exponential growth of the acoustic
energy. For laminar premixed flames, the unsteady heat release is primarily a function of velocity fluctuations
and this relation can be described using the so called flame transfer function.4,5 Similarly, an acoustic driver
such as a horn or loudspeaker can also feed energy into the acoustic field. If these two types of acoustic sources
can be equivalent under some circumstances, it may be possible to investigate the stability of the combustor by
mimicking the acoustic source term of the flame by an acoustic driver.

This contribution investigates the equivalence of the two sources by studying a 1-D system with a mean flow
and compact sources. First the governing equations are derived with the inclusion of a mass source term, rep-
resenting the effect of a acoustic driver, and a heat source, representing the effect of a flame. Then the relation
between the acoustic field up and downstream are derived for both the mass source and heat source respectively.
The derivation is done using a methodology based on the Rankine-Hugonoit jump conditions. Thereafter the
relations are linearised and the source terms are linearly related to the upstream perturbations. As the last step,
the linear relations are condensed to a matrix form and the expressions compared.

II. Governing equations

IN this section, the equations for the mass conservation, momentum conservation and energy conservation equa-
tion are derived with the inclusion of a mass source term. The purpose of the section is to show which terms
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Figure 1. Schematic representation of the control volume with a mass source and a heat source

have to be added to be able to correctly represent the influence of a mass source. First, the integral equations
for the mass conservation, momentum conservation and energy conservation are derived with the inclusion of a
mass source term. In figure 1 a schematic of the problem is sketched. We consider a control volume V , located
in a region with a uniform mean flow with velocity u. In the control volume two sources a present, a heat source
of strength Q̇ and a mass source of strength ṁ. Furthermore, the added mass has a velocity of um. The normal,
pointing away from the surface of the control volume, is indicating with n. For the mass conservation equation
there will be an extra source term, given in red, due to the added mass,

∂

∂ t

�
V

ρdV +

�
S

ρu · dS=

�
V

ṁdV . (1)

Herein t is the time, ρ is the density, ṁ is the specific mass addition per unit time (kg/m3s), dS = ndS is the
infinitesimal area dS multiplied with the normal vector, n, directed outwards from the volume and u is the velocity.

The momentum conservation equation is based on that the time rate of change of momentum of a body equals
the net force exerted on it. If the added mass has a velocity component, the addition will also act as a source in
the momentum equation in the time rate change of momentum. The momentum equation, with the inclusion of
a momentum source term becomes,�

S

(ρu · dS)u+

�
V

∂ (ρu)
∂ t

dV−
�

V

ṁumdV =

�
V

ρfdV −
�
S

p · dS. (2)

Herein f is the body force acting on the fluid within the control volume, p is the pressure acting on the surfaces
of the control volume and um is the velocity associated with the added mass. If the added mass does not have a
velocity component associated with it, the added mass will lead to a decrease of the specific momentum within
the control volume and thus the mass source acts as a sink term in the momentum equation.

The last conservation equation that is needed to describe the system is the energy equation. In the control
volume, energy in the form of heat is added by the source Q̇. Furthermore, the energy in the control volume
increases because the added mass has internal and kinetic energy associated to it. This leads to that the energy
equation is given by,�

V

Q̇dV −
�
S

pu · dS+

�
V

ρ (f · u)dV+

�
V

ṁ
�

em +
1
2

u2
m

�

dV =

�
V

∂

∂ t

�

ρ

�

e+
u2

2

��

dV +

�
S

ρ

�

e+
u2

2

�

u · dS,

(3)

where Q̇ is the specific energy added per unit time [J/kg s]. The internal energy of the fluid is represented by e
and the internal energy of the added mass is given by em.
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Using Gauss’ theorem, we can rewrite the above obtained integral conservation equations in differential form,

∇ ·ρu+
∂ ρ

∂ t
= ṁ, (4)

∇ · (ρuu) +
∂ (ρu)
∂ t

− ṁum = ρf−∇p, (5)

Q̇−∇ · (pu) +ρ (f · u) + ṁ
�

em +
1
2

u2
m

�

=
∂

∂ t

�

ρ

�

e+
u2

2

��

+∇ ·ρ
�

e+
u2

2

�

u. (6)

The final equation that has to be used to close the system of equations is the equation of state. In the analysis,
the fluid in the control volume is considered to be an ideal gas and the relation between the pressure p, density
ρ and temperature T is given by the ideal gas law,

p = ρRT, (7)

where R is the ideal gas constant. Further more, the fluid is considered to be thermally and calorically perfect,6

meaning that the specific heat at constant pressure, cp, and volume, cv , are constant and that the internal energy
is linearly dependent on the temperature of the gas,

e = cv T. (8)

The ideal gas constant R is related to the specific heats through R = cp − cv and the ratio between the specific
heats is given by γ= cp/cv .

In this study, the two variables describing the state of the gas are chosen to be the pressure p and the internal
energy e. When a heat source is present it is often customary to use the entropy, s, as state variable instead of the
internal energy. However, with the presence of the mass source, the energy equation written in terms of entropy
is given by:

ρT
Ds
Dt
= Q̇+ ṁ

�

em +
1
2
|um|2

�

− ṁ
�

e−
1
2
|u|2 + u · um +

p
ρ

�

. (9)

Note that in this case, the entropy is not longer a function of only the source terms ṁ and Q̇, but also the other
variables.

A. Rankine-Hugonoit jump conditions

With the conservation equations including the mass source terms, the linking conditions between the upstream
and downstream side of the mass source can be derived. Consider a 1-D domain with a spatial length of x ∈

xsx1

p1
u1

e1

p2
u2

e2

m, Q̇

x2

Figure 2. Schematic of the jump conditions

[x1 x2]. The domain is subdivided in two regions, x ∈ [x1, xs] and x ∈ [xs, x2], where the governing quantities,
pressure, p, velocity, u, and internal energy, e, are conserved, but there is also a source present at xs, as depicted
in figure 2. Assuming that the extent of the source in the principal direction is much smaller than the length scale
(wave length) of the problem, the change in state variables from state 1 to 2 can be seen as a discontinuity at
xs where the source term is present. Using the above reasoning, the mass and heat sources will be represented
as point sources located at the discontinuity [Q̇, ṁ] = [Q̇, ṁ]δ(xs − x), with δ the delta function. Furthermore
there are no external body forces acting on the domain (f= 0).

The governing variables left and right of the source show a discontinuity and the relations between the gov-
erning variables upstream and downstream of the source are called the jump conditions. To be able to derive
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the jump conditions, the conservation equations should be in the form of ∂ψ/∂ t +∇ ·ψ = δs, where ψ is the
conserved quantity and s the source term. If one would choose the entropy representation, eq. (9), the equations
are not in the right form, leading to difficulties to derive the jump conditions. The jump conditions are obtained
by integrating the differential equations (6) over the volume between x1 and x2 and splitting the integrals at the
source boundary. Assuming that the source boundary is non-stationary, xs = f (t), the integrals can be rewrit-
ten using the Leibniz integral rule. Then invoking that the source position is stationary, dxs

dt = 0, the following
relations are obtained: the mass conservation equation,

ρ2u2 −ρ1u1 = ṁ, (10)

the momentum equation,
ρ2u2

2 −ρ1u2
1 + p2 − p1 = ṁum, (11)

and the energy equation,

p2u2 − p1u1 +ρ2e2u2 −ρ1e1u1 +
1
2
ρ2u3

2 −
1
2
ρ1u3

1 = ṁ
�

em + u2
m/2

�

+
Q̇
A

. (12)

Herein Q̇ is the rate of heat added to the system [J/ s], A is the cross-section area of the duct and ṁ is the
rate of mass added to the system in [kg/s]. The subscript 1 denotes the state upstream of the source and the
subscript 2 denotes the state downstream of the source. The time dependence has vanished, because of the
stationary position of the source location and the infinite smallness of the domain [x1, x2]. This means that the
results derived from the analysis will be a quasi steady state solution or equivalently the angular frequency of the
perturbations limω→ 0.

The next step is to linearise the equations by assuming that each variable is composed of a constant part φ̄
and a small perturbation φ′, substituting each variable by φ = φ̄ +φ′ and neglecting terms of second order or
higher in the primed variables. Then the equations can be grouped in two parts, the unperturbed and perturbed
equations. Together with the ideal gas law for the unperturbed state p̄ = ρ̄RT̄ the equations for the unperturbed
state can be rewritten as,

ρ̄2ū2 − ρ̄1ū1 = ¯̇m, (13)

p̄2(1+ γM̄2
2 )− p̄1(1+ γM̄2

1 ) = ¯̇mūm, (14)

p̄2ū2

�

1+ γM̄2
2 +

cv

R

�

− p̄1ū1

�

1+ γM̄2
1 +

cv

R

�

= ¯̇m
�

ēm + ū2
m/2

�

+
¯̇Q
A

, (15)

where M̄ = ū/c is the Mach number, where c is the speed of sound given by c = γRT̄ . For a zero mean mass
influx, ṁ = 0, and no heat source, Q̇ = 0, these equations are the Rankine-Hugonoit conditions for a stationary
shock.6

The perturbed equations are linear in the perturbations and can thus be written as a system of linear equations.
By using the linearised equation of state p′ = ρ̄RT ′ + RT̄ρ′, the system can be written in the form of,

A2x ′2 = A1x1 +Mm′ +Qq ′, (16)

for which the matrices A1 and A2 contain only terms dependent on, respectively, the unperturbed upstream and
downstream states. The vector of the perturbations is given by x ′ = [p′, u′, e′]T and the subscript on x ′ indicates
to which perturbations are referred to, upstream or downstream of the source. The matrix A1 is given by,

A1 =







ū1

T̄1R ρ̄1 − ρ̄1ū1

T̄1cv

1+ γM̄2
1 2ρ̄1ū1 − ρ̄1ū2

1

T̄1cv

ū1

�

1+ 1
2γM̄2

1 +
1
γ−1

�

p̄1

�

1+ 3
2γM̄2

1 +
1
γ−1

�

−ρ̄1ū1M̄2
1γ(γ− 1)






, (17)

and A2 is obtained by replacing the subscript 1 by 2. The source terms to equation (16) are given by:

M =





1 0 0
ūm 2 ¯̇m 0

ēm ūm ēm
¯̇m+ ū2

m
2



 , m′ =





ṁ′

u′m
e′m



 , and Q =





0 0 0
0 0 0
1 0 0



 ,q ′ =





Q̇′

0
0



 . (18)
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III. Reduction of the system

IN this section, the equations governing the relation between the upstream and downstream mean quantities,
eqs. (13)-(15), and perturbed quantities, equations eq. (16), are simplified and rewritten. The relation between

the perturbed quantities up and downstream of the source will be represented by a single matrix, for which the
coefficients are only dependent on the upstream mean quantities.

Two sets of equations will be derived, one for the mass source and the other for the heat source. First the
relationship between the upstream and downstream perturbations without the influence of a fluctuating source
is derived and thereafter the sources are linearly coupled to the upstream fluctuations.

The equations have been reduced using an open-source computer algebra system, Maxima.7

A. Mass source

To derive the relationships between the perturbations upstream and downstream of the mass source, additional
simplifications are made. First, the mass source is assumed to have no constant mass addition, ¯̇m = 0, and the
added mass does not have any mean velocity associated with it ūm = 0. Also it is assumed that the Mach number
of the flow is small, M̄1, M̄2 � 1 and therefore the higher order terms in Mach-number in (14) and (15) are
neglected to determine the relations between the unperturbed states up- and downstream of the source.

The first step is to look at the relation between the upstream and downstream fluctuations without the source
terms. With the above assumptions it follows that the unperturbed variables do not have a jump at the source
plane, eq. (13)-eq. (15), and thus A−1

2 A1 = I .
The second step is to look how the mass source is coupled to the fluctuations of the governing quantities. The

idea for this study is to be able to study the stability of a combustor using a mass source instead of a heat source.
For a heat source, the source term is linearly coupled with the upstream velocity perturbations.5 In the case of
the mass source, an actual realization would involve a form of active control, where the upstream fluctuations
are measured and leading to an addition of mass at the source plane. In such a system, it would be fairly easy to
be able to measure pressure and velocity fluctuations of reasonable frequencies using for example microphones
and hot wire anemometry, but temperature fluctuations would be harder to measure due to the thermal inertia
of conventional measurement techniques (thermocouple, RTD etc.). With the above reasoning, the mass source
is assumed to be only dependent on the upstream pressure and velocity perturbations,

m′ = mp p′1 +muu′1, (19)

where mp and mu are the proportionality constants between the fluctuating mass source and the upstream fluctu-
ations. Furthermore, assuming that the added mass is in the form of an ideal gas and has the same temperature
as that of the fluid in the duct, the added internal energy can be rewritten as ēm = c2

1/γ(γ− 1).
To determine the relationships between the perturbed states, terms of second order in Mach number have

been neglected in (17) for both the upstream and downstream side if their contribution is small compared to the
other terms within the specific coefficient. By solving the linear system with the suggested coupling between the
mass source and the upstream perturbations, and only retaining first order terms w.r.t to the mean flow velocity
in the enumerators and denominators, the relation between the upstream and downstream perturbations is given
by:

x ′2 =











1 0 0
0 1 0
0 0 1



+







− γ+1
γ ū1mp − γ+1

γ ū1mu 0
c2
1

γ2 p̄1
mp

c2
1

γ2 p̄1
mu 0

− c2
1

γ3 p̄1ū1
mp − c2

1
γ3 p̄1ū1

mu 0












x ′1. (20)

In the limit of ū1→ 0, the source terms in the energy equation are not defined. This problem is originating from
the fact that when there is no mean flow present the last column in A is empty, therefore the matrix does not
longer have full rank and thus the inverse is not defined. From a physical point of view, the added energy is not
convected or diffused away away from the source plane, because there is no mean flow and thermal conduction
has been neglected respectively. This results in an energy singularity at the source plane.8 This problem can be
circumvented by not taking into account the energy equation in the analysis. This can be justified because the
mass source is not a function of the energy perturbations and thus if only acoustic disturbances are considered, the
fluctuating energy and pressure at each side is related to each other because of the isentropic nature of the acoustic
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disturbances. Under these considerations, the system is reduced to only the mass and momentum equation,

x ′2 =

�

�

1 0
0 1

�

+

�

0 0
c2
1

γ2 p̄1
mp

c2
1

γ2 p̄1
mu

��

x ′1. (21)

B. Heat Source

In the case of a heat source, the mean energy equation (15) has a source term, which introduces an increase of
the energy in the downstream section due to an increase of the temperature. Assuming that the Mach number
is small, M2

1 , M2
2 � 1, the dependency of the Mach number in the unperturbed equations (14) and (15) is not

retained and the following relations hold for the unperturbed variables across the flame,

ρ̄2ū2 = ρ̄1ū1, p̄1 = p̄2, ū2 = ū1

�

1+
¯̇Q

Ap̄1ū1

γ− 1
γ

�

, (22)

and equivalently
ū2

ū1
=

c2
2

c2
1

=
T̄2

T̄1
= θ = 1+

¯̇Q
Ap̄1ū1

γ− 1
γ

, M̄2 = θ
p

θ M̄1. (23)

The first step is to determine the relation between the fluctuations up and down stream of the source without the
influence of a fluctuating source. Using the system of equations describing the fluctuations, eq. 16, and neglecting
the source terms, this relation is described by A−1

2 A1 (eq. 16). This relation can be simplified by assuming that
M2

1 , M2
2 � 1 and neglecting these terms in the coefficients of A, eq (17), only if they are small compared to the

other terms in the specific coefficient. This leads to,

A−1
2 A1 =







1 − γp̄1ū1(θ−1)
c2
1

0

− ū1(θ−1)
p̄1

1 0

− c2
1 (θ−1)
γ(γ−1)p̄1

− (θ−1)c2
1

γ(γ−1)ū1
θ






. (24)

The second step is to introduce the coupling between the source term and the perturbations at the upstream side.
For a flame, the fluctuations of heat release rate Q̇ are governed by the flame transfer function, FTF,5

FTF=
Q̇′

u′1

ū1

¯̇Q
, Q̇′ = FTF

¯̇Q
ū1

u′1. (25)

Combining this with the expression for the mean heat release ¯̇Q, (23) leads to,

¯̇Q = (θ − 1)
γAp̄1ū1

γ− 1
. (26)

Introducing the relation for the heat release fluctuations as a function of the upstream velocity fluctuations in the
linearised equations, the system can be expressed as

x ′2 =













1 − γp̄1ū1(θ−1)
c2
1

0
−(θ−1)ū1

p̄1
1 0

c2
1 (θ−1)
γ(γ−1)p̄1

(θ−1)c2

γ(γ−1)ū1
θ






+







0 − γp̄1ū1(θ−1)
c2
1

A FTF 0

0 (θ − 1)A FTF 0

0
c2
1 (θ−1)A FTF
(γ−1)γū1

0












x ′1. (27)

A peculiarity arises when the mean flow is zero, the energy equation gives the relation for the velocity fluctuations
u′2 = u′1 and the mass flow ρ̄1u′1 = ρ̄2u′2 (eq. 16 and eq 17). Clearly these requirements on the fluctuations are
conflicting when ρ̄1 6= ρ̄2. This discrepancy has been discussed in the literature8 and it is shown that the unsteady
mass flow rate is not necessarily conserved over the flame, as it depends on the density variations through the
source. To resolve this problem the volume flow should be conserved rather than the mass flow.8 Then the
following relationship between the upstream and downstream perturbations can be derived9,10 yielding

x ′2 =

��

1 0
0 1

�

+

�

0 0
0 (θ − 1)A FTF

��

x ′1. (28)

6 of 8

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

ar
ia

 H
ec

kl
 o

n 
Ju

ly
 2

5,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
28

28
 



Preprint

IV. Discussion

IN the specific case of no flow, the coupling between the upstream and downstream fluctuations for the mass
source eq. (21) and heat source eq. (28) have the same structure. If there is no coupling of the mass source to

upstream pressure perturbations, mp = 0, and the coupling constant between the upstream velocity fluctuations
and the heat source mu equals γ2p1(θ − 1)AFTF/c2

1 , then the two sources can be considered to be equivalent.
In the more general case, when ū1,2 6= 0, the structure of the solution is different. By taking the solution for

the coupling constant of the mass source to obtain the same structure at zero flow,

mp = 0, mu =
γ2p1(θ − 1)A FTF

c2
1

(29)

the two coupling matrices Cm and Ch in equations eq. (20) and eq. (27) are respectively given by,

Cm =







1 − γp̄1ū1(θ−1)(γ+1)
c2
1

A FTF 0

0 1+ (θ − 1)A FTF 0
0 (θ−1)

γū1
A FTF 1






, Ch =







1 − γp̄1ū1(θ−1)
c2
1

(1+ A FTF) 0
−(θ−1)ū1

p̄1
1+ (θ − 1)A FTF 0

c2
1 (θ−1)
γ(γ−1)p̄1

(θ−1)c2

γū1(γ−1) (1+ A FTF) θ






, (30)

and we can compare the two solutions. In the case of the heat source, the downstream pressure and velocity
fluctuations are a function of both the upstream velocity and pressure fluctuations because of the jump in mean
temperature, this type of coupling is not present for the mass source. The strength of the velocity-pressure and
pressure-velocity coupling is dependent on the velocity and it becomes larger at larger velocities.

The coupling of the downstream velocity fluctuations to the upstream pressure fluctuations is small as the
coupling scales with the ρ1M1/c1. When the FTF has a large value, then the effect of the temperature jump
could be neglected compared to the effect of the oscillating heat release rate on the pressure downstream of the
flame. These observations lead to another possibility where the mass source could be approximately equivalent
to a heat source with respect to the pressure and velocity fluctuations. These conditions are that the flame
transfer function has a large value, FTF� 1 and the velocity fluctuations are larger than the pressure fluctuations
|u′1/p

′
1| � γM1/c1FTF at the source position so that the downstream velocity fluctuations are dominated by the

downstream fluctuations. It should be noted that the condition to have a large value for the FTF is not trivial
as it is in general a function of frequency, the flame configuration and fuel mixture,2,11,12 which could limit the
possibilities to mimic the source term of a flame using an acoustic driver in the presence of flow.

The largest differences between the mass source and the heat source can be seen in the energy equation. For
the heat source the downstream energy fluctuations are strongly coupled to the pressure fluctuations, but for the
mass source, there is no coupling at all. Also, for the heat source the downstream energy fluctuations are more
strongly coupled to the velocity fluctuations for the heat source than for the mass source. In the light of acoustic
perturbations, which are isentropic, the effect of large energy fluctuations downstream of the source could be of
no influence to the acoustic propagation, because for acoustic perturbations the energy fluctuations are directly
coupled to the pressure fluctuations. Unfortunately, this analysis cannot give a clear answer whether or not the
large energy fluctuations will have a strong influence on the acoustic disturbances as the main difference between
the two kinds of fluctuations, the propagation speed,13 is not taken into account in this simplified analysis.

The incentive of this study is to possibly find other ways to investigate the stability of combustors. Besides the
source terms another important aspect of thermo-acoustic instabilities is the form of the acoustic field within the
combustor. The importance of the acoustic field can be appreciated by looking at the Rayleigh criterion,3

R=
1
T

∫

Q̇′p′dt, (31)

which shows that if R is larger than one, i.e. the heat release fluctuations are in phase with the pressure oscilla-
tions, the heat source is able to increase the energy of the acoustic field.

The sound field in the combustor is governed by the wave propagation speed within the various parts of the
combustor and the boundary conditions to the acoustic field, such as the acoustic conditions at the inlet(s) and
outlet(s) of the combustor. Downstream of a flame the temperature and the flow velocity of the gas is higher
due to the steady heat release rate of the source. Acoustically, the effect leads to a discontinuity of the wave
propagation speed across the heat source. Furthermore, the temperature of the gas and the increased flow speed
also have an influence on the acoustic end conditions.14–16 Therefore, to be able to extrapolate stability results
when using a mass source instead of a heat source in a combustor, these effects should be taken into account to
obtain meaningful results.

7 of 8

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

ar
ia

 H
ec

kl
 o

n 
Ju

ly
 2

5,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
28

28
 



Preprint

V. Conclusion

The incentive of this study was to find an alternative way to investigate the stability of combustors using an
electro-acoustic equivalent for the acoustic response of a flame. Therefore the similarities between a compact heat
source and a compact mass source have been investigated using a methodology based on the Rankine-Hugonoit
relations. The resulting set of equations have been linearised and both the sources have been considered to
be linearly dependent on upstream acoustic perturbations. Then both systems of equations were reduced and
compared with each other.

It has been shown, that for the zero flow case the two sources can be considered equivalent, but when there
is a flow present, this equivalence is in general not longer maintained. It has been shown that under specific
conditions, a similar coupling between the upstream and downstream perturbations for a mass source and heat
source can be obtained when there is a mean flow present. These conditions are that the flame transfer function
is large compared to unity and that the acoustic velocity perturbations are large compared to acoustic pressure
perturbations at the source position.

Even though there is an acoustic equivalence between a mass source and a heat source under certain condi-
tions, the presence of a steady temperature and flow speed jump due to the flame lead to a change of the acoustics
within the system and these effects should be taken into to account to be able to successfully predict combustion
instabilities using a mass source.

VI. Acknowledgements

The presented work is part of the Marie Curie Initial Training Network Thermo-acoustic and aero-acoustic
non-linearities in green combustors with orifice structures (TANGO). We gratefully acknowledge the financial
support from the European Commission under call FP7-PEOPLE-ITN-2012.

References
1Maarten Hoeijmakers. Flame-acoustic coupling in combustion instabilities. PhD thesis, Technische universiteit Eindhoven, January 2014.
2M. Manohar. Thermo-acoustics of Bunsen type premixed flames. PhD thesis, Technical University Eindhoven, 2011.
3John William Strutt Baron Rayleigh. The theory of sound, volume 1. Dover Publications New York, first american edition edition, 1945.
4Sébastien Ducruix, Daniel Durox, and Sébastien Candel. Theoretical and experimental determinations of the transfer function of a

laminar premixed flame. Proceedings of the Combustion Institute, 28:765–773, 2000.
5L.P.H. de Goey, J.A. van Oijen, V.N. Kornilov, and J.H.M. ten Thije Boonkkamp. Propagation, dynamics and control of laminar premixed

flames. Proceedings of the Combustion Institute, 33:863 – 886, 2011.
6John D. Anderson. Modern Compressible Flow: With Historical Perspective. McGraw-Hill Science/Engineering/Math, 2002.
7Maxima. Maxima, a computer algebra system. version 5.34.1, 2014.
8Michael Bauerheim, Franck Nicoud, and Thierry Poinsot. Theoretical analysis of the mass balance equation through a flame at zero

and non-zero mach numbers. Combustion and Flame, 162(1):60–67, Jan 2015.
9J. Kopitz and W. Polifke. CFD-based application of the Nyquist criterion to thermo-acoustic instabilities. Journal of Computational

Physics, 227(14):6754–6778, Jul 2008.
10Ann P. Dowling and Simon R. Stow. Acoustic analysis of gas turbine combustors. Journal of Propulsion and Power, 19(5):751–764, Sep

2003.
11Luck B.W. Peerlings, Manohar, Viktor N. Kornilov, and Philip de Goey. Flame ion generation rate as a measure of the flame thermo-

acoustic response. Combustion and Flame, 160(11):2490–2496, Nov 2013.
12V.N. Kornilov, K.R.A.M. Schreel, and L.P.H. de Goey. Experimental assessment of the acoustic response of laminar premixed Bunsen

flames. Proceedings of the Combustion Institute, 31(1):1239 – 1246, 2007.
13Chee Su Goh and Aimee S. Morgans. The influence of entropy waves on the thermoacoustic stability of a model combustor. Combustion

Science and Technology, 185:249–268, 2013.
14Avraham Hirschberg and Maarten Hoeijmakers. Comments on the low frequency radiation impedance of a duct exhausting a hot gas.

J. Acoust. Soc. Am., 136(2):84–89, Aug 2014.
15M.C.A.M. Peters, A. Hirschberg, A.J. Reijnen, and A.P.J. Wijnandsu. Damping and reflection coefficient measurements for an open pipe

at low mach and low helmholtz numbers. J. Fluid. Mech., 256:499–534, 1993.
16Sabry Allam and Mats Åbom. Investigation of damping and radiation using full plane wave decomposition in ducts. Journal of Sound

and Vibration, 292(3-5):519–534, May 2006.

8 of 8

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

ar
ia

 H
ec

kl
 o

n 
Ju

ly
 2

5,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
28

28
 




